Execution on login004

----------------------------------------------------------------------
ePolyScat Version E3
----------------------------------------------------------------------

Authors: R. R. Lucchese, N. Sanna, A. P. P. Natalense, and F. A. Gianturco
http://www.chem.tamu.edu/rgroup/lucchese/ePolyScat.E3.manual/manual.html
Please cite the following two papers when reporting results obtained with  this program
F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 100, 6464 (1994).
A. P. P. Natalense and R. R. Lucchese, J. Chem. Phys. 111, 5344 (1999).

----------------------------------------------------------------------

Starting at 2011-08-29  10:55:37.392 (GMT -0500)
Using    16 processors

----------------------------------------------------------------------


+ Start of Input Records
#
# inpuut file for test23
#
# Determine SiF4 normal modes
#
 LMax   25

 Convert '/g/home/rrl581a/Applications/ePolyScat.E3/tests/test23.g03' 'g03'
 GetBlms
 SymNormMode
 GeomNormMode 7 0.
 GeomNormMode 7 -1. 1.
 GeomNormMode 8 -1. 1.
 GeomNormMode 9 -1. 1.
+ End of input reached
+ Data Record LMax - 25

+ Command Convert
+ '/g/home/rrl581a/Applications/ePolyScat.E3/tests/test23.g03' 'g03'

----------------------------------------------------------------------
g03cnv - read input from G03 output
----------------------------------------------------------------------

Expansion center is (in Angstroms) -
     0.0000000000   0.0000000000   0.0000000000
Command line = # HF/AUG-CC-PVTZ SCF=TIGHT 6D 10F GFINPUT PUNCH=MO FREQ=HPMODES
CardFlag =    T
Normal Mode flag =    T
Selecting orbitals
from     1  to    25  number already selected     0
Number of orbitals selected is    25
Highest orbital read in is =   25
Normal modes read in
Normal mode     1
Freq =  276.6532  Reduced Mass =   18.9984  Force constant =    0.8567
    1   0.00000   0.00000   0.00000
    2  -0.32998  -0.04318   0.37316
    3   0.32998   0.04318   0.37316
    4   0.32998  -0.04318  -0.37316
    5  -0.32998   0.04318  -0.37316
Normal mode     2
Freq =  276.6532  Reduced Mass =   18.9984  Force constant =    0.8567
    1   0.00000   0.00000   0.00000
    2  -0.24038   0.40596  -0.16558
    3   0.24038  -0.40596  -0.16558
    4   0.24038   0.40596   0.16558
    5  -0.24038  -0.40596   0.16558
Normal mode     3
Freq =  409.3729  Reduced Mass =   20.4576  Force constant =    2.0200
    1   0.23326   0.23202   0.23297
    2   0.26714   0.26855   0.26747
    3  -0.08660  -0.08519  -0.43901
    4  -0.08515  -0.43938  -0.08482
    5  -0.43889  -0.08564  -0.08671
Normal mode     4
Freq =  409.3729  Reduced Mass =   20.4576  Force constant =    2.0200
    1  -0.29982   0.26734   0.03396
    2   0.33912  -0.30027  -0.03716
    3   0.28756  -0.35183   0.01216
    4  -0.06680   0.10343  -0.44309
    5  -0.11836   0.15499   0.41809
Normal mode     5
Freq =  409.3729  Reduced Mass =   20.4576  Force constant =    2.0200
    1  -0.13495  -0.19291   0.32724
    2   0.15167   0.21701  -0.36939
    3  -0.34522  -0.27988   0.12844
    4   0.44459  -0.07497  -0.07647
    5  -0.05230   0.42192  -0.16448
Normal mode     6
Freq =  850.0192  Reduced Mass =   18.9984  Force constant =    8.0877
    1   0.00000   0.00000   0.00000
    2  -0.28868  -0.28868  -0.28868
    3   0.28868   0.28868  -0.28868
    4   0.28868  -0.28868   0.28868
    5  -0.28868   0.28868   0.28868
Normal mode     7
Freq = 1093.0994  Reduced Mass =   22.7048  Force constant =   15.9841
    1  -0.44692  -0.01446   0.46137
    2   0.01628   0.00053  -0.01681
    3   0.32238   0.30662  -0.32290
    4   0.00669   0.01012  -0.02640
    5   0.31278  -0.29597  -0.31331
Normal mode     8
Freq = 1093.0994  Reduced Mass =   22.7048  Force constant =   15.9841
    1  -0.27648   0.52264  -0.25143
    2   0.01182  -0.01729   0.01091
    3  -0.15499  -0.18410   0.17422
    4   0.35856  -0.36753   0.35765
    5   0.19175  -0.20072  -0.17252
Normal mode     9
Freq = 1093.0994  Reduced Mass =   22.7048  Force constant =   15.9841
    1   0.36964   0.37343   0.36976
    2  -0.38261  -0.38275  -0.38262
    3  -0.13730  -0.13744   0.11036
    4  -0.13487   0.10779  -0.13487
    5   0.11045  -0.13752  -0.13739
Time Now =         0.1561  Delta time =         0.1561 End g03cnv

Atoms found    5  Coordinates in Angstroms
Z = 14 ZS = 14 r =   0.0000000000   0.0000000000   0.0000000000
Z =  9 ZS =  9 r =   0.8924150000   0.8924150000   0.8924150000
Z =  9 ZS =  9 r =  -0.8924150000  -0.8924150000   0.8924150000
Z =  9 ZS =  9 r =  -0.8924150000   0.8924150000  -0.8924150000
Z =  9 ZS =  9 r =   0.8924150000  -0.8924150000  -0.8924150000
Maximum distance from expansion center is    1.5457081214

+ Command GetBlms
+

----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------

Found point group  Td
Reduce angular grid using nthd =  1  nphid =  4
Found point group for abelian subgroup D2
Time Now =         1.1125  Delta time =         0.9565 End GetPGroup
List of unique axes
  N  Vector                      Z   R
  1  0.00000  0.00000  1.00000
  2  0.57735  0.57735  0.57735   9  1.54571
  3 -0.57735 -0.57735  0.57735   9  1.54571
  4 -0.57735  0.57735 -0.57735   9  1.54571
  5  0.57735 -0.57735 -0.57735   9  1.54571
List of corresponding x axes
  N  Vector
  1  1.00000  0.00000  0.00000
  2  0.81650 -0.40825 -0.40825
  3  0.81650 -0.40825  0.40825
  4  0.81650  0.40825 -0.40825
  5  0.81650  0.40825  0.40825
Computed default value of LMaxA =   11
Determining angular grid in GetAxMax  LMax =   25  LMaxA =   11  LMaxAb =   50
MMax =    3  MMaxAbFlag =    1
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11  12  13  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1
For axis     2  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3   3   3   3   3
   3   3   3   3   3   3
For axis     3  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3   3   3   3   3
   3   3   3   3   3   3
For axis     4  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3   3   3   3   3
   3   3   3   3   3   3
For axis     5  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3   3   3   3   3
   3   3   3   3   3   3
On the double L grid used for products
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19
  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39
  40  41  42  43  44  45  46  47  48  49  50
For axis     2  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
For axis     3  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
For axis     4  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
For axis     5  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is Td
LMax = =   25
 The dimension of each irreducable representation is
    A1    (  1)    A2    (  1)    E     (  2)    T1    (  3)    T2    (  3)
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     8    11    14
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A1        1         1         34       1  1  1
 A2        1         2         17       1  1  1
 E         1         3         40       1  1  1
 E         2         4         40       1  1  1
 T1        1         5         57      -1 -1  1
 T1        2         6         57      -1  1 -1
 T1        3         7         57       1 -1 -1
 T2        1         8         76      -1 -1  1
 T2        2         9         76      -1  1 -1
 T2        3        10         76       1 -1 -1
Time Now =         2.6634  Delta time =         1.5508 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
A1    1    0(   1)    1(   1)    2(   1)    3(   2)    4(   3)    5(   3)    6(   4)    7(   5)    8(   6)    9(   7)
          10(   8)   11(   9)
A2    1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   1)    7(   1)    8(   1)    9(   2)
          10(   3)   11(   3)
E     1    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   3)    6(   4)    7(   5)    8(   7)    9(   8)
          10(  10)   11(  12)
E     2    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   3)    6(   4)    7(   5)    8(   7)    9(   8)
          10(  10)   11(  12)
T1    1    0(   0)    1(   0)    2(   0)    3(   1)    4(   2)    5(   3)    6(   4)    7(   6)    8(   8)    9(  10)
          10(  12)   11(  15)
T1    2    0(   0)    1(   0)    2(   0)    3(   1)    4(   2)    5(   3)    6(   4)    7(   6)    8(   8)    9(  10)
          10(  12)   11(  15)
T1    3    0(   0)    1(   0)    2(   0)    3(   1)    4(   2)    5(   3)    6(   4)    7(   6)    8(   8)    9(  10)
          10(  12)   11(  15)
T2    1    0(   0)    1(   1)    2(   2)    3(   3)    4(   4)    5(   6)    6(   8)    7(  10)    8(  12)    9(  15)
          10(  18)   11(  21)
T2    2    0(   0)    1(   1)    2(   2)    3(   3)    4(   4)    5(   6)    6(   8)    7(  10)    8(  12)    9(  15)
          10(  18)   11(  21)
T2    3    0(   0)    1(   1)    2(   2)    3(   3)    4(   4)    5(   6)    6(   8)    7(  10)    8(  12)    9(  15)
          10(  18)   11(  21)

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is D2
LMax = =   50
 The dimension of each irreducable representation is
    A     (  1)    B1    (  1)    B2    (  1)    B3    (  1)
Abelian axes
    1       1.000000       0.000000       0.000000
    2       0.000000       1.000000       0.000000
    3       0.000000       0.000000       1.000000
Symmetry operation directions
  1       0.000000       0.000000       1.000000 ang =  0  1 type = 0 axis = 3
  2       0.000000       0.000000       1.000000 ang =  1  2 type = 2 axis = 3
  3       0.000000       1.000000       0.000000 ang =  1  2 type = 2 axis = 2
  4       1.000000       0.000000       0.000000 ang =  1  2 type = 2 axis = 1
irep =    1  sym =A     1  eigs =   1   1   1   1
irep =    2  sym =B1    1  eigs =   1   1  -1  -1
irep =    3  sym =B2    1  eigs =   1  -1   1  -1
irep =    4  sym =B3    1  eigs =   1  -1  -1   1
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     2     3     4
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A         1         1        651       1  1  1
 B1        1         2        650       1 -1 -1
 B2        1         3        650      -1  1 -1
 B3        1         4        650      -1 -1  1
Time Now =         2.7046  Delta time =         0.0413 End SymGen

+ Command SymNormMode
+

----------------------------------------------------------------------
SymNormMode - generate symmetry normal coordinates
----------------------------------------------------------------------

Tolerence for frequencies (FreqToler) =   0.1000E-03
Point group is Td
 The dimension of each irreducable representation is
    A1    (  1)    A2    (  1)    E     (  2)    T1    (  3)    T2    (  3)
AMass =
      27.976927      27.976927      27.976927      18.998403      18.998403
      18.998403      18.998403      18.998403      18.998403      18.998403
      18.998403      18.998403      18.998403      18.998403      18.998403
Groups of degenerate frequencies
    1    276.6532   1   2
    2    409.3729   3   4   5
    3    850.0192   6
    4   1093.0994   7   8   9
Normal modes after symmeterization
Normal mode     1  Sym =E     1
Freq (cm-1) =  276.6532  Reduced Mass (u) =   18.9984  Force constant (mDyne/angs)=    0.8567  XCT =    0.080092 angs
    1   0.00000   0.00000   0.00000
    2  -0.20412  -0.20412   0.40825
    3   0.20412   0.20412   0.40825
    4   0.20412  -0.20412  -0.40825
    5  -0.20412   0.20412  -0.40825
Normal mode     2  Sym =E     2
Freq (cm-1) =  276.6532  Reduced Mass (u) =   18.9984  Force constant (mDyne/angs)=    0.8567  XCT =    0.080092 angs
    1   0.00000   0.00000   0.00000
    2   0.35355  -0.35355   0.00000
    3  -0.35355   0.35355   0.00000
    4  -0.35355  -0.35355   0.00000
    5   0.35355   0.35355   0.00000
Normal mode     3  Sym =T2    1
Freq (cm-1) =  409.3729  Reduced Mass (u) =   20.4576  Force constant (mDyne/angs)=    2.0200  XCT =    0.063449 angs
    1  -0.40313   0.00000   0.00000
    2   0.14841  -0.30606  -0.30606
    3   0.14841  -0.30606   0.30606
    4   0.14841   0.30606  -0.30606
    5   0.14842   0.30606   0.30606
Normal mode     4  Sym =T2    2
Freq (cm-1) =  409.3729  Reduced Mass (u) =   20.4576  Force constant (mDyne/angs)=    2.0200  XCT =    0.063449 angs
    1   0.00000  -0.40314   0.00000
    2  -0.30605   0.14841  -0.30606
    3  -0.30606   0.14841   0.30606
    4   0.30606   0.14841   0.30606
    5   0.30606   0.14841  -0.30606
Normal mode     5  Sym =T2    3
Freq (cm-1) =  409.3729  Reduced Mass (u) =   20.4575  Force constant (mDyne/angs)=    2.0200  XCT =    0.063449 angs
    1   0.00000   0.00000  -0.40313
    2  -0.30606  -0.30606   0.14841
    3   0.30606   0.30606   0.14841
    4  -0.30606   0.30606   0.14841
    5   0.30606  -0.30606   0.14841
Normal mode     6  Sym =A1    1
Freq (cm-1) =  850.0192  Reduced Mass (u) =   18.9984  Force constant (mDyne/angs)=    8.0877  XCT =    0.045692 angs
    1   0.00000   0.00000   0.00000
    2  -0.28868  -0.28868  -0.28868
    3   0.28868   0.28868  -0.28867
    4   0.28868  -0.28867   0.28868
    5  -0.28867   0.28868   0.28868
Normal mode     7  Sym =T2    1
Freq (cm-1) = 1093.0994  Reduced Mass (u) =   22.7048  Force constant (mDyne/angs)=   15.9841  XCT =    0.036857 angs
    1  -0.64250   0.00000   0.00000
    2   0.23654   0.21313   0.21313
    3   0.23654   0.21313  -0.21313
    4   0.23653  -0.21313   0.21313
    5   0.23654  -0.21313  -0.21313
Normal mode     8  Sym =T2    2
Freq (cm-1) = 1093.0994  Reduced Mass (u) =   22.7048  Force constant (mDyne/angs)=   15.9841  XCT =    0.036857 angs
    1   0.00000  -0.64250   0.00000
    2   0.21313   0.23654   0.21313
    3   0.21313   0.23654  -0.21313
    4  -0.21313   0.23654  -0.21313
    5  -0.21313   0.23654   0.21313
Normal mode     9  Sym =T2    3
Freq (cm-1) = 1093.0994  Reduced Mass (u) =   22.7048  Force constant (mDyne/angs)=   15.9841  XCT =    0.036857 angs
    1   0.00000   0.00000  -0.64250
    2   0.21313   0.21313   0.23654
    3  -0.21313  -0.21313   0.23654
    4   0.21313  -0.21313   0.23654
    5  -0.21313   0.21313   0.23654
Time Now =         2.7066  Delta time =         0.0020 End SymNormMode

+ Command GeomNormMode
+ 7 0.
Generated geometry (in angs) for mode     7  with factor times X_CT =    0.000000
   14     0.000000     0.000000     0.000000
    9     0.892415     0.892415     0.892415
    9    -0.892415    -0.892415     0.892415
    9    -0.892415     0.892415    -0.892415
    9     0.892415    -0.892415    -0.892415

+ Command GeomNormMode
+ 7 -1. 1.
Generated geometry (in angs) for mode     7  with factor times X_CT =   -1.000000
   14     0.023681     0.000000     0.000000
    9     0.883697     0.884560     0.884560
    9    -0.901133    -0.900270     0.900270
    9    -0.901133     0.900270    -0.900270
    9     0.883697    -0.884560    -0.884560
Generated geometry (in angs) for mode     7  with factor times X_CT =    1.000000
   14    -0.023681     0.000000     0.000000
    9     0.901133     0.900270     0.900270
    9    -0.883697    -0.884560     0.884560
    9    -0.883697     0.884560    -0.884560
    9     0.901133    -0.900270    -0.900270

+ Command GeomNormMode
+ 8 -1. 1.
Generated geometry (in angs) for mode     8  with factor times X_CT =   -1.000000
   14     0.000000     0.023681     0.000000
    9     0.884560     0.883697     0.884560
    9    -0.900270    -0.901133     0.900270
    9    -0.884560     0.883697    -0.884560
    9     0.900270    -0.901133    -0.900270
Generated geometry (in angs) for mode     8  with factor times X_CT =    1.000000
   14     0.000000    -0.023681     0.000000
    9     0.900270     0.901133     0.900270
    9    -0.884560    -0.883697     0.884560
    9    -0.900270     0.901133    -0.900270
    9     0.884560    -0.883697    -0.884560

+ Command GeomNormMode
+ 9 -1. 1.
Generated geometry (in angs) for mode     9  with factor times X_CT =   -1.000000
   14     0.000000     0.000000     0.023681
    9     0.884560     0.884560     0.883697
    9    -0.884560    -0.884560     0.883697
    9    -0.900270     0.900270    -0.901133
    9     0.900270    -0.900270    -0.901133
Generated geometry (in angs) for mode     9  with factor times X_CT =    1.000000
   14     0.000000     0.000000    -0.023681
    9     0.900270     0.900270     0.901133
    9    -0.900270    -0.900270     0.901133
    9    -0.884560     0.884560    -0.883697
    9     0.884560    -0.884560    -0.883697
Time Now =         2.7071  Delta time =         0.0005 Finalize