----------------------------------------------------------------------
ePolyScat Version E
----------------------------------------------------------------------


+ Start of Input Records
#
# input file for test02
#
# electron scattering from CH4 in T2 symmetry, static-exchange with orthogonalization
#
  LMax   15     # maximum l to be used for wave functions
  LMaxA  12     # maximum l included at large r
  MMax 3        # maximum m about unique axes at high l
  RMax   8.5    # maximum R in inner grid
  EMax  50.0    # EMax, maximum asymptotic energy in eV

  EngForm      # Energy formulas
   0 2
   3
   2.0 -1.0 1
   2.0 -1.0 1
   2.0 -1.0 1

  FegeEng 13.0   # Energy correction (in eV) used in the fege potential
  ScatContSym 'T2'  # Scattering symmetry
  LMaxK   4     # Maximum l in the K matirx

Convert '/home/lucchese/ePolyScatE/tests/test02.g03' 'g03'
GetBlms
ExpOrb
GetPot
Scat 0.5
TotalCrossSection

+ End of input reached
+ Data Record LMax - 15
+ Data Record LMaxA - 12
+ Data Record MMax - 3
+ Data Record RMax - 8.5
+ Data Record EMax - 50.0
+ Data Record EngForm
+ 0 2 / 3 / 2.0 -1.0 1 / 2.0 -1.0 1 / 2.0 -1.0 1
+ Data Record FegeEng - 13.0
+ Data Record ScatContSym - 'T2'
+ Data Record LMaxK - 4

+ Command Convert
+ '/home/lucchese/ePolyScatE/tests/test02.g03' 'g03'

----------------------------------------------------------------------
g03cnv - read input from G03 output
----------------------------------------------------------------------

Expansion center is (in Angstroms) -
     0.0000000000   0.0000000000   0.0000000000
CardFlag =    T
Normal Mode flag =    F
Selecting orbitals
from     1  to     5  number already selected     0
Number of orbitals selected is     5
Highest orbital read in is =    5
Time Now =         0.0800  Delta time =         0.0800 End g03cnv

Atoms found    5
Z =  6 r =   0.0000000000   0.0000000000   0.0000000000
Z =  1 r =   1.1819670050   1.1819670050   1.1819670050
Z =  1 r =  -1.1819670050  -1.1819670050   1.1819670050
Z =  1 r =   1.1819670050  -1.1819670050  -1.1819670050
Z =  1 r =  -1.1819670050   1.1819670050  -1.1819670050

+ Command GetBlms
+

----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------

Found point group  Td
Reduce angular grid using nthd =  1  nphid =  4
Found point group for abelian subgroup D2
Time Now =         0.1427  Delta time =         0.0627 End GetPGroup
List of unique axes
  N  Vector                      Z   R
  1  0.00000  0.00000  1.00000
  2  0.57735  0.57735  0.57735   1  2.04723
  3 -0.57735 -0.57735  0.57735   1  2.04723
  4  0.57735 -0.57735 -0.57735   1  2.04723
  5 -0.57735  0.57735 -0.57735   1  2.04723
List of corresponding x axes
  N  Vector
  1  1.00000  0.00000  0.00000
  2  0.81650 -0.40825 -0.40825
  3  0.81650 -0.40825  0.40825
  4  0.81650  0.40825  0.40825
  5  0.81650  0.40825 -0.40825
Determineing angular grid in GetAxMax  LmAx =   15  LMaxA =   12  LMaxAb =   30
For axis     1  mvals:
  0  1  2  3  4  5  6  7  8  9 10 11 12 -1 -1 -1
For axis     2  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  2  1  1
For axis     3  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  2  1  1
For axis     4  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  2  1  1
For axis     5  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  2  1  1
On the double L grid used for products
For axis     1  mvals:
  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19
 20 21 22 23 24 25 26 27 28 29 30
For axis     2  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
For axis     3  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
For axis     4  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
For axis     5  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is Td
LMax = =   15
 The dimension of each irreducable representation is
    A1    (  1)    A2    (  1)    E     (  2)    T1    (  3)    T2    (  3)
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     8    11    14
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A1        1         1         14       1  1  1
 A2        1         2          4       1  1  1
 E         1         3         18       1  1  1
 E         2         4         18       1  1  1
 T1        1         5         22      -1 -1  1
 T1        2         6         22      -1  1 -1
 T1        3         7         22       1 -1 -1
 T2        1         8         31      -1 -1  1
 T2        2         9         31      -1  1 -1
 T2        3        10         31       1 -1 -1
Time Now =         1.9468  Delta time =         1.8041 End SymGen

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is D2
LMax = =   30
 The dimension of each irreducable representation is
    A     (  1)    B1    (  1)    B2    (  1)    B3    (  1)
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     2     3     4
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A         1         1        241       1  1  1
 B1        1         2        240       1 -1 -1
 B2        1         3        240      -1 -1  1
 B3        1         4        240      -1  1 -1
Time Now =         5.0954  Delta time =         3.1486 End SymGen

+ Command ExpOrb
+

----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------

Maximum R in the grid (RMax) =     8.50000
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) =   30.0
In regions controlled by the wave length (HFacWave) =  120.0
Maximum asymptotic kinetic energy (EMAx) =  50.00000 eV
Factor to increase grid by (GridFac) =     1

    1  Center at =     0.00000  Alpha Max = 0.71617E+02
    2  Center at =     2.04723  Alpha Max = 0.34253E+01

Generated Grid

  irg  nin  ntot      step          R end
    1   32    32    0.12456E-02     0.03986
    2    8    40    0.13286E-02     0.05049
    3    8    48    0.16829E-02     0.06395
    4    8    56    0.21317E-02     0.08100
    5    8    64    0.27001E-02     0.10261
    6    8    72    0.34202E-02     0.12997
    7    8    80    0.43322E-02     0.16462
    8    8    88    0.54875E-02     0.20852
    9    8    96    0.69508E-02     0.26413
   10    8   104    0.88044E-02     0.33457
   11   64   168    0.10990E-01     1.03791
   12   56   224    0.10990E-01     1.65334
   13    8   232    0.10309E-01     1.73581
   14    8   240    0.81482E-02     1.80099
   15    8   248    0.64426E-02     1.85253
   16   32   280    0.56955E-02     2.03479
   17    8   288    0.15547E-02     2.04723
   18   32   320    0.56955E-02     2.22948
   19    8   328    0.60752E-02     2.27808
   20    8   336    0.76953E-02     2.33965
   21    8   344    0.97473E-02     2.41763
   22    8   352    0.12347E-01     2.51640
   23   64   416    0.13657E-01     3.39042
   24   64   480    0.13657E-01     4.26445
   25   64   544    0.13657E-01     5.13847
   26   64   608    0.13657E-01     6.01250
   27   64   672    0.13657E-01     6.88652
   28   64   736    0.13657E-01     7.76055
   29   48   784    0.13657E-01     8.41607
   30    8   792    0.10491E-01     8.50000
Time Now =         5.0964  Delta time =         0.0010 End GenGrid

----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------

Maximum scattering l (lmax) =   15
Maximum scattering m (mmaxs) =   15
Maximum numerical integration l (lmaxi) =   30
Maximum numerical integration m (mmaxi) =   30
Maximum l to include in the asymptotic region (lmasym) =   12
Parameter used to determine the cutoff points (PCutRd) =  0.10000000E-05 au
Maximum E used to determine grid (in eV) =       50.00000
Print flag (iprnfg) =    0
lmasymtyts =   12
 Actual value of lmasym found =     12
Number of regions of the same l expansion (NAngReg) =    6
Angular regions
    1 L =    2  from (    1)         0.00125  to (    7)         0.00872
    2 L =    3  from (    8)         0.00996  to (   15)         0.01868
    3 L =    7  from (   16)         0.01993  to (   87)         0.20304
    4 L =   11  from (   88)         0.20852  to (  135)         0.67525
    5 L =   15  from (  136)         0.68624  to (  784)         8.41607
    6 L =   12  from (  785)         8.42656  to (  792)         8.50000

For analytic integrations ntheta =     32  nphi =     16
For numerical integrations ntheti =     64 nphii =     32
Last grid points by processor WorkExp =     1.500
Proc id =   -1  Last grid point =       1
Proc id =    0  Last grid point =     120
Proc id =    1  Last grid point =     176
Proc id =    2  Last grid point =     224
Proc id =    3  Last grid point =     272
Proc id =    4  Last grid point =     320
Proc id =    5  Last grid point =     368
Proc id =    6  Last grid point =     416
Proc id =    7  Last grid point =     464
Proc id =    8  Last grid point =     512
Proc id =    9  Last grid point =     552
Proc id =   10  Last grid point =     592
Proc id =   11  Last grid point =     632
Proc id =   12  Last grid point =     672
Proc id =   13  Last grid point =     712
Proc id =   14  Last grid point =     752
Proc id =   15  Last grid point =     792
Time Now =         5.4747  Delta time =         0.3783 End AngGCt

----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------


 R of maximum density
     1  A1    1 at max irg =   10  r =   0.16462
     2  A1    1 at max irg =   25  r =   1.38958
     3  T2    1 at max irg =   31  r =   1.85253
     4  T2    2 at max irg =   31  r =   1.85253
     5  T2    3 at max irg =   31  r =   1.85253

Rotation coefficients for orbital     1  grp =    1 A1    1
     1  1.0000000000

Rotation coefficients for orbital     2  grp =    2 A1    1
     2  1.0000000000

Rotation coefficients for orbital     3  grp =    3 T2    1
     3  1.0000000000    4  0.0000000000    5  0.0000000000

Rotation coefficients for orbital     4  grp =    3 T2    2
     3  0.0000000000    4  1.0000000000    5  0.0000000000

Rotation coefficients for orbital     5  grp =    3 T2    3
     3  0.0000000000    4  0.0000000000    5  1.0000000000
Number of orbital groups and degeneracis are         3
  1  1  3
Number of orbital groups and number of electrons when fully occupied
         3
  2  2  6
Time Now =         5.8753  Delta time =         0.4006 End RotOrb

----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------

 First orbital group to expand (mofr) =    1
 Last orbital group to expand (moto) =    3
Orbital     1 of  A1    1 symmetry normalization integral =  0.99999991
Orbital     2 of  A1    1 symmetry normalization integral =  0.99999912
Orbital     3 of  T2    1 symmetry normalization integral =  0.99999809
Time Now =         6.1108  Delta time =         0.2355 End ExpOrb

+ Command GetPot
+

----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------

Total density =     10.00000000
Time Now =         6.1264  Delta time =         0.0156 End Den

----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------

 vasymp =  0.10000000E+02 facnorm =  0.10000000E+01
Time Now =         6.1328  Delta time =         0.0064 Electronic part
Time Now =         6.1377  Delta time =         0.0049 End StPot

+ Command Scat
+ 0.5

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+00 eV (  0.18374663E-01 AU)
Time Now =         6.1883  Delta time =         0.0506 End Fege

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =T2
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (lna) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    55
Number of partial waves (np) =    31
Number of asymptotic solutions on the right (NAsymR) =     4
Number of asymptotic solutions on the left (NAsymL) =     4
Maximum in the asymptotic region (lpasym) =   12
Number of partial waves in the asymptotic region (npasym) =   24
Number of orthogonality constraints (NOrthUse) =    1
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    4
Highest l used at large r (lpasym) =   12
Higest l used in the asymptotic potential (lpzb) =   24
Time Now =         6.2746  Delta time =         0.0863 Energy independent setup

Compute solution for E =    0.5000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
 i =  1  lval =   4  stpote = -0.65874021E-04
 i =  2  lval =   3  stpote = -0.56965183E-15
 i =  3  lval =   3  stpote =  0.11391529E-14
 i =  4  lval =   4  stpote = -0.42039931E+01
Number of asymptotic regions =      12
Final point in integration =   0.10738180E+03
Iter =   1 c.s. =      0.14589611 angs^2  rmsk=     0.00976587
Iter =   2 c.s. =      0.12604823 angs^2  rmsk=     0.00070207
Iter =   3 c.s. =      0.12623323 angs^2  rmsk=     0.00000669
Iter =   4 c.s. =      0.12623325 angs^2  rmsk=     0.00000000
Iter =   5 c.s. =      0.12623325 angs^2  rmsk=     0.00000000
     REAL PART -  Final k matrix
     ROW  1
 -0.36285589E-01 0.80548546E-03 0.84571278E-04-0.18406264E-03
     ROW  2
  0.80548545E-03 0.77745666E-03 0.83159572E-03-0.19886103E-04
     ROW  3
  0.84571278E-04 0.83159572E-03-0.33371874E-04-0.76302371E-04
     ROW  4
 -0.18406264E-03-0.19886103E-04-0.76302371E-04 0.16109400E-04
 eigenphases
 -0.3628820E-01 -0.5544629E-03  0.1904822E-04  0.1314154E-02
 eigenphase sum-0.355095E-01  scattering length=   0.18531
 eps+pi 0.310608E+01  eps+2*pi 0.624768E+01

Iter =   5 c.s. =      0.12623325 angs^2  rmsk=     0.00000000
Time Now =        15.3516  Delta time =         9.0770 End ScatStab

+ Command TotalCrossSection
+
Symmetry T2 -
        E (eV)      XS(angs^2)    EPS(radians)
       0.500000       0.126233      -0.035509

 Total Cross Sections

 Energy      Total Cross Section
   0.50000     0.37870
Time Now =        15.3577  Delta time =         0.0061 Finalize