----------------------------------------------------------------------
ePolyScat Version E
----------------------------------------------------------------------


+ Start of Input Records
#
# input file for test01
#
# electron scattering from CH4 in A1 symmetry
#
  LMax   15     # maximum l to be used for wave functions
  LMaxA  12     # maximum l included at large r
  MMax 3        # maximum m about unique axes at high l
  RMax   8.5    # maximum R in inner grid
  EMax  50.0    # EMax, maximum asymptotic energy in eV
  EngForm      # Energy formulas
   0 1         # charge, formula type
   3           # number of terms in the formulas
   2.0 -1.0    # orbital occupation and coefficient for the K operators
   2.0 -1.0
   2.0 -1.0
  VCorr 'PZ'
  AsyPol
   0.25  # SwitchD, distance where switching function is down to 0.1
   1     # nterm, number of terms needed to define asymptotic potential
   1     # center for polarization term 1 is for C atom
   1     # ittyp type of polarization term, = 1 for spherically symmetric
         # = 2 for reading in the full tensor
   17.50 # value of the spherical polarizability
   3     # icrtyp, flag to determine where r match is, 3 for second crossing
         # or at nearest approach
   0     # ilntyp, flag to determine what matching line is used, 0 - use
         # l = 0 radial function as matching function
  FegeEng 13.0   # Energy correction (in eV) used in the fege potential
  ScatContSym 'A1'  # Scattering symmetry
  LMaxK   3     # Maximum l in the K matirx

Convert '/home/lucchese/ePolyScatE/tests/test01.g03' 'g03'
GetBlms
ExpOrb
GetPot
Scat 0.0001 0.01 0.5
  ScatContSym 'A2'  # Scattering symmetry
Scat 0.0001 0.01 0.5
TotalCrossSection

+ End of input reached
+ Data Record LMax - 15
+ Data Record LMaxA - 12
+ Data Record MMax - 3
+ Data Record RMax - 8.5
+ Data Record EMax - 50.0
+ Data Record EngForm
+ 0 1 / 3 / 2.0 -1.0 / 2.0 -1.0 / 2.0 -1.0
+ Data Record VCorr - 'PZ'
+ Data Record AsyPol
+ 0.25 / 1 / 1 / 1 / 17.50 / 3 / 0
+ Data Record FegeEng - 13.0
+ Data Record ScatContSym - 'A1'
+ Data Record LMaxK - 3

+ Command Convert
+ '/home/lucchese/ePolyScatE/tests/test01.g03' 'g03'

----------------------------------------------------------------------
g03cnv - read input from G03 output
----------------------------------------------------------------------

Expansion center is (in Angstroms) -
     0.0000000000   0.0000000000   0.0000000000
CardFlag =    T
Normal Mode flag =    F
Selecting orbitals
from     1  to     5  number already selected     0
Number of orbitals selected is     5
Highest orbital read in is =    5
Time Now =         0.0081  Delta time =         0.0081 End g03cnv

Atoms found    5
Z =  6 r =   0.0000000000   0.0000000000   0.0000000000
Z =  1 r =   1.1819670050   1.1819670050   1.1819670050
Z =  1 r =  -1.1819670050  -1.1819670050   1.1819670050
Z =  1 r =   1.1819670050  -1.1819670050  -1.1819670050
Z =  1 r =  -1.1819670050   1.1819670050  -1.1819670050

+ Command GetBlms
+

----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------

Found point group  Td
Reduce angular grid using nthd =  1  nphid =  4
Found point group for abelian subgroup D2
Time Now =         0.0137  Delta time =         0.0056 End GetPGroup
List of unique axes
  N  Vector                      Z   R
  1  0.00000  0.00000  1.00000
  2  0.57735  0.57735  0.57735   1  2.04723
  3 -0.57735 -0.57735  0.57735   1  2.04723
  4  0.57735 -0.57735 -0.57735   1  2.04723
  5 -0.57735  0.57735 -0.57735   1  2.04723
List of corresponding x axes
  N  Vector
  1  1.00000  0.00000  0.00000
  2  0.81650 -0.40825 -0.40825
  3  0.81650 -0.40825  0.40825
  4  0.81650  0.40825  0.40825
  5  0.81650  0.40825 -0.40825
Determineing angular grid in GetAxMax  LmAx =   15  LMaxA =   12  LMaxAb =   30
For axis     1  mvals:
  0  1  2  3  4  5  6  7  8  9 10 11 12 -1 -1 -1
For axis     2  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  2  1  1
For axis     3  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  2  1  1
For axis     4  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  2  1  1
For axis     5  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  2  1  1
On the double L grid used for products
For axis     1  mvals:
  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19
 20 21 22 23 24 25 26 27 28 29 30
For axis     2  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
For axis     3  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
For axis     4  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
For axis     5  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is Td
LMax = =   15
 The dimension of each irreducable representation is
    A1    (  1)    A2    (  1)    E     (  2)    T1    (  3)    T2    (  3)
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     8    11    14
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A1        1         1         14       1  1  1
 A2        1         2          4       1  1  1
 E         1         3         18       1  1  1
 E         2         4         18       1  1  1
 T1        1         5         22      -1 -1  1
 T1        2         6         22      -1  1 -1
 T1        3         7         22       1 -1 -1
 T2        1         8         31      -1 -1  1
 T2        2         9         31      -1  1 -1
 T2        3        10         31       1 -1 -1
Time Now =         1.8839  Delta time =         1.8701 End SymGen

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is D2
LMax = =   30
 The dimension of each irreducable representation is
    A     (  1)    B1    (  1)    B2    (  1)    B3    (  1)
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     2     3     4
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A         1         1        241       1  1  1
 B1        1         2        240       1 -1 -1
 B2        1         3        240      -1 -1  1
 B3        1         4        240      -1  1 -1
Time Now =         4.9730  Delta time =         3.0891 End SymGen

+ Command ExpOrb
+

----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------

Maximum R in the grid (RMax) =     8.50000
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) =   30.0
In regions controlled by the wave length (HFacWave) =  120.0
Maximum asymptotic kinetic energy (EMAx) =  50.00000 eV
Factor to increase grid by (GridFac) =     1

    1  Center at =     0.00000  Alpha Max = 0.71617E+02
    2  Center at =     2.04723  Alpha Max = 0.34253E+01

Generated Grid

  irg  nin  ntot      step          R end
    1   32    32    0.12456E-02     0.03986
    2    8    40    0.13286E-02     0.05049
    3    8    48    0.16829E-02     0.06395
    4    8    56    0.21317E-02     0.08100
    5    8    64    0.27001E-02     0.10261
    6    8    72    0.34202E-02     0.12997
    7    8    80    0.43322E-02     0.16462
    8    8    88    0.54875E-02     0.20852
    9    8    96    0.69508E-02     0.26413
   10    8   104    0.88044E-02     0.33457
   11   64   168    0.10990E-01     1.03791
   12   56   224    0.10990E-01     1.65334
   13    8   232    0.10309E-01     1.73581
   14    8   240    0.81482E-02     1.80099
   15    8   248    0.64426E-02     1.85253
   16   32   280    0.56955E-02     2.03479
   17    8   288    0.15547E-02     2.04723
   18   32   320    0.56955E-02     2.22948
   19    8   328    0.60752E-02     2.27808
   20    8   336    0.76953E-02     2.33965
   21    8   344    0.97473E-02     2.41763
   22    8   352    0.12347E-01     2.51640
   23   64   416    0.13657E-01     3.39042
   24   64   480    0.13657E-01     4.26445
   25   64   544    0.13657E-01     5.13847
   26   64   608    0.13657E-01     6.01250
   27   64   672    0.13657E-01     6.88652
   28   64   736    0.13657E-01     7.76055
   29   48   784    0.13657E-01     8.41607
   30    8   792    0.10491E-01     8.50000
Time Now =         4.9736  Delta time =         0.0006 End GenGrid

----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------

Maximum scattering l (lmax) =   15
Maximum scattering m (mmaxs) =   15
Maximum numerical integration l (lmaxi) =   30
Maximum numerical integration m (mmaxi) =   30
Maximum l to include in the asymptotic region (lmasym) =   12
Parameter used to determine the cutoff points (PCutRd) =  0.10000000E-05 au
Maximum E used to determine grid (in eV) =       50.00000
Print flag (iprnfg) =    0
lmasymtyts =   12
 Actual value of lmasym found =     12
Number of regions of the same l expansion (NAngReg) =    6
Angular regions
    1 L =    2  from (    1)         0.00125  to (    7)         0.00872
    2 L =    3  from (    8)         0.00996  to (   15)         0.01868
    3 L =    7  from (   16)         0.01993  to (   87)         0.20304
    4 L =   11  from (   88)         0.20852  to (  135)         0.67525
    5 L =   15  from (  136)         0.68624  to (  784)         8.41607
    6 L =   12  from (  785)         8.42656  to (  792)         8.50000

For analytic integrations ntheta =     32  nphi =     16
For numerical integrations ntheti =     64 nphii =     32
Last grid points by processor WorkExp =     1.500
Proc id =   -1  Last grid point =       1
Proc id =    0  Last grid point =     120
Proc id =    1  Last grid point =     176
Proc id =    2  Last grid point =     224
Proc id =    3  Last grid point =     272
Proc id =    4  Last grid point =     320
Proc id =    5  Last grid point =     368
Proc id =    6  Last grid point =     416
Proc id =    7  Last grid point =     464
Proc id =    8  Last grid point =     512
Proc id =    9  Last grid point =     552
Proc id =   10  Last grid point =     592
Proc id =   11  Last grid point =     632
Proc id =   12  Last grid point =     672
Proc id =   13  Last grid point =     712
Proc id =   14  Last grid point =     752
Proc id =   15  Last grid point =     792
Time Now =         5.2994  Delta time =         0.3258 End AngGCt

----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------


 R of maximum density
     1  A1    1 at max irg =   10  r =   0.16462
     2  A1    1 at max irg =   25  r =   1.38958
     3  T2    1 at max irg =   31  r =   1.85253
     4  T2    2 at max irg =   31  r =   1.85253
     5  T2    3 at max irg =   31  r =   1.85253

Rotation coefficients for orbital     1  grp =    1 A1    1
     1  1.0000000000

Rotation coefficients for orbital     2  grp =    2 A1    1
     2  1.0000000000

Rotation coefficients for orbital     3  grp =    3 T2    1
     3  1.0000000000    4  0.0000000000    5  0.0000000000

Rotation coefficients for orbital     4  grp =    3 T2    2
     3  0.0000000000    4  1.0000000000    5  0.0000000000

Rotation coefficients for orbital     5  grp =    3 T2    3
     3  0.0000000000    4  0.0000000000    5  1.0000000000
Number of orbital groups and degeneracis are         3
  1  1  3
Number of orbital groups and number of electrons when fully occupied
         3
  2  2  6
Time Now =         5.5114  Delta time =         0.2120 End RotOrb

----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------

 First orbital group to expand (mofr) =    1
 Last orbital group to expand (moto) =    3
Orbital     1 of  A1    1 symmetry normalization integral =  0.99999991
Orbital     2 of  A1    1 symmetry normalization integral =  0.99999912
Orbital     3 of  T2    1 symmetry normalization integral =  0.99999809
Time Now =         5.7466  Delta time =         0.2353 End ExpOrb

+ Command GetPot
+

----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------

Total density =     10.00000000
Time Now =         5.7616  Delta time =         0.0150 End Den

----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------

 vasymp =  0.10000000E+02 facnorm =  0.10000000E+01
Time Now =         5.7678  Delta time =         0.0062 Electronic part
Time Now =         5.7726  Delta time =         0.0049 End StPot

----------------------------------------------------------------------
vcppol - VCP polarization potential program
----------------------------------------------------------------------

Time Now =         5.8122  Delta time =         0.0395 End VcpPol

----------------------------------------------------------------------
asypol - Program to match polarization potential to asymptotic form
----------------------------------------------------------------------

Switching distance (SwitchD) =     0.25000
 Number of terms in the asymptotic polarization potential (nterm) =    1
Term =    1  At center =    1
Explicit coordinates =  0.00000000E+00  0.00000000E+00  0.00000000E+00
Type =    1
Last center is at (RCenterX) =   0.00000
 Radial matching parameter (icrtyp) =    3
 Matching line type (ilntyp) =    0
 Matching point is at r =   4.3534402930
First nonzero weight at R =        3.71818
Last point of the switching region R=        5.02922
Total asymptotic potential is   0.17500000E+02
Time Now =         6.0411  Delta time =         0.2289 End AsyPol

+ Command Scat
+ 0.0001 0.01 0.5

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.10000000E-03 eV (  0.36749326E-05 AU)
Time Now =         6.0899  Delta time =         0.0488 End Fege

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (lna) =    3
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.17500000E+02  au
Number of integration regions used =    55
Number of partial waves (np) =    14
Number of asymptotic solutions on the right (NAsymR) =     2
Number of asymptotic solutions on the left (NAsymL) =     2
Maximum in the asymptotic region (lpasym) =   12
Number of partial waves in the asymptotic region (npasym) =   11
Number of orthogonality constraints (NOrthUse) =    0
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    3
Highest l used at large r (lpasym) =   12
Higest l used in the asymptotic potential (lpzb) =   24
Time Now =         6.1096  Delta time =         0.0198 Energy independent setup

Compute solution for E =    0.0001000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.17500000E+02 au
 stpote at the end of the grid
 i =  1  lval =   6  stpote = -0.49424118E-02
 i =  2  lval =   3  stpote = -0.90314467E-15
 i =  3  lval =   3  stpote =  0.29288944E-14
 i =  4  lval =   4  stpote = -0.64781938E+01
Number of asymptotic regions =      12
Final point in integration =   0.14356807E+04
Iter =   1 c.s. =      4.62983117 angs^2  rmsk=     0.00155485
Iter =   2 c.s. =      9.06282974 angs^2  rmsk=     0.00062055
Iter =   3 c.s. =     10.27075173 angs^2  rmsk=     0.00014044
Iter =   4 c.s. =     10.27201168 angs^2  rmsk=     0.00000014
Iter =   5 c.s. =     10.27199769 angs^2  rmsk=     0.00000000
     REAL PART -  Final k matrix
     ROW  1
  0.46319699E-02 0.40517690E-06
     ROW  2
  0.40517690E-06 0.62836470E-06
 eigenphases
  0.6283293E-06  0.4631937E-02
 eigenphase sum 0.463257E-02  scattering length=  -1.70878
 eps+pi 0.314623E+01  eps+2*pi 0.628782E+01

Iter =   5 c.s. =     10.27199769 angs^2  rmsk=     0.00000000
Time Now =        11.6095  Delta time =         5.4999 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.10000000E-01 eV (  0.36749326E-03 AU)
Time Now =        11.6582  Delta time =         0.0487 End Fege

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (lna) =    3
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.17500000E+02  au
Number of integration regions used =    55
Number of partial waves (np) =    14
Number of asymptotic solutions on the right (NAsymR) =     2
Number of asymptotic solutions on the left (NAsymL) =     2
Maximum in the asymptotic region (lpasym) =   12
Number of partial waves in the asymptotic region (npasym) =   11
Number of orthogonality constraints (NOrthUse) =    0
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    3
Highest l used at large r (lpasym) =   12
Higest l used in the asymptotic potential (lpzb) =   24
Time Now =        11.6788  Delta time =         0.0206 Energy independent setup

Compute solution for E =    0.0100000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.17500000E+02 au
 stpote at the end of the grid
 i =  1  lval =   6  stpote = -0.49386509E-02
 i =  2  lval =   3  stpote = -0.11357934E-14
 i =  3  lval =   3  stpote =  0.32167674E-14
 i =  4  lval =   4  stpote = -0.64781937E+01
Number of asymptotic regions =      12
Final point in integration =   0.47839768E+03
Iter =   1 c.s. =      1.77889879 angs^2  rmsk=     0.00963962
Iter =   2 c.s. =      4.65307304 angs^2  rmsk=     0.00595544
Iter =   3 c.s. =      5.48895518 angs^2  rmsk=     0.00134442
Iter =   4 c.s. =      5.48983557 angs^2  rmsk=     0.00000136
Iter =   5 c.s. =      5.48982581 angs^2  rmsk=     0.00000002
Iter =   6 c.s. =      5.48982579 angs^2  rmsk=     0.00000000
     REAL PART -  Final k matrix
     ROW  1
  0.33881186E-01 0.29931894E-04
     ROW  2
  0.29931894E-04 0.12768812E-03
 eigenphases
  0.1276616E-03  0.3386826E-01
 eigenphase sum 0.339959E-01  scattering length=  -1.25445
 eps+pi 0.317559E+01  eps+2*pi 0.631718E+01

Iter =   6 c.s. =      5.48982579 angs^2  rmsk=     0.00000000
Time Now =        18.0784  Delta time =         6.3996 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+00 eV (  0.18374663E-01 AU)
Time Now =        18.1271  Delta time =         0.0487 End Fege

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (lna) =    3
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.17500000E+02  au
Number of integration regions used =    55
Number of partial waves (np) =    14
Number of asymptotic solutions on the right (NAsymR) =     2
Number of asymptotic solutions on the left (NAsymL) =     2
Maximum in the asymptotic region (lpasym) =   12
Number of partial waves in the asymptotic region (npasym) =   11
Number of orthogonality constraints (NOrthUse) =    0
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    3
Highest l used at large r (lpasym) =   12
Higest l used in the asymptotic potential (lpzb) =   24
Time Now =        18.1464  Delta time =         0.0192 Energy independent setup

Compute solution for E =    0.5000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.17500000E+02 au
 stpote at the end of the grid
 i =  1  lval =   6  stpote = -0.47593980E-02
 i =  2  lval =   3  stpote = -0.73393411E-15
 i =  3  lval =   3  stpote =  0.79495343E-15
 i =  4  lval =   4  stpote = -0.64781908E+01
Number of asymptotic regions =      19
Final point in integration =   0.16854267E+03
Iter =   1 c.s. =      2.94117798 angs^2  rmsk=     0.08900300
Iter =   2 c.s. =      1.45622389 angs^2  rmsk=     0.02690775
Iter =   3 c.s. =      1.21046998 angs^2  rmsk=     0.00556737
Iter =   4 c.s. =      1.21022813 angs^2  rmsk=     0.00000574
Iter =   5 c.s. =      1.21023073 angs^2  rmsk=     0.00000006
Iter =   6 c.s. =      1.21023073 angs^2  rmsk=     0.00000000
     REAL PART -  Final k matrix
     ROW  1
 -0.11290945E+00 0.19962951E-02
     ROW  2
  0.19962950E-02 0.65531707E-02
 eigenphases
 -0.1124662E+00  0.6586425E-02
 eigenphase sum-0.105880E+00  scattering length=   0.55439
 eps+pi 0.303571E+01  eps+2*pi 0.617731E+01

Iter =   6 c.s. =      1.21023073 angs^2  rmsk=     0.00000000
Time Now =        24.8494  Delta time =         6.7030 End ScatStab
+ Data Record ScatContSym - 'A2'

+ Command Scat
+ 0.0001 0.01 0.5

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.10000000E-03 eV (  0.36749326E-05 AU)
Time Now =        24.8974  Delta time =         0.0480 End Fege

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A2
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (lna) =    3
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.17500000E+02  au
Number of integration regions used =    55
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.10000000E-01 eV (  0.36749326E-03 AU)
Time Now =        24.9459  Delta time =         0.0485 End Fege

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A2
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (lna) =    3
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.17500000E+02  au
Number of integration regions used =    55
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+00 eV (  0.18374663E-01 AU)
Time Now =        24.9944  Delta time =         0.0484 End Fege

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A2
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (lna) =    3
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.17500000E+02  au
Number of integration regions used =    55
No asymptotic partial waves with this value of LMaxK

+ Command TotalCrossSection
+
Symmetry A1 -
        E (eV)      XS(angs^2)    EPS(radians)
       0.000100      10.271998       0.004633
       0.010000       5.489826       0.033996
       0.500000       1.210231      -0.105880
Symmetry A2 -
        E (eV)      XS(angs^2)    EPS(radians)
       0.000100       0.000000       0.000000
       0.010000       0.000000       0.000000
       0.500000       0.000000       0.000000

 Total Cross Sections

 Energy      Total Cross Section
   0.00010    10.27200
   0.01000     5.48983
   0.50000     1.21023
Time Now =        25.0598  Delta time =         0.0654 Finalize