----------------------------------------------------------------------
ePolyScat Version E
----------------------------------------------------------------------


+ Start of Input Records
#
# input file for test04
#
# electron scattering from SiH4 in A1 symmetry
#
  LMax   15     # maximum l to be used for wave functions
  LMaxA  12     # maximum l included at large r
  MMax 3        # maximum m about unique axes at high l
  RMax   12.0   # maximum R in inner grid
  EMax  50.0    # EMax, maximum asymptotic energy in eV
  EngForm       # Energy formulas
   0 0
  VCorr 'PZ'
  AsyPol
 0.25  # SwitchD, distance where switching function is down to 0.1
 1     # nterm, number of terms needed to define asymptotic potential
 1     # center for polarization term 1 is for C atom
 1     # ittyp type of polarization term, = 1 for spherically symmetric
       # = 2 for reading in the full tensor
 30.40 # value of the spherical polarizability
 3     # icrtyp, flag to determine where r match is, 3 for second crossing
       # or at nearest approach
 0     # ilntyp, flag to determine what matching line is used, 0 - use
       # l = 0 radial function as matching function
  FegeEng 13.29   # Energy correction (in eV) used in the fege potential
  ScatContSym 'A1'  # Scattering symmetry
  LMaxK   10     # Maximum l in the K matirx
  ScatEng 0.5 10.0 15.0      # list of scattering energies
  GrnType 1

Convert '/home/lucchese/ePolyScatE/tests/test04.g03' 'g03'
GetBlms
ExpOrb
GetPot
Scat
TotalCrossSection

+ End of input reached
+ Data Record LMax - 15
+ Data Record LMaxA - 12
+ Data Record MMax - 3
+ Data Record RMax - 12.0
+ Data Record EMax - 50.0
+ Data Record EngForm - 0 0
+ Data Record VCorr - 'PZ'
+ Data Record AsyPol
+ 0.25 / 1 / 1 / 1 / 30.40 / 3 / 0
+ Data Record FegeEng - 13.29
+ Data Record ScatContSym - 'A1'
+ Data Record LMaxK - 10
+ Data Record ScatEng - 0.5 10.0 15.0
+ Data Record GrnType - 1

+ Command Convert
+ '/home/lucchese/ePolyScatE/tests/test04.g03' 'g03'

----------------------------------------------------------------------
g03cnv - read input from G03 output
----------------------------------------------------------------------

Expansion center is (in Angstroms) -
     0.0000000000   0.0000000000   0.0000000000
CardFlag =    T
Normal Mode flag =    F
Selecting orbitals
from     1  to     9  number already selected     0
Number of orbitals selected is     9
Highest orbital read in is =    9
Time Now =         0.0460  Delta time =         0.0460 End g03cnv

Atoms found    5
Z = 14 r =   0.0000000000   0.0000000000   0.0000000000
Z =  1 r =   1.5950913735   1.5950913735   1.5950913735
Z =  1 r =  -1.5950913735  -1.5950913735   1.5950913735
Z =  1 r =   1.5950913735  -1.5950913735  -1.5950913735
Z =  1 r =  -1.5950913735   1.5950913735  -1.5950913735

+ Command GetBlms
+

----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------

Found point group  Td
Reduce angular grid using nthd =  1  nphid =  4
Found point group for abelian subgroup D2
Time Now =         0.0517  Delta time =         0.0056 End GetPGroup
List of unique axes
  N  Vector                      Z   R
  1  0.00000  0.00000  1.00000
  2  0.57735  0.57735  0.57735   1  2.76278
  3 -0.57735 -0.57735  0.57735   1  2.76278
  4  0.57735 -0.57735 -0.57735   1  2.76278
  5 -0.57735  0.57735 -0.57735   1  2.76278
List of corresponding x axes
  N  Vector
  1  1.00000  0.00000  0.00000
  2  0.81650 -0.40825 -0.40825
  3  0.81650 -0.40825  0.40825
  4  0.81650  0.40825  0.40825
  5  0.81650  0.40825 -0.40825
Determineing angular grid in GetAxMax  LmAx =   15  LMaxA =   12  LMaxAb =   30
For axis     1  mvals:
  0  1  2  3  4  5  6  7  8  9 10 11 12 13 -1 -1
For axis     2  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  3  2
For axis     3  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  3  2
For axis     4  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  3  2
For axis     5  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  3  2
On the double L grid used for products
For axis     1  mvals:
  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19
 20 21 22 23 24 25 26 27 28 29 30
For axis     2  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
For axis     3  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
For axis     4  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
For axis     5  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is Td
LMax = =   15
 The dimension of each irreducable representation is
    A1    (  1)    A2    (  1)    E     (  2)    T1    (  3)    T2    (  3)
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     8    11    14
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A1        1         1         14       1  1  1
 A2        1         2          6       1  1  1
 E         1         3         20       1  1  1
 E         2         4         20       1  1  1
 T1        1         5         26      -1 -1  1
 T1        2         6         26      -1  1 -1
 T1        3         7         26       1 -1 -1
 T2        1         8         35      -1 -1  1
 T2        2         9         35      -1  1 -1
 T2        3        10         35       1 -1 -1
Time Now =         1.7520  Delta time =         1.7003 End SymGen

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is D2
LMax = =   30
 The dimension of each irreducable representation is
    A     (  1)    B1    (  1)    B2    (  1)    B3    (  1)
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     2     3     4
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A         1         1        241       1  1  1
 B1        1         2        240       1 -1 -1
 B2        1         3        240      -1 -1  1
 B3        1         4        240      -1  1 -1
Time Now =         4.7921  Delta time =         3.0401 End SymGen

+ Command ExpOrb
+

----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------

Maximum R in the grid (RMax) =    12.00000
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) =   30.0
In regions controlled by the wave length (HFacWave) =  120.0
Maximum asymptotic kinetic energy (EMAx) =  50.00000 eV
Factor to increase grid by (GridFac) =     1

    1  Center at =     0.00000  Alpha Max = 0.69379E+05
    2  Center at =     2.76278  Alpha Max = 0.33865E+02

Generated Grid

  irg  nin  ntot      step          R end
    1   32    32    0.40019E-04     0.00128
    2    8    40    0.42687E-04     0.00162
    3    8    48    0.54070E-04     0.00205
    4    8    56    0.68488E-04     0.00260
    5    8    64    0.86752E-04     0.00330
    6    8    72    0.10989E-03     0.00418
    7    8    80    0.13919E-03     0.00529
    8    8    88    0.17631E-03     0.00670
    9    8    96    0.22332E-03     0.00849
   10    8   104    0.28287E-03     0.01075
   11    8   112    0.35831E-03     0.01362
   12    8   120    0.45385E-03     0.01725
   13    8   128    0.57488E-03     0.02185
   14    8   136    0.72818E-03     0.02767
   15    8   144    0.92237E-03     0.03505
   16    8   152    0.11683E-02     0.04440
   17    8   160    0.14799E-02     0.05624
   18    8   168    0.18745E-02     0.07123
   19    8   176    0.23744E-02     0.09023
   20    8   184    0.30076E-02     0.11429
   21    8   192    0.38096E-02     0.14476
   22    8   200    0.48255E-02     0.18337
   23    8   208    0.61123E-02     0.23227
   24    8   216    0.77422E-02     0.29420
   25    8   224    0.98068E-02     0.37266
   26   64   288    0.10990E-01     1.07600
   27   64   352    0.10990E-01     1.77935
   28   56   408    0.10990E-01     2.39477
   29    8   416    0.96287E-02     2.47180
   30    8   424    0.76132E-02     2.53271
   31    8   432    0.60197E-02     2.58087
   32    8   440    0.47596E-02     2.61894
   33    8   448    0.37634E-02     2.64905
   34    8   456    0.29756E-02     2.67286
   35    8   464    0.23528E-02     2.69168
   36    8   472    0.18603E-02     2.70656
   37    8   480    0.18115E-02     2.72105
   38   16   496    0.18114E-02     2.75003
   39    8   504    0.15931E-02     2.76278
   40   32   536    0.18114E-02     2.82074
   41    8   544    0.19321E-02     2.83620
   42    8   552    0.24473E-02     2.85578
   43    8   560    0.31000E-02     2.88058
   44    8   568    0.39266E-02     2.91199
   45    8   576    0.49737E-02     2.95178
   46    8   584    0.63000E-02     3.00218
   47    8   592    0.79801E-02     3.06602
   48    8   600    0.10108E-01     3.14689
   49    8   608    0.12804E-01     3.24931
   50   64   672    0.13657E-01     4.12334
   51   64   736    0.13657E-01     4.99736
   52   64   800    0.13657E-01     5.87139
   53   64   864    0.13657E-01     6.74541
   54   64   928    0.13657E-01     7.61944
   55   64   992    0.13657E-01     8.49347
   56   64  1056    0.13657E-01     9.36749
   57   64  1120    0.13657E-01    10.24152
   58   64  1184    0.13657E-01    11.11554
   59   64  1248    0.13657E-01    11.98957
   60    8  1256    0.13043E-02    12.00000
Time Now =         4.7931  Delta time =         0.0010 End GenGrid

----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------

Maximum scattering l (lmax) =   15
Maximum scattering m (mmaxs) =   15
Maximum numerical integration l (lmaxi) =   30
Maximum numerical integration m (mmaxi) =   30
Maximum l to include in the asymptotic region (lmasym) =   12
Parameter used to determine the cutoff points (PCutRd) =  0.10000000E-05 au
Maximum E used to determine grid (in eV) =       50.00000
Print flag (iprnfg) =    0
lmasymtyts =   12
 Actual value of lmasym found =     12
Number of regions of the same l expansion (NAngReg) =    6
Angular regions
    1 L =    2  from (    1)         0.00004  to (    7)         0.00028
    2 L =    3  from (    8)         0.00032  to (   71)         0.00407
    3 L =    7  from (   72)         0.00418  to (  175)         0.08785
    4 L =   11  from (  176)         0.09023  to (  223)         0.36285
    5 L =   15  from (  224)         0.37266  to ( 1248)        11.98957
    6 L =   12  from ( 1249)        11.99087  to ( 1256)        12.00000

For analytic integrations ntheta =     32  nphi =     16
For numerical integrations ntheti =     64 nphii =     32
Last grid points by processor WorkExp =     1.500
Proc id =   -1  Last grid point =       1
Proc id =    0  Last grid point =     224
Proc id =    1  Last grid point =     296
Proc id =    2  Last grid point =     368
Proc id =    3  Last grid point =     440
Proc id =    4  Last grid point =     512
Proc id =    5  Last grid point =     584
Proc id =    6  Last grid point =     656
Proc id =    7  Last grid point =     728
Proc id =    8  Last grid point =     800
Proc id =    9  Last grid point =     872
Proc id =   10  Last grid point =     936
Proc id =   11  Last grid point =    1000
Proc id =   12  Last grid point =    1064
Proc id =   13  Last grid point =    1128
Proc id =   14  Last grid point =    1192
Proc id =   15  Last grid point =    1256
Time Now =         5.1605  Delta time =         0.3674 End AngGCt

----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------


 R of maximum density
     1  A1    1 at max irg =   21  r =   0.07123
     2  A1    1 at max irg =   29  r =   0.46058
     3  T2    1 at max irg =   28  r =   0.37266
     4  T2    2 at max irg =   28  r =   0.37266
     5  T2    3 at max irg =   28  r =   0.37266
     6  A1    1 at max irg =   49  r =   2.21894
     7  T2    1 at max irg =   59  r =   2.70656
     8  T2    2 at max irg =   59  r =   2.70656
     9  T2    3 at max irg =   59  r =   2.70656

Rotation coefficients for orbital     1  grp =    1 A1    1
     1  1.0000000000

Rotation coefficients for orbital     2  grp =    2 A1    1
     2  1.0000000000

Rotation coefficients for orbital     3  grp =    3 T2    1
     3  0.0000000000    4  1.0000000000    5  0.0000000000

Rotation coefficients for orbital     4  grp =    3 T2    2
     3  1.0000000000    4  0.0000000000    5  0.0000000000

Rotation coefficients for orbital     5  grp =    3 T2    3
     3  0.0000000000    4  0.0000000000    5  1.0000000000

Rotation coefficients for orbital     6  grp =    4 A1    1
     6  1.0000000000

Rotation coefficients for orbital     7  grp =    5 T2    1
     7  1.0000000000    8  0.0000000000    9  0.0000000000

Rotation coefficients for orbital     8  grp =    5 T2    2
     7  0.0000000000    8  0.0000000000    9  1.0000000000

Rotation coefficients for orbital     9  grp =    5 T2    3
     7  0.0000000000    8  1.0000000000    9  0.0000000000
Number of orbital groups and degeneracis are         5
  1  1  3  1  3
Number of orbital groups and number of electrons when fully occupied
         5
  2  2  6  2  6
Time Now =         5.8226  Delta time =         0.6621 End RotOrb

----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------

 First orbital group to expand (mofr) =    1
 Last orbital group to expand (moto) =    5
Orbital     1 of  A1    1 symmetry normalization integral =  1.00000005
Orbital     2 of  A1    1 symmetry normalization integral =  1.00000005
Orbital     3 of  T2    1 symmetry normalization integral =  1.00000001
Orbital     4 of  A1    1 symmetry normalization integral =  0.99993723
Orbital     5 of  T2    1 symmetry normalization integral =  0.99990632
Time Now =         7.0414  Delta time =         1.2188 End ExpOrb

+ Command GetPot
+

----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------

Total density =     18.00000000
Time Now =         7.0775  Delta time =         0.0361 End Den

----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------

 vasymp =  0.18000000E+02 facnorm =  0.10000000E+01
Time Now =         7.0870  Delta time =         0.0096 Electronic part
Time Now =         7.1021  Delta time =         0.0151 End StPot

----------------------------------------------------------------------
vcppol - VCP polarization potential program
----------------------------------------------------------------------

Time Now =         7.1683  Delta time =         0.0662 End VcpPol

----------------------------------------------------------------------
asypol - Program to match polarization potential to asymptotic form
----------------------------------------------------------------------

Switching distance (SwitchD) =     0.25000
 Number of terms in the asymptotic polarization potential (nterm) =    1
Term =    1  At center =    1
Explicit coordinates =  0.00000000E+00  0.00000000E+00  0.00000000E+00
Type =    1
Last center is at (RCenterX) =   0.00000
 Radial matching parameter (icrtyp) =    3
 Matching line type (ilntyp) =    0
 Matching point is at r =   4.8305906311
First nonzero weight at R =        4.12334
Last point of the switching region R=        5.54363
Total asymptotic potential is   0.30400000E+02
Time Now =         7.3299  Delta time =         0.1616 End AsyPol

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13290000E+02  eV
 Do E =  0.50000000E+00 eV (  0.18374663E-01 AU)
Time Now =         7.4096  Delta time =         0.0797 End Fege

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (lna) =   10
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.30400000E+02  au
Number of integration regions used =    57
Number of partial waves (np) =    14
Number of asymptotic solutions on the right (NAsymR) =     8
Number of asymptotic solutions on the left (NAsymL) =     8
Maximum in the asymptotic region (lpasym) =   12
Number of partial waves in the asymptotic region (npasym) =   11
Number of orthogonality constraints (NOrthUse) =    0
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   12
Higest l used in the asymptotic potential (lpzb) =   24
Time Now =         7.4317  Delta time =         0.0221 Energy independent setup

Compute solution for E =    0.5000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.30400000E+02 au
 stpote at the end of the grid
 i =  1  lval =   6  stpote = -0.15819049E-02
 i =  2  lval =   3  stpote = -0.14988705E-14
 i =  3  lval =   3  stpote =  0.73074806E-14
 i =  4  lval =   4  stpote =  0.73050811E+01
Number of asymptotic regions =      14
Final point in integration =   0.19199612E+03
Iter =   1 c.s. =      6.43316544 angs^2  rmsk=     0.03239970
Iter =   2 c.s. =      2.19496153 angs^2  rmsk=     0.01378387
Iter =   3 c.s. =      1.58939228 angs^2  rmsk=     0.00286110
Iter =   4 c.s. =      1.58681019 angs^2  rmsk=     0.00001326
Iter =   5 c.s. =      1.58676928 angs^2  rmsk=     0.00000021
Iter =   6 c.s. =      1.58676936 angs^2  rmsk=     0.00000000
Iter =   7 c.s. =      1.58676936 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  (-0.12702990E+00, 0.16407695E-01) ( 0.13541936E-02,-0.15931855E-03)
  (-0.15376360E-03, 0.20030541E-04) (-0.58254040E-06, 0.15564609E-06)
  (-0.22286494E-07, 0.64551822E-08) ( 0.25908206E-09, 0.15686664E-10)
  (-0.20161444E-10, 0.82324842E-11) ( 0.65388107E-12,-0.77262311E-13)
     ROW  2
  ( 0.13541936E-02,-0.15931856E-03) ( 0.11406969E-01, 0.13249071E-03)
  ( 0.70092852E-03, 0.11335369E-04) ( 0.59732755E-04, 0.78176261E-06)
  (-0.58526789E-06,-0.32531833E-07) ( 0.22795379E-08,-0.18404680E-09)
  (-0.19105837E-08,-0.85674043E-09) ( 0.55880847E-10,-0.97367880E-11)
     ROW  3
  (-0.15376360E-03, 0.20030541E-04) ( 0.70092852E-03, 0.11335369E-04)
  ( 0.50635984E-02, 0.26156983E-04) ( 0.47067823E-05, 0.76163449E-07)
  (-0.27815024E-04,-0.17108002E-06) (-0.30377335E-06,-0.33385124E-08)
  ( 0.71784567E-09,-0.76938646E-10) (-0.56787994E-09,-0.25091787E-09)
     ROW  4
  (-0.58254050E-06, 0.15564612E-06) ( 0.59732755E-04, 0.78176261E-06)
  ( 0.47067823E-05, 0.76163449E-07) ( 0.16363723E-02, 0.26906268E-05)
  (-0.95493145E-04,-0.25719466E-06) ( 0.57411550E-06,-0.38913932E-08)
  (-0.13960260E-04,-0.30097528E-07) (-0.79232268E-07,-0.14100573E-08)
     ROW  5
  (-0.22286492E-07, 0.64551819E-08) (-0.58526791E-06,-0.32531833E-07)
  (-0.27815024E-04,-0.17108002E-06) (-0.95493145E-04,-0.25719466E-06)
  ( 0.10554507E-02, 0.11272006E-05) ( 0.57012635E-04, 0.10116008E-06)
  ( 0.65627154E-06, 0.17957596E-08) ( 0.88944912E-05, 0.12802986E-07)
     ROW  6
  ( 0.25908209E-09, 0.15686654E-10) ( 0.22795378E-08,-0.18404681E-09)
  (-0.30377335E-06,-0.33385124E-08) ( 0.57411550E-06,-0.38913932E-08)
  ( 0.57012635E-04, 0.10116008E-06) ( 0.71981171E-03, 0.52161627E-06)
  (-0.14438139E-04,-0.17780005E-07) ( 0.34569229E-06, 0.58973834E-09)
     ROW  7
  (-0.20161427E-10, 0.82324823E-11) (-0.19105862E-08,-0.85674046E-09)
  ( 0.71784563E-09,-0.76938648E-10) (-0.13960260E-04,-0.30097528E-07)
  ( 0.65627154E-06, 0.17957596E-08) (-0.14438139E-04,-0.17780005E-07)
  ( 0.51431051E-03, 0.26577485E-06) ( 0.28741025E-04, 0.25663648E-07)
     ROW  8
  ( 0.65388094E-12,-0.77262195E-13) ( 0.55880801E-10,-0.97367893E-11)
  (-0.56788050E-09,-0.25091787E-09) (-0.79232268E-07,-0.14100573E-08)
  ( 0.88944912E-05, 0.12802986E-07) ( 0.34569229E-06, 0.58973834E-09)
  ( 0.28741025E-04, 0.25663648E-07) ( 0.37864167E-03, 0.14477802E-06)
 eigenphases
 -0.1284516E+00  0.3726661E-03  0.5189408E-03  0.7111377E-03  0.1049735E-02
  0.1651552E-02  0.4988027E-02  0.1149764E-01
 eigenphase sum-0.107662E+00  scattering length=   0.56379
 eps+pi 0.303393E+01  eps+2*pi 0.617552E+01

Iter =   7 c.s. =      1.58676936 angs^2  rmsk=     0.00000000
Time Now =        49.8594  Delta time =        42.4277 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13290000E+02  eV
 Do E =  0.10000000E+02 eV (  0.36749326E+00 AU)
Time Now =        49.9386  Delta time =         0.0792 End Fege

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (lna) =   10
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.30400000E+02  au
Number of integration regions used =    57
Number of partial waves (np) =    14
Number of asymptotic solutions on the right (NAsymR) =     8
Number of asymptotic solutions on the left (NAsymL) =     8
Maximum in the asymptotic region (lpasym) =   12
Number of partial waves in the asymptotic region (npasym) =   11
Number of orthogonality constraints (NOrthUse) =    0
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   12
Higest l used in the asymptotic potential (lpzb) =   24
Time Now =        49.9973  Delta time =         0.0588 Energy independent setup

Compute solution for E =   10.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.30400000E+02 au
 stpote at the end of the grid
 i =  1  lval =   6  stpote = -0.93664557E-03
 i =  2  lval =   3  stpote = -0.11636105E-14
 i =  3  lval =   3  stpote =  0.28365561E-14
 i =  4  lval =   4  stpote =  0.73050840E+01
Number of asymptotic regions =      25
Final point in integration =   0.85281971E+02
Iter =   1 c.s. =      7.46685886 angs^2  rmsk=     0.15610349
Iter =   2 c.s. =      7.84528937 angs^2  rmsk=     0.05391780
Iter =   3 c.s. =      7.85694258 angs^2  rmsk=     0.00190330
Iter =   4 c.s. =      7.85761261 angs^2  rmsk=     0.00020201
Iter =   5 c.s. =      7.85759995 angs^2  rmsk=     0.00000052
Iter =   6 c.s. =      7.85759994 angs^2  rmsk=     0.00000000
Iter =   7 c.s. =      7.85759994 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.12678752E+00, 0.80217898E+00) ( 0.35490546E+00,-0.10276636E+00)
  (-0.69494370E-01, 0.35167525E-01) (-0.49194067E-02, 0.16997993E-02)
  (-0.78688069E-03, 0.21388998E-03) ( 0.40517653E-04,-0.60864846E-05)
  (-0.13283720E-04, 0.19809962E-05) ( 0.19035119E-05,-0.46301757E-08)
     ROW  2
  ( 0.35490545E+00,-0.10276637E+00) ( 0.63948679E-01, 0.79167976E+00)
  ( 0.17407763E-01,-0.15456140E+00) ( 0.83991389E-04,-0.10927331E-01)
  (-0.49254897E-04,-0.17278136E-02) (-0.94739203E-05, 0.81632633E-04)
  (-0.27315571E-05,-0.28392186E-04) ( 0.58997808E-07, 0.38118364E-05)
     ROW  3
  (-0.69494368E-01, 0.35167527E-01) ( 0.17407763E-01,-0.15456140E+00)
  ( 0.11335997E+00, 0.45157095E-01) ( 0.16482754E-02, 0.24484228E-02)
  ( 0.31354107E-03, 0.38566515E-03) (-0.97558545E-04,-0.29235636E-04)
  ( 0.10557790E-04, 0.66927223E-05) (-0.26607207E-05,-0.10735648E-05)
     ROW  4
  (-0.49194066E-02, 0.16997994E-02) ( 0.83991428E-04,-0.10927331E-01)
  ( 0.16482754E-02, 0.24484228E-02) ( 0.34094131E-01, 0.13214683E-02)
  (-0.14364899E-02,-0.55326037E-04) ( 0.23889894E-04,-0.16234363E-05)
  (-0.17226490E-03,-0.73935092E-05) (-0.17612992E-04,-0.10979365E-05)
     ROW  5
  (-0.78688066E-03, 0.21388999E-03) (-0.49254890E-04,-0.17278136E-02)
  ( 0.31354107E-03, 0.38566514E-03) (-0.14364899E-02,-0.55326037E-04)
  ( 0.21463377E-01, 0.46796847E-03) ( 0.10385844E-02, 0.37064850E-04)
  ( 0.77357964E-04, 0.25695849E-05) ( 0.14331342E-03, 0.42773635E-05)
     ROW  6
  ( 0.40517652E-04,-0.60864855E-05) (-0.94739206E-05, 0.81632631E-04)
  (-0.97558545E-04,-0.29235636E-04) ( 0.23889894E-04,-0.16234363E-05)
  ( 0.10385844E-02, 0.37064850E-04) ( 0.14456292E-01, 0.21021795E-03)
  (-0.28183581E-03,-0.69209925E-05) ( 0.35060530E-04, 0.80852947E-06)
     ROW  7
  (-0.13283720E-04, 0.19809965E-05) (-0.27315570E-05,-0.28392185E-04)
  ( 0.10557790E-04, 0.66927222E-05) (-0.17226490E-03,-0.73935092E-05)
  ( 0.77357964E-04, 0.25695849E-05) (-0.28183581E-03,-0.69209925E-05)
  ( 0.10415460E-01, 0.10894202E-03) ( 0.56684348E-03, 0.10254451E-04)
     ROW  8
  ( 0.19035118E-05,-0.46302449E-08) ( 0.58997808E-07, 0.38118364E-05)
  (-0.26607207E-05,-0.10735648E-05) (-0.17612992E-04,-0.10979365E-05)
  ( 0.14331342E-03, 0.42773634E-05) ( 0.35060530E-04, 0.80852947E-06)
  ( 0.56684348E-03, 0.10254451E-04) ( 0.76703701E-02, 0.59383360E-04)
 eigenphases
 -0.1285197E+01  0.7556118E-02  0.1050650E-01  0.1432590E-01  0.2146027E-01
  0.3424892E-01  0.1192682E+00  0.9959607E+00
 eigenphase sum-0.818701E-01  scattering length=   0.09571
 eps+pi 0.305972E+01  eps+2*pi 0.620132E+01

Iter =   7 c.s. =      7.85759994 angs^2  rmsk=     0.00000000
Time Now =        92.8371  Delta time =        42.8398 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13290000E+02  eV
 Do E =  0.15000000E+02 eV (  0.55123989E+00 AU)
Time Now =        92.9150  Delta time =         0.0778 End Fege

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (lna) =   10
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.30400000E+02  au
Number of integration regions used =    57
Number of partial waves (np) =    14
Number of asymptotic solutions on the right (NAsymR) =     8
Number of asymptotic solutions on the left (NAsymL) =     8
Maximum in the asymptotic region (lpasym) =   12
Number of partial waves in the asymptotic region (npasym) =   11
Number of orthogonality constraints (NOrthUse) =    0
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   12
Higest l used in the asymptotic potential (lpzb) =   24
Time Now =        92.9383  Delta time =         0.0234 Energy independent setup

Compute solution for E =   15.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.30400000E+02 au
 stpote at the end of the grid
 i =  1  lval =   6  stpote = -0.77110205E-03
 i =  2  lval =   3  stpote = -0.10277880E-14
 i =  3  lval =   3  stpote =  0.17558350E-15
 i =  4  lval =   4  stpote =  0.73050848E+01
Number of asymptotic regions =      28
Final point in integration =   0.79016712E+02
Iter =   1 c.s. =      4.91303714 angs^2  rmsk=     0.15508303
Iter =   2 c.s. =      4.77244714 angs^2  rmsk=     0.02674659
Iter =   3 c.s. =      4.77456207 angs^2  rmsk=     0.00095627
Iter =   4 c.s. =      4.77423106 angs^2  rmsk=     0.00002599
Iter =   5 c.s. =      4.77422882 angs^2  rmsk=     0.00000011
Iter =   6 c.s. =      4.77422884 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.35049671E+00, 0.62345877E+00) ( 0.30129283E+00,-0.11836033E+00)
  (-0.69254325E-01, 0.47610050E-01) (-0.70544525E-02, 0.29423077E-02)
  (-0.14002045E-02, 0.43225619E-03) ( 0.91354848E-04,-0.13860992E-04)
  (-0.35483942E-04, 0.31356092E-05) ( 0.62184857E-05, 0.34408469E-06)
     ROW  2
  ( 0.30129282E+00,-0.11836033E+00) (-0.13919249E+00, 0.78567347E+00)
  ( 0.87993303E-01,-0.19004871E+00) ( 0.58784666E-02,-0.17929662E-01)
  ( 0.11503333E-02,-0.32941587E-02) (-0.10728851E-03, 0.17514350E-03)
  ( 0.23169639E-04,-0.73271170E-04) (-0.55209502E-05, 0.10894540E-04)
     ROW  3
  (-0.69254324E-01, 0.47610051E-01) ( 0.87993303E-01,-0.19004871E+00)
  ( 0.15407347E+00, 0.81321978E-01) ( 0.31231190E-02, 0.56815010E-02)
  ( 0.14954925E-02, 0.12210755E-02) (-0.30387648E-03,-0.11010932E-03)
  ( 0.40104261E-04, 0.27947502E-04) (-0.12709868E-04,-0.55395760E-05)
     ROW  4
  (-0.70544523E-02, 0.29423077E-02) ( 0.58784666E-02,-0.17929662E-01)
  ( 0.31231190E-02, 0.56815009E-02) ( 0.53649345E-01, 0.33472092E-02)
  (-0.11235394E-02,-0.86278959E-05) ( 0.28985054E-04,-0.52919403E-05)
  (-0.38513788E-04,-0.95949683E-06) (-0.58652872E-04,-0.43415366E-05)
     ROW  5
  (-0.14002044E-02, 0.43225619E-03) ( 0.11503333E-02,-0.32941586E-02)
  ( 0.14954925E-02, 0.12210755E-02) (-0.11235394E-02,-0.86278965E-05)
  ( 0.32858182E-01, 0.11018789E-02) ( 0.12783269E-02, 0.68394910E-04)
  ( 0.19684084E-03, 0.96263114E-05) ( 0.11972950E-03, 0.55822563E-05)
     ROW  6
  ( 0.91354845E-04,-0.13860992E-04) (-0.10728851E-03, 0.17514349E-03)
  (-0.30387648E-03,-0.11010932E-03) ( 0.28985054E-04,-0.52919403E-05)
  ( 0.12783269E-02, 0.68394910E-04) ( 0.21749815E-01, 0.47524229E-03)
  (-0.38560903E-03,-0.14171705E-04) ( 0.78338203E-04, 0.25347867E-05)
     ROW  7
  (-0.35483941E-04, 0.31356092E-05) ( 0.23169639E-04,-0.73271167E-04)
  ( 0.40104261E-04, 0.27947501E-04) (-0.38513788E-04,-0.95949685E-06)
  ( 0.19684084E-03, 0.96263114E-05) (-0.38560903E-03,-0.14171705E-04)
  ( 0.15692518E-01, 0.24715654E-03) ( 0.78935878E-03, 0.21486453E-04)
     ROW  8
  ( 0.62184855E-05, 0.34408461E-06) (-0.55209501E-05, 0.10894540E-04)
  (-0.12709868E-04,-0.55395759E-05) (-0.58652872E-04,-0.43415366E-05)
  ( 0.11972950E-03, 0.55822562E-05) ( 0.78338203E-04, 0.25347866E-05)
  ( 0.78935878E-03, 0.21486453E-04) ( 0.11535400E-01, 0.13415532E-03)
 eigenphases
 -0.1238241E+01  0.1138923E-01  0.1581240E-01  0.2163645E-01  0.3294793E-01
  0.5375788E-01  0.1822376E+00  0.8502502E+00
 eigenphase sum-0.702096E-01  scattering length=   0.06698
 eps+pi 0.307138E+01  eps+2*pi 0.621298E+01

Iter =   6 c.s. =      4.77422884 angs^2  rmsk=     0.00000000
Time Now =       128.4837  Delta time =        35.5454 End ScatStab

+ Command TotalCrossSection
+
Symmetry A1 -
        E (eV)      XS(angs^2)    EPS(radians)
       0.500000       1.586769      -0.107662
      10.000000       7.857600      -0.081870
      15.000000       4.774229      -0.070210

 Total Cross Sections

 Energy      Total Cross Section
   0.50000     1.58677
  10.00000     7.85760
  15.00000     4.77423
Time Now =       128.4914  Delta time =         0.0077 Finalize