Execution on login004

----------------------------------------------------------------------
ePolyScat Version E3
----------------------------------------------------------------------

Authors: R. R. Lucchese, N. Sanna, A. P. P. Natalense, and F. A. Gianturco
http://www.chem.tamu.edu/rgroup/lucchese/ePolyScat.E3.manual/manual.html
Please cite the following two papers when reporting results obtained with  this program
F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 100, 6464 (1994).
A. P. P. Natalense and R. R. Lucchese, J. Chem. Phys. 111, 5344 (1999).

----------------------------------------------------------------------

Starting at 2011-08-29  10:42:08.841 (GMT -0500)
Using    16 processors

----------------------------------------------------------------------


+ Start of Input Records
#
# input file for test27
#
# positron scattering from CH4 in A1 symmetry
#
  LMax   15     # maximum l to be used for wave functions
  EMax  50.0    # EMax, maximum asymptotic energy in eV
  EngForm 0 0   # no charge on the molecule and all orbitals are doubly occupied
  VCorr 'BN'
  AsyPol
   0.25  # SwitchD, distance where switching function is down to 0.1
   1     # nterm, number of terms needed to define asymptotic potential
   1     # center for polarization term 1 is for C atom
   1     # ittyp type of polarization term, = 1 for spherically symmetric
         # = 2 for reading in the full tensor
   17.50 # value of the spherical polarizability
   3     # icrtyp, flag to determine where r match is, 3 for second crossing
         # or at nearest approach
   0     # ilntyp, flag to determine what matching line is used, 0 - use
         # l = 0 radial function as matching function
  ScatContSym 'A1'  # Scattering symmetry
  LMaxK   3     # Maximum l in the K matirx

Convert '/g/home/rrl581a/Applications/ePolyScat.E3/tests/test27.g03' 'g03'
GetBlms
ExpOrb
GetPot
GrnType 1
ScatPos 0.1 0.5 1.0
TotalCrossSection
+ End of input reached
+ Data Record LMax - 15
+ Data Record EMax - 50.0
+ Data Record EngForm - 0 0
+ Data Record VCorr - 'BN'
+ Data Record AsyPol
+ 0.25 / 1 / 1 / 1 / 17.50 / 3 / 0
+ Data Record ScatContSym - 'A1'
+ Data Record LMaxK - 3

+ Command Convert
+ '/g/home/rrl581a/Applications/ePolyScat.E3/tests/test27.g03' 'g03'

----------------------------------------------------------------------
g03cnv - read input from G03 output
----------------------------------------------------------------------

Expansion center is (in Angstroms) -
     0.0000000000   0.0000000000   0.0000000000
Command line = # HF/STO-3G SCF=TIGHT 6D 10F GFINPUT PUNCH=MO
CardFlag =    T
Normal Mode flag =    F
Selecting orbitals
from     1  to     5  number already selected     0
Number of orbitals selected is     5
Highest orbital read in is =    5
Time Now =         0.0395  Delta time =         0.0395 End g03cnv

Atoms found    5  Coordinates in Angstroms
Z =  6 ZS =  6 r =   0.0000000000   0.0000000000   0.0000000000
Z =  1 ZS =  1 r =   0.6254700000   0.6254700000   0.6254700000
Z =  1 ZS =  1 r =  -0.6254700000  -0.6254700000   0.6254700000
Z =  1 ZS =  1 r =   0.6254700000  -0.6254700000  -0.6254700000
Z =  1 ZS =  1 r =  -0.6254700000   0.6254700000  -0.6254700000
Maximum distance from expansion center is    1.0833458186

+ Command GetBlms
+

----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------

Found point group  Td
Reduce angular grid using nthd =  1  nphid =  4
Found point group for abelian subgroup D2
Time Now =         0.0687  Delta time =         0.0292 End GetPGroup
List of unique axes
  N  Vector                      Z   R
  1  0.00000  0.00000  1.00000
  2  0.57735  0.57735  0.57735   1  1.08335
  3 -0.57735 -0.57735  0.57735   1  1.08335
  4  0.57735 -0.57735 -0.57735   1  1.08335
  5 -0.57735  0.57735 -0.57735   1  1.08335
List of corresponding x axes
  N  Vector
  1  1.00000  0.00000  0.00000
  2  0.81650 -0.40825 -0.40825
  3  0.81650 -0.40825  0.40825
  4  0.81650  0.40825  0.40825
  5  0.81650  0.40825 -0.40825
Computed default value of LMaxA =   13
Determining angular grid in GetAxMax  LMax =   15  LMaxA =   13  LMaxAb =   30
MMax =    3  MMaxAbFlag =    1
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11  12  13  -1  -1
For axis     2  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3
For axis     3  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3
For axis     4  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3
For axis     5  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3
On the double L grid used for products
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19
  20  21  22  23  24  25  26  27  28  29  30
For axis     2  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
For axis     3  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
For axis     4  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
For axis     5  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is Td
LMax = =   15
 The dimension of each irreducable representation is
    A1    (  1)    A2    (  1)    E     (  2)    T1    (  3)    T2    (  3)
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     8    11    14
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A1        1         1         15       1  1  1
 A2        1         2          7       1  1  1
 E         1         3         20       1  1  1
 E         2         4         20       1  1  1
 T1        1         5         27      -1 -1  1
 T1        2         6         27      -1  1 -1
 T1        3         7         27       1 -1 -1
 T2        1         8         36      -1 -1  1
 T2        2         9         36      -1  1 -1
 T2        3        10         36       1 -1 -1
Time Now =         0.3261  Delta time =         0.2574 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
A1    1    0(   1)    1(   1)    2(   1)    3(   2)    4(   3)    5(   3)    6(   4)    7(   5)    8(   6)    9(   7)
          10(   8)   11(   9)   12(  11)   13(  12)
A2    1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   1)    7(   1)    8(   1)    9(   2)
          10(   3)   11(   3)   12(   4)   13(   5)
E     1    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   3)    6(   4)    7(   5)    8(   7)    9(   8)
          10(  10)   11(  12)   12(  14)   13(  16)
E     2    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   3)    6(   4)    7(   5)    8(   7)    9(   8)
          10(  10)   11(  12)   12(  14)   13(  16)
T1    1    0(   0)    1(   0)    2(   0)    3(   1)    4(   2)    5(   3)    6(   4)    7(   6)    8(   8)    9(  10)
          10(  12)   11(  15)   12(  18)   13(  21)
T1    2    0(   0)    1(   0)    2(   0)    3(   1)    4(   2)    5(   3)    6(   4)    7(   6)    8(   8)    9(  10)
          10(  12)   11(  15)   12(  18)   13(  21)
T1    3    0(   0)    1(   0)    2(   0)    3(   1)    4(   2)    5(   3)    6(   4)    7(   6)    8(   8)    9(  10)
          10(  12)   11(  15)   12(  18)   13(  21)
T2    1    0(   0)    1(   1)    2(   2)    3(   3)    4(   4)    5(   6)    6(   8)    7(  10)    8(  12)    9(  15)
          10(  18)   11(  21)   12(  24)   13(  28)
T2    2    0(   0)    1(   1)    2(   2)    3(   3)    4(   4)    5(   6)    6(   8)    7(  10)    8(  12)    9(  15)
          10(  18)   11(  21)   12(  24)   13(  28)
T2    3    0(   0)    1(   1)    2(   2)    3(   3)    4(   4)    5(   6)    6(   8)    7(  10)    8(  12)    9(  15)
          10(  18)   11(  21)   12(  24)   13(  28)

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is D2
LMax = =   30
 The dimension of each irreducable representation is
    A     (  1)    B1    (  1)    B2    (  1)    B3    (  1)
Abelian axes
    1       1.000000       0.000000       0.000000
    2       0.000000       1.000000       0.000000
    3       0.000000       0.000000       1.000000
Symmetry operation directions
  1       0.000000       0.000000       1.000000 ang =  0  1 type = 0 axis = 3
  2       0.000000       0.000000       1.000000 ang =  1  2 type = 2 axis = 3
  3       1.000000       0.000000       0.000000 ang =  1  2 type = 2 axis = 1
  4       0.000000       1.000000       0.000000 ang =  1  2 type = 2 axis = 2
irep =    1  sym =A     1  eigs =   1   1   1   1
irep =    2  sym =B1    1  eigs =   1   1  -1  -1
irep =    3  sym =B2    1  eigs =   1  -1  -1   1
irep =    4  sym =B3    1  eigs =   1  -1   1  -1
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     2     3     4
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A         1         1        241       1  1  1
 B1        1         2        240       1 -1 -1
 B2        1         3        240      -1 -1  1
 B3        1         4        240      -1  1 -1
Time Now =         0.3459  Delta time =         0.0198 End SymGen

+ Command ExpOrb
+
In GetRMax, RMaxEps =  0.10000000E-05  RMax =    6.0716362768 Angs

----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------

Maximum R in the grid (RMax) =     6.07164 Angs
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) =   10.0
In regions controlled by the wave length (HFacWave) =   10.0
Factor used to control the minimum exponent at each center (MinExpFac) =  300.0
Maximum asymptotic kinetic energy (EMAx) =  50.00000 eV
Maximum step size (MaxStep) =   0.01058 Angs
Factor to increase grid by (GridFac) =     1

    1  Center at =     0.00000 Angs  Alpha Max = 0.10800E+05
    2  Center at =     1.08335 Angs  Alpha Max = 0.30000E+03

Generated Grid

  irg  nin  ntot      step Angs     R end Angs
    1    8     8    0.50920E-03     0.00407
    2    8    16    0.54286E-03     0.00842
    3    8    24    0.66917E-03     0.01377
    4    8    32    0.10153E-02     0.02189
    5    8    40    0.16142E-02     0.03481
    6    8    48    0.25663E-02     0.05534
    7    8    56    0.40801E-02     0.08798
    8    8    64    0.64868E-02     0.13987
    9    8    72    0.10071E-01     0.22044
   10   64   136    0.10584E-01     0.89779
   11    8   144    0.84583E-02     0.96545
   12    8   152    0.53694E-02     1.00841
   13    8   160    0.37587E-02     1.03848
   14    8   168    0.31773E-02     1.06390
   15    8   176    0.24310E-02     1.08335
   16    8   184    0.30552E-02     1.10779
   17    8   192    0.32571E-02     1.13384
   18    8   200    0.40150E-02     1.16596
   19    8   208    0.60918E-02     1.21470
   20    8   216    0.96851E-02     1.29218
   21   64   280    0.10584E-01     1.96953
   22   64   344    0.10584E-01     2.64687
   23   64   408    0.10584E-01     3.32422
   24   64   472    0.10584E-01     4.00157
   25   64   536    0.10584E-01     4.67891
   26   64   600    0.10584E-01     5.35626
   27   64   664    0.10584E-01     6.03361
   28    8   672    0.47537E-02     6.07164
Time Now =         0.3507  Delta time =         0.0048 End GenGrid

----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------

Maximum scattering l (lmax) =   15
Maximum scattering m (mmaxs) =   15
Maximum numerical integration l (lmaxi) =   30
Maximum numerical integration m (mmaxi) =   30
Maximum l to include in the asymptotic region (lmasym) =   13
Parameter used to determine the cutoff points (PCutRd) =  0.10000000E-07 au
Maximum E used to determine grid (in eV) =       50.00000
Print flag (iprnfg) =    0
lmasymtyts =   13
 Actual value of lmasym found =     13
Number of regions of the same l expansion (NAngReg) =   10
Angular regions
    1 L =    2  from (    1)         0.00051  to (    7)         0.00356
    2 L =    5  from (    8)         0.00407  to (   23)         0.01310
    3 L =    6  from (   24)         0.01377  to (   31)         0.02088
    4 L =    7  from (   32)         0.02189  to (   47)         0.05277
    5 L =    8  from (   48)         0.05534  to (   55)         0.08390
    6 L =   10  from (   56)         0.08798  to (   63)         0.13338
    7 L =   11  from (   64)         0.13987  to (   71)         0.21037
    8 L =   13  from (   72)         0.22044  to (  119)         0.71787
    9 L =   15  from (  120)         0.72845  to (  264)         1.80019
   10 L =   13  from (  265)         1.81077  to (  672)         6.07164
There are     2 angular regions for computing spherical harmonics
    1 lval =   13
    2 lval =   15
Last grid points by processor WorkExp =     1.500
Proc id =   -1  Last grid point =       1
Proc id =    0  Last grid point =      88
Proc id =    1  Last grid point =     128
Proc id =    2  Last grid point =     160
Proc id =    3  Last grid point =     200
Proc id =    4  Last grid point =     232
Proc id =    5  Last grid point =     264
Proc id =    6  Last grid point =     304
Proc id =    7  Last grid point =     344
Proc id =    8  Last grid point =     384
Proc id =    9  Last grid point =     424
Proc id =   10  Last grid point =     472
Proc id =   11  Last grid point =     512
Proc id =   12  Last grid point =     552
Proc id =   13  Last grid point =     592
Proc id =   14  Last grid point =     632
Proc id =   15  Last grid point =     672
Time Now =         0.3656  Delta time =         0.0149 End AngGCt

----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------


 R of maximum density
     1  A1    1 at max irg =    7  r =   0.08798
     2  A1    1 at max irg =   15  r =   0.72845
     3  T2    1 at max irg =   19  r =   1.00841
     4  T2    2 at max irg =   19  r =   1.00841
     5  T2    3 at max irg =   19  r =   1.00841

Rotation coefficients for orbital     1  grp =    1 A1    1
     1  1.0000000000

Rotation coefficients for orbital     2  grp =    2 A1    1
     2  1.0000000000

Rotation coefficients for orbital     3  grp =    3 T2    1
     3  1.0000000000    4  0.0000000000    5  0.0000000000

Rotation coefficients for orbital     4  grp =    3 T2    2
     3  0.0000000000    4  1.0000000000    5  0.0000000000

Rotation coefficients for orbital     5  grp =    3 T2    3
     3  0.0000000000    4  0.0000000000    5  1.0000000000
Number of orbital groups and degeneracis are         3
  1  1  3
Number of orbital groups and number of electrons when fully occupied
         3
  2  2  6
Time Now =         0.6558  Delta time =         0.2902 End RotOrb

----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------

 First orbital group to expand (mofr) =    1
 Last orbital group to expand (moto) =    3
Orbital     1 of  A1    1 symmetry normalization integral =  0.99999999
Orbital     2 of  A1    1 symmetry normalization integral =  0.99999913
Orbital     3 of  T2    1 symmetry normalization integral =  0.99999811
Time Now =         0.6934  Delta time =         0.0375 End ExpOrb

+ Command GetPot
+

----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------

Total density =     10.00000000
Time Now =         0.6995  Delta time =         0.0062 End Den

----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------

 vasymp =  0.10000000E+02 facnorm =  0.10000000E+01
Time Now =         0.7280  Delta time =         0.0284 Electronic part
Time Now =         0.7298  Delta time =         0.0018 End StPot

----------------------------------------------------------------------
VcpBN - VCP Boronski and Nieminen polarization potential program
----------------------------------------------------------------------

Time Now =         0.7479  Delta time =         0.0181 End VcpBN

----------------------------------------------------------------------
AsyPol - Program to match polarization potential to asymptotic form
----------------------------------------------------------------------

Switching distance (SwitchD) =     0.25000
Number of terms in the asymptotic polarization potential (nterm) =    1
Term =    1  At center =    1
Explicit coordinates =  0.00000000E+00  0.00000000E+00  0.00000000E+00
Type =    1
Polarizability =  0.17500000E+02 au
Last center is at (RCenterX) =   0.00000 Angs
 Radial matching parameter (icrtyp) =    3
 Matching line type (ilntyp) =    0
 Matching point is at r =   1.1441757114 Angs
Matching uses curve crossing (iMatchType = 1)
First nonzero weight at(RFirstWt)  R =        0.38978 Angs
Last point of the switching region (RLastWt) R=        1.88486 Angs
Total asymptotic potential is   0.17500000E+02 a.u.
Time Now =         0.7654  Delta time =         0.0175 End AsyPol
+ Data Record GrnType - 1

+ Command ScatPos
+ 0.1 0.5 1.0

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = A1    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    3
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   T
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.17500000E+02  au
Number of integration regions used =    50
Number of partial waves (np) =    15
Number of asymptotic solutions on the right (NAsymR) =     2
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   13
Number of partial waves in the asymptotic region (npasym) =   12
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  183
Changed sign of static potential for positron scattering
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    3
Highest l used at large r (lpasym) =   13
Higest l used in the asymptotic potential (lpzb) =   26
Maximum L used in the homogeneous solution (LMaxHomo) =   13
Number of partial waves in the homogeneous solution (npHomo) =   12
Time Now =         0.8031  Delta time =         0.0378 Energy independent setup

Compute solution for E =    0.1000000000 eV
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.17500000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.88817842E-15
 i =  2  lval =   3  stpote = -0.53180172E-18
 i =  3  lval =   3  stpote = -0.13944919E-17
 i =  4  lval =   4  stpote =  0.24256654E-03
For potential     2
For potential     3
 i =  1  lvals =   6   6  stpote = -0.21684043E-18  second term =  0.00000000E+00
 i =  2  lvals =   6   6  stpote = -0.13272961E-18  second term =  0.00000000E+00
 i =  3  lvals =   6   6  stpote =  0.33760830E-18  second term =  0.00000000E+00
 i =  4  lvals =   7   9  stpote = -0.11664108E-05  second term = -0.11664108E-05
Number of asymptotic regions =       8
Final point in integration =   0.22044724E+03 Angstroms
Time Now =         3.2001  Delta time =         2.3969 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.32651115E+00, 0.87866933E+00) (-0.27404875E-04,-0.74038021E-04)
     ROW  2
  (-0.27404875E-04,-0.74038021E-04) ( 0.12769677E-02, 0.16434544E-05)
 eigenphases
  0.1276967E-02  0.1215012E+01
 eigenphase sum 0.121629E+01  scattering length= -31.51293
 eps+pi 0.435788E+01  eps+2*pi 0.749947E+01

MaxIter =   5 c.s. =    420.68693825 angs^2  rmsk=     0.00000004
Time Now =         5.7162  Delta time =         2.5161 End ScatStab

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = A1    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    3
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   T
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.17500000E+02  au
Number of integration regions used =    50
Number of partial waves (np) =    15
Number of asymptotic solutions on the right (NAsymR) =     2
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   13
Number of partial waves in the asymptotic region (npasym) =   12
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  183
Changed sign of static potential for positron scattering
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    3
Highest l used at large r (lpasym) =   13
Higest l used in the asymptotic potential (lpzb) =   26
Maximum L used in the homogeneous solution (LMaxHomo) =   13
Number of partial waves in the homogeneous solution (npHomo) =   12
Time Now =         5.7223  Delta time =         0.0060 Energy independent setup

Compute solution for E =    0.5000000000 eV
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.17500000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.88817842E-15
 i =  2  lval =   3  stpote = -0.53180172E-18
 i =  3  lval =   3  stpote = -0.13944919E-17
 i =  4  lval =   4  stpote =  0.24256654E-03
For potential     2
For potential     3
 i =  1  lvals =   6   6  stpote = -0.21684043E-18  second term =  0.00000000E+00
 i =  2  lvals =   6   6  stpote = -0.13272961E-18  second term =  0.00000000E+00
 i =  3  lvals =   6   6  stpote =  0.33760830E-18  second term =  0.00000000E+00
 i =  4  lvals =   7   9  stpote = -0.11664108E-05  second term = -0.11664108E-05
Number of asymptotic regions =      11
Final point in integration =   0.14740816E+03 Angstroms
Time Now =         8.1179  Delta time =         2.3956 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.46863909E+00, 0.67428935E+00) (-0.44580714E-03,-0.65021791E-03)
     ROW  2
  (-0.44580714E-03,-0.65021791E-03) ( 0.63682474E-02, 0.41343486E-04)
 eigenphases
  0.6367992E-02  0.9634260E+00
 eigenphase sum 0.969794E+00  scattering length=  -7.60849
 eps+pi 0.411139E+01  eps+2*pi 0.725298E+01

MaxIter =   5 c.s. =     64.57071126 angs^2  rmsk=     0.00000020
Time Now =        10.6372  Delta time =         2.5193 End ScatStab

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = A1    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    3
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   T
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.17500000E+02  au
Number of integration regions used =    50
Number of partial waves (np) =    15
Number of asymptotic solutions on the right (NAsymR) =     2
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   13
Number of partial waves in the asymptotic region (npasym) =   12
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  183
Changed sign of static potential for positron scattering
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    3
Highest l used at large r (lpasym) =   13
Higest l used in the asymptotic potential (lpzb) =   26
Maximum L used in the homogeneous solution (LMaxHomo) =   13
Number of partial waves in the homogeneous solution (npHomo) =   12
Time Now =        10.6433  Delta time =         0.0061 Energy independent setup

Compute solution for E =    1.0000000000 eV
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.17500000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.88817842E-15
 i =  2  lval =   3  stpote = -0.53180172E-18
 i =  3  lval =   3  stpote = -0.13944919E-17
 i =  4  lval =   4  stpote =  0.24256654E-03
For potential     2
For potential     3
 i =  1  lvals =   6   6  stpote = -0.21684043E-18  second term =  0.00000000E+00
 i =  2  lvals =   6   6  stpote = -0.13272961E-18  second term =  0.00000000E+00
 i =  3  lvals =   6   6  stpote =  0.33760830E-18  second term =  0.00000000E+00
 i =  4  lvals =   7   9  stpote = -0.11664108E-05  second term = -0.11664108E-05
Number of asymptotic regions =      13
Final point in integration =   0.12394836E+03 Angstroms
Time Now =        13.0464  Delta time =         2.4031 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.49992273E+00, 0.50851080E+00) (-0.15187805E-02,-0.15845660E-02)
     ROW  2
  (-0.15187805E-02,-0.15845660E-02) ( 0.12716501E-01, 0.16722530E-03)
 eigenphases
  0.1271315E-01  0.7939143E+00
 eigenphase sum 0.806627E+00  scattering length=  -3.84862
 eps+pi 0.394822E+01  eps+2*pi 0.708981E+01

MaxIter =   5 c.s. =     24.35427198 angs^2  rmsk=     0.00000049
Time Now =        15.5641  Delta time =         2.5178 End ScatStab

+ Command TotalCrossSection
+
Symmetry A1 -
        E (eV)      XS(angs^2)    EPS(radians)
       0.100000     420.686938       1.216289
       0.500000      64.570711       0.969794
       1.000000      24.354272       0.806627

 Total Cross Sections

 Energy      Total Cross Section
   0.10000   420.68694
   0.50000    64.57071
   1.00000    24.35427
Time Now =        15.5664  Delta time =         0.0022 Finalize