Execution on login002

----------------------------------------------------------------------
ePolyScat Version E3
----------------------------------------------------------------------

Authors: R. R. Lucchese, N. Sanna, A. P. P. Natalense, and F. A. Gianturco
http://www.chem.tamu.edu/rgroup/lucchese/ePolyScat.E3.manual/manual.html
Please cite the following two papers when reporting results obtained with  this program
F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 100, 6464 (1994).
A. P. P. Natalense and R. R. Lucchese, J. Chem. Phys. 111, 5344 (1999).

----------------------------------------------------------------------

Starting at 2011-08-29  18:07:40.942 (GMT -0500)
Using    16 processors

----------------------------------------------------------------------


+ Start of Input Records
#
# input file for test32
#
# electron scattering from Pt atom
#
  LMax   8     # maximum l to be used for wave functions
  EMax  50.0    # EMax, maximum asymptotic energy in eV
  EngForm      # Energy formulas
   0 0         # charge, formula type
  FegeEng 10.0   # Energy correction (in eV) used in the fege potential
  LMaxK   5     # Maximum l in the K matirx

Convert '/scratch/rrl581a/newE3/ePolyScat.E3/tests/test32.molden' 'molden2006'
GetBlms
ExpOrb
GetPot
ScatContSym 'AG'  # Scattering symmetry
Scat 1.0
TotalCrossSection
+ End of input reached
+ Data Record LMax - 8
+ Data Record EMax - 50.0
+ Data Record EngForm - 0 0
+ Data Record FegeEng - 10.0
+ Data Record LMaxK - 5

+ Command Convert
+ '/scratch/rrl581a/newE3/ePolyScat.E3/tests/test32.molden' 'molden2006'

----------------------------------------------------------------------
MoldenCnv2006 - Molden (from Molpro) conversion program
----------------------------------------------------------------------

Expansion center is (in Angstroms) -
     0.0000000000   0.0000000000   0.0000000000
Convert from Angstroms to Bohr radii
Found     98 basis functions
Selecting orbitals
Number of orbitals selected is    39
Selecting    1   1 Ene =   -2898.0841 Spin =Alpha Occup =   2.000000
Selecting    2   2 Ene =    -514.4352 Spin =Alpha Occup =   2.000000
Selecting    3   3 Ene =    -447.2585 Spin =Alpha Occup =   2.000000
Selecting    4   4 Ene =    -447.2585 Spin =Alpha Occup =   2.000000
Selecting    5   5 Ene =    -447.2585 Spin =Alpha Occup =   2.000000
Selecting    6   6 Ene =    -123.2163 Spin =Alpha Occup =   2.000000
Selecting    7   7 Ene =    -103.2581 Spin =Alpha Occup =   2.000000
Selecting    8   8 Ene =    -103.2581 Spin =Alpha Occup =   2.000000
Selecting    9   9 Ene =    -103.2581 Spin =Alpha Occup =   2.000000
Selecting   10  10 Ene =     -80.7532 Spin =Alpha Occup =   2.000000
Selecting   11  11 Ene =     -80.7532 Spin =Alpha Occup =   2.000000
Selecting   12  12 Ene =     -80.7532 Spin =Alpha Occup =   2.000000
Selecting   13  13 Ene =     -80.7532 Spin =Alpha Occup =   2.000000
Selecting   14  14 Ene =     -80.7532 Spin =Alpha Occup =   2.000000
Selecting   15  15 Ene =     -27.7031 Spin =Alpha Occup =   2.000000
Selecting   16  16 Ene =     -21.0225 Spin =Alpha Occup =   2.000000
Selecting   17  17 Ene =     -21.0225 Spin =Alpha Occup =   2.000000
Selecting   18  18 Ene =     -21.0225 Spin =Alpha Occup =   2.000000
Selecting   19  19 Ene =     -12.5972 Spin =Alpha Occup =   2.000000
Selecting   20  20 Ene =     -12.5972 Spin =Alpha Occup =   2.000000
Selecting   21  21 Ene =     -12.5972 Spin =Alpha Occup =   2.000000
Selecting   22  22 Ene =     -12.5972 Spin =Alpha Occup =   2.000000
Selecting   23  23 Ene =     -12.5972 Spin =Alpha Occup =   2.000000
Selecting   24  24 Ene =      -4.2974 Spin =Alpha Occup =   2.000000
Selecting   25  25 Ene =      -3.2372 Spin =Alpha Occup =   2.000000
Selecting   26  26 Ene =      -3.2372 Spin =Alpha Occup =   2.000000
Selecting   27  27 Ene =      -3.2372 Spin =Alpha Occup =   2.000000
Selecting   28  28 Ene =      -3.2372 Spin =Alpha Occup =   2.000000
Selecting   29  29 Ene =      -3.2372 Spin =Alpha Occup =   2.000000
Selecting   30  30 Ene =      -3.2372 Spin =Alpha Occup =   2.000000
Selecting   31  31 Ene =      -3.2372 Spin =Alpha Occup =   2.000000
Selecting   32  32 Ene =      -2.4666 Spin =Alpha Occup =   2.000000
Selecting   33  33 Ene =      -2.4666 Spin =Alpha Occup =   2.000000
Selecting   34  34 Ene =      -2.4666 Spin =Alpha Occup =   2.000000
Selecting   35  35 Ene =      -0.3222 Spin =Alpha Occup =   2.000000
Selecting   36  36 Ene =      -0.3222 Spin =Alpha Occup =   2.000000
Selecting   37  37 Ene =      -0.3222 Spin =Alpha Occup =   2.000000
Selecting   38  38 Ene =      -0.3222 Spin =Alpha Occup =   2.000000
Selecting   39  39 Ene =      -0.3222 Spin =Alpha Occup =   2.000000

Atoms found    1  Coordinates in Angstroms
Z = 78 ZS = 78 r =   0.0000000000   0.0000000000   0.0000000000
Maximum distance from expansion center is    0.0000000000

+ Command GetBlms
+

----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------

Found point group  Ih
Reduce angular grid using nthd =  2  nphid =  4
Found point group for abelian subgroup D2h
Time Now =         0.1314  Delta time =         0.1314 End GetPGroup
List of unique axes
  N  Vector                      Z   R
  1  0.00000  0.00000  1.00000
List of corresponding x axes
  N  Vector
  1  1.00000  0.00000  0.00000
Computed default value of LMaxA =    8
Determining angular grid in GetAxMax  LMax =    8  LMaxA =    8  LMaxAb =   16
MMax =    3  MMaxAbFlag =    2
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8
On the double L grid used for products
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is Ih
LMax = =    8
 The dimension of each irreducable representation is
    AG    (  1)    T1G   (  3)    T2G   (  3)    GG    (  4)    HG    (  5)
    AU    (  1)    T1U   (  3)    T2U   (  3)    GU    (  4)    HU    (  5)
 Number of symmetry operations in the abelian subgroup (excluding E) =    7
 The operations are -
    18    29    30     2     5     4     3
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 AG        1         1          2       1  1  1  1  1  1  1
 T1G       1         2          1      -1 -1  1  1 -1 -1  1
 T1G       2         3          1      -1  1 -1  1 -1  1 -1
 T1G       3         4          1       1 -1 -1  1  1 -1 -1
 T2G       1         5          1      -1 -1  1  1 -1 -1  1
 T2G       2         6          1      -1  1 -1  1 -1  1 -1
 T2G       3         7          1       1 -1 -1  1  1 -1 -1
 GG        1         8          3      -1 -1  1  1 -1 -1  1
 GG        2         9          3      -1  1 -1  1 -1  1 -1
 GG        3        10          3       1 -1 -1  1  1 -1 -1
 GG        4        11          3       1  1  1  1  1  1  1
 HG        1        12          5      -1 -1  1  1 -1 -1  1
 HG        2        13          5      -1  1 -1  1 -1  1 -1
 HG        3        14          5       1 -1 -1  1  1 -1 -1
 HG        4        15          5       1  1  1  1  1  1  1
 HG        5        16          5       1  1  1  1  1  1  1
 AU        1        17          0       1  1  1 -1 -1 -1 -1
 T1U       1        18          3      -1 -1  1 -1  1  1 -1
 T1U       2        19          3      -1  1 -1 -1  1 -1  1
 T1U       3        20          3       1 -1 -1 -1 -1  1  1
 T2U       1        21          3      -1 -1  1 -1  1  1 -1
 T2U       2        22          3      -1  1 -1 -1  1 -1  1
 T2U       3        23          3       1 -1 -1 -1 -1  1  1
 GU        1        24          2      -1 -1  1 -1  1  1 -1
 GU        2        25          2      -1  1 -1 -1  1 -1  1
 GU        3        26          2       1 -1 -1 -1 -1  1  1
 GU        4        27          2       1  1  1 -1 -1 -1 -1
 HU        1        28          2      -1 -1  1 -1  1  1 -1
 HU        2        29          2      -1  1 -1 -1  1 -1  1
 HU        3        30          2       1 -1 -1 -1 -1  1  1
 HU        4        31          2       1  1  1 -1 -1 -1 -1
 HU        5        32          2       1  1  1 -1 -1 -1 -1
Time Now =         0.7253  Delta time =         0.5938 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
AG    1    0(   1)    1(   1)    2(   1)    3(   1)    4(   1)    5(   1)    6(   2)    7(   2)    8(   2)
T1G   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   1)    7(   1)    8(   1)
T1G   2    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   1)    7(   1)    8(   1)
T1G   3    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   1)    7(   1)    8(   1)
T2G   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   0)    7(   0)    8(   1)
T2G   2    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   0)    7(   0)    8(   1)
T2G   3    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   0)    7(   0)    8(   1)
GG    1    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   1)    6(   2)    7(   2)    8(   3)
GG    2    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   1)    6(   2)    7(   2)    8(   3)
GG    3    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   1)    6(   2)    7(   2)    8(   3)
GG    4    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   1)    6(   2)    7(   2)    8(   3)
HG    1    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)    6(   3)    7(   3)    8(   5)
HG    2    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)    6(   3)    7(   3)    8(   5)
HG    3    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)    6(   3)    7(   3)    8(   5)
HG    4    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)    6(   3)    7(   3)    8(   5)
HG    5    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)    6(   3)    7(   3)    8(   5)
AU    1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   0)    7(   0)    8(   0)
T1U   1    0(   0)    1(   1)    2(   1)    3(   1)    4(   1)    5(   2)    6(   2)    7(   3)    8(   3)
T1U   2    0(   0)    1(   1)    2(   1)    3(   1)    4(   1)    5(   2)    6(   2)    7(   3)    8(   3)
T1U   3    0(   0)    1(   1)    2(   1)    3(   1)    4(   1)    5(   2)    6(   2)    7(   3)    8(   3)
T2U   1    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   2)    6(   2)    7(   3)    8(   3)
T2U   2    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   2)    6(   2)    7(   3)    8(   3)
T2U   3    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   2)    6(   2)    7(   3)    8(   3)
GU    1    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   1)    6(   1)    7(   2)    8(   2)
GU    2    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   1)    6(   1)    7(   2)    8(   2)
GU    3    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   1)    6(   1)    7(   2)    8(   2)
GU    4    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   1)    6(   1)    7(   2)    8(   2)
HU    1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   1)    6(   1)    7(   2)    8(   2)
HU    2    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   1)    6(   1)    7(   2)    8(   2)
HU    3    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   1)    6(   1)    7(   2)    8(   2)
HU    4    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   1)    6(   1)    7(   2)    8(   2)
HU    5    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   1)    6(   1)    7(   2)    8(   2)

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is D2h
LMax = =   16
 The dimension of each irreducable representation is
    AG    (  1)    B1G   (  1)    B2G   (  1)    B3G   (  1)    AU    (  1)
    B1U   (  1)    B2U   (  1)    B3U   (  1)
Abelian axes
    1       1.000000       0.000000       0.000000
    2       0.000000       1.000000       0.000000
    3       0.000000       0.000000       1.000000
Symmetry operation directions
  1       0.000000       0.000000       1.000000 ang =  0  1 type = 0 axis = 3
  2       0.000000       0.000000       1.000000 ang =  1  2 type = 2 axis = 3
  3       0.000000       1.000000       0.000000 ang =  1  2 type = 2 axis = 2
  4       1.000000       0.000000       0.000000 ang =  1  2 type = 2 axis = 1
  5       0.000000       0.000000       1.000000 ang =  1  2 type = 3 axis = 3
  6       0.000000       0.000000       1.000000 ang =  0  1 type = 1 axis = 3
  7       0.000000       1.000000       0.000000 ang =  0  1 type = 1 axis = 2
  8       1.000000       0.000000       0.000000 ang =  0  1 type = 1 axis = 1
irep =    1  sym =AG    1  eigs =   1   1   1   1   1   1   1   1
irep =    2  sym =B1G   1  eigs =   1   1  -1  -1   1   1  -1  -1
irep =    3  sym =B2G   1  eigs =   1  -1   1  -1   1  -1   1  -1
irep =    4  sym =B3G   1  eigs =   1  -1  -1   1   1  -1  -1   1
irep =    5  sym =AU    1  eigs =   1   1   1   1  -1  -1  -1  -1
irep =    6  sym =B1U   1  eigs =   1   1  -1  -1  -1  -1   1   1
irep =    7  sym =B2U   1  eigs =   1  -1   1  -1  -1   1  -1   1
irep =    8  sym =B3U   1  eigs =   1  -1  -1   1  -1   1   1  -1
 Number of symmetry operations in the abelian subgroup (excluding E) =    7
 The operations are -
     2     3     4     5     6     7     8
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 AG        1         1         45       1  1  1  1  1  1  1
 B1G       1         2         36       1 -1 -1  1  1 -1 -1
 B2G       1         3         36      -1  1 -1  1 -1  1 -1
 B3G       1         4         36      -1 -1  1  1 -1 -1  1
 AU        1         5         28       1  1  1 -1 -1 -1 -1
 B1U       1         6         36       1 -1 -1 -1 -1  1  1
 B2U       1         7         36      -1  1 -1 -1  1 -1  1
 B3U       1         8         36      -1 -1  1 -1  1  1 -1
Time Now =         0.7515  Delta time =         0.0262 End SymGen

+ Command ExpOrb
+
In GetRMax, RMaxEps =  0.10000000E-05  RMax =   14.7228473443 Angs

----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------

Maximum R in the grid (RMax) =    14.72285 Angs
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) =   10.0
In regions controlled by the wave length (HFacWave) =   10.0
Factor used to control the minimum exponent at each center (MinExpFac) =  300.0
Maximum asymptotic kinetic energy (EMAx) =  50.00000 eV
Maximum step size (MaxStep) =  14.72285 Angs
Factor to increase grid by (GridFac) =     1

    1  Center at =     0.00000 Angs  Alpha Max = 0.12054E+10

Generated Grid

  irg  nin  ntot      step Angs     R end Angs
    1    8     8    0.15242E-05     0.00001
    2    8    16    0.16249E-05     0.00003
    3    8    24    0.20030E-05     0.00004
    4    8    32    0.30391E-05     0.00007
    5    8    40    0.48317E-05     0.00010
    6    8    48    0.76818E-05     0.00017
    7    8    56    0.12213E-04     0.00026
    8    8    64    0.19417E-04     0.00042
    9    8    72    0.30870E-04     0.00067
   10    8    80    0.49080E-04     0.00106
   11    8    88    0.78030E-04     0.00168
   12    8    96    0.12406E-03     0.00267
   13    8   104    0.19723E-03     0.00425
   14    8   112    0.31357E-03     0.00676
   15    8   120    0.49854E-03     0.01075
   16    8   128    0.79261E-03     0.01709
   17    8   136    0.12601E-02     0.02717
   18    8   144    0.20035E-02     0.04320
   19    8   152    0.31852E-02     0.06868
   20    8   160    0.50641E-02     0.10919
   21    8   168    0.80512E-02     0.17360
   22    8   176    0.12800E-01     0.27601
   23    8   184    0.20351E-01     0.43881
   24    8   192    0.23127E-01     0.62383
   25    8   200    0.24952E-01     0.82344
   26    8   208    0.28295E-01     1.04980
   27    8   216    0.31490E-01     1.30172
   28    8   224    0.34524E-01     1.57791
   29    8   232    0.37387E-01     1.87701
   30    8   240    0.40077E-01     2.19762
   31    8   248    0.42595E-01     2.53838
   32    8   256    0.44945E-01     2.89794
   33    8   264    0.47135E-01     3.27502
   34    8   272    0.49171E-01     3.66839
   35    8   280    0.51064E-01     4.07690
   36    8   288    0.52822E-01     4.49948
   37    8   296    0.54455E-01     4.93513
   38    8   304    0.55972E-01     5.38290
   39    8   312    0.57382E-01     5.84196
   40    8   320    0.58693E-01     6.31150
   41    8   328    0.59913E-01     6.79081
   42    8   336    0.61050E-01     7.27921
   43    8   344    0.62110E-01     7.77609
   44    8   352    0.63100E-01     8.28088
   45    8   360    0.64025E-01     8.79308
   46    8   368    0.64890E-01     9.31220
   47    8   376    0.65701E-01     9.83781
   48    8   384    0.66462E-01    10.36951
   49    8   392    0.67176E-01    10.90692
   50    8   400    0.67848E-01    11.44970
   51    8   408    0.68481E-01    11.99755
   52    8   416    0.69077E-01    12.55017
   53    8   424    0.69640E-01    13.10728
   54    8   432    0.70171E-01    13.66866
   55    8   440    0.70674E-01    14.23405
   56    8   448    0.61100E-01    14.72285
Time Now =         0.8035  Delta time =         0.0520 End GenGrid

----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------

Maximum scattering l (lmax) =    8
Maximum scattering m (mmaxs) =    8
Maximum numerical integration l (lmaxi) =   16
Maximum numerical integration m (mmaxi) =   16
Maximum l to include in the asymptotic region (lmasym) =    8
Parameter used to determine the cutoff points (PCutRd) =  0.10000000E-07 au
Maximum E used to determine grid (in eV) =       50.00000
Print flag (iprnfg) =    0
lmasymtyts =    6
 Actual value of lmasym found =      8
Number of regions of the same l expansion (NAngReg) =    7
Angular regions
    1 L =    2  from (    1)         0.00000  to (    7)         0.00001
    2 L =    3  from (    8)         0.00001  to (   31)         0.00006
    3 L =    4  from (   32)         0.00007  to (   55)         0.00025
    4 L =    5  from (   56)         0.00026  to (   71)         0.00063
    5 L =    6  from (   72)         0.00067  to (   87)         0.00160
    6 L =    7  from (   88)         0.00168  to (   95)         0.00255
    7 L =    8  from (   96)         0.00267  to (  448)        14.72285
There are     1 angular regions for computing spherical harmonics
    1 lval =    8
Last grid points by processor WorkExp =     1.500
Proc id =   -1  Last grid point =       1
Proc id =    0  Last grid point =      80
Proc id =    1  Last grid point =     112
Proc id =    2  Last grid point =     136
Proc id =    3  Last grid point =     160
Proc id =    4  Last grid point =     184
Proc id =    5  Last grid point =     208
Proc id =    6  Last grid point =     232
Proc id =    7  Last grid point =     256
Proc id =    8  Last grid point =     280
Proc id =    9  Last grid point =     304
Proc id =   10  Last grid point =     328
Proc id =   11  Last grid point =     352
Proc id =   12  Last grid point =     376
Proc id =   13  Last grid point =     400
Proc id =   14  Last grid point =     424
Proc id =   15  Last grid point =     448
Time Now =         0.8038  Delta time =         0.0003 End AngGCt

----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------


 R of maximum density
     1  Orig    1  Eng =-2898.084100  AG    1 at max irg =  104  r =   0.00425
     2  Orig    2  Eng = -514.435200  AG    1 at max irg =  136  r =   0.02717
     3  Orig    3  Eng = -447.258500  T1U   1 at max irg =  136  r =   0.02717
     4  Orig    4  Eng = -447.258500  T1U   2 at max irg =  136  r =   0.02717
     5  Orig    5  Eng = -447.258500  T1U   3 at max irg =  136  r =   0.02717
     6  Orig    6  Eng = -123.216300  AG    1 at max irg =  160  r =   0.10919
     7  Orig    7  Eng = -103.258100  T1U   1 at max irg =  160  r =   0.10919
     8  Orig    8  Eng = -103.258100  T1U   2 at max irg =  160  r =   0.10919
     9  Orig    9  Eng = -103.258100  T1U   3 at max irg =  160  r =   0.10919
    10  Orig   10  Eng =  -80.753200  HG    1 at max irg =  152  r =   0.06868
    11  Orig   11  Eng =  -80.753200  HG    2 at max irg =  152  r =   0.06868
    12  Orig   12  Eng =  -80.753200  HG    3 at max irg =  152  r =   0.06868
    13  Orig   13  Eng =  -80.753200  HG    4 at max irg =  152  r =   0.06868
    14  Orig   14  Eng =  -80.753200  HG    5 at max irg =  152  r =   0.06868
    15  Orig   15  Eng =  -27.703100  AG    1 at max irg =  168  r =   0.17360
    16  Orig   16  Eng =  -21.022500  T1U   1 at max irg =  168  r =   0.17360
    17  Orig   17  Eng =  -21.022500  T1U   2 at max irg =  168  r =   0.17360
    18  Orig   18  Eng =  -21.022500  T1U   3 at max irg =  168  r =   0.17360
    19  Orig   19  Eng =  -12.597200  HG    1 at max irg =  176  r =   0.27601
    20  Orig   20  Eng =  -12.597200  HG    2 at max irg =  176  r =   0.27601
    21  Orig   21  Eng =  -12.597200  HG    3 at max irg =  176  r =   0.27601
    22  Orig   22  Eng =  -12.597200  HG    4 at max irg =  176  r =   0.27601
    23  Orig   23  Eng =  -12.597200  HG    5 at max irg =  176  r =   0.27601
    24  Orig   24  Eng =   -4.297400  AG    1 at max irg =  184  r =   0.43881
    25  Orig   25  Eng =   -3.237200  T2U   1 at max irg =  168  r =   0.17360
    26  Orig   26  Eng =   -3.237200  T2U   2 at max irg =  168  r =   0.17360
    27  Orig   27  Eng =   -3.237200  T2U   3 at max irg =  168  r =   0.17360
    28  Orig   28  Eng =   -3.237200  GU    1 at max irg =  168  r =   0.17360
    29  Orig   29  Eng =   -3.237200  GU    2 at max irg =  168  r =   0.17360
    30  Orig   30  Eng =   -3.237200  GU    3 at max irg =  168  r =   0.17360
    31  Orig   31  Eng =   -3.237200  GU    4 at max irg =  168  r =   0.17360
    32  Orig   32  Eng =   -2.466600  T1U   1 at max irg =  192  r =   0.62383
    33  Orig   33  Eng =   -2.466600  T1U   2 at max irg =  192  r =   0.62383
    34  Orig   34  Eng =   -2.466600  T1U   3 at max irg =  192  r =   0.62383
    35  Orig   35  Eng =   -0.322200  HG    1 at max irg =  192  r =   0.62383
    36  Orig   36  Eng =   -0.322200  HG    2 at max irg =  192  r =   0.62383
    37  Orig   37  Eng =   -0.322200  HG    3 at max irg =  192  r =   0.62383
    38  Orig   38  Eng =   -0.322200  HG    4 at max irg =  192  r =   0.62383
    39  Orig   39  Eng =   -0.322200  HG    5 at max irg =  192  r =   0.62383

Rotation coefficients for orbital     1  grp =    1 AG    1
     1  1.0000000000

Rotation coefficients for orbital     2  grp =    2 AG    1
     1  1.0000000000

Rotation coefficients for orbital     3  grp =    3 T1U   1
     1  1.0000000000    2  0.0000000000    3  0.0000000000

Rotation coefficients for orbital     4  grp =    3 T1U   2
     1  0.0000000000    2  0.0000000000    3  1.0000000000

Rotation coefficients for orbital     5  grp =    3 T1U   3
     1  0.0000000000    2  1.0000000000    3  0.0000000000

Rotation coefficients for orbital     6  grp =    4 AG    1
     1  1.0000000000

Rotation coefficients for orbital     7  grp =    5 T1U   1
     1 -1.0000000000    2  0.0000000000    3  0.0000000000

Rotation coefficients for orbital     8  grp =    5 T1U   2
     1  0.0000000000    2  0.0000000000    3 -1.0000000000

Rotation coefficients for orbital     9  grp =    5 T1U   3
     1  0.0000000000    2 -1.0000000000    3  0.0000000000

Rotation coefficients for orbital    10  grp =    6 HG    1
     1  0.0000000000    2  0.0000000000    3  0.0000000000    4  0.0000000000
     5 -1.0000000000

Rotation coefficients for orbital    11  grp =    6 HG    2
     1  0.0000000000    2  0.0000000000    3 -1.0000000000    4  0.0000000000
     5  0.0000000000

Rotation coefficients for orbital    12  grp =    6 HG    3
     1  0.0000000000    2 -1.0000000000    3  0.0000000000    4  0.0000000000
     5  0.0000000000

Rotation coefficients for orbital    13  grp =    6 HG    4
     1  0.7044684234    2  0.0000000000    3  0.0000000000    4 -0.7097353313
     5  0.0000000000

Rotation coefficients for orbital    14  grp =    6 HG    5
     1 -0.7097353313    2  0.0000000000    3  0.0000000000    4 -0.7044684234
     5  0.0000000000

Rotation coefficients for orbital    15  grp =    7 AG    1
     1  1.0000000000

Rotation coefficients for orbital    16  grp =    8 T1U   1
     1 -1.0000000000    2  0.0000000000    3  0.0000000000

Rotation coefficients for orbital    17  grp =    8 T1U   2
     1  0.0000000000    2  0.0000000000    3 -1.0000000000

Rotation coefficients for orbital    18  grp =    8 T1U   3
     1  0.0000000000    2 -1.0000000000    3  0.0000000000

Rotation coefficients for orbital    19  grp =    9 HG    1
     1  0.0000000000    2  0.0000000000    3  0.0000000000    4  0.0000000000
     5  1.0000000000

Rotation coefficients for orbital    20  grp =    9 HG    2
     1  0.0000000000    2  0.0000000000    3  0.0000000000    4  1.0000000000
     5  0.0000000000

Rotation coefficients for orbital    21  grp =    9 HG    3
     1  0.0000000000    2  1.0000000000    3  0.0000000000    4  0.0000000000
     5  0.0000000000

Rotation coefficients for orbital    22  grp =    9 HG    4
     1 -0.7594735392    2  0.0000000000    3  0.6505381950    4  0.0000000000
     5  0.0000000000

Rotation coefficients for orbital    23  grp =    9 HG    5
     1  0.6505381950    2  0.0000000000    3  0.7594735392    4  0.0000000000
     5  0.0000000000

Rotation coefficients for orbital    24  grp =   10 AG    1
     1  1.0000000000

Rotation coefficients for orbital    25  grp =   11 T2U   1
     1  0.0000000000    2  0.0000000000    3  0.0000000000    4 -0.9257050269
     5  0.0000000000    6  0.0000000000    7 -0.3782462204

Rotation coefficients for orbital    26  grp =   11 T2U   2
     1  0.0000000000    2  0.0000000000    3 -0.9913345129    4  0.0000000000
     5  0.0000000000    6  0.1313616516    7  0.0000000000

Rotation coefficients for orbital    27  grp =   11 T2U   3
     1  0.5067987333    2 -0.8620644082    3  0.0000000000    4  0.0000000000
     5  0.0000000000    6  0.0000000000    7  0.0000000000

Rotation coefficients for orbital    28  grp =   11 GU    1
     1  0.0000000000    2  0.0000000000    3  0.0000000000    4  0.3782462204
     5  0.0000000000    6  0.0000000000    7 -0.9257050269

Rotation coefficients for orbital    29  grp =   11 GU    2
     1  0.0000000000    2  0.0000000000    3 -0.1313616516    4  0.0000000000
     5  0.0000000000    6 -0.9913345129    7  0.0000000000

Rotation coefficients for orbital    30  grp =   11 GU    3
     1  0.8620644082    2  0.5067987333    3  0.0000000000    4  0.0000000000
     5  0.0000000000    6  0.0000000000    7  0.0000000000

Rotation coefficients for orbital    31  grp =   11 GU    4
     1  0.0000000000    2  0.0000000000    3  0.0000000000    4  0.0000000000
     5 -1.0000000000    6  0.0000000000    7  0.0000000000

Rotation coefficients for orbital    32  grp =   12 T1U   1
     1  0.0000000000    2 -1.0000000000    3  0.0000000000

Rotation coefficients for orbital    33  grp =   12 T1U   2
     1  0.0000000000    2  0.0000000000    3 -1.0000000000

Rotation coefficients for orbital    34  grp =   12 T1U   3
     1 -1.0000000000    2  0.0000000000    3  0.0000000000

Rotation coefficients for orbital    35  grp =   13 HG    1
     1  0.0000000000    2  0.0000000000    3 -1.0000000000    4  0.0000000000
     5  0.0000000000

Rotation coefficients for orbital    36  grp =   13 HG    2
     1 -1.0000000000    2  0.0000000000    3  0.0000000000    4  0.0000000000
     5  0.0000000000

Rotation coefficients for orbital    37  grp =   13 HG    3
     1  0.0000000000    2 -1.0000000000    3  0.0000000000    4  0.0000000000
     5  0.0000000000

Rotation coefficients for orbital    38  grp =   13 HG    4
     1  0.0000000000    2  0.0000000000    3  0.0000000000    4  0.1231094281
     5 -0.9923931019

Rotation coefficients for orbital    39  grp =   13 HG    5
     1  0.0000000000    2  0.0000000000    3  0.0000000000    4 -0.9923931019
     5 -0.1231094281
Number of orbital groups and degeneracis are        14
  1  1  3  1  3  5  1  3  5  1  3  4  3  5
Number of orbital groups and number of electrons when fully occupied
        14
  2  2  6  2  6 10  2  6 10  2  6  8  6 10
Time Now =         1.3338  Delta time =         0.5300 End RotOrb

----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------

 First orbital group to expand (mofr) =    1
 Last orbital group to expand (moto) =   14
Orbital     1 of  AG    1 symmetry normalization integral =  1.00000000
Orbital     2 of  AG    1 symmetry normalization integral =  1.00000000
Orbital     3 of  T1U   1 symmetry normalization integral =  1.00000000
Orbital     4 of  AG    1 symmetry normalization integral =  0.99999998
Orbital     5 of  T1U   1 symmetry normalization integral =  1.00000000
Orbital     6 of  HG    1 symmetry normalization integral =  1.00000000
Orbital     7 of  AG    1 symmetry normalization integral =  1.00000003
Orbital     8 of  T1U   1 symmetry normalization integral =  1.00000006
Orbital     9 of  HG    1 symmetry normalization integral =  1.00000002
Orbital    10 of  AG    1 symmetry normalization integral =  1.00000000
Orbital    11 of  T2U   1 symmetry normalization integral =  0.99999994
Orbital    12 of  GU    1 symmetry normalization integral =  0.99999994
Orbital    13 of  T1U   1 symmetry normalization integral =  1.00000003
Orbital    14 of  HG    1 symmetry normalization integral =  1.00000001
Time Now =         1.5489  Delta time =         0.2151 End ExpOrb

+ Command GetPot
+

----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------

Total density =     78.00000000
Time Now =         1.5530  Delta time =         0.0041 End Den

----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------

 vasymp =  0.78000000E+02 facnorm =  0.10000000E+01
Time Now =         1.5565  Delta time =         0.0035 Electronic part
Time Now =         1.5565  Delta time =         0.0000 End StPot
+ Data Record ScatContSym - 'AG'

+ Command Scat
+ 1.0

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.10000000E+02  eV
 Do E =  0.10000000E+01 eV (  0.36749326E-01 AU)
Time Now =         1.9693  Delta time =         0.4129 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = AG    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    5
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    56
Number of partial waves (np) =     2
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     1
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     1
Maximum in the asymptotic region (lpasym) =    8
Number of partial waves in the asymptotic region (npasym) =    2
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   45
Maximum l used in usual function (lmax) =    8
Maximum m used in usual function (LMax) =    8
Maxamum l used in expanding static potential (lpotct) =   16
Maximum l used in exapnding the exchange potential (lmaxab) =   16
Higest l included in the expansion of the wave function (lnp) =    6
Higest l included in the K matrix (lna) =    0
Highest l used at large r (lpasym) =    8
Higest l used in the asymptotic potential (lpzb) =   16
Maximum L used in the homogeneous solution (LMaxHomo) =    8
Number of partial waves in the homogeneous solution (npHomo) =    2
Time Now =         1.9722  Delta time =         0.0028 Energy independent setup

Compute solution for E =    1.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.00000000E+00
 i =  2  lval =   3  stpote =  0.15905583E-18
 i =  3  lval =   3  stpote = -0.87358147E-19
 i =  4  lval =   5  stpote = -0.49265457E-20
For potential     2
 i =  1  exps = -0.11128860E+03 -0.20000000E+01  stpote = -0.39277712E-16
 i =  2  exps = -0.11128860E+03 -0.20000000E+01  stpote = -0.39277711E-16
 i =  3  exps = -0.11128860E+03 -0.20000000E+01  stpote = -0.39277710E-16
 i =  4  exps = -0.11128860E+03 -0.20000000E+01  stpote = -0.39277709E-16
For potential     3
Number of asymptotic regions =       1
Final point in integration =   0.15211644E+02 Angstroms
Time Now =         2.0673  Delta time =         0.0951 End SolveHomo
     REAL PART -  Final k matrix
     ROW  1
  0.79667061E+00
 eigenphases
  0.6727075E+00
 eigenphase sum 0.672708E+00  scattering length=  -2.93859
 eps+pi 0.381430E+01  eps+2*pi 0.695589E+01

MaxIter =   6 c.s. =     18.58902100 angs^2  rmsk=     0.00000000
Time Now =         3.1980  Delta time =         1.1307 End ScatStab

+ Command TotalCrossSection
+
Symmetry AG -
        E (eV)      XS(angs^2)    EPS(radians)
       1.000000      18.589021       0.672708

 Total Cross Sections

 Energy      Total Cross Section
   1.00000    18.58902
Time Now =         3.1990  Delta time =         0.0010 Finalize