Execution on login004

----------------------------------------------------------------------
ePolyScat Version E3
----------------------------------------------------------------------

Authors: R. R. Lucchese, N. Sanna, A. P. P. Natalense, and F. A. Gianturco
http://www.chem.tamu.edu/rgroup/lucchese/ePolyScat.E3.manual/manual.html
Please cite the following two papers when reporting results obtained with  this program
F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 100, 6464 (1994).
A. P. P. Natalense and R. R. Lucchese, J. Chem. Phys. 111, 5344 (1999).

----------------------------------------------------------------------

Starting at 2011-08-29  10:41:26.837 (GMT -0500)
Using    16 processors

----------------------------------------------------------------------


+ Start of Input Records
#
# input file for test26
#
# electron scattering from N2O in C-inf-v symmetry
#
  LMax   15     # maximum l to be used for wave functions
  EMax  50.0    # EMax, maximum asymptotic energy in eV
  EngForm      # Energy formulas
   0 0         # charge, formula type
  VCorr 'PZ'
  FegeEng 11.0   # Energy correction (in eV) used in the fege potential
  LMaxK   5     # Maximum l in the K matirx

Convert '/g/home/rrl581a/Applications/ePolyScat.E3/tests/test26.molden' 'molden'
GetBlms
ExpOrb
GetPot
ScatEng  0.5 1.0
ScatContSym 'S'  # Scattering symmetry
Scat
ScatContSym 'A2'  # Scattering symmetry
Scat
ScatContSym 'B1'  # Scattering symmetry
Scat
ScatContSym 'B2'  # Scattering symmetry
Scat
ScatContSym 'P'  # Scattering symmetry
Scat
ScatContSym 'D'  # Scattering symmetry
Scat
ScatContSym 'F'  # Scattering symmetry
Scat
ScatContSym 'G'  # Scattering symmetry
Scat
TotalCrossSection
+ End of input reached
+ Data Record LMax - 15
+ Data Record EMax - 50.0
+ Data Record EngForm - 0 0
+ Data Record VCorr - 'PZ'
+ Data Record FegeEng - 11.0
+ Data Record LMaxK - 5

+ Command Convert
+ '/g/home/rrl581a/Applications/ePolyScat.E3/tests/test26.molden' 'molden'

----------------------------------------------------------------------
MoldenCnv - Molden (from Molpro) conversion program
----------------------------------------------------------------------

Expansion center is (in Angstroms) -
     0.0000000000   0.0000000000   0.0000000000
Convert from Angstroms to Bohr radii
Found    165 basis functions
Selecting orbitals
Number of orbitals selected is    11
Selecting    1   1 Ene =     -20.6585 Spin =Alpha Occup =   2.000000
Selecting    2   2 Ene =     -15.8462 Spin =Alpha Occup =   2.000000
Selecting    3   3 Ene =     -15.6997 Spin =Alpha Occup =   2.000000
Selecting    4   4 Ene =      -1.6145 Spin =Alpha Occup =   2.000000
Selecting    5   5 Ene =      -1.4241 Spin =Alpha Occup =   2.000000
Selecting    6   6 Ene =      -0.8343 Spin =Alpha Occup =   2.000000
Selecting    7   7 Ene =      -0.7633 Spin =Alpha Occup =   2.000000
Selecting    8   8 Ene =      -0.7633 Spin =Alpha Occup =   2.000000
Selecting    9   9 Ene =      -0.6990 Spin =Alpha Occup =   2.000000
Selecting   10  10 Ene =      -0.4918 Spin =Alpha Occup =   2.000000
Selecting   11  11 Ene =      -0.4918 Spin =Alpha Occup =   2.000000

Atoms found    3  Coordinates in Angstroms
Z =  7 ZS =  7 r =   0.0000000000   0.0000000000  -1.1996367307
Z =  7 ZS =  7 r =   0.0000000000   0.0000000000  -0.0714367307
Z =  8 ZS =  8 r =   0.0000000000   0.0000000000   1.1127632693
Maximum distance from expansion center is    1.1996367307

+ Command GetBlms
+

----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------

#############################################################################
Expansion center is not at the center of charge
For high symmetry systems, a better expansion point may be
    0.0000000000    0.0000000000    0.0002087238
#############################################################################
Found point group  CAv
Reduce angular grid using nthd =  1  nphid =  4
Found point group for abelian subgroup C2v
Time Now =         0.1242  Delta time =         0.1242 End GetPGroup
List of unique axes
  N  Vector                      Z   R
  1  0.00000  0.00000  1.00000   7  1.19964   7  0.07144   8  1.11276
List of corresponding x axes
  N  Vector
  1  1.00000  0.00000  0.00000
Computed default value of LMaxA =   13
Determining angular grid in GetAxMax  LMax =   15  LMaxA =   13  LMaxAb =   30
MMax =    3  MMaxAbFlag =    2
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11  12  13   3   3
On the double L grid used for products
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19
  20  21  22  23  24  25  26  16  16   6   6

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is CAv
LMax = =   15
 The dimension of each irreducable representation is
    S     (  1)    A2    (  1)    B1    (  1)    B2    (  1)    P     (  2)
    D     (  2)    F     (  2)    G     (  2)
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
    11    16     6
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 S         1         1         20       1  1  1
 A2        1         2          4      -1 -1  1
 B1        1         3          9       1 -1 -1
 B2        1         4          9      -1  1 -1
 P         1         5         23      -1  1 -1
 P         2         6         23       1 -1 -1
 D         1         7         22      -1 -1  1
 D         2         8         22       1  1  1
 F         1         9         21      -1  1 -1
 F         2        10         21       1 -1 -1
 G         1        11         18      -1 -1  1
 G         2        12         18       1  1  1
Time Now =         0.3371  Delta time =         0.2129 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
S     1    0(   1)    1(   2)    2(   3)    3(   4)    4(   5)    5(   6)    6(   7)    7(   8)    8(   9)    9(  10)
          10(  12)   11(  14)   12(  16)   13(  18)
A2    1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   0)    7(   0)    8(   0)    9(   0)
          10(   1)   11(   2)   12(   3)   13(   4)
B1    1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   1)    6(   2)    7(   3)    8(   4)    9(   5)
          10(   6)   11(   7)   12(   8)   13(   9)
B2    1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   1)    6(   2)    7(   3)    8(   4)    9(   5)
          10(   6)   11(   7)   12(   8)   13(   9)
P     1    0(   0)    1(   1)    2(   2)    3(   3)    4(   4)    5(   5)    6(   6)    7(   7)    8(   8)    9(  10)
          10(  12)   11(  15)   12(  18)   13(  21)
P     2    0(   0)    1(   1)    2(   2)    3(   3)    4(   4)    5(   5)    6(   6)    7(   7)    8(   8)    9(  10)
          10(  12)   11(  15)   12(  18)   13(  21)
D     1    0(   0)    1(   0)    2(   1)    3(   2)    4(   3)    5(   4)    6(   5)    7(   6)    8(   8)    9(  10)
          10(  12)   11(  14)   12(  17)   13(  20)
D     2    0(   0)    1(   0)    2(   1)    3(   2)    4(   3)    5(   4)    6(   5)    7(   6)    8(   8)    9(  10)
          10(  12)   11(  14)   12(  17)   13(  20)
F     1    0(   0)    1(   0)    2(   0)    3(   1)    4(   2)    5(   3)    6(   4)    7(   6)    8(   8)    9(  10)
          10(  12)   11(  14)   12(  16)   13(  19)
F     2    0(   0)    1(   0)    2(   0)    3(   1)    4(   2)    5(   3)    6(   4)    7(   6)    8(   8)    9(  10)
          10(  12)   11(  14)   12(  16)   13(  19)
G     1    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   2)    6(   4)    7(   6)    8(   8)    9(  10)
          10(  12)   11(  14)   12(  16)   13(  18)
G     2    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   2)    6(   4)    7(   6)    8(   8)    9(  10)
          10(  12)   11(  14)   12(  16)   13(  18)

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is C2v
LMax = =   30
 The dimension of each irreducable representation is
    A1    (  1)    A2    (  1)    B1    (  1)    B2    (  1)
Abelian axes
    1       1.000000       0.000000       0.000000
    2       0.000000       1.000000       0.000000
    3       0.000000       0.000000       1.000000
Symmetry operation directions
  1       0.000000       0.000000       1.000000 ang =  0  1 type = 0 axis = 3
  2       1.000000       0.000000       0.000000 ang =  0  1 type = 1 axis = 1
  3       0.000000       1.000000       0.000000 ang =  0  1 type = 1 axis = 2
  4       0.000000       0.000000       1.000000 ang =  1  2 type = 2 axis = 3
irep =    1  sym =A1    1  eigs =   1   1   1   1
irep =    2  sym =A2    1  eigs =   1  -1  -1   1
irep =    3  sym =B1    1  eigs =   1  -1   1  -1
irep =    4  sym =B2    1  eigs =   1   1  -1  -1
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     2     3     4
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A1        1         1        222       1  1  1
 A2        1         2        191      -1 -1  1
 B1        1         3        204      -1  1 -1
 B2        1         4        204       1 -1 -1
Time Now =         0.3530  Delta time =         0.0159 End SymGen

+ Command ExpOrb
+
In GetRMax, RMaxEps =  0.10000000E-05  RMax =   10.1920599036 Angs

----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------

Maximum R in the grid (RMax) =    10.19206 Angs
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) =   10.0
In regions controlled by the wave length (HFacWave) =   10.0
Factor used to control the minimum exponent at each center (MinExpFac) =  300.0
Maximum asymptotic kinetic energy (EMAx) =  50.00000 eV
Maximum step size (MaxStep) =  10.19206 Angs
Factor to increase grid by (GridFac) =     1

    1  Center at =     0.00000 Angs  Alpha Max = 0.10000E+01
    2  Center at =     0.07144 Angs  Alpha Max = 0.14700E+05
    3  Center at =     1.11276 Angs  Alpha Max = 0.19200E+05
    4  Center at =     1.19964 Angs  Alpha Max = 0.14700E+05

Generated Grid

  irg  nin  ntot      step Angs     R end Angs
    1    8     8    0.24811E-03     0.00198
    2    8    16    0.34934E-03     0.00478
    3    8    24    0.56228E-03     0.00928
    4    8    32    0.75349E-03     0.01531
    5    8    40    0.87839E-03     0.02233
    6    8    48    0.89299E-03     0.02948
    7    8    56    0.82181E-03     0.03605
    8    8    64    0.79746E-03     0.04243
    9    8    72    0.87999E-03     0.04947
   10    8    80    0.10144E-02     0.05759
   11    8    88    0.63907E-03     0.06270
   12    8    96    0.49076E-03     0.06662
   13    8   104    0.44016E-03     0.07015
   14    8   112    0.16133E-03     0.07144
   15    8   120    0.43646E-03     0.07493
   16    8   128    0.46530E-03     0.07865
   17    8   136    0.57358E-03     0.08324
   18    8   144    0.87025E-03     0.09020
   19    8   152    0.13836E-02     0.10127
   20    8   160    0.21003E-02     0.11807
   21    8   168    0.24487E-02     0.13766
   22    8   176    0.30036E-02     0.16169
   23    8   184    0.44832E-02     0.19756
   24    8   192    0.69972E-02     0.25353
   25    8   200    0.11546E-01     0.34590
   26    8   208    0.14029E-01     0.45813
   27    8   216    0.12903E-01     0.56136
   28    8   224    0.12415E-01     0.66068
   29    8   232    0.13702E-01     0.77030
   30    8   240    0.15828E-01     0.89692
   31    8   248    0.98306E-02     0.97556
   32    8   256    0.62487E-02     1.02555
   33    8   264    0.39719E-02     1.05733
   34    8   272    0.25247E-02     1.07753
   35    8   280    0.16048E-02     1.09037
   36    8   288    0.10201E-02     1.09853
   37    8   296    0.64840E-03     1.10371
   38    8   304    0.46148E-03     1.10741
   39    8   312    0.39438E-03     1.11056
   40    8   320    0.27530E-03     1.11276
   41    8   328    0.38190E-03     1.11582
   42    8   336    0.40714E-03     1.11908
   43    8   344    0.50188E-03     1.12309
   44    8   352    0.76147E-03     1.12918
   45    8   360    0.12106E-02     1.13887
   46    8   368    0.19247E-02     1.15427
   47    8   376    0.20665E-02     1.17080
   48    8   384    0.13135E-02     1.18131
   49    8   392    0.83492E-03     1.18798
   50    8   400    0.56407E-03     1.19250
   51    8   408    0.46335E-03     1.19620
   52    8   416    0.42911E-03     1.19964
   53    8   424    0.43646E-03     1.20313
   54    8   432    0.46530E-03     1.20685
   55    8   440    0.57358E-03     1.21144
   56    8   448    0.87025E-03     1.21840
   57    8   456    0.13836E-02     1.22947
   58    8   464    0.21997E-02     1.24707
   59    8   472    0.34972E-02     1.27505
   60    8   480    0.55601E-02     1.31953
   61    8   488    0.88398E-02     1.39025
   62    8   496    0.14054E-01     1.50268
   63    8   504    0.22344E-01     1.68143
   64    8   512    0.31346E-01     1.93220
   65    8   520    0.35860E-01     2.21908
   66    8   528    0.40238E-01     2.54099
   67    8   536    0.44103E-01     2.89381
   68    8   544    0.47521E-01     3.27398
   69    8   552    0.50548E-01     3.67836
   70    8   560    0.53236E-01     4.10425
   71    8   568    0.55627E-01     4.54926
   72    8   576    0.57759E-01     5.01134
   73    8   584    0.59666E-01     5.48866
   74    8   592    0.61376E-01     5.97967
   75    8   600    0.62914E-01     6.48299
   76    8   608    0.64302E-01     6.99740
   77    8   616    0.65557E-01     7.52186
   78    8   624    0.66696E-01     8.05542
   79    8   632    0.67733E-01     8.59729
   80    8   640    0.68679E-01     9.14672
   81    8   648    0.69545E-01     9.70308
   82    8   656    0.61122E-01    10.19206
Time Now =         0.3847  Delta time =         0.0317 End GenGrid

----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------

Maximum scattering l (lmax) =   15
Maximum scattering m (mmaxs) =   15
Maximum numerical integration l (lmaxi) =   30
Maximum numerical integration m (mmaxi) =   30
Maximum l to include in the asymptotic region (lmasym) =   13
Parameter used to determine the cutoff points (PCutRd) =  0.10000000E-07 au
Maximum E used to determine grid (in eV) =       50.00000
Print flag (iprnfg) =    0
lmasymtyts =   13
 Actual value of lmasym found =     13
Number of regions of the same l expansion (NAngReg) =   12
Angular regions
    1 L =    2  from (    1)         0.00025  to (    7)         0.00174
    2 L =    3  from (    8)         0.00198  to (   23)         0.00872
    3 L =    4  from (   24)         0.00928  to (   31)         0.01455
    4 L =    5  from (   32)         0.01531  to (   39)         0.02145
    5 L =    6  from (   40)         0.02233  to (   47)         0.02858
    6 L =    8  from (   48)         0.02948  to (   55)         0.03523
    7 L =   10  from (   56)         0.03605  to (   63)         0.04163
    8 L =   13  from (   64)         0.04243  to (   71)         0.04859
    9 L =   15  from (   72)         0.04947  to (  160)         0.11807
   10 L =   13  from (  161)         0.12052  to (  215)         0.54846
   11 L =   15  from (  216)         0.56136  to (  520)         2.21908
   12 L =   13  from (  521)         2.25932  to (  656)        10.19206
There are     2 angular regions for computing spherical harmonics
    1 lval =   13
    2 lval =   15
Last grid points by processor WorkExp =     1.500
Proc id =   -1  Last grid point =       1
Proc id =    0  Last grid point =      88
Proc id =    1  Last grid point =     128
Proc id =    2  Last grid point =     160
Proc id =    3  Last grid point =     208
Proc id =    4  Last grid point =     240
Proc id =    5  Last grid point =     280
Proc id =    6  Last grid point =     312
Proc id =    7  Last grid point =     352
Proc id =    8  Last grid point =     384
Proc id =    9  Last grid point =     424
Proc id =   10  Last grid point =     456
Proc id =   11  Last grid point =     496
Proc id =   12  Last grid point =     528
Proc id =   13  Last grid point =     576
Proc id =   14  Last grid point =     616
Proc id =   15  Last grid point =     656
Time Now =         0.3973  Delta time =         0.0126 End AngGCt

----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------


 R of maximum density
     1  S     1 at max irg =   41  r =   1.11582
     2  S     1 at max irg =   19  r =   0.10127
     3  S     1 at max irg =   53  r =   1.20313
     4  S     1 at max irg =   29  r =   0.77030
     5  S     1 at max irg =   30  r =   0.89692
     6  S     1 at max irg =   61  r =   1.39025
     7  P     1 at max irg =   42  r =   1.11908
     8  P     2 at max irg =   42  r =   1.11908
     9  S     1 at max irg =   62  r =   1.50268
    10  P     1 at max irg =   50  r =   1.19250
    11  P     2 at max irg =   50  r =   1.19250

Rotation coefficients for orbital     1  grp =    1 S     1
     1  1.0000000000

Rotation coefficients for orbital     2  grp =    2 S     1
     2  1.0000000000

Rotation coefficients for orbital     3  grp =    3 S     1
     3  1.0000000000

Rotation coefficients for orbital     4  grp =    4 S     1
     4  1.0000000000

Rotation coefficients for orbital     5  grp =    5 S     1
     5  1.0000000000

Rotation coefficients for orbital     6  grp =    6 S     1
     6  1.0000000000

Rotation coefficients for orbital     7  grp =    7 P     1
     7  1.0000000000    8  0.0000000000

Rotation coefficients for orbital     8  grp =    7 P     2
     7  0.0000000000    8  1.0000000000

Rotation coefficients for orbital     9  grp =    8 S     1
     9  1.0000000000

Rotation coefficients for orbital    10  grp =    9 P     1
    10  1.0000000000   11  0.0000000000

Rotation coefficients for orbital    11  grp =    9 P     2
    10  0.0000000000   11  1.0000000000
Number of orbital groups and degeneracis are         9
  1  1  1  1  1  1  2  1  2
Number of orbital groups and number of electrons when fully occupied
         9
  2  2  2  2  2  2  4  2  4
Time Now =         0.8824  Delta time =         0.4851 End RotOrb

----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------

 First orbital group to expand (mofr) =    1
 Last orbital group to expand (moto) =    9
Orbital     1 of  S     1 symmetry normalization integral =  0.81879080
Orbital     2 of  S     1 symmetry normalization integral =  1.00001158
Orbital     3 of  S     1 symmetry normalization integral =  0.84553998
Orbital     4 of  S     1 symmetry normalization integral =  0.99263389
Orbital     5 of  S     1 symmetry normalization integral =  0.99187655
Orbital     6 of  S     1 symmetry normalization integral =  0.99409553
Orbital     7 of  P     1 symmetry normalization integral =  0.99939852
Orbital     8 of  S     1 symmetry normalization integral =  0.99644433
Orbital     9 of  P     1 symmetry normalization integral =  0.99823545
Time Now =         1.6200  Delta time =         0.7376 End ExpOrb

+ Command GetPot
+

----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------

Total density =     22.00000000
Time Now =         1.6280  Delta time =         0.0079 End Den

----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------

 vasymp =  0.22000000E+02 facnorm =  0.10000000E+01
Time Now =         1.6533  Delta time =         0.0253 Electronic part
Time Now =         1.6548  Delta time =         0.0015 End StPot

----------------------------------------------------------------------
vcppol - VCP polarization potential program
----------------------------------------------------------------------

Time Now =         1.6704  Delta time =         0.0156 End VcpPol
+ Data Record ScatEng - 0.5 1.0
+ Data Record ScatContSym - 'S'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.11000000E+02  eV
 Do E =  0.50000000E+00 eV (  0.18374663E-01 AU)
Time Now =         1.7283  Delta time =         0.0579 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = S     1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    5
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    50
Number of partial waves (np) =    20
Number of asymptotic solutions on the right (NAsymR) =     6
Number of asymptotic solutions on the left (NAsymL) =     6
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     6
Maximum in the asymptotic region (lpasym) =   13
Number of partial waves in the asymptotic region (npasym) =   18
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  196
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    5
Highest l used at large r (lpasym) =   13
Higest l used in the asymptotic potential (lpzb) =   26
Maximum L used in the homogeneous solution (LMaxHomo) =   13
Number of partial waves in the homogeneous solution (npHomo) =   18
Time Now =         1.7373  Delta time =         0.0091 Energy independent setup

Compute solution for E =    0.5000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.22204460E-15
 i =  2  lval =   2  stpote =  0.12436373E-02
 i =  3  lval =   3  stpote = -0.76796694E-18
 i =  4  lval =   3  stpote =  0.48082000E-03
For potential     2
 i =  1  exps = -0.77040808E+02 -0.20000000E+01  stpote = -0.16784798E-15
 i =  2  exps = -0.77040808E+02 -0.20000000E+01  stpote = -0.16784798E-15
 i =  3  exps = -0.77040808E+02 -0.20000000E+01  stpote = -0.16784798E-15
 i =  4  exps = -0.77040808E+02 -0.20000000E+01  stpote = -0.16784798E-15
For potential     3
 i =  1  exps = -0.10666943E+01 -0.36524358E-01  stpote = -0.25328099E-05
 i =  2  exps = -0.10666943E+01 -0.36524358E-01  stpote = -0.25328099E-05
 i =  3  exps = -0.10666943E+01 -0.36524358E-01  stpote = -0.25328099E-05
 i =  4  exps = -0.10666943E+01 -0.36524358E-01  stpote = -0.25328099E-05
Number of asymptotic regions =      33
Final point in integration =   0.44272857E+03 Angstroms
Last asymptotic region is special region for dipole potential
Time Now =         5.5571  Delta time =         3.8198 End SolveHomo
     REAL PART -  Final k matrix
     ROW  1
 -0.20376659E+00-0.77952108E-01-0.47408120E-01 0.14379933E-02-0.68251661E-03
 -0.13078656E-04
     ROW  2
 -0.77952108E-01-0.21454767E-01-0.61731857E-01-0.81158502E-02 0.55471121E-04
 -0.64407132E-04
     ROW  3
 -0.47408121E-01-0.61731856E-01-0.42441423E-02-0.38951175E-01-0.41531209E-02
  0.49466453E-04
     ROW  4
  0.14379914E-02-0.81158491E-02-0.38951175E-01-0.79807720E-02-0.28471637E-01
 -0.26145090E-02
     ROW  5
 -0.68251664E-03 0.55471120E-04-0.41531209E-02-0.28471637E-01-0.55116449E-02
 -0.22648134E-01
     ROW  6
 -0.13063977E-04-0.64404227E-04 0.49465726E-04-0.26145090E-02-0.22648134E-01
 -0.36723533E-02
 eigenphases
 -0.2462010E+00 -0.6228057E-01 -0.2647850E-01  0.4136341E-02  0.2902798E-01
  0.6026915E-01
 eigenphase sum-0.241527E+00  scattering length=   1.28500
 eps+pi 0.290007E+01  eps+2*pi 0.604166E+01

MaxIter =   9 c.s. =      6.55562935 angs^2  rmsk=     0.00000003
Time Now =        21.1271  Delta time =        15.5700 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.11000000E+02  eV
 Do E =  0.10000000E+01 eV (  0.36749326E-01 AU)
Time Now =        21.1463  Delta time =         0.0192 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = S     1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    5
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    50
Number of partial waves (np) =    20
Number of asymptotic solutions on the right (NAsymR) =     6
Number of asymptotic solutions on the left (NAsymL) =     6
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     6
Maximum in the asymptotic region (lpasym) =   13
Number of partial waves in the asymptotic region (npasym) =   18
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  196
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    5
Highest l used at large r (lpasym) =   13
Higest l used in the asymptotic potential (lpzb) =   26
Maximum L used in the homogeneous solution (LMaxHomo) =   13
Number of partial waves in the homogeneous solution (npHomo) =   18
Time Now =        21.1546  Delta time =         0.0082 Energy independent setup

Compute solution for E =    1.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.22204460E-15
 i =  2  lval =   2  stpote =  0.12436373E-02
 i =  3  lval =   3  stpote = -0.76796694E-18
 i =  4  lval =   3  stpote =  0.48082000E-03
For potential     2
 i =  1  exps = -0.77040808E+02 -0.20000000E+01  stpote = -0.14094674E-15
 i =  2  exps = -0.77040808E+02 -0.20000000E+01  stpote = -0.14094674E-15
 i =  3  exps = -0.77040808E+02 -0.20000000E+01  stpote = -0.14094674E-15
 i =  4  exps = -0.77040808E+02 -0.20000000E+01  stpote = -0.14094674E-15
For potential     3
 i =  1  exps = -0.10666943E+01 -0.36524358E-01  stpote = -0.25328099E-05
 i =  2  exps = -0.10666943E+01 -0.36524358E-01  stpote = -0.25328099E-05
 i =  3  exps = -0.10666943E+01 -0.36524358E-01  stpote = -0.25328099E-05
 i =  4  exps = -0.10666943E+01 -0.36524358E-01  stpote = -0.25328099E-05
Number of asymptotic regions =      36
Final point in integration =   0.35139852E+03 Angstroms
Last asymptotic region is special region for dipole potential
Time Now =        25.5341  Delta time =         4.3796 End SolveHomo
     REAL PART -  Final k matrix
     ROW  1
 -0.40992110E+00-0.45700782E-01-0.11183659E+00 0.39133807E-02-0.25019835E-02
 -0.21708794E-04
     ROW  2
 -0.45700781E-01-0.71124410E-01-0.60764635E-01-0.12506068E-01 0.32035587E-04
 -0.31592381E-03
     ROW  3
 -0.11183646E+00-0.60764638E-01 0.23743752E-01-0.40544525E-01-0.46258619E-02
  0.13600285E-03
     ROW  4
  0.39133760E-02-0.12506063E-01-0.40544525E-01-0.19496522E-02-0.28823829E-01
 -0.34543958E-02
     ROW  5
 -0.25019838E-02 0.32035217E-04-0.46258620E-02-0.28823829E-01-0.62162179E-02
 -0.22696830E-01
     ROW  6
 -0.21709565E-04-0.31592389E-03 0.13600282E-03-0.34543958E-02-0.22696830E-01
 -0.49518730E-02
 eigenphases
 -0.4199966E+00 -0.8837672E-01 -0.4185159E-01 -0.3542212E-02  0.2685192E-01
  0.8312443E-01
 eigenphase sum-0.443791E+00  scattering length=   1.75363
 eps+pi 0.269780E+01  eps+2*pi 0.583939E+01

MaxIter =   9 c.s. =      8.78238181 angs^2  rmsk=     0.00000000
Time Now =        42.0700  Delta time =        16.5358 End ScatStab
+ Data Record ScatContSym - 'A2'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.11000000E+02  eV
 Do E =  0.50000000E+00 eV (  0.18374663E-01 AU)
Time Now =        42.0903  Delta time =         0.0203 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = A2    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    5
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    50
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.11000000E+02  eV
 Do E =  0.10000000E+01 eV (  0.36749326E-01 AU)
Time Now =        42.1122  Delta time =         0.0220 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = A2    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    5
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    50
No asymptotic partial waves with this value of LMaxK
+ Data Record ScatContSym - 'B1'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.11000000E+02  eV
 Do E =  0.50000000E+00 eV (  0.18374663E-01 AU)
Time Now =        42.1342  Delta time =         0.0220 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = B1    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    5
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    50
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     1
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     1
Maximum in the asymptotic region (lpasym) =   13
Number of partial waves in the asymptotic region (npasym) =    9
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  196
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   13
Higest l included in the K matrix (lna) =    5
Highest l used at large r (lpasym) =   13
Higest l used in the asymptotic potential (lpzb) =   26
Maximum L used in the homogeneous solution (LMaxHomo) =   13
Number of partial waves in the homogeneous solution (npHomo) =    9
Time Now =        42.1425  Delta time =         0.0084 Energy independent setup

Compute solution for E =    0.5000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.22204460E-15
 i =  2  lval =   2  stpote =  0.12436373E-02
 i =  3  lval =   3  stpote = -0.76796694E-18
 i =  4  lval =   3  stpote =  0.48082000E-03
For potential     2
 i =  1  exps = -0.77040808E+02 -0.20000000E+01  stpote = -0.16784798E-15
 i =  2  exps = -0.77040808E+02 -0.20000000E+01  stpote = -0.16784798E-15
 i =  3  exps = -0.77040808E+02 -0.20000000E+01  stpote = -0.16784798E-15
 i =  4  exps = -0.77040808E+02 -0.20000000E+01  stpote = -0.16784798E-15
For potential     3
 i =  1  exps = -0.10666943E+01 -0.36524358E-01  stpote = -0.25328099E-05
 i =  2  exps = -0.10666943E+01 -0.36524358E-01  stpote = -0.25328099E-05
 i =  3  exps = -0.10666943E+01 -0.36524358E-01  stpote = -0.25328099E-05
 i =  4  exps = -0.10666943E+01 -0.36524358E-01  stpote = -0.25328099E-05
Number of asymptotic regions =      33
Final point in integration =   0.44272857E+03 Angstroms
Last asymptotic region is special region for dipole potential
Time Now =        43.8543  Delta time =         1.7118 End SolveHomo
     REAL PART -  Final k matrix
     ROW  1
  0.55272737E-02
 eigenphases
  0.5527217E-02
 eigenphase sum 0.552722E-02  scattering length=  -0.02883
 eps+pi 0.314712E+01  eps+2*pi 0.628871E+01

MaxIter =   3 c.s. =      0.00292531 angs^2  rmsk=     0.00000000
Time Now =        44.5772  Delta time =         0.7228 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.11000000E+02  eV
 Do E =  0.10000000E+01 eV (  0.36749326E-01 AU)
Time Now =        44.5969  Delta time =         0.0198 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = B1    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    5
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    50
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     1
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     1
Maximum in the asymptotic region (lpasym) =   13
Number of partial waves in the asymptotic region (npasym) =    9
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  196
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   13
Higest l included in the K matrix (lna) =    5
Highest l used at large r (lpasym) =   13
Higest l used in the asymptotic potential (lpzb) =   26
Maximum L used in the homogeneous solution (LMaxHomo) =   13
Number of partial waves in the homogeneous solution (npHomo) =    9
Time Now =        44.6053  Delta time =         0.0084 Energy independent setup

Compute solution for E =    1.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.22204460E-15
 i =  2  lval =   2  stpote =  0.12436373E-02
 i =  3  lval =   3  stpote = -0.76796694E-18
 i =  4  lval =   3  stpote =  0.48082000E-03
For potential     2
 i =  1  exps = -0.77040808E+02 -0.20000000E+01  stpote = -0.14094674E-15
 i =  2  exps = -0.77040808E+02 -0.20000000E+01  stpote = -0.14094674E-15
 i =  3  exps = -0.77040808E+02 -0.20000000E+01  stpote = -0.14094674E-15
 i =  4  exps = -0.77040808E+02 -0.20000000E+01  stpote = -0.14094674E-15
For potential     3
 i =  1  exps = -0.10666943E+01 -0.36524358E-01  stpote = -0.25328099E-05
 i =  2  exps = -0.10666943E+01 -0.36524358E-01  stpote = -0.25328099E-05
 i =  3  exps = -0.10666943E+01 -0.36524358E-01  stpote = -0.25328099E-05
 i =  4  exps = -0.10666943E+01 -0.36524358E-01  stpote = -0.25328099E-05
Number of asymptotic regions =      36
Final point in integration =   0.35139852E+03 Angstroms
Last asymptotic region is special region for dipole potential
Time Now =        46.5854  Delta time =         1.9801 End SolveHomo
     REAL PART -  Final k matrix
     ROW  1
  0.78571021E-02
 eigenphases
  0.7856940E-02
 eigenphase sum 0.785694E-02  scattering length=  -0.02898
 eps+pi 0.314945E+01  eps+2*pi 0.629104E+01

MaxIter =   3 c.s. =      0.00295550 angs^2  rmsk=     0.00000000
Time Now =        47.3035  Delta time =         0.7180 End ScatStab
+ Data Record ScatContSym - 'B2'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.11000000E+02  eV
 Do E =  0.50000000E+00 eV (  0.18374663E-01 AU)
Time Now =        47.3233  Delta time =         0.0198 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = B2    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    5
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    50
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     1
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     1
Maximum in the asymptotic region (lpasym) =   13
Number of partial waves in the asymptotic region (npasym) =    9
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  196
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   13
Higest l included in the K matrix (lna) =    5
Highest l used at large r (lpasym) =   13
Higest l used in the asymptotic potential (lpzb) =   26
Maximum L used in the homogeneous solution (LMaxHomo) =   13
Number of partial waves in the homogeneous solution (npHomo) =    9
Time Now =        47.3315  Delta time =         0.0083 Energy independent setup

Compute solution for E =    0.5000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.22204460E-15
 i =  2  lval =   2  stpote =  0.12436373E-02
 i =  3  lval =   3  stpote = -0.76796694E-18
 i =  4  lval =   3  stpote =  0.48082000E-03
For potential     2
 i =  1  exps = -0.77040808E+02 -0.20000000E+01  stpote = -0.16784798E-15
 i =  2  exps = -0.77040808E+02 -0.20000000E+01  stpote = -0.16784798E-15
 i =  3  exps = -0.77040808E+02 -0.20000000E+01  stpote = -0.16784798E-15
 i =  4  exps = -0.77040808E+02 -0.20000000E+01  stpote = -0.16784798E-15
For potential     3
 i =  1  exps = -0.10666943E+01 -0.36524358E-01  stpote = -0.25328099E-05
 i =  2  exps = -0.10666943E+01 -0.36524358E-01  stpote = -0.25328099E-05
 i =  3  exps = -0.10666943E+01 -0.36524358E-01  stpote = -0.25328099E-05
 i =  4  exps = -0.10666943E+01 -0.36524358E-01  stpote = -0.25328099E-05
Number of asymptotic regions =      33
Final point in integration =   0.44272857E+03 Angstroms
Last asymptotic region is special region for dipole potential
Time Now =        49.0486  Delta time =         1.7171 End SolveHomo
     REAL PART -  Final k matrix
     ROW  1
  0.55272737E-02
 eigenphases
  0.5527217E-02
 eigenphase sum 0.552722E-02  scattering length=  -0.02883
 eps+pi 0.314712E+01  eps+2*pi 0.628871E+01

MaxIter =   3 c.s. =      0.00292531 angs^2  rmsk=     0.00000000
Time Now =        49.7700  Delta time =         0.7214 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.11000000E+02  eV
 Do E =  0.10000000E+01 eV (  0.36749326E-01 AU)
Time Now =        49.7898  Delta time =         0.0198 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = B2    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    5
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    50
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     1
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     1
Maximum in the asymptotic region (lpasym) =   13
Number of partial waves in the asymptotic region (npasym) =    9
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  196
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   13
Higest l included in the K matrix (lna) =    5
Highest l used at large r (lpasym) =   13
Higest l used in the asymptotic potential (lpzb) =   26
Maximum L used in the homogeneous solution (LMaxHomo) =   13
Number of partial waves in the homogeneous solution (npHomo) =    9
Time Now =        49.7980  Delta time =         0.0083 Energy independent setup

Compute solution for E =    1.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.22204460E-15
 i =  2  lval =   2  stpote =  0.12436373E-02
 i =  3  lval =   3  stpote = -0.76796694E-18
 i =  4  lval =   3  stpote =  0.48082000E-03
For potential     2
 i =  1  exps = -0.77040808E+02 -0.20000000E+01  stpote = -0.14094674E-15
 i =  2  exps = -0.77040808E+02 -0.20000000E+01  stpote = -0.14094674E-15
 i =  3  exps = -0.77040808E+02 -0.20000000E+01  stpote = -0.14094674E-15
 i =  4  exps = -0.77040808E+02 -0.20000000E+01  stpote = -0.14094674E-15
For potential     3
 i =  1  exps = -0.10666943E+01 -0.36524358E-01  stpote = -0.25328099E-05
 i =  2  exps = -0.10666943E+01 -0.36524358E-01  stpote = -0.25328099E-05
 i =  3  exps = -0.10666943E+01 -0.36524358E-01  stpote = -0.25328099E-05
 i =  4  exps = -0.10666943E+01 -0.36524358E-01  stpote = -0.25328099E-05
Number of asymptotic regions =      36
Final point in integration =   0.35139852E+03 Angstroms
Last asymptotic region is special region for dipole potential
Time Now =        51.7664  Delta time =         1.9683 End SolveHomo
     REAL PART -  Final k matrix
     ROW  1
  0.78571021E-02
 eigenphases
  0.7856940E-02
 eigenphase sum 0.785694E-02  scattering length=  -0.02898
 eps+pi 0.314945E+01  eps+2*pi 0.629104E+01

MaxIter =   3 c.s. =      0.00295550 angs^2  rmsk=     0.00000000
Time Now =        52.4857  Delta time =         0.7194 End ScatStab
+ Data Record ScatContSym - 'P'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.11000000E+02  eV
 Do E =  0.50000000E+00 eV (  0.18374663E-01 AU)
Time Now =        52.5055  Delta time =         0.0198 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = P     1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    5
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    50
Number of partial waves (np) =    23
Number of asymptotic solutions on the right (NAsymR) =     5
Number of asymptotic solutions on the left (NAsymL) =     5
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     5
Maximum in the asymptotic region (lpasym) =   13
Number of partial waves in the asymptotic region (npasym) =   21
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  196
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    5
Highest l used at large r (lpasym) =   13
Higest l used in the asymptotic potential (lpzb) =   26
Maximum L used in the homogeneous solution (LMaxHomo) =   13
Number of partial waves in the homogeneous solution (npHomo) =   21
Time Now =        52.5138  Delta time =         0.0083 Energy independent setup

Compute solution for E =    0.5000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.22204460E-15
 i =  2  lval =   2  stpote =  0.12436373E-02
 i =  3  lval =   3  stpote = -0.76796694E-18
 i =  4  lval =   3  stpote =  0.48082000E-03
For potential     2
 i =  1  exps = -0.77040808E+02 -0.20000000E+01  stpote = -0.16784798E-15
 i =  2  exps = -0.77040808E+02 -0.20000000E+01  stpote = -0.16784798E-15
 i =  3  exps = -0.77040808E+02 -0.20000000E+01  stpote = -0.16784798E-15
 i =  4  exps = -0.77040808E+02 -0.20000000E+01  stpote = -0.16784798E-15
For potential     3
 i =  1  exps = -0.10666943E+01 -0.36524358E-01  stpote = -0.25328099E-05
 i =  2  exps = -0.10666943E+01 -0.36524358E-01  stpote = -0.25328099E-05
 i =  3  exps = -0.10666943E+01 -0.36524358E-01  stpote = -0.25328099E-05
 i =  4  exps = -0.10666943E+01 -0.36524358E-01  stpote = -0.25328099E-05
Number of asymptotic regions =      33
Final point in integration =   0.44272857E+03 Angstroms
Last asymptotic region is special region for dipole potential
Time Now =        57.0359  Delta time =         4.5221 End SolveHomo
     REAL PART -  Final k matrix
     ROW  1
  0.19648491E+00-0.59893944E-01-0.44363635E-03 0.10450240E-03-0.41386229E-04
     ROW  2
 -0.59893945E-01 0.10088745E-01-0.36991590E-01-0.36898662E-02 0.35763337E-04
     ROW  3
 -0.44363634E-03-0.36991590E-01-0.53019764E-02-0.27596751E-01-0.24728286E-02
     ROW  4
  0.10450290E-03-0.36898661E-02-0.27596751E-01-0.46624501E-02-0.22196048E-01
     ROW  5
 -0.41410541E-04 0.35768356E-04-0.24728338E-02-0.22196048E-01-0.33049267E-02
 eigenphases
 -0.5566110E-01 -0.1901576E-01  0.1441177E-01  0.3907037E-01  0.2113345E+00
 eigenphase sum 0.190140E+00  scattering length=  -1.00398
 eps+pi 0.333173E+01  eps+2*pi 0.647333E+01

MaxIter =   9 c.s. =      4.71032015 angs^2  rmsk=     0.00000001
Time Now =        69.5782  Delta time =        12.5423 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.11000000E+02  eV
 Do E =  0.10000000E+01 eV (  0.36749326E-01 AU)
Time Now =        69.5981  Delta time =         0.0199 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = P     1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    5
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    50
Number of partial waves (np) =    23
Number of asymptotic solutions on the right (NAsymR) =     5
Number of asymptotic solutions on the left (NAsymL) =     5
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     5
Maximum in the asymptotic region (lpasym) =   13
Number of partial waves in the asymptotic region (npasym) =   21
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  196
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    5
Highest l used at large r (lpasym) =   13
Higest l used in the asymptotic potential (lpzb) =   26
Maximum L used in the homogeneous solution (LMaxHomo) =   13
Number of partial waves in the homogeneous solution (npHomo) =   21
Time Now =        69.6063  Delta time =         0.0083 Energy independent setup

Compute solution for E =    1.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.22204460E-15
 i =  2  lval =   2  stpote =  0.12436373E-02
 i =  3  lval =   3  stpote = -0.76796694E-18
 i =  4  lval =   3  stpote =  0.48082000E-03
For potential     2
 i =  1  exps = -0.77040808E+02 -0.20000000E+01  stpote = -0.14094674E-15
 i =  2  exps = -0.77040808E+02 -0.20000000E+01  stpote = -0.14094674E-15
 i =  3  exps = -0.77040808E+02 -0.20000000E+01  stpote = -0.14094674E-15
 i =  4  exps = -0.77040808E+02 -0.20000000E+01  stpote = -0.14094674E-15
For potential     3
 i =  1  exps = -0.10666943E+01 -0.36524358E-01  stpote = -0.25328099E-05
 i =  2  exps = -0.10666943E+01 -0.36524358E-01  stpote = -0.25328099E-05
 i =  3  exps = -0.10666943E+01 -0.36524358E-01  stpote = -0.25328099E-05
 i =  4  exps = -0.10666943E+01 -0.36524358E-01  stpote = -0.25328099E-05
Number of asymptotic regions =      36
Final point in integration =   0.35139852E+03 Angstroms
Last asymptotic region is special region for dipole potential
Time Now =        74.8275  Delta time =         5.2212 End SolveHomo
     REAL PART -  Final k matrix
     ROW  1
  0.31530381E+00-0.82266306E-01 0.16119023E-01-0.23120035E-03-0.10473689E-03
     ROW  2
 -0.82266314E-01 0.52816304E-01-0.41673084E-01-0.36224825E-02 0.50049246E-04
     ROW  3
  0.16119023E-01-0.41673084E-01 0.38834279E-02-0.28155915E-01-0.31874886E-02
     ROW  4
 -0.23120040E-03-0.36224825E-02-0.28155915E-01-0.49787221E-02-0.22251912E-01
     ROW  5
 -0.10473689E-03 0.50049125E-04-0.31874886E-02-0.22251912E-01-0.44350000E-02
 eigenphases
 -0.4724465E-01 -0.9837931E-02  0.2174354E-01  0.5674886E-01  0.3287699E+00
 eigenphase sum 0.350180E+00  scattering length=  -1.34719
 eps+pi 0.349177E+01  eps+2*pi 0.663337E+01

MaxIter =   9 c.s. =      5.27936118 angs^2  rmsk=     0.00000000
Time Now =        89.0844  Delta time =        14.2569 End ScatStab
+ Data Record ScatContSym - 'D'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.11000000E+02  eV
 Do E =  0.50000000E+00 eV (  0.18374663E-01 AU)
Time Now =        89.1044  Delta time =         0.0201 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = D     1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    5
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    50
Number of partial waves (np) =    22
Number of asymptotic solutions on the right (NAsymR) =     4
Number of asymptotic solutions on the left (NAsymL) =     4
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     4
Maximum in the asymptotic region (lpasym) =   13
Number of partial waves in the asymptotic region (npasym) =   20
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  196
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    5
Highest l used at large r (lpasym) =   13
Higest l used in the asymptotic potential (lpzb) =   26
Maximum L used in the homogeneous solution (LMaxHomo) =   13
Number of partial waves in the homogeneous solution (npHomo) =   20
Time Now =        89.1127  Delta time =         0.0083 Energy independent setup

Compute solution for E =    0.5000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.22204460E-15
 i =  2  lval =   2  stpote =  0.12436373E-02
 i =  3  lval =   3  stpote = -0.76796694E-18
 i =  4  lval =   3  stpote =  0.48082000E-03
For potential     2
 i =  1  exps = -0.77040808E+02 -0.20000000E+01  stpote = -0.16784798E-15
 i =  2  exps = -0.77040808E+02 -0.20000000E+01  stpote = -0.16784798E-15
 i =  3  exps = -0.77040808E+02 -0.20000000E+01  stpote = -0.16784798E-15
 i =  4  exps = -0.77040808E+02 -0.20000000E+01  stpote = -0.16784798E-15
For potential     3
 i =  1  exps = -0.10666943E+01 -0.36524358E-01  stpote = -0.25328099E-05
 i =  2  exps = -0.10666943E+01 -0.36524358E-01  stpote = -0.25328099E-05
 i =  3  exps = -0.10666943E+01 -0.36524358E-01  stpote = -0.25328099E-05
 i =  4  exps = -0.10666943E+01 -0.36524358E-01  stpote = -0.25328099E-05
Number of asymptotic regions =      33
Final point in integration =   0.44272857E+03 Angstroms
Last asymptotic region is special region for dipole potential
Time Now =        93.3921  Delta time =         4.2794 End SolveHomo
     REAL PART -  Final k matrix
     ROW  1
  0.37482223E-01-0.29154537E-01-0.24263855E-02 0.31249736E-04
     ROW  2
 -0.29154537E-01 0.18250043E-02-0.24698707E-01-0.20597637E-02
     ROW  3
 -0.24263855E-02-0.24698707E-01-0.21293061E-02-0.20778418E-01
     ROW  4
  0.31249736E-04-0.20597638E-02-0.20778418E-01-0.22027067E-02
 eigenphases
 -0.3862811E-01 -0.6012020E-02  0.2367588E-01  0.5589605E-01
 eigenphase sum 0.349318E-01  scattering length=  -0.18229
 eps+pi 0.317652E+01  eps+2*pi 0.631812E+01

MaxIter =   4 c.s. =      0.49879809 angs^2  rmsk=     0.00000000
Time Now =        97.4223  Delta time =         4.0302 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.11000000E+02  eV
 Do E =  0.10000000E+01 eV (  0.36749326E-01 AU)
Time Now =        97.4419  Delta time =         0.0196 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = D     1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    5
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    50
Number of partial waves (np) =    22
Number of asymptotic solutions on the right (NAsymR) =     4
Number of asymptotic solutions on the left (NAsymL) =     4
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     4
Maximum in the asymptotic region (lpasym) =   13
Number of partial waves in the asymptotic region (npasym) =   20
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  196
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    5
Highest l used at large r (lpasym) =   13
Higest l used in the asymptotic potential (lpzb) =   26
Maximum L used in the homogeneous solution (LMaxHomo) =   13
Number of partial waves in the homogeneous solution (npHomo) =   20
Time Now =        97.4502  Delta time =         0.0083 Energy independent setup

Compute solution for E =    1.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.22204460E-15
 i =  2  lval =   2  stpote =  0.12436373E-02
 i =  3  lval =   3  stpote = -0.76796694E-18
 i =  4  lval =   3  stpote =  0.48082000E-03
For potential     2
 i =  1  exps = -0.77040808E+02 -0.20000000E+01  stpote = -0.14094674E-15
 i =  2  exps = -0.77040808E+02 -0.20000000E+01  stpote = -0.14094674E-15
 i =  3  exps = -0.77040808E+02 -0.20000000E+01  stpote = -0.14094674E-15
 i =  4  exps = -0.77040808E+02 -0.20000000E+01  stpote = -0.14094674E-15
For potential     3
 i =  1  exps = -0.10666943E+01 -0.36524358E-01  stpote = -0.25328099E-05
 i =  2  exps = -0.10666943E+01 -0.36524358E-01  stpote = -0.25328099E-05
 i =  3  exps = -0.10666943E+01 -0.36524358E-01  stpote = -0.25328099E-05
 i =  4  exps = -0.10666943E+01 -0.36524358E-01  stpote = -0.25328099E-05
Number of asymptotic regions =      36
Final point in integration =   0.35139852E+03 Angstroms
Last asymptotic region is special region for dipole potential
Time Now =       102.3958  Delta time =         4.9456 End SolveHomo
     REAL PART -  Final k matrix
     ROW  1
  0.83414423E-01-0.31499719E-01-0.15810026E-02 0.13622344E-03
     ROW  2
 -0.31499719E-01 0.11611586E-01-0.25177790E-01-0.26159617E-02
     ROW  3
 -0.15810026E-02-0.25177790E-01-0.14872731E-02-0.20883226E-01
     ROW  4
  0.13622345E-03-0.26159617E-02-0.20883226E-01-0.28962658E-02
 eigenphases
 -0.3481940E-01  0.6062727E-03  0.2898508E-01  0.9558431E-01
 eigenphase sum 0.903563E-01  scattering length=  -0.33420
 eps+pi 0.323195E+01  eps+2*pi 0.637354E+01

MaxIter =   4 c.s. =      0.53434981 angs^2  rmsk=     0.00000000
Time Now =       106.4280  Delta time =         4.0322 End ScatStab
+ Data Record ScatContSym - 'F'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.11000000E+02  eV
 Do E =  0.50000000E+00 eV (  0.18374663E-01 AU)
Time Now =       106.4474  Delta time =         0.0194 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = F     1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    5
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    50
Number of partial waves (np) =    21
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     3
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     3
Maximum in the asymptotic region (lpasym) =   13
Number of partial waves in the asymptotic region (npasym) =   19
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  196
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    5
Highest l used at large r (lpasym) =   13
Higest l used in the asymptotic potential (lpzb) =   26
Maximum L used in the homogeneous solution (LMaxHomo) =   13
Number of partial waves in the homogeneous solution (npHomo) =   19
Time Now =       106.4557  Delta time =         0.0083 Energy independent setup

Compute solution for E =    0.5000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.22204460E-15
 i =  2  lval =   2  stpote =  0.12436373E-02
 i =  3  lval =   3  stpote = -0.76796694E-18
 i =  4  lval =   3  stpote =  0.48082000E-03
For potential     2
 i =  1  exps = -0.77040808E+02 -0.20000000E+01  stpote = -0.16784798E-15
 i =  2  exps = -0.77040808E+02 -0.20000000E+01  stpote = -0.16784798E-15
 i =  3  exps = -0.77040808E+02 -0.20000000E+01  stpote = -0.16784798E-15
 i =  4  exps = -0.77040808E+02 -0.20000000E+01  stpote = -0.16784798E-15
For potential     3
 i =  1  exps = -0.10666943E+01 -0.36524358E-01  stpote = -0.25328099E-05
 i =  2  exps = -0.10666943E+01 -0.36524358E-01  stpote = -0.25328099E-05
 i =  3  exps = -0.10666943E+01 -0.36524358E-01  stpote = -0.25328099E-05
 i =  4  exps = -0.10666943E+01 -0.36524358E-01  stpote = -0.25328099E-05
Number of asymptotic regions =      33
Final point in integration =   0.44272857E+03 Angstroms
Last asymptotic region is special region for dipole potential
Time Now =       110.4533  Delta time =         3.9976 End SolveHomo
     REAL PART -  Final k matrix
     ROW  1
  0.13480190E-01-0.18899305E-01-0.13611690E-02
     ROW  2
 -0.18899305E-01 0.20900844E-02-0.18155093E-01
     ROW  3
 -0.13611690E-02-0.18155093E-01-0.36451523E-03
 eigenphases
 -0.2322254E-01  0.7268360E-02  0.3115390E-01
 eigenphase sum 0.151997E-01  scattering length=  -0.07929
 eps+pi 0.315679E+01  eps+2*pi 0.629839E+01

MaxIter =   3 c.s. =      0.14959549 angs^2  rmsk=     0.00000000
Time Now =       112.5638  Delta time =         2.1105 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.11000000E+02  eV
 Do E =  0.10000000E+01 eV (  0.36749326E-01 AU)
Time Now =       112.5834  Delta time =         0.0196 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = F     1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    5
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    50
Number of partial waves (np) =    21
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     3
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     3
Maximum in the asymptotic region (lpasym) =   13
Number of partial waves in the asymptotic region (npasym) =   19
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  196
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    5
Highest l used at large r (lpasym) =   13
Higest l used in the asymptotic potential (lpzb) =   26
Maximum L used in the homogeneous solution (LMaxHomo) =   13
Number of partial waves in the homogeneous solution (npHomo) =   19
Time Now =       112.5916  Delta time =         0.0083 Energy independent setup

Compute solution for E =    1.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.22204460E-15
 i =  2  lval =   2  stpote =  0.12436373E-02
 i =  3  lval =   3  stpote = -0.76796694E-18
 i =  4  lval =   3  stpote =  0.48082000E-03
For potential     2
 i =  1  exps = -0.77040808E+02 -0.20000000E+01  stpote = -0.14094674E-15
 i =  2  exps = -0.77040808E+02 -0.20000000E+01  stpote = -0.14094674E-15
 i =  3  exps = -0.77040808E+02 -0.20000000E+01  stpote = -0.14094674E-15
 i =  4  exps = -0.77040808E+02 -0.20000000E+01  stpote = -0.14094674E-15
For potential     3
 i =  1  exps = -0.10666943E+01 -0.36524358E-01  stpote = -0.25328099E-05
 i =  2  exps = -0.10666943E+01 -0.36524358E-01  stpote = -0.25328099E-05
 i =  3  exps = -0.10666943E+01 -0.36524358E-01  stpote = -0.25328099E-05
 i =  4  exps = -0.10666943E+01 -0.36524358E-01  stpote = -0.25328099E-05
Number of asymptotic regions =      36
Final point in integration =   0.35139852E+03 Angstroms
Last asymptotic region is special region for dipole potential
Time Now =       117.2146  Delta time =         4.6230 End SolveHomo
     REAL PART -  Final k matrix
     ROW  1
  0.24847050E-01-0.19582074E-01-0.16469736E-02
     ROW  2
 -0.19582074E-01 0.42663957E-02-0.18288715E-01
     ROW  3
 -0.16469736E-02-0.18288715E-01-0.33600257E-03
 eigenphases
 -0.2129135E-01  0.1143543E-01  0.3861687E-01
 eigenphase sum 0.287610E-01  scattering length=  -0.10612
 eps+pi 0.317035E+01  eps+2*pi 0.631195E+01

MaxIter =   3 c.s. =      0.09932398 angs^2  rmsk=     0.00000000
Time Now =       119.3140  Delta time =         2.0994 End ScatStab
+ Data Record ScatContSym - 'G'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.11000000E+02  eV
 Do E =  0.50000000E+00 eV (  0.18374663E-01 AU)
Time Now =       119.3335  Delta time =         0.0195 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = G     1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    5
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    50
Number of partial waves (np) =    18
Number of asymptotic solutions on the right (NAsymR) =     2
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   13
Number of partial waves in the asymptotic region (npasym) =   18
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  196
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   13
Higest l included in the K matrix (lna) =    5
Highest l used at large r (lpasym) =   13
Higest l used in the asymptotic potential (lpzb) =   26
Maximum L used in the homogeneous solution (LMaxHomo) =   13
Number of partial waves in the homogeneous solution (npHomo) =   18
Time Now =       119.3418  Delta time =         0.0083 Energy independent setup

Compute solution for E =    0.5000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.22204460E-15
 i =  2  lval =   2  stpote =  0.12436373E-02
 i =  3  lval =   3  stpote = -0.76796694E-18
 i =  4  lval =   3  stpote =  0.48082000E-03
For potential     2
 i =  1  exps = -0.77040808E+02 -0.20000000E+01  stpote = -0.16784798E-15
 i =  2  exps = -0.77040808E+02 -0.20000000E+01  stpote = -0.16784798E-15
 i =  3  exps = -0.77040808E+02 -0.20000000E+01  stpote = -0.16784798E-15
 i =  4  exps = -0.77040808E+02 -0.20000000E+01  stpote = -0.16784798E-15
For potential     3
 i =  1  exps = -0.10666943E+01 -0.36524358E-01  stpote = -0.25328099E-05
 i =  2  exps = -0.10666943E+01 -0.36524358E-01  stpote = -0.25328099E-05
 i =  3  exps = -0.10666943E+01 -0.36524358E-01  stpote = -0.25328099E-05
 i =  4  exps = -0.10666943E+01 -0.36524358E-01  stpote = -0.25328099E-05
Number of asymptotic regions =      33
Final point in integration =   0.44272857E+03 Angstroms
Last asymptotic region is special region for dipole potential
Time Now =       122.9746  Delta time =         3.6329 End SolveHomo
     REAL PART -  Final k matrix
     ROW  1
  0.79862802E-02-0.13632512E-01
     ROW  2
 -0.13632512E-01 0.22115171E-02
 eigenphases
 -0.8835804E-02  0.1903153E-01
 eigenphase sum 0.101957E-01  scattering length=  -0.05319
 eps+pi 0.315179E+01  eps+2*pi 0.629338E+01

MaxIter =   3 c.s. =      0.04215386 angs^2  rmsk=     0.00000000
Time Now =       124.3977  Delta time =         1.4230 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.11000000E+02  eV
 Do E =  0.10000000E+01 eV (  0.36749326E-01 AU)
Time Now =       124.4171  Delta time =         0.0194 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = G     1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    5
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    50
Number of partial waves (np) =    18
Number of asymptotic solutions on the right (NAsymR) =     2
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   13
Number of partial waves in the asymptotic region (npasym) =   18
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  196
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   13
Higest l included in the K matrix (lna) =    5
Highest l used at large r (lpasym) =   13
Higest l used in the asymptotic potential (lpzb) =   26
Maximum L used in the homogeneous solution (LMaxHomo) =   13
Number of partial waves in the homogeneous solution (npHomo) =   18
Time Now =       124.4254  Delta time =         0.0083 Energy independent setup

Compute solution for E =    1.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.22204460E-15
 i =  2  lval =   2  stpote =  0.12436373E-02
 i =  3  lval =   3  stpote = -0.76796694E-18
 i =  4  lval =   3  stpote =  0.48082000E-03
For potential     2
 i =  1  exps = -0.77040808E+02 -0.20000000E+01  stpote = -0.14094674E-15
 i =  2  exps = -0.77040808E+02 -0.20000000E+01  stpote = -0.14094674E-15
 i =  3  exps = -0.77040808E+02 -0.20000000E+01  stpote = -0.14094674E-15
 i =  4  exps = -0.77040808E+02 -0.20000000E+01  stpote = -0.14094674E-15
For potential     3
 i =  1  exps = -0.10666943E+01 -0.36524358E-01  stpote = -0.25328099E-05
 i =  2  exps = -0.10666943E+01 -0.36524358E-01  stpote = -0.25328099E-05
 i =  3  exps = -0.10666943E+01 -0.36524358E-01  stpote = -0.25328099E-05
 i =  4  exps = -0.10666943E+01 -0.36524358E-01  stpote = -0.25328099E-05
Number of asymptotic regions =      36
Final point in integration =   0.35139852E+03 Angstroms
Last asymptotic region is special region for dipole potential
Time Now =       128.6278  Delta time =         4.2024 End SolveHomo
     REAL PART -  Final k matrix
     ROW  1
  0.12084999E-01-0.13799826E-01
     ROW  2
 -0.13799826E-01 0.32501201E-02
 eigenphases
 -0.6821951E-02  0.2215355E-01
 eigenphase sum 0.153316E-01  scattering length=  -0.05656
 eps+pi 0.315692E+01  eps+2*pi 0.629852E+01

MaxIter =   3 c.s. =      0.02572168 angs^2  rmsk=     0.00000000
Time Now =       130.0501  Delta time =         1.4222 End ScatStab

+ Command TotalCrossSection
+
Symmetry S -
        E (eV)      XS(angs^2)    EPS(radians)
       0.500000       6.555629      -0.241527
       1.000000       8.782381      -0.443791
Symmetry A2 -
        E (eV)      XS(angs^2)    EPS(radians)
       0.500000       0.000000       0.000000
       1.000000       0.000000       0.000000
Symmetry B1 -
        E (eV)      XS(angs^2)    EPS(radians)
       0.500000       0.002925       0.005527
       1.000000       0.002955       0.007857
Symmetry B2 -
        E (eV)      XS(angs^2)    EPS(radians)
       0.500000       0.002925       0.005527
       1.000000       0.002955       0.007857
Symmetry P -
        E (eV)      XS(angs^2)    EPS(radians)
       0.500000       4.710320       0.190140
       1.000000       5.279361       0.350180
Symmetry D -
        E (eV)      XS(angs^2)    EPS(radians)
       0.500000       0.498798       0.034932
       1.000000       0.534350       0.090356
Symmetry F -
        E (eV)      XS(angs^2)    EPS(radians)
       0.500000       0.149595       0.015200
       1.000000       0.099324       0.028761
Symmetry G -
        E (eV)      XS(angs^2)    EPS(radians)
       0.500000       0.042154       0.010196
       1.000000       0.025722       0.015332

 Total Cross Sections

 Energy      Total Cross Section
   0.50000    17.36322
   1.00000    20.66581
Time Now =       130.0544  Delta time =         0.0044 Finalize