Execution on login004

----------------------------------------------------------------------
ePolyScat Version E3
----------------------------------------------------------------------

Authors: R. R. Lucchese, N. Sanna, A. P. P. Natalense, and F. A. Gianturco
http://www.chem.tamu.edu/rgroup/lucchese/ePolyScat.E3.manual/manual.html
Please cite the following two papers when reporting results obtained with  this program
F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 100, 6464 (1994).
A. P. P. Natalense and R. R. Lucchese, J. Chem. Phys. 111, 5344 (1999).

----------------------------------------------------------------------

Starting at 2011-08-29  10:56:23.788 (GMT -0500)
Using    16 processors

----------------------------------------------------------------------


+ Start of Input Records
#
# input file for test25
#
# electron scattering from H2O in A1 symmetry
#
  LMax   15     # maximum l to be used for wave functions
  EMax  50.0    # EMax, maximum asymptotic energy in eV
  EngForm      # Energy formulas
   0 0         # charge, formula type
  VCorr 'PZ'
  FegeEng 13.0   # Energy correction (in eV) used in the fege potential
  ScatContSym 'A1'  # Scattering symmetry
  LMaxK   3     # Maximum l in the K matirx
  ScatEng 20.0      # list of scattering energies (in eV)
  PCutRd 1.0e-8
  GrnType 1

   # do the scattering with the center of mass at the origin
Convert '/g/home/rrl581a/Applications/ePolyScat.E3/tests/test25.g03' 'g03'
GetBlms
ExpOrb
GetPot
Scat
   # do the scattering with the O at the origin
  NECenter 2
Convert '/g/home/rrl581a/Applications/ePolyScat.E3/tests/test25.g03' 'g03'
GetBlms
ExpOrb
GetPot
Scat
Exit
+ End of input reached
+ Data Record LMax - 15
+ Data Record EMax - 50.0
+ Data Record EngForm - 0 0
+ Data Record VCorr - 'PZ'
+ Data Record FegeEng - 13.0
+ Data Record ScatContSym - 'A1'
+ Data Record LMaxK - 3
+ Data Record ScatEng - 20.0
+ Data Record PCutRd - 1.0e-8
+ Data Record GrnType - 1

+ Command Convert
+ '/g/home/rrl581a/Applications/ePolyScat.E3/tests/test25.g03' 'g03'

----------------------------------------------------------------------
g03cnv - read input from G03 output
----------------------------------------------------------------------

Expansion center is (in Angstroms) -
     0.0000000000   0.0000000000   0.0000000000
Command line = # RHF/AUG-CC-PVTZ 6D 10F SCF=TIGHT GFINPUT PUNCH=MO
CardFlag =    T
Normal Mode flag =    F
Selecting orbitals
from     1  to     5  number already selected     0
Number of orbitals selected is     5
Highest orbital read in is =    5
Time Now =         0.0268  Delta time =         0.0268 End g03cnv

Atoms found    3  Coordinates in Angstroms
Z =  1 ZS =  1 r =   0.0000000000   0.7594600000  -0.4645210000
Z =  8 ZS =  8 r =   0.0000000000   0.0000000000   0.1161300000
Z =  1 ZS =  1 r =   0.0000000000  -0.7594600000  -0.4645210000
Maximum distance from expansion center is    0.8902579688

+ Command GetBlms
+

----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------

Found point group  C2v
Reduce angular grid using nthd =  1  nphid =  4
Found point group for abelian subgroup C2v
Time Now =         0.0591  Delta time =         0.0323 End GetPGroup
List of unique axes
  N  Vector                      Z   R
  1  0.00000  0.00000  1.00000   8  0.11613
  2  0.00000  0.85308 -0.52178   1  0.89026
  3  0.00000 -0.85308 -0.52178   1  0.89026
List of corresponding x axes
  N  Vector
  1  1.00000  0.00000  0.00000
  2  1.00000  0.00000  0.00000
  3  1.00000  0.00000  0.00000
Computed default value of LMaxA =   12
Determining angular grid in GetAxMax  LMax =   15  LMaxA =   12  LMaxAb =   30
MMax =    3  MMaxAbFlag =    1
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11  12   3   3   3
For axis     2  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3   2
For axis     3  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3   2
On the double L grid used for products
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19
  20  21  22  23  24  25  26  27  28  29  30
For axis     2  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
For axis     3  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is C2v
LMax = =   15
 The dimension of each irreducable representation is
    A1    (  1)    A2    (  1)    B1    (  1)    B2    (  1)
Abelian axes
    1       1.000000       0.000000       0.000000
    2       0.000000       1.000000       0.000000
    3       0.000000       0.000000       1.000000
Symmetry operation directions
  1       0.000000       0.000000       1.000000 ang =  0  1 type = 0 axis = 3
  2       1.000000       0.000000       0.000000 ang =  0  1 type = 1 axis = 1
  3       0.000000       1.000000       0.000000 ang =  0  1 type = 1 axis = 2
  4       0.000000       0.000000      -1.000000 ang =  1  2 type = 2 axis = 3
irep =    1  sym =A1    1  eigs =   1   1   1   1
irep =    2  sym =A2    1  eigs =   1  -1  -1   1
irep =    3  sym =B1    1  eigs =   1  -1   1  -1
irep =    4  sym =B2    1  eigs =   1   1  -1  -1
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     2     3     4
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A1        1         1         66       1  1  1
 A2        1         2         47      -1 -1  1
 B1        1         3         56      -1  1 -1
 B2        1         4         59       1 -1 -1
Time Now =         0.1978  Delta time =         0.1386 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
A1    1    0(   1)    1(   2)    2(   4)    3(   6)    4(   9)    5(  12)    6(  16)    7(  20)    8(  25)    9(  30)
          10(  36)   11(  42)   12(  49)
A2    1    0(   0)    1(   0)    2(   1)    3(   2)    4(   4)    5(   6)    6(   9)    7(  12)    8(  16)    9(  20)
          10(  25)   11(  30)   12(  36)
B1    1    0(   0)    1(   1)    2(   2)    3(   4)    4(   6)    5(   9)    6(  12)    7(  16)    8(  20)    9(  25)
          10(  30)   11(  36)   12(  42)
B2    1    0(   0)    1(   1)    2(   2)    3(   4)    4(   6)    5(   9)    6(  12)    7(  16)    8(  20)    9(  25)
          10(  30)   11(  36)   12(  42)

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is C2v
LMax = =   30
 The dimension of each irreducable representation is
    A1    (  1)    A2    (  1)    B1    (  1)    B2    (  1)
Abelian axes
    1       1.000000       0.000000       0.000000
    2       0.000000       1.000000       0.000000
    3       0.000000       0.000000       1.000000
Symmetry operation directions
  1       0.000000       0.000000       1.000000 ang =  0  1 type = 0 axis = 3
  2       1.000000       0.000000       0.000000 ang =  0  1 type = 1 axis = 1
  3       0.000000       1.000000       0.000000 ang =  0  1 type = 1 axis = 2
  4       0.000000       0.000000      -1.000000 ang =  1  2 type = 2 axis = 3
irep =    1  sym =A1    1  eigs =   1   1   1   1
irep =    2  sym =A2    1  eigs =   1  -1  -1   1
irep =    3  sym =B1    1  eigs =   1  -1   1  -1
irep =    4  sym =B2    1  eigs =   1   1  -1  -1
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     2     3     4
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A1        1         1        256       1  1  1
 A2        1         2        225      -1 -1  1
 B1        1         3        240      -1  1 -1
 B2        1         4        240       1 -1 -1
Time Now =         0.2171  Delta time =         0.0193 End SymGen

+ Command ExpOrb
+
In GetRMax, RMaxEps =  0.10000000E-05  RMax =   12.0049934697 Angs

----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------

Maximum R in the grid (RMax) =    12.00499 Angs
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) =   10.0
In regions controlled by the wave length (HFacWave) =   10.0
Factor used to control the minimum exponent at each center (MinExpFac) =  300.0
Maximum asymptotic kinetic energy (EMAx) =  50.00000 eV
Maximum step size (MaxStep) =  12.00499 Angs
Factor to increase grid by (GridFac) =     1

    1  Center at =     0.00000 Angs  Alpha Max = 0.10000E+01
    2  Center at =     0.11613 Angs  Alpha Max = 0.19200E+05
    3  Center at =     0.89026 Angs  Alpha Max = 0.30000E+03

Generated Grid

  irg  nin  ntot      step Angs     R end Angs
    1    8     8    0.41063E-03     0.00329
    2    8    16    0.58001E-03     0.00793
    3    8    24    0.93206E-03     0.01538
    4    8    32    0.12452E-02     0.02534
    5    8    40    0.14460E-02     0.03691
    6    8    48    0.14579E-02     0.04857
    7    8    56    0.13371E-02     0.05927
    8    8    64    0.13008E-02     0.06968
    9    8    72    0.14451E-02     0.08124
   10    8    80    0.15789E-02     0.09387
   11    8    88    0.10139E-02     0.10198
   12    8    96    0.64446E-03     0.10714
   13    8   104    0.46007E-03     0.11082
   14    8   112    0.39392E-03     0.11397
   15    8   120    0.27029E-03     0.11613
   16    8   128    0.38190E-03     0.11919
   17    8   136    0.40714E-03     0.12244
   18    8   144    0.50188E-03     0.12646
   19    8   152    0.76147E-03     0.13255
   20    8   160    0.12106E-02     0.14223
   21    8   168    0.19247E-02     0.15763
   22    8   176    0.30601E-02     0.18211
   23    8   184    0.37769E-02     0.21233
   24    8   192    0.44035E-02     0.24756
   25    8   200    0.63618E-02     0.29845
   26    8   208    0.97955E-02     0.37681
   27    8   216    0.92953E-02     0.45118
   28    8   224    0.93571E-02     0.52603
   29    8   232    0.10910E-01     0.61331
   30    8   240    0.12720E-01     0.71507
   31    8   248    0.79791E-02     0.77890
   32    8   256    0.50718E-02     0.81947
   33    8   264    0.36511E-02     0.84868
   34    8   272    0.31419E-02     0.87382
   35    8   280    0.20549E-02     0.89026
   36    8   288    0.30552E-02     0.91470
   37    8   296    0.32571E-02     0.94076
   38    8   304    0.40150E-02     0.97288
   39    8   312    0.60918E-02     1.02161
   40    8   320    0.96851E-02     1.09909
   41    8   328    0.15398E-01     1.22227
   42    8   336    0.24481E-01     1.41812
   43    8   344    0.29411E-01     1.65341
   44    8   352    0.34290E-01     1.92773
   45    8   360    0.45134E-01     2.28880
   46    8   368    0.58373E-01     2.75579
   47    8   376    0.61891E-01     3.25091
   48    8   384    0.64724E-01     3.76871
   49    8   392    0.67043E-01     4.30505
   50    8   400    0.68966E-01     4.85678
   51    8   408    0.70580E-01     5.42142
   52    8   416    0.71948E-01     5.99700
   53    8   424    0.73120E-01     6.58197
   54    8   432    0.74133E-01     7.17503
   55    8   440    0.75016E-01     7.77516
   56    8   448    0.75790E-01     8.38148
   57    8   456    0.76474E-01     8.99327
   58    8   464    0.77082E-01     9.60993
   59    8   472    0.77626E-01    10.23094
   60    8   480    0.78115E-01    10.85586
   61    8   488    0.78556E-01    11.48430
   62    8   496    0.65086E-01    12.00499
Time Now =         0.2313  Delta time =         0.0142 End GenGrid

----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------

Maximum scattering l (lmax) =   15
Maximum scattering m (mmaxs) =   15
Maximum numerical integration l (lmaxi) =   30
Maximum numerical integration m (mmaxi) =   30
Maximum l to include in the asymptotic region (lmasym) =   12
Parameter used to determine the cutoff points (PCutRd) =  0.10000000E-07 au
Maximum E used to determine grid (in eV) =       50.00000
Print flag (iprnfg) =    0
lmasymtyts =   12
 Actual value of lmasym found =     12
Number of regions of the same l expansion (NAngReg) =   11
Angular regions
    1 L =    2  from (    1)         0.00041  to (    7)         0.00287
    2 L =    3  from (    8)         0.00329  to (   23)         0.01445
    3 L =    4  from (   24)         0.01538  to (   31)         0.02410
    4 L =    6  from (   32)         0.02534  to (   39)         0.03546
    5 L =    7  from (   40)         0.03691  to (   47)         0.04712
    6 L =    9  from (   48)         0.04857  to (   55)         0.05793
    7 L =   12  from (   56)         0.05927  to (   63)         0.06838
    8 L =   15  from (   64)         0.06968  to (  192)         0.24756
    9 L =   12  from (  193)         0.25392  to (  223)         0.51668
   10 L =   15  from (  224)         0.52603  to (  344)         1.65341
   11 L =   12  from (  345)         1.68770  to (  496)        12.00499
There are     2 angular regions for computing spherical harmonics
    1 lval =   12
    2 lval =   15
Last grid points by processor WorkExp =     1.500
Proc id =   -1  Last grid point =       1
Proc id =    0  Last grid point =      72
Proc id =    1  Last grid point =     104
Proc id =    2  Last grid point =     128
Proc id =    3  Last grid point =     152
Proc id =    4  Last grid point =     176
Proc id =    5  Last grid point =     200
Proc id =    6  Last grid point =     232
Proc id =    7  Last grid point =     256
Proc id =    8  Last grid point =     280
Proc id =    9  Last grid point =     312
Proc id =   10  Last grid point =     336
Proc id =   11  Last grid point =     360
Proc id =   12  Last grid point =     400
Proc id =   13  Last grid point =     432
Proc id =   14  Last grid point =     464
Proc id =   15  Last grid point =     496
Time Now =         0.2411  Delta time =         0.0098 End AngGCt

----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------


 R of maximum density
     1  A1    1 at max irg =   18  r =   0.12646
     2  A1    1 at max irg =   28  r =   0.52603
     3  B2    1 at max irg =   29  r =   0.61331
     4  A1    1 at max irg =   28  r =   0.52603
     5  B1    1 at max irg =   27  r =   0.45118

Rotation coefficients for orbital     1  grp =    1 A1    1
     1  1.0000000000

Rotation coefficients for orbital     2  grp =    2 A1    1
     2  1.0000000000

Rotation coefficients for orbital     3  grp =    3 B2    1
     3  1.0000000000

Rotation coefficients for orbital     4  grp =    4 A1    1
     4  1.0000000000

Rotation coefficients for orbital     5  grp =    5 B1    1
     5  1.0000000000
Number of orbital groups and degeneracis are         5
  1  1  1  1  1
Number of orbital groups and number of electrons when fully occupied
         5
  2  2  2  2  2
Time Now =         0.6082  Delta time =         0.3672 End RotOrb

----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------

 First orbital group to expand (mofr) =    1
 Last orbital group to expand (moto) =    5
Orbital     1 of  A1    1 symmetry normalization integral =  0.99998473
Orbital     2 of  A1    1 symmetry normalization integral =  0.99999607
Orbital     3 of  B2    1 symmetry normalization integral =  0.99999105
Orbital     4 of  A1    1 symmetry normalization integral =  0.99999675
Orbital     5 of  B1    1 symmetry normalization integral =  1.00000007
Time Now =         0.8335  Delta time =         0.2253 End ExpOrb

+ Command GetPot
+

----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------

Total density =     10.00000000
Time Now =         0.8394  Delta time =         0.0059 End Den

----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------

 vasymp =  0.10000000E+02 facnorm =  0.10000000E+01
Time Now =         0.8668  Delta time =         0.0274 Electronic part
Time Now =         0.8685  Delta time =         0.0017 End StPot

----------------------------------------------------------------------
vcppol - VCP polarization potential program
----------------------------------------------------------------------

Time Now =         0.8815  Delta time =         0.0130 End VcpPol

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.20000000E+02 eV (  0.73498652E+00 AU)
Time Now =         0.9815  Delta time =         0.1000 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = A1    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    3
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    62
Number of partial waves (np) =    66
Number of asymptotic solutions on the right (NAsymR) =     6
Number of asymptotic solutions on the left (NAsymL) =     6
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     6
Maximum in the asymptotic region (lpasym) =   12
Number of partial waves in the asymptotic region (npasym) =   49
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  169
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    3
Highest l used at large r (lpasym) =   12
Higest l used in the asymptotic potential (lpzb) =   24
Maximum L used in the homogeneous solution (LMaxHomo) =   12
Number of partial waves in the homogeneous solution (npHomo) =   49
Time Now =         0.9887  Delta time =         0.0071 Energy independent setup

Compute solution for E =   20.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.83266727E-16
 i =  2  lval =   2  stpote =  0.30715190E-02
 i =  3  lval =   3  stpote =  0.29170170E-03
 i =  4  lval =   3  stpote =  0.38044045E-04
For potential     2
 i =  1  exps = -0.90744600E+02 -0.20000000E+01  stpote = -0.12536308E-16
 i =  2  exps = -0.90744600E+02 -0.20000000E+01  stpote = -0.12554958E-16
 i =  3  exps = -0.90744600E+02 -0.20000000E+01  stpote = -0.12591867E-16
 i =  4  exps = -0.90744600E+02 -0.20000000E+01  stpote = -0.12646221E-16
For potential     3
 i =  1  exps = -0.73269919E+00 -0.17372104E-01  stpote = -0.15270390E-05
 i =  2  exps = -0.73268405E+00 -0.17371795E-01  stpote = -0.15272993E-05
 i =  3  exps = -0.73265439E+00 -0.17371192E-01  stpote = -0.15278097E-05
 i =  4  exps = -0.73261139E+00 -0.17370319E-01  stpote = -0.15285505E-05
Number of asymptotic regions =     135
Final point in integration =   0.15884106E+03 Angstroms
Last asymptotic region is special region for dipole potential
Time Now =        15.8807  Delta time =        14.8921 End SolveHomo
      Final k matrix
     ROW  1
  (-0.14966812E+00, 0.66994627E+00) ( 0.37826913E-01, 0.27915544E+00)
  (-0.31512303E+00, 0.14998513E-01) ( 0.55159195E-01, 0.19439019E-01)
  ( 0.98469563E-01, 0.15602416E-01) ( 0.77545391E-01,-0.49289085E-02)
     ROW  2
  ( 0.37826922E-01, 0.27915549E+00) (-0.27467970E+00, 0.47692790E+00)
  ( 0.13104956E-01, 0.10835482E+00) (-0.27657499E+00, 0.44587868E-01)
  (-0.46362402E-01,-0.21105252E-01) (-0.36662681E-01, 0.71748856E-02)
     ROW  3
  (-0.31512305E+00, 0.14998518E-01) ( 0.13104948E-01, 0.10835481E+00)
  ( 0.26693968E+00, 0.60256594E+00) ( 0.36676023E-01, 0.14577148E+00)
  (-0.19289715E-01,-0.14816302E+00) ( 0.14193608E-01,-0.10267501E+00)
     ROW  4
  ( 0.55159204E-01, 0.19439029E-01) (-0.27657498E+00, 0.44587867E-01)
  ( 0.36676027E-01, 0.14577148E+00) ( 0.33276891E+00, 0.32726103E+00)
  ( 0.11016891E-01,-0.48297029E-02) (-0.52814506E-01,-0.40318172E-01)
     ROW  5
  ( 0.98469571E-01, 0.15602418E-01) (-0.46362400E-01,-0.21105247E-01)
  (-0.19289715E-01,-0.14816302E+00) ( 0.11016892E-01,-0.48297011E-02)
  ( 0.16577317E+00, 0.83409674E-01) ( 0.56148308E-01, 0.51016137E-01)
     ROW  6
  ( 0.77545397E-01,-0.49289080E-02) (-0.36662679E-01, 0.71748892E-02)
  ( 0.14193609E-01,-0.10267501E+00) (-0.52814505E-01,-0.40318171E-01)
  ( 0.56148308E-01, 0.51016137E-01) ( 0.15315468E+00, 0.63993345E-01)
 eigenphases
 -0.1261444E+01 -0.5374831E+00  0.9706655E-01  0.2369853E+00  0.5557760E+00
  0.9885424E+00
 eigenphase sum 0.794433E-01  scattering length=  -0.06566
 eps+pi 0.322104E+01  eps+2*pi 0.636263E+01

MaxIter =   7 c.s. =      5.27993818 angs^2  rmsk=     0.00000001
Time Now =        38.9219  Delta time =        23.0411 End ScatStab
+ Data Record NECenter - 2

+ Command Convert
+ '/g/home/rrl581a/Applications/ePolyScat.E3/tests/test25.g03' 'g03'

----------------------------------------------------------------------
g03cnv - read input from G03 output
----------------------------------------------------------------------

Expansion center is at nucleus     2
Command line = # RHF/AUG-CC-PVTZ 6D 10F SCF=TIGHT GFINPUT PUNCH=MO
CardFlag =    T
Normal Mode flag =    F
Selecting orbitals
from     1  to     5  number already selected     0
Number of orbitals selected is     5
Highest orbital read in is =    5
Time Now =        38.9230  Delta time =         0.0011 End g03cnv

Atoms found    3  Coordinates in Angstroms
Z =  1 ZS =  1 r =   0.0000000000   0.7594600000  -0.5806510000
Z =  8 ZS =  8 r =   0.0000000000   0.0000000000   0.0000000000
Z =  1 ZS =  1 r =   0.0000000000  -0.7594600000  -0.5806510000
Maximum distance from expansion center is    0.9559995164

+ Command GetBlms
+

----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------

#############################################################################
Expansion center is not at the center of charge
For high symmetry systems, a better expansion point may be
    0.0000000000    0.0000000000   -0.1161302000
#############################################################################
Found point group  C2v
Reduce angular grid using nthd =  1  nphid =  4
Found point group for abelian subgroup C2v
Time Now =        38.9232  Delta time =         0.0001 End GetPGroup
List of unique axes
  N  Vector                      Z   R
  1  0.00000  0.00000  1.00000
  2  0.00000  0.79441 -0.60738   1  0.95600
  3  0.00000 -0.79441 -0.60738   1  0.95600
List of corresponding x axes
  N  Vector
  1  1.00000  0.00000  0.00000
  2  1.00000  0.00000  0.00000
  3  1.00000  0.00000  0.00000
Computed default value of LMaxA =   12
Determining angular grid in GetAxMax  LMax =   15  LMaxA =   12  LMaxAb =   30
MMax =    3  MMaxAbFlag =    1
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11  12  -1  -1  -1
For axis     2  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3   2
For axis     3  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3   2
On the double L grid used for products
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19
  20  21  22  23  24  25  26  27  28  29  30
For axis     2  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
For axis     3  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is C2v
LMax = =   15
 The dimension of each irreducable representation is
    A1    (  1)    A2    (  1)    B1    (  1)    B2    (  1)
Abelian axes
    1       1.000000       0.000000       0.000000
    2       0.000000       1.000000       0.000000
    3       0.000000       0.000000       1.000000
Symmetry operation directions
  1       0.000000       0.000000       1.000000 ang =  0  1 type = 0 axis = 3
  2      -1.000000       0.000000       0.000000 ang =  0  1 type = 1 axis = 1
  3       0.000000       1.000000       0.000000 ang =  0  1 type = 1 axis = 2
  4       0.000000       0.000000      -1.000000 ang =  1  2 type = 2 axis = 3
irep =    1  sym =A1    1  eigs =   1   1   1   1
irep =    2  sym =A2    1  eigs =   1  -1  -1   1
irep =    3  sym =B1    1  eigs =   1  -1   1  -1
irep =    4  sym =B2    1  eigs =   1   1  -1  -1
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     2     3     4
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A1        1         1         60       1  1  1
 A2        1         2         44      -1 -1  1
 B1        1         3         50      -1  1 -1
 B2        1         4         53       1 -1 -1
Time Now =        38.9685  Delta time =         0.0454 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
A1    1    0(   1)    1(   2)    2(   4)    3(   6)    4(   9)    5(  12)    6(  16)    7(  20)    8(  25)    9(  30)
          10(  36)   11(  42)   12(  49)
A2    1    0(   0)    1(   0)    2(   1)    3(   2)    4(   4)    5(   6)    6(   9)    7(  12)    8(  16)    9(  20)
          10(  25)   11(  30)   12(  36)
B1    1    0(   0)    1(   1)    2(   2)    3(   4)    4(   6)    5(   9)    6(  12)    7(  16)    8(  20)    9(  25)
          10(  30)   11(  36)   12(  42)
B2    1    0(   0)    1(   1)    2(   2)    3(   4)    4(   6)    5(   9)    6(  12)    7(  16)    8(  20)    9(  25)
          10(  30)   11(  36)   12(  42)

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is C2v
LMax = =   30
 The dimension of each irreducable representation is
    A1    (  1)    A2    (  1)    B1    (  1)    B2    (  1)
Abelian axes
    1       1.000000       0.000000       0.000000
    2       0.000000       1.000000       0.000000
    3       0.000000       0.000000       1.000000
Symmetry operation directions
  1       0.000000       0.000000       1.000000 ang =  0  1 type = 0 axis = 3
  2      -1.000000       0.000000       0.000000 ang =  0  1 type = 1 axis = 1
  3       0.000000       1.000000       0.000000 ang =  0  1 type = 1 axis = 2
  4       0.000000       0.000000      -1.000000 ang =  1  2 type = 2 axis = 3
irep =    1  sym =A1    1  eigs =   1   1   1   1
irep =    2  sym =A2    1  eigs =   1  -1  -1   1
irep =    3  sym =B1    1  eigs =   1  -1   1  -1
irep =    4  sym =B2    1  eigs =   1   1  -1  -1
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     2     3     4
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A1        1         1        256       1  1  1
 A2        1         2        225      -1 -1  1
 B1        1         3        240      -1  1 -1
 B2        1         4        240       1 -1 -1
Time Now =        38.9780  Delta time =         0.0095 End SymGen

+ Command ExpOrb
+
In GetRMax, RMaxEps =  0.10000000E-05  RMax =   12.0841518541 Angs

----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------

Maximum R in the grid (RMax) =    12.08415 Angs
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) =   10.0
In regions controlled by the wave length (HFacWave) =   10.0
Factor used to control the minimum exponent at each center (MinExpFac) =  300.0
Maximum asymptotic kinetic energy (EMAx) =  50.00000 eV
Maximum step size (MaxStep) =  12.08415 Angs
Factor to increase grid by (GridFac) =     1

    1  Center at =     0.00000 Angs  Alpha Max = 0.19200E+05
    2  Center at =     0.95600 Angs  Alpha Max = 0.30000E+03

Generated Grid

  irg  nin  ntot      step Angs     R end Angs
    1    8     8    0.38190E-03     0.00306
    2    8    16    0.40714E-03     0.00631
    3    8    24    0.50188E-03     0.01033
    4    8    32    0.76147E-03     0.01642
    5    8    40    0.12106E-02     0.02610
    6    8    48    0.19247E-02     0.04150
    7    8    56    0.30601E-02     0.06598
    8    8    64    0.48651E-02     0.10490
    9    8    72    0.77349E-02     0.16678
   10    8    80    0.98829E-02     0.24585
   11    8    88    0.10826E-01     0.33245
   12    8    96    0.10549E-01     0.41685
   13    8   104    0.99588E-02     0.49652
   14    8   112    0.10297E-01     0.57890
   15    8   120    0.12006E-01     0.67494
   16    8   128    0.12761E-01     0.77703
   17    8   136    0.81511E-02     0.84224
   18    8   144    0.51812E-02     0.88369
   19    8   152    0.36896E-02     0.91321
   20    8   160    0.31543E-02     0.93844
   21    8   168    0.21947E-02     0.95600
   22    8   176    0.30552E-02     0.98044
   23    8   184    0.32571E-02     1.00650
   24    8   192    0.40150E-02     1.03862
   25    8   200    0.60918E-02     1.08735
   26    8   208    0.96851E-02     1.16483
   27    8   216    0.15398E-01     1.28802
   28    8   224    0.24481E-01     1.48386
   29    8   232    0.30774E-01     1.73006
   30    8   240    0.35880E-01     2.01710
   31    8   248    0.45506E-01     2.38115
   32    8   256    0.59423E-01     2.85653
   33    8   264    0.62783E-01     3.35879
   34    8   272    0.65477E-01     3.88261
   35    8   280    0.67680E-01     4.42405
   36    8   288    0.69507E-01     4.98010
   37    8   296    0.71042E-01     5.54844
   38    8   304    0.72347E-01     6.12722
   39    8   312    0.73466E-01     6.71495
   40    8   320    0.74436E-01     7.31043
   41    8   328    0.75282E-01     7.91269
   42    8   336    0.76025E-01     8.52089
   43    8   344    0.76684E-01     9.13436
   44    8   352    0.77270E-01     9.75252
   45    8   360    0.77795E-01    10.37488
   46    8   368    0.78267E-01    11.00101
   47    8   376    0.78694E-01    11.63057
   48    8   384    0.56698E-01    12.08415
Time Now =        38.9905  Delta time =         0.0125 End GenGrid

----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------

Maximum scattering l (lmax) =   15
Maximum scattering m (mmaxs) =   15
Maximum numerical integration l (lmaxi) =   30
Maximum numerical integration m (mmaxi) =   30
Maximum l to include in the asymptotic region (lmasym) =   12
Parameter used to determine the cutoff points (PCutRd) =  0.10000000E-07 au
Maximum E used to determine grid (in eV) =       50.00000
Print flag (iprnfg) =    0
lmasymtyts =   12
 Actual value of lmasym found =     12
Number of regions of the same l expansion (NAngReg) =   10
Angular regions
    1 L =    2  from (    1)         0.00038  to (    7)         0.00267
    2 L =    5  from (    8)         0.00306  to (   23)         0.00983
    3 L =    6  from (   24)         0.01033  to (   31)         0.01566
    4 L =    7  from (   32)         0.01642  to (   47)         0.03958
    5 L =    8  from (   48)         0.04150  to (   55)         0.06292
    6 L =   10  from (   56)         0.06598  to (   63)         0.10004
    7 L =   11  from (   64)         0.10490  to (   71)         0.15905
    8 L =   12  from (   72)         0.16678  to (  111)         0.56860
    9 L =   15  from (  112)         0.57890  to (  232)         1.73006
   10 L =   12  from (  233)         1.76594  to (  384)        12.08415
There are     2 angular regions for computing spherical harmonics
    1 lval =   12
    2 lval =   15
Last grid points by processor WorkExp =     1.500
Proc id =   -1  Last grid point =       1
Proc id =    0  Last grid point =      64
Proc id =    1  Last grid point =      96
Proc id =    2  Last grid point =     120
Proc id =    3  Last grid point =     136
Proc id =    4  Last grid point =     152
Proc id =    5  Last grid point =     168
Proc id =    6  Last grid point =     184
Proc id =    7  Last grid point =     208
Proc id =    8  Last grid point =     224
Proc id =    9  Last grid point =     240
Proc id =   10  Last grid point =     264
Proc id =   11  Last grid point =     288
Proc id =   12  Last grid point =     312
Proc id =   13  Last grid point =     336
Proc id =   14  Last grid point =     360
Proc id =   15  Last grid point =     384
Time Now =        38.9955  Delta time =         0.0050 End AngGCt

----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------


 R of maximum density
     1  A1    1 at max irg =    7  r =   0.06598
     2  A1    1 at max irg =   13  r =   0.49652
     3  B2    1 at max irg =   14  r =   0.57890
     4  A1    1 at max irg =   13  r =   0.49652
     5  B1    1 at max irg =   13  r =   0.49652

Rotation coefficients for orbital     1  grp =    1 A1    1
     1  1.0000000000

Rotation coefficients for orbital     2  grp =    2 A1    1
     2  1.0000000000

Rotation coefficients for orbital     3  grp =    3 B2    1
     3  1.0000000000

Rotation coefficients for orbital     4  grp =    4 A1    1
     4  1.0000000000

Rotation coefficients for orbital     5  grp =    5 B1    1
     5  1.0000000000
Number of orbital groups and degeneracis are         5
  1  1  1  1  1
Number of orbital groups and number of electrons when fully occupied
         5
  2  2  2  2  2
Time Now =        39.0267  Delta time =         0.0312 End RotOrb

----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------

 First orbital group to expand (mofr) =    1
 Last orbital group to expand (moto) =    5
Orbital     1 of  A1    1 symmetry normalization integral =  1.00000000
Orbital     2 of  A1    1 symmetry normalization integral =  0.99999533
Orbital     3 of  B2    1 symmetry normalization integral =  0.99998793
Orbital     4 of  A1    1 symmetry normalization integral =  0.99999558
Orbital     5 of  B1    1 symmetry normalization integral =  1.00000007
Time Now =        39.2201  Delta time =         0.1933 End ExpOrb

+ Command GetPot
+

----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------

Total density =     10.00000000
Time Now =        39.2250  Delta time =         0.0049 End Den

----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------

 vasymp =  0.10000000E+02 facnorm =  0.10000000E+01
Time Now =        39.2418  Delta time =         0.0169 Electronic part
Time Now =        39.2424  Delta time =         0.0006 End StPot

----------------------------------------------------------------------
vcppol - VCP polarization potential program
----------------------------------------------------------------------

Time Now =        39.2538  Delta time =         0.0114 End VcpPol

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.20000000E+02 eV (  0.73498652E+00 AU)
Time Now =        39.2639  Delta time =         0.0101 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = A1    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    3
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =    60
Number of asymptotic solutions on the right (NAsymR) =     6
Number of asymptotic solutions on the left (NAsymL) =     6
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     6
Maximum in the asymptotic region (lpasym) =   12
Number of partial waves in the asymptotic region (npasym) =   49
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  169
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    3
Highest l used at large r (lpasym) =   12
Higest l used in the asymptotic potential (lpzb) =   24
Maximum L used in the homogeneous solution (LMaxHomo) =   12
Number of partial waves in the homogeneous solution (npHomo) =   49
Time Now =        39.2692  Delta time =         0.0053 Energy independent setup

Compute solution for E =   20.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.16653345E-15
 i =  2  lval =   2  stpote =  0.30314729E-02
 i =  3  lval =   3  stpote =  0.28600948E-03
 i =  4  lval =   3  stpote = -0.78309640E-05
For potential     2
 i =  1  exps = -0.91342950E+02 -0.20000000E+01  stpote = -0.18445327E-16
 i =  2  exps = -0.91342950E+02 -0.20000000E+01  stpote = -0.18460797E-16
 i =  3  exps = -0.91342950E+02 -0.20000000E+01  stpote = -0.18491398E-16
 i =  4  exps = -0.91342950E+02 -0.20000000E+01  stpote = -0.18536424E-16
For potential     3
 i =  1  exps = -0.73029457E+00 -0.17370432E-01  stpote = -0.16063164E-05
 i =  2  exps = -0.73027934E+00 -0.17370125E-01  stpote = -0.16065938E-05
 i =  3  exps = -0.73024948E+00 -0.17369524E-01  stpote = -0.16071377E-05
 i =  4  exps = -0.73020620E+00 -0.17368654E-01  stpote = -0.16079271E-05
Number of asymptotic regions =     131
Final point in integration =   0.15423578E+03 Angstroms
Last asymptotic region is special region for dipole potential
Time Now =        52.7133  Delta time =        13.4441 End SolveHomo
      Final k matrix
     ROW  1
  (-0.14277548E+00, 0.74874552E+00) ( 0.16322882E-01, 0.23801390E+00)
  (-0.29885505E+00, 0.33341952E-01) ( 0.24345918E-01,-0.11803814E-01)
  ( 0.11925416E+00, 0.83022863E-02) ( 0.65985398E-01,-0.56882416E-02)
     ROW  2
  ( 0.16322882E-01, 0.23801390E+00) (-0.34907496E+00, 0.40641705E+00)
  ( 0.59590307E-01, 0.11945501E+00) (-0.19390774E+00, 0.26977839E-01)
  (-0.63394097E-01,-0.33929338E-01) (-0.23191284E-01,-0.35492064E-02)
     ROW  3
  (-0.29885506E+00, 0.33341952E-01) ( 0.59590307E-01, 0.11945501E+00)
  ( 0.26212240E+00, 0.56724954E+00) ( 0.35065109E-01, 0.11469672E+00)
  (-0.31723657E-01,-0.19468418E+00) ( 0.12887738E-01,-0.11242804E+00)
     ROW  4
  ( 0.24345918E-01,-0.11803813E-01) (-0.19390774E+00, 0.26977839E-01)
  ( 0.35065109E-01, 0.11469672E+00) ( 0.38049401E+00, 0.30213060E+00)
  ( 0.20371515E-01,-0.81382607E-02) (-0.78170548E-01,-0.73614579E-01)
     ROW  5
  ( 0.11925416E+00, 0.83022862E-02) (-0.63394097E-01,-0.33929338E-01)
  (-0.31723657E-01,-0.19468418E+00) ( 0.20371515E-01,-0.81382608E-02)
  ( 0.15134318E+00, 0.11012575E+00) ( 0.50914619E-01, 0.58477130E-01)
     ROW  6
  ( 0.65985399E-01,-0.56882412E-02) (-0.23191284E-01,-0.35492066E-02)
  ( 0.12887738E-01,-0.11242804E+00) (-0.78170548E-01,-0.73614579E-01)
  ( 0.50914619E-01, 0.58477130E-01) ( 0.14703707E+00, 0.71812781E-01)
 eigenphases
 -0.1258705E+01 -0.5371819E+00  0.7779181E-01  0.2126800E+00  0.5543034E+00
  0.9858890E+00
 eigenphase sum 0.347776E-01  scattering length=  -0.02870
 eps+pi 0.317637E+01  eps+2*pi 0.631796E+01

MaxIter =   7 c.s. =      5.22313352 angs^2  rmsk=     0.00000001
Time Now =        70.6468  Delta time =        17.9335 End ScatStab
+ Command Exit
Time Now =        70.6470  Delta time =         0.0002 Finalize