Execution on login004

----------------------------------------------------------------------
ePolyScat Version E3
----------------------------------------------------------------------

Authors: R. R. Lucchese, N. Sanna, A. P. P. Natalense, and F. A. Gianturco
http://www.chem.tamu.edu/rgroup/lucchese/ePolyScat.E3.manual/manual.html
Please cite the following two papers when reporting results obtained with  this program
F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 100, 6464 (1994).
A. P. P. Natalense and R. R. Lucchese, J. Chem. Phys. 111, 5344 (1999).

----------------------------------------------------------------------

Starting at 2011-08-29  10:54:51.831 (GMT -0500)
Using    16 processors

----------------------------------------------------------------------


+ Start of Input Records
#
# inpute file for test20
#
# Photoinization of SiF4 in a D2d geometry
#
 LMax   25         # maximum l
 EMax   50.0       # maximum E
 OrbOccInit
  2  4  2  2  2  4  2  2  2  4  2  2  4  2  2  2  4  2  4
 OrbOcc
  2  4  2  2  2  4  2  2  2  4  2  2  4  2  2  2  4  2  3
 Convert '/g/home/rrl581a/Applications/ePolyScat.E3/tests/test20.g03' 'g03'
 ScatSym     'E' # Scattering symmetry of total final state
 ScatContSym 'A1' # Scattering symmetry of continuum electron
 SpinDeg 1         # Spin degeneracy of the total scattering state (=1 singlet)
 TargSym 'E'      # Symmetry of the target state
 TargSpinDeg 2     # Target spin degeneracy
 InitSym 'A1'      # Initial state symmetry
 InitSpinDeg 1     # Initial state spin degeneracy
 ScatEng 0.8 4.8  # list of scattering energies
 FegeEng 15.2  # Energy correction used in the fege potential
 IPot 15.2    # IPot, ionization potential
GetBlms
ExpOrb
GenFormPhIon
DipoleOp
GetPot
FileName 'MatrixElements' 'test20.idy' 'REWIND'
PhIon
GetCro
GrnType 1
FileName 'MatrixElements' 'test20.tmt' 'REWIND'
Scat
+ End of input reached
+ Data Record LMax - 25
+ Data Record EMax - 50.0
+ Data Record OrbOccInit - 2  4  2  2  2  4  2  2  2  4  2  2  4  2  2  2  4  2  4
+ Data Record OrbOcc - 2  4  2  2  2  4  2  2  2  4  2  2  4  2  2  2  4  2  3

+ Command Convert
+ '/g/home/rrl581a/Applications/ePolyScat.E3/tests/test20.g03' 'g03'

----------------------------------------------------------------------
g03cnv - read input from G03 output
----------------------------------------------------------------------

Expansion center is (in Angstroms) -
     0.0000000000   0.0000000000   0.0000000000
Command line = # HF AUG-CC-PVTZ 6D 10F SCF(CONVER=10) SYMMETRY(PG=D2) POP=FULL GFINPU
CardFlag =    F
Normal Mode flag =    F
Selecting orbitals
from     1  to    25  number already selected     0
Number of orbitals selected is    25
Highest orbital read in is =   25
Time Now =         0.0583  Delta time =         0.0583 End g03cnv

Atoms found    5  Coordinates in Angstroms
Z = 14 ZS = 14 r =   0.0000000000   0.0000000000   0.0000000000
Z =  9 ZS =  9 r =   0.8410300000   0.8410300000   1.0096200000
Z =  9 ZS =  9 r =  -0.8410300000  -0.8410300000   1.0096200000
Z =  9 ZS =  9 r =   0.8410300000  -0.8410300000  -1.0096200000
Z =  9 ZS =  9 r =  -0.8410300000   0.8410300000  -1.0096200000
Maximum distance from expansion center is    1.5601267468
+ Data Record ScatSym - 'E'
+ Data Record ScatContSym - 'A1'
+ Data Record SpinDeg - 1
+ Data Record TargSym - 'E'
+ Data Record TargSpinDeg - 2
+ Data Record InitSym - 'A1'
+ Data Record InitSpinDeg - 1
+ Data Record ScatEng - 0.8 4.8
+ Data Record FegeEng - 15.2
+ Data Record IPot - 15.2

+ Command GetBlms
+

----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------

Found point group  D2d
Reduce angular grid using nthd =  1  nphid =  4
Found point group for abelian subgroup D2
Time Now =         0.0935  Delta time =         0.0352 End GetPGroup
List of unique axes
  N  Vector                      Z   R
  1  0.00000  0.00000  1.00000
  2  0.53908  0.53908  0.64714   9  1.56013
  3 -0.53908 -0.53908  0.64714   9  1.56013
  4  0.53908 -0.53908 -0.64714   9  1.56013
  5 -0.53908  0.53908 -0.64714   9  1.56013
List of corresponding x axes
  N  Vector
  1  1.00000  0.00000  0.00000
  2  0.84226 -0.34503 -0.41420
  3  0.84226 -0.34503  0.41420
  4  0.84226  0.34503  0.41420
  5  0.84226  0.34503 -0.41420
Computed default value of LMaxA =   14
Determining angular grid in GetAxMax  LMax =   25  LMaxA =   14  LMaxAb =   50
MMax =    3  MMaxAbFlag =    1
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1
For axis     2  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3   3   3   3
   3   3   3   3   3   3
For axis     3  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3   3   3   3
   3   3   3   3   3   3
For axis     4  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3   3   3   3
   3   3   3   3   3   3
For axis     5  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3   3   3   3
   3   3   3   3   3   3
On the double L grid used for products
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19
  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39
  40  41  42  43  44  45  46  47  48  49  50
For axis     2  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
For axis     3  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
For axis     4  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
For axis     5  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is D2d
LMax = =   25
 The dimension of each irreducable representation is
    A1    (  1)    A2    (  1)    B1    (  1)    B2    (  1)    E     (  2)
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     4     7     8
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A1        1         1         76       1  1  1
 A2        1         2         57       1 -1 -1
 B1        1         3         58       1  1  1
 B2        1         4         76       1 -1 -1
 E         1         5        133      -1 -1  1
 E         2         6        133      -1  1 -1
Time Now =         0.7037  Delta time =         0.6103 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
A1    1    0(   1)    1(   1)    2(   2)    3(   3)    4(   5)    5(   6)    6(   8)    7(  10)    8(  13)    9(  15)
          10(  18)   11(  21)   12(  25)   13(  28)   14(  32)
A2    1    0(   0)    1(   0)    2(   0)    3(   1)    4(   2)    5(   3)    6(   4)    7(   6)    8(   8)    9(  10)
          10(  12)   11(  15)   12(  18)   13(  21)   14(  24)
B1    1    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   3)    6(   5)    7(   6)    8(   8)    9(  10)
          10(  13)   11(  15)   12(  18)   13(  21)   14(  25)
B2    1    0(   0)    1(   1)    2(   2)    3(   3)    4(   4)    5(   6)    6(   8)    7(  10)    8(  12)    9(  15)
          10(  18)   11(  21)   12(  24)   13(  28)   14(  32)
E     1    0(   0)    1(   1)    2(   2)    3(   4)    4(   6)    5(   9)    6(  12)    7(  16)    8(  20)    9(  25)
          10(  30)   11(  36)   12(  42)   13(  49)   14(  56)
E     2    0(   0)    1(   1)    2(   2)    3(   4)    4(   6)    5(   9)    6(  12)    7(  16)    8(  20)    9(  25)
          10(  30)   11(  36)   12(  42)   13(  49)   14(  56)

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is D2
LMax = =   50
 The dimension of each irreducable representation is
    A     (  1)    B1    (  1)    B2    (  1)    B3    (  1)
Abelian axes
    1       1.000000       0.000000       0.000000
    2       0.000000       1.000000       0.000000
    3       0.000000       0.000000       1.000000
Symmetry operation directions
  1       0.000000       0.000000       1.000000 ang =  0  1 type = 0 axis = 3
  2       0.000000       0.000000       1.000000 ang =  1  2 type = 2 axis = 3
  3       1.000000       0.000000       0.000000 ang =  1  2 type = 2 axis = 1
  4       0.000000       1.000000       0.000000 ang =  1  2 type = 2 axis = 2
irep =    1  sym =A     1  eigs =   1   1   1   1
irep =    2  sym =B1    1  eigs =   1   1  -1  -1
irep =    3  sym =B2    1  eigs =   1  -1  -1   1
irep =    4  sym =B3    1  eigs =   1  -1   1  -1
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     2     3     4
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A         1         1        651       1  1  1
 B1        1         2        650       1 -1 -1
 B2        1         3        650      -1 -1  1
 B3        1         4        650      -1  1 -1
Time Now =         0.7446  Delta time =         0.0409 End SymGen

+ Command ExpOrb
+
In GetRMax, RMaxEps =  0.10000000E-05  RMax =   12.3238849482 Angs

----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------

Maximum R in the grid (RMax) =    12.32388 Angs
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) =   10.0
In regions controlled by the wave length (HFacWave) =   10.0
Factor used to control the minimum exponent at each center (MinExpFac) =  300.0
Maximum asymptotic kinetic energy (EMAx) =  50.00000 eV
Maximum step size (MaxStep) =  12.32388 Angs
Factor to increase grid by (GridFac) =     1

    1  Center at =     0.00000 Angs  Alpha Max = 0.25490E+06
    2  Center at =     1.56013 Angs  Alpha Max = 0.24300E+05

Generated Grid

  irg  nin  ntot      step Angs     R end Angs
    1    8     8    0.10481E-03     0.00084
    2    8    16    0.11174E-03     0.00173
    3    8    24    0.13774E-03     0.00283
    4    8    32    0.20899E-03     0.00451
    5    8    40    0.33226E-03     0.00716
    6    8    48    0.52825E-03     0.01139
    7    8    56    0.83984E-03     0.01811
    8    8    64    0.13352E-02     0.02879
    9    8    72    0.21228E-02     0.04577
   10    8    80    0.33750E-02     0.07277
   11    8    88    0.53658E-02     0.11570
   12    8    96    0.85310E-02     0.18395
   13    8   104    0.13563E-01     0.29245
   14    8   112    0.18869E-01     0.44340
   15    8   120    0.20080E-01     0.60404
   16    8   128    0.18660E-01     0.75332
   17    8   136    0.16678E-01     0.88674
   18    8   144    0.14514E-01     1.00285
   19    8   152    0.13038E-01     1.10716
   20    8   160    0.13352E-01     1.21397
   21    8   168    0.14640E-01     1.33110
   22    8   176    0.10431E-01     1.41455
   23    8   184    0.66305E-02     1.46759
   24    8   192    0.42146E-02     1.50131
   25    8   200    0.26790E-02     1.52274
   26    8   208    0.17029E-02     1.53636
   27    8   216    0.10824E-02     1.54502
   28    8   224    0.68802E-03     1.55052
   29    8   232    0.45571E-03     1.55417
   30    8   240    0.36652E-03     1.55710
   31    8   248    0.33973E-03     1.55982
   32    8   256    0.38304E-04     1.56013
   33    8   264    0.33947E-03     1.56284
   34    8   272    0.36190E-03     1.56574
   35    8   280    0.44612E-03     1.56931
   36    8   288    0.67686E-03     1.57472
   37    8   296    0.10761E-02     1.58333
   38    8   304    0.17109E-02     1.59702
   39    8   312    0.27201E-02     1.61878
   40    8   320    0.43245E-02     1.65337
   41    8   328    0.68754E-02     1.70838
   42    8   336    0.10931E-01     1.79583
   43    8   344    0.17379E-01     1.93486
   44    8   352    0.21137E-01     2.10395
   45    8   360    0.21430E-01     2.27539
   46    8   368    0.24258E-01     2.46946
   47    8   376    0.26976E-01     2.68527
   48    8   384    0.29579E-01     2.92190
   49    8   392    0.32062E-01     3.17840
   50    8   400    0.34427E-01     3.45381
   51    8   408    0.36673E-01     3.74720
   52    8   416    0.38805E-01     4.05764
   53    8   424    0.40824E-01     4.38422
   54    8   432    0.42734E-01     4.72610
   55    8   440    0.44541E-01     5.08243
   56    8   448    0.46249E-01     5.45242
   57    8   456    0.47862E-01     5.83532
   58    8   464    0.49385E-01     6.23040
   59    8   472    0.50824E-01     6.63699
   60    8   480    0.52182E-01     7.05445
   61    8   488    0.53465E-01     7.48216
   62    8   496    0.54677E-01     7.91958
   63    8   504    0.55822E-01     8.36616
   64    8   512    0.56905E-01     8.82139
   65    8   520    0.57929E-01     9.28483
   66    8   528    0.58898E-01     9.75601
   67    8   536    0.59816E-01    10.23453
   68    8   544    0.60685E-01    10.72001
   69    8   552    0.61509E-01    11.21209
   70    8   560    0.62291E-01    11.71042
   71    8   568    0.63034E-01    12.21469
   72    8   576    0.13650E-01    12.32388
Time Now =         0.8010  Delta time =         0.0563 End GenGrid

----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------

Maximum scattering l (lmax) =   25
Maximum scattering m (mmaxs) =   25
Maximum numerical integration l (lmaxi) =   50
Maximum numerical integration m (mmaxi) =   50
Maximum l to include in the asymptotic region (lmasym) =   14
Parameter used to determine the cutoff points (PCutRd) =  0.10000000E-07 au
Maximum E used to determine grid (in eV) =       50.00000
Print flag (iprnfg) =    0
lmasymtyts =   14
 Actual value of lmasym found =     14
Number of regions of the same l expansion (NAngReg) =   14
Angular regions
    1 L =    2  from (    1)         0.00010  to (    7)         0.00073
    2 L =    4  from (    8)         0.00084  to (   15)         0.00162
    3 L =    5  from (   16)         0.00173  to (   31)         0.00430
    4 L =    6  from (   32)         0.00451  to (   47)         0.01086
    5 L =    7  from (   48)         0.01139  to (   55)         0.01727
    6 L =    8  from (   56)         0.01811  to (   63)         0.02746
    7 L =    9  from (   64)         0.02879  to (   71)         0.04365
    8 L =   11  from (   72)         0.04577  to (   79)         0.06940
    9 L =   12  from (   80)         0.07277  to (   87)         0.11033
   10 L =   14  from (   88)         0.11570  to (  135)         0.87007
   11 L =   22  from (  136)         0.88674  to (  143)         0.98834
   12 L =   25  from (  144)         1.00285  to (  360)         2.27539
   13 L =   22  from (  361)         2.29965  to (  376)         2.68527
   14 L =   14  from (  377)         2.71485  to (  576)        12.32388
There are     2 angular regions for computing spherical harmonics
    1 lval =   14
    2 lval =   25
Last grid points by processor WorkExp =     1.500
Proc id =   -1  Last grid point =       1
Proc id =    0  Last grid point =     112
Proc id =    1  Last grid point =     152
Proc id =    2  Last grid point =     176
Proc id =    3  Last grid point =     200
Proc id =    4  Last grid point =     216
Proc id =    5  Last grid point =     240
Proc id =    6  Last grid point =     264
Proc id =    7  Last grid point =     288
Proc id =    8  Last grid point =     304
Proc id =    9  Last grid point =     328
Proc id =   10  Last grid point =     352
Proc id =   11  Last grid point =     376
Proc id =   12  Last grid point =     424
Proc id =   13  Last grid point =     472
Proc id =   14  Last grid point =     528
Proc id =   15  Last grid point =     576
Time Now =         0.8523  Delta time =         0.0513 End AngGCt

----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------


 R of maximum density
     1  A1    1 at max irg =    9  r =   0.04577
     2  E     1 at max irg =   32  r =   1.56013
     3  E     2 at max irg =   32  r =   1.56013
     4  B2    1 at max irg =   32  r =   1.56013
     5  A1    1 at max irg =   32  r =   1.56013
     6  A1    1 at max irg =   13  r =   0.29245
     7  E     1 at max irg =   12  r =   0.18395
     8  E     2 at max irg =   12  r =   0.18395
     9  B2    1 at max irg =   12  r =   0.18395
    10  A1    1 at max irg =   32  r =   1.56013
    11  B2    1 at max irg =   32  r =   1.56013
    12  E     1 at max irg =   32  r =   1.56013
    13  E     2 at max irg =   32  r =   1.56013
    14  A1    1 at max irg =   42  r =   1.79583
    15  B2    1 at max irg =   42  r =   1.79583
    16  E     1 at max irg =   42  r =   1.79583
    17  E     2 at max irg =   42  r =   1.79583
    18  A1    1 at max irg =   37  r =   1.58333
    19  B1    1 at max irg =   37  r =   1.58333
    20  B2    1 at max irg =   40  r =   1.65337
    21  E     1 at max irg =   40  r =   1.65337
    22  E     2 at max irg =   40  r =   1.65337
    23  A2    1 at max irg =   37  r =   1.58333
    24  E     1 at max irg =   37  r =   1.58333
    25  E     2 at max irg =   37  r =   1.58333

Rotation coefficients for orbital     1  grp =    1 A1    1
     1  1.0000000000

Rotation coefficients for orbital     2  grp =    2 E     1
     2  1.0000000000    3  0.0000000000

Rotation coefficients for orbital     3  grp =    2 E     2
     2  0.0000000000    3  1.0000000000

Rotation coefficients for orbital     4  grp =    3 B2    1
     4  1.0000000000

Rotation coefficients for orbital     5  grp =    4 A1    1
     5  1.0000000000

Rotation coefficients for orbital     6  grp =    5 A1    1
     6  1.0000000000

Rotation coefficients for orbital     7  grp =    6 E     1
     7  0.0000000000    8  1.0000000000

Rotation coefficients for orbital     8  grp =    6 E     2
     7  1.0000000000    8  0.0000000000

Rotation coefficients for orbital     9  grp =    7 B2    1
     9  1.0000000000

Rotation coefficients for orbital    10  grp =    8 A1    1
    10  1.0000000000

Rotation coefficients for orbital    11  grp =    9 B2    1
    11  1.0000000000

Rotation coefficients for orbital    12  grp =   10 E     1
    12  1.0000000000   13  0.0000000000

Rotation coefficients for orbital    13  grp =   10 E     2
    12  0.0000000000   13  1.0000000000

Rotation coefficients for orbital    14  grp =   11 A1    1
    14  1.0000000000

Rotation coefficients for orbital    15  grp =   12 B2    1
    15  1.0000000000

Rotation coefficients for orbital    16  grp =   13 E     1
    16  0.0000000000   17 -1.0000000000

Rotation coefficients for orbital    17  grp =   13 E     2
    16 -1.0000000000   17  0.0000000000

Rotation coefficients for orbital    18  grp =   14 A1    1
    18  1.0000000000

Rotation coefficients for orbital    19  grp =   15 B1    1
    19  1.0000000000

Rotation coefficients for orbital    20  grp =   16 B2    1
    20  1.0000000000

Rotation coefficients for orbital    21  grp =   17 E     1
    21 -1.0000000000   22  0.0000000000

Rotation coefficients for orbital    22  grp =   17 E     2
    21  0.0000000000   22 -1.0000000000

Rotation coefficients for orbital    23  grp =   18 A2    1
    23  1.0000000000

Rotation coefficients for orbital    24  grp =   19 E     1
    24  0.0000000000   25 -1.0000000000

Rotation coefficients for orbital    25  grp =   19 E     2
    24 -1.0000000000   25  0.0000000000
Number of orbital groups and degeneracis are        19
  1  2  1  1  1  2  1  1  1  2  1  1  2  1  1  1  2  1  2
Number of orbital groups and number of electrons when fully occupied
        19
  2  4  2  2  2  4  2  2  2  4  2  2  4  2  2  2  4  2  4
Time Now =         1.8601  Delta time =         1.0078 End RotOrb

----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------

 First orbital group to expand (mofr) =    1
 Last orbital group to expand (moto) =   19
Orbital     1 of  A1    1 symmetry normalization integral =  1.00000542
Orbital     2 of  E     1 symmetry normalization integral =  0.83436752
Orbital     3 of  B2    1 symmetry normalization integral =  0.83263215
Orbital     4 of  A1    1 symmetry normalization integral =  0.83782100
Orbital     5 of  A1    1 symmetry normalization integral =  1.00000098
Orbital     6 of  E     1 symmetry normalization integral =  1.00001364
Orbital     7 of  B2    1 symmetry normalization integral =  0.99999964
Orbital     8 of  A1    1 symmetry normalization integral =  0.98781169
Orbital     9 of  B2    1 symmetry normalization integral =  0.98650342
Orbital    10 of  E     1 symmetry normalization integral =  0.98642303
Orbital    11 of  A1    1 symmetry normalization integral =  0.99877720
Orbital    12 of  B2    1 symmetry normalization integral =  0.99888606
Orbital    13 of  E     1 symmetry normalization integral =  0.99890443
Orbital    14 of  A1    1 symmetry normalization integral =  0.99826805
Orbital    15 of  B1    1 symmetry normalization integral =  0.99813396
Orbital    16 of  B2    1 symmetry normalization integral =  0.99862996
Orbital    17 of  E     1 symmetry normalization integral =  0.99862585
Orbital    18 of  A2    1 symmetry normalization integral =  0.99809952
Orbital    19 of  E     1 symmetry normalization integral =  0.99812727
Time Now =         3.9374  Delta time =         2.0773 End ExpOrb

+ Command GenFormPhIon
+

----------------------------------------------------------------------
SymProd - Construct products of symmetry types
----------------------------------------------------------------------

Number of sets of degenerate orbitals =   19
Set    1  has degeneracy     1
Orbital     1  is num     1  type =   1  name - A1    1
Set    2  has degeneracy     2
Orbital     1  is num     2  type =   5  name - E     1
Orbital     2  is num     3  type =   6  name - E     2
Set    3  has degeneracy     1
Orbital     1  is num     4  type =   4  name - B2    1
Set    4  has degeneracy     1
Orbital     1  is num     5  type =   1  name - A1    1
Set    5  has degeneracy     1
Orbital     1  is num     6  type =   1  name - A1    1
Set    6  has degeneracy     2
Orbital     1  is num     7  type =   5  name - E     1
Orbital     2  is num     8  type =   6  name - E     2
Set    7  has degeneracy     1
Orbital     1  is num     9  type =   4  name - B2    1
Set    8  has degeneracy     1
Orbital     1  is num    10  type =   1  name - A1    1
Set    9  has degeneracy     1
Orbital     1  is num    11  type =   4  name - B2    1
Set   10  has degeneracy     2
Orbital     1  is num    12  type =   5  name - E     1
Orbital     2  is num    13  type =   6  name - E     2
Set   11  has degeneracy     1
Orbital     1  is num    14  type =   1  name - A1    1
Set   12  has degeneracy     1
Orbital     1  is num    15  type =   4  name - B2    1
Set   13  has degeneracy     2
Orbital     1  is num    16  type =   5  name - E     1
Orbital     2  is num    17  type =   6  name - E     2
Set   14  has degeneracy     1
Orbital     1  is num    18  type =   1  name - A1    1
Set   15  has degeneracy     1
Orbital     1  is num    19  type =   3  name - B1    1
Set   16  has degeneracy     1
Orbital     1  is num    20  type =   4  name - B2    1
Set   17  has degeneracy     2
Orbital     1  is num    21  type =   5  name - E     1
Orbital     2  is num    22  type =   6  name - E     2
Set   18  has degeneracy     1
Orbital     1  is num    23  type =   2  name - A2    1
Set   19  has degeneracy     2
Orbital     1  is num    24  type =   5  name - E     1
Orbital     2  is num    25  type =   6  name - E     2
Orbital occupations by degenerate group
    1  A1       occ = 2
    2  E        occ = 4
    3  B2       occ = 2
    4  A1       occ = 2
    5  A1       occ = 2
    6  E        occ = 4
    7  B2       occ = 2
    8  A1       occ = 2
    9  B2       occ = 2
   10  E        occ = 4
   11  A1       occ = 2
   12  B2       occ = 2
   13  E        occ = 4
   14  A1       occ = 2
   15  B1       occ = 2
   16  B2       occ = 2
   17  E        occ = 4
   18  A2       occ = 2
   19  E        occ = 3
The dimension of each irreducable representation is
    A1    (  1)    A2    (  1)    B1    (  1)    B2    (  1)    E     (  2)
Symmetry of the continuum orbital is A1
Symmetry of the total state is E
Spin degeneracy of the total state is =    1
Symmetry of the target state is E
Spin degeneracy of the target state is =    2
Symmetry of the initial state is A1
Spin degeneracy of the initial state is =    1
Orbital occupations of initial state by degenerate group
    1  A1       occ = 2
    2  E        occ = 4
    3  B2       occ = 2
    4  A1       occ = 2
    5  A1       occ = 2
    6  E        occ = 4
    7  B2       occ = 2
    8  A1       occ = 2
    9  B2       occ = 2
   10  E        occ = 4
   11  A1       occ = 2
   12  B2       occ = 2
   13  E        occ = 4
   14  A1       occ = 2
   15  B1       occ = 2
   16  B2       occ = 2
   17  E        occ = 4
   18  A2       occ = 2
   19  E        occ = 4
Open shell symmetry types
    1  E      iele =    3
Use only configuration of type E
MS2 =    1  SDGN =    2
NumAlpha =    2
List of determinants found
    1:   1.00000   0.00000    1    2    3
    2:   1.00000   0.00000    1    2    4
Spin adapted configurations
Configuration    1
    1:   1.00000   0.00000    1    2    3
Configuration    2
    1:   1.00000   0.00000    1    2    4
 Each irreducable representation is present the number of times indicated
    E     (  1)

 representation E      component     1  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1    2    4

 representation E      component     2  fun    1
Symmeterized Function
    1:  -1.00000   0.00000    1    2    3
Open shell symmetry types
    1  E      iele =    3
    2  A1     iele =    1
Use only configuration of type E
 Each irreducable representation is present the number of times indicated
    E     (  1)

 representation E      component     1  fun    1
Symmeterized Function from AddNewShell
    1:  -0.70711   0.00000    1    2    4    6
    2:  -0.70711   0.00000    2    3    4    5

 representation E      component     2  fun    1
Symmeterized Function from AddNewShell
    1:   0.70711   0.00000    1    2    3    6
    2:   0.70711   0.00000    1    3    4    5
Open shell symmetry types
    1  E      iele =    3
Use only configuration of type E
MS2 =    1  SDGN =    2
NumAlpha =    2
List of determinants found
    1:   1.00000   0.00000    1    2    3
    2:   1.00000   0.00000    1    2    4
Spin adapted configurations
Configuration    1
    1:   1.00000   0.00000    1    2    3
Configuration    2
    1:   1.00000   0.00000    1    2    4
 Each irreducable representation is present the number of times indicated
    E     (  1)

 representation E      component     1  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1    2    4

 representation E      component     2  fun    1
Symmeterized Function
    1:  -1.00000   0.00000    1    2    3
Direct product basis set
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   18   19   20
                             21   22   23   24   25   26   27   28   29   30
                             31   32   33   34   35   36   37   38   39   40
                             41   42   43   44   45   46   47   48   50   52
    2:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   18   19   20
                             21   22   23   24   25   26   27   28   29   30
                             31   32   33   34   35   36   37   38   39   40
                             41   42   43   44   45   46   48   49   50   51
Direct product basis function
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   18   19   20
                             21   22   23   24   25   26   27   28   29   30
                             31   32   33   34   35   36   37   38   39   40
                             41   42   43   44   45   46   47   48   49   52
    2:   0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   18   19   20
                             21   22   23   24   25   26   27   28   29   30
                             31   32   33   34   35   36   37   38   39   40
                             41   42   43   44   45   46   47   49   50   51
Closed shell target
Time Now =         3.9430  Delta time =         0.0055 End SymProd

----------------------------------------------------------------------
MatEle - Program to compute Matrix Elements over Determinants
----------------------------------------------------------------------

Configuration     1
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   18   19   20
                             21   22   23   24   25   26   27   28   29   30
                             31   32   33   34   35   36   37   38   39   40
                             41   42   43   44   45   46   47   48   50   52
    2:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   18   19   20
                             21   22   23   24   25   26   27   28   29   30
                             31   32   33   34   35   36   37   38   39   40
                             41   42   43   44   45   46   48   49   50   51
Configuration     2
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   18   19   20
                             21   22   23   24   25   26   27   28   29   30
                             31   32   33   34   35   36   37   38   39   40
                             41   42   43   44   45   46   47   48   49   52
    2:   0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   18   19   20
                             21   22   23   24   25   26   27   28   29   30
                             31   32   33   34   35   36   37   38   39   40
                             41   42   43   44   45   46   47   49   50   51
Direct product Configuration Cont sym =    1  Targ sym =    1
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   18   19   20
                             21   22   23   24   25   26   27   28   29   30
                             31   32   33   34   35   36   37   38   39   40
                             41   42   43   44   45   46   47   48   50   52
    2:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   18   19   20
                             21   22   23   24   25   26   27   28   29   30
                             31   32   33   34   35   36   37   38   39   40
                             41   42   43   44   45   46   48   49   50   51
Direct product Configuration Cont sym =    1  Targ sym =    2
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   18   19   20
                             21   22   23   24   25   26   27   28   29   30
                             31   32   33   34   35   36   37   38   39   40
                             41   42   43   44   45   46   47   48   49   52
    2:   0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   18   19   20
                             21   22   23   24   25   26   27   28   29   30
                             31   32   33   34   35   36   37   38   39   40
                             41   42   43   44   45   46   47   49   50   51
Overlap of Direct Product expansion and Symmeterized states
Symmetry of Continuum =    1
Symmetry of target =    5
Symmetry of total states =    5

Total symmetry component =    1

Cont      Target Component
Comp        1               2
   1   0.10000000E+01  0.00000000E+00

Total symmetry component =    2

Cont      Target Component
Comp        1               2
   1   0.00000000E+00  0.10000000E+01
Initial State Configuration
    1:   1.00000   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   18   19   20
                             21   22   23   24   25   26   27   28   29   30
                             31   32   33   34   35   36   37   38   39   40
                             41   42   43   44   45   46   47   48   49   50
One electron matrix elements between initial and final states
    1:    1.414213562    0.000000000  <   47|   51>

Reduced formula list
    1   19    1  0.1414213562E+01
Time Now =         3.9440  Delta time =         0.0010 End MatEle

+ Command DipoleOp
+

----------------------------------------------------------------------
DipoleOp - Dipole Operator Program
----------------------------------------------------------------------

Number of orbitals in formula for the dipole operator (NOrbSel) =    1
Symmetry of the continuum orbital (iContSym) =     1 or A1
Symmetry of total final state (iTotalSym) =     5 or E
Symmetry of the initial state (iInitSym) =     1 or A1
Symmetry of the ionized target state (iTargSym) =     5 or E
List of unique symmetry types
In the product of the symmetry types B2    A1
 Each irreducable representation is present the number of times indicated
    B2    (  1)
In the product of the symmetry types B2    A1
 Each irreducable representation is present the number of times indicated
    B2    (  1)
In the product of the symmetry types B2    A2
 Each irreducable representation is present the number of times indicated
    B1    (  1)
In the product of the symmetry types B2    B1
 Each irreducable representation is present the number of times indicated
    A2    (  1)
In the product of the symmetry types B2    B2
 Each irreducable representation is present the number of times indicated
    A1    (  1)
In the product of the symmetry types B2    E
 Each irreducable representation is present the number of times indicated
    E     (  1)
Unique dipole matrix type     1 Dipole symmetry type =B2
     Final state symmetry type = B2     Target sym =E
     Continuum type =E
In the product of the symmetry types E     A1
 Each irreducable representation is present the number of times indicated
    E     (  1)
In the product of the symmetry types E     A1
 Each irreducable representation is present the number of times indicated
    E     (  1)
Unique dipole matrix type     2 Dipole symmetry type =E
     Final state symmetry type = E      Target sym =E
     Continuum type =A1
In the product of the symmetry types E     A2
 Each irreducable representation is present the number of times indicated
    E     (  1)
Unique dipole matrix type     3 Dipole symmetry type =E
     Final state symmetry type = E      Target sym =E
     Continuum type =A2
In the product of the symmetry types E     B1
 Each irreducable representation is present the number of times indicated
    E     (  1)
Unique dipole matrix type     4 Dipole symmetry type =E
     Final state symmetry type = E      Target sym =E
     Continuum type =B1
In the product of the symmetry types E     B2
 Each irreducable representation is present the number of times indicated
    E     (  1)
Unique dipole matrix type     5 Dipole symmetry type =E
     Final state symmetry type = E      Target sym =E
     Continuum type =B2
In the product of the symmetry types E     E
 Each irreducable representation is present the number of times indicated
    A1    (  1)
    A2    (  1)
    B1    (  1)
    B2    (  1)
In the product of the symmetry types B2    A1
 Each irreducable representation is present the number of times indicated
    B2    (  1)
In the product of the symmetry types E     A1
 Each irreducable representation is present the number of times indicated
    E     (  1)
In the product of the symmetry types E     A1
 Each irreducable representation is present the number of times indicated
    E     (  1)
Irreducible representation containing the dipole operator is E
Number of different dipole operators in this representation is     1
In the product of the symmetry types E     A1
 Each irreducable representation is present the number of times indicated
    E     (  1)
Vector of the total symmetry
ie =    1  ij =    1
    1 (  0.10000000E+01,  0.00000000E+00)
    2 (  0.00000000E+00,  0.00000000E+00)
Vector of the total symmetry
ie =    2  ij =    1
    1 (  0.00000000E+00,  0.00000000E+00)
    2 (  0.10000000E+01,  0.00000000E+00)
Component Dipole Op Sym =  1 goes to Total Sym component   1 phase = 1.0
Component Dipole Op Sym =  2 goes to Total Sym component   2 phase = 1.0

Dipole operator types by symmetry components (x=1, y=2, z=3)
sym comp =  1
  coefficients =  0.00000000  1.00000000  0.00000000
sym comp =  2
  coefficients =  1.00000000  0.00000000  0.00000000

Formula for dipole operator

Dipole operator sym comp 1  index =    1
  1  Cont comp  1  Orb 24  Coef =   1.4142135620
Symmetry type to write out (SymTyp) =A1
Time Now =        30.0749  Delta time =        26.1308 End DipoleOp

+ Command GetPot
+

----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------

Total density =     49.00000000
Time Now =        30.1085  Delta time =         0.0336 End Den

----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------

 vasymp =  0.49000000E+02 facnorm =  0.10000000E+01
Time Now =        30.1902  Delta time =         0.0817 Electronic part
Time Now =        30.1927  Delta time =         0.0025 End StPot

+ Command FileName
+ 'MatrixElements' 'test20.idy' 'REWIND'
Opening file test20.idy at position REWIND

+ Command PhIon
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.15200000E+02  eV
 Do E =  0.80000000E+00 eV (  0.29399461E-01 AU)
Time Now =        30.2409  Delta time =         0.0482 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = A1    1
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =      T
Maximum l for computed scattering solutions (LMaxK) =   12
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    72
Number of partial waves (np) =    76
Number of asymptotic solutions on the right (NAsymR) =    25
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   14
Number of partial waves in the asymptotic region (npasym) =   32
Number of orthogonality constraints (NOrthUse) =    6
Number of different asymptotic potentials =    5
Maximum number of asymptotic partial waves =  211
Maximum l used in usual function (lmax) =   25
Maximum m used in usual function (LMax) =   25
Maxamum l used in expanding static potential (lpotct) =   50
Maximum l used in exapnding the exchange potential (lmaxab) =   50
Higest l included in the expansion of the wave function (lnp) =   25
Higest l included in the K matrix (lna) =   12
Highest l used at large r (lpasym) =   14
Higest l used in the asymptotic potential (lpzb) =   28
Maximum L used in the homogeneous solution (LMaxHomo) =   14
Number of partial waves in the homogeneous solution (npHomo) =   32
Time Now =        30.2614  Delta time =         0.0206 Energy independent setup

Compute solution for E =    0.8000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.11379786E-14
 i =  2  lval =   3  stpote =  0.95368485E-18
 i =  3  lval =   3  stpote =  0.46846194E-04
 i =  4  lval =   4  stpote =  0.20438575E-04
For potential     2
 i =  1  exps = -0.93155070E+02 -0.20000000E+01  stpote = -0.51280515E-16
 i =  2  exps = -0.93155070E+02 -0.20000000E+01  stpote = -0.51522086E-16
 i =  3  exps = -0.93155070E+02 -0.20000000E+01  stpote = -0.51755152E-16
 i =  4  exps = -0.93155070E+02 -0.20000000E+01  stpote = -0.51969864E-16
For potential     3
For potential     4
 i =  1  lval =   4  stpote = -0.76107671E-01
 i =  2  lval =   3  stpote = -0.15407618E-04
 i =  3  lval =   3  stpote = -0.60564730E-04
 i =  4  lval =   4  stpote = -0.38950150E-04
For potential     5
 i =  1  lval =   4  stpote =  0.76107671E-01
 i =  2  lval =   3  stpote = -0.15407618E-04
 i =  3  lval =   3  stpote =  0.60564730E-04
 i =  4  lval =   4  stpote =  0.38950150E-04
Number of asymptotic regions =     118
Final point in integration =   0.65178154E+03 Angstroms
Time Now =        53.5776  Delta time =        23.3162 End SolveHomo
      Final k matrix
     ROW  1
  (-0.13493706E+00, 0.19302751E+00) ( 0.47405609E-01, 0.54565800E-01)
  (-0.13165672E+00,-0.31790697E-02) ( 0.17341993E+00, 0.19471072E-02)
  (-0.13322799E+00, 0.10147813E-01) ( 0.33923984E-01,-0.14284111E-02)
  ( 0.94060786E-03, 0.28282523E-03) (-0.21373199E-02,-0.17184104E-04)
  ( 0.25737201E-03, 0.10652831E-04) (-0.10361410E-03, 0.18839809E-04)
  (-0.60546883E-05,-0.77840580E-07) (-0.19481434E-04, 0.58751949E-06)
  ( 0.15258854E-04,-0.86131190E-06) ( 0.25133035E-06, 0.11316076E-06)
  (-0.12471780E-05,-0.45975036E-08) (-0.43812137E-07,-0.35039236E-08)
  ( 0.31681854E-08,-0.32427012E-08) ( 0.19591134E-07, 0.15434105E-08)
  (-0.92461899E-09, 0.75168292E-11) (-0.19448719E-08,-0.15305755E-11)
  ( 0.14520664E-08,-0.90678190E-10) ( 0.73420341E-11,-0.10919207E-11)
  (-0.13727930E-10,-0.92246233E-11) ( 0.90567080E-10, 0.23169622E-11)
  (-0.71621729E-10, 0.37479032E-13)
     ROW  2
  (-0.10713353E+00, 0.14428651E+00) ( 0.36066085E-01, 0.44298001E-01)
  (-0.43966043E-01, 0.72499819E-02) ( 0.87418412E-01, 0.12679460E-02)
  (-0.69309640E-01, 0.73751905E-02) ( 0.16772701E-01,-0.12461067E-02)
  ( 0.47656941E-03, 0.21968768E-03) (-0.10498400E-02, 0.63841266E-05)
  ( 0.12104967E-03, 0.82854813E-05) (-0.40524672E-04, 0.14225252E-04)
  (-0.27573006E-05,-0.78564791E-07) (-0.88914519E-05, 0.59845285E-06)
  ( 0.66210874E-05,-0.71421437E-06) ( 0.13528934E-06, 0.81611934E-07)
  (-0.56286486E-06, 0.10941293E-07) (-0.20033350E-07,-0.23168084E-08)
  (-0.18843377E-09,-0.23913945E-08) ( 0.94873959E-08, 0.81241427E-09)
  (-0.41059824E-09,-0.40934961E-11) (-0.84456596E-09, 0.31024753E-10)
  ( 0.56578622E-09,-0.83726409E-10) ( 0.32070743E-11,-0.44521400E-12)
  (-0.80736501E-11,-0.60908916E-11) ( 0.38849600E-10,-0.12551182E-12)
  (-0.29873419E-10, 0.11565151E-11)
MaxIter =  11 c.s. =      0.17745629 rmsk=     0.00000000
Time Now =       119.4268  Delta time =        65.8491 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.15200000E+02  eV
 Do E =  0.48000000E+01 eV (  0.17639676E+00 AU)
Time Now =       119.5573  Delta time =         0.1306 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = A1    1
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =      T
Maximum l for computed scattering solutions (LMaxK) =   12
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    72
Number of partial waves (np) =    76
Number of asymptotic solutions on the right (NAsymR) =    25
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   14
Number of partial waves in the asymptotic region (npasym) =   32
Number of orthogonality constraints (NOrthUse) =    6
Number of different asymptotic potentials =    5
Maximum number of asymptotic partial waves =  211
Maximum l used in usual function (lmax) =   25
Maximum m used in usual function (LMax) =   25
Maxamum l used in expanding static potential (lpotct) =   50
Maximum l used in exapnding the exchange potential (lmaxab) =   50
Higest l included in the expansion of the wave function (lnp) =   25
Higest l included in the K matrix (lna) =   12
Highest l used at large r (lpasym) =   14
Higest l used in the asymptotic potential (lpzb) =   28
Maximum L used in the homogeneous solution (LMaxHomo) =   14
Number of partial waves in the homogeneous solution (npHomo) =   32
Time Now =       119.5772  Delta time =         0.0199 Energy independent setup

Compute solution for E =    4.8000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.11379786E-14
 i =  2  lval =   3  stpote =  0.95368485E-18
 i =  3  lval =   3  stpote =  0.46846194E-04
 i =  4  lval =   4  stpote =  0.20438575E-04
For potential     2
 i =  1  exps = -0.93155070E+02 -0.20000000E+01  stpote = -0.37963860E-16
 i =  2  exps = -0.93155070E+02 -0.20000000E+01  stpote = -0.38296338E-16
 i =  3  exps = -0.93155070E+02 -0.20000000E+01  stpote = -0.38617734E-16
 i =  4  exps = -0.93155070E+02 -0.20000000E+01  stpote = -0.38914247E-16
For potential     3
For potential     4
 i =  1  lval =   4  stpote = -0.76107671E-01
 i =  2  lval =   3  stpote = -0.15407618E-04
 i =  3  lval =   3  stpote = -0.60564730E-04
 i =  4  lval =   4  stpote = -0.38950150E-04
For potential     5
 i =  1  lval =   4  stpote =  0.76107671E-01
 i =  2  lval =   3  stpote = -0.15407618E-04
 i =  3  lval =   3  stpote =  0.60564730E-04
 i =  4  lval =   4  stpote =  0.38950150E-04
Number of asymptotic regions =     181
Final point in integration =   0.41505009E+03 Angstroms
Time Now =       150.1699  Delta time =        30.5927 End SolveHomo
      Final k matrix
     ROW  1
  (-0.14448040E-01, 0.16472947E+00) (-0.14182007E+00,-0.13296463E+00)
  (-0.15403591E+00,-0.14556674E+00) ( 0.51951255E+00,-0.21327351E-01)
  (-0.32721579E+00, 0.57007713E-01) ( 0.20181600E+00,-0.18761515E-01)
  ( 0.17137162E-01, 0.17896441E-02) (-0.28908812E-01, 0.12113324E-02)
  ( 0.71632382E-02,-0.20064130E-03) (-0.12079135E-02, 0.43033609E-03)
  (-0.37812763E-03, 0.21034902E-04) (-0.10965168E-02, 0.73736032E-04)
  ( 0.75232601E-03,-0.68203801E-04) ( 0.50071969E-04, 0.61229787E-05)
  (-0.16235327E-03, 0.77673000E-05) (-0.13993910E-04, 0.34854749E-06)
  (-0.16865324E-05,-0.51309075E-06) ( 0.71835774E-05,-0.82379486E-07)
  (-0.69559885E-06, 0.55612005E-07) (-0.12856974E-05, 0.84252982E-07)
  ( 0.70687458E-06,-0.78893020E-07) ( 0.13810334E-07,-0.20992111E-08)
  (-0.35437494E-07,-0.54828297E-08) ( 0.13917608E-06,-0.69695390E-08)
  (-0.10209653E-06, 0.61736993E-08)
     ROW  2
  (-0.11798137E-02, 0.10767015E+00) (-0.83148712E-01,-0.71400345E-01)
  (-0.88711839E-01,-0.91440739E-01) ( 0.35628558E+00,-0.13928742E-01)
  (-0.22209340E+00, 0.36763782E-01) ( 0.13331285E+00,-0.11776287E-01)
  ( 0.12289423E-01, 0.12238267E-02) (-0.19230607E-01, 0.72856906E-03)
  ( 0.46792080E-02,-0.12052416E-03) (-0.43244899E-03, 0.29450186E-03)
  (-0.24104003E-03, 0.13704904E-04) (-0.68050908E-03, 0.48294839E-04)
  ( 0.43986856E-03,-0.45904835E-04) ( 0.37216281E-04, 0.43107354E-05)
  (-0.10114937E-03, 0.51384384E-05) (-0.90459522E-05, 0.22613005E-06)
  (-0.17852738E-05,-0.37529991E-06) ( 0.47950040E-05,-0.42380579E-07)
  (-0.43927703E-06, 0.36481221E-07) (-0.77392973E-06, 0.58516529E-07)
  ( 0.35830980E-06,-0.56347021E-07) ( 0.86482949E-08,-0.13421717E-08)
  (-0.27770544E-07,-0.37251726E-08) ( 0.83745663E-07,-0.49119526E-08)
  (-0.59348496E-07, 0.43384762E-08)
MaxIter =  10 c.s. =      0.76909714 rmsk=     0.00000004
Time Now =       208.5812  Delta time =        58.4113 End ScatStab

+ Command GetCro
+

----------------------------------------------------------------------
CnvIdy - read in and convert dynamical matrix elements and convert to raw form
----------------------------------------------------------------------

Time Now =       208.5991  Delta time =         0.0179 End CnvIdy
Found     2 energies :
     0.80000     4.80000
List of matrix element types found   Number =    1
    1  Cont Sym A1     Targ Sym E      Total Sym E
Keeping     2 energies :
     0.80000     4.80000
Time Now =       208.5991  Delta time =         0.0000 End SelIdy

----------------------------------------------------------------------
CrossSection - compute photoionization cross section
----------------------------------------------------------------------

Ionization potential (IPot) =     15.2000 eV
Label -
Cross section by partial wave      F
Cross Sections for

     Sigma LENGTH   at all energies
      Eng
    16.0000  0.25592800E+00
    20.0000  0.13412719E+01

     Sigma MIXED    at all energies
      Eng
    16.0000  0.26447541E+00
    20.0000  0.12124088E+01

     Sigma VELOCITY at all energies
      Eng
    16.0000  0.29307695E+00
    20.0000  0.10998690E+01

     Beta LENGTH   at all energies
      Eng
    16.0000  0.44969602E-01
    20.0000  0.12042480E+00

     Beta MIXED    at all energies
      Eng
    16.0000  0.43321775E-01
    20.0000  0.12928316E+00

     Beta VELOCITY at all energies
      Eng
    16.0000  0.44383655E-01
    20.0000  0.13633211E+00

          COMPOSITE CROSS SECTIONS AT ALL ENERGIES
         Energy  SIGMA LEN  SIGMA MIX  SIGMA VEL   BETA LEN   BETA MIX   BETA VEL
EPhi     16.0000     0.2559     0.2645     0.2931     0.0450     0.0433     0.0444
EPhi     20.0000     1.3413     1.2124     1.0999     0.1204     0.1293     0.1363
Time Now =       208.6242  Delta time =         0.0251 End CrossSection
+ Data Record GrnType - 1

+ Command FileName
+ 'MatrixElements' 'test20.tmt' 'REWIND'
Opening file test20.tmt at position REWIND

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.15200000E+02  eV
 Do E =  0.80000000E+00 eV (  0.29399461E-01 AU)
Time Now =       208.6685  Delta time =         0.0443 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = A1    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   12
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    72
Number of partial waves (np) =    76
Number of asymptotic solutions on the right (NAsymR) =    25
Number of asymptotic solutions on the left (NAsymL) =    25
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =    25
Maximum in the asymptotic region (lpasym) =   14
Number of partial waves in the asymptotic region (npasym) =   32
Number of orthogonality constraints (NOrthUse) =    6
Number of different asymptotic potentials =    5
Maximum number of asymptotic partial waves =  211
Maximum l used in usual function (lmax) =   25
Maximum m used in usual function (LMax) =   25
Maxamum l used in expanding static potential (lpotct) =   50
Maximum l used in exapnding the exchange potential (lmaxab) =   50
Higest l included in the expansion of the wave function (lnp) =   25
Higest l included in the K matrix (lna) =   12
Highest l used at large r (lpasym) =   14
Higest l used in the asymptotic potential (lpzb) =   28
Maximum L used in the homogeneous solution (LMaxHomo) =   14
Number of partial waves in the homogeneous solution (npHomo) =   32
Time Now =       208.6880  Delta time =         0.0194 Energy independent setup

Compute solution for E =    0.8000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.11379786E-14
 i =  2  lval =   3  stpote =  0.95368485E-18
 i =  3  lval =   3  stpote =  0.46846194E-04
 i =  4  lval =   4  stpote =  0.20438575E-04
For potential     2
 i =  1  exps = -0.93155070E+02 -0.20000000E+01  stpote = -0.51280515E-16
 i =  2  exps = -0.93155070E+02 -0.20000000E+01  stpote = -0.51522086E-16
 i =  3  exps = -0.93155070E+02 -0.20000000E+01  stpote = -0.51755152E-16
 i =  4  exps = -0.93155070E+02 -0.20000000E+01  stpote = -0.51969864E-16
For potential     3
For potential     4
 i =  1  lval =   4  stpote = -0.76107671E-01
 i =  2  lval =   3  stpote = -0.15407618E-04
 i =  3  lval =   3  stpote = -0.60564730E-04
 i =  4  lval =   4  stpote = -0.38950150E-04
For potential     5
 i =  1  lval =   4  stpote =  0.76107671E-01
 i =  2  lval =   3  stpote = -0.15407618E-04
 i =  3  lval =   3  stpote =  0.60564730E-04
 i =  4  lval =   4  stpote =  0.38950150E-04
Number of asymptotic regions =     118
Final point in integration =   0.65178154E+03 Angstroms
Time Now =       232.0985  Delta time =        23.4106 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.46596777E+00, 0.63861287E+00) ( 0.83360317E-01, 0.23211154E-01)
  ( 0.50554838E-01, 0.43189396E-01) ( 0.35135150E-02, 0.46557152E-02)
  ( 0.23493132E-01, 0.32996690E-01) (-0.51127770E-02,-0.70338224E-02)
  ( 0.68900494E-03, 0.89945779E-03) ( 0.15572998E-03, 0.19181930E-03)
  ( 0.24853270E-04, 0.29385972E-04) ( 0.42024929E-04, 0.55070113E-04)
  (-0.33215167E-06,-0.35538182E-06) ( 0.28571136E-05, 0.34092858E-05)
  (-0.25334937E-05,-0.31829622E-05) ( 0.22592462E-06, 0.27011711E-06)
  ( 0.11020841E-06, 0.13100511E-06) (-0.53526119E-08,-0.65434053E-08)
  (-0.64843648E-08,-0.80324731E-08) ( 0.62410279E-09, 0.97261473E-09)
  (-0.57978620E-10,-0.78471656E-10) ( 0.24830386E-09, 0.26338459E-09)
  (-0.31797767E-09,-0.37739232E-09) ( 0.29516037E-12, 0.47746473E-12)
  (-0.13903724E-10,-0.16646945E-10) (-0.85641725E-11,-0.93697689E-11)
  ( 0.85206771E-11, 0.98653604E-11)
     ROW  2
  ( 0.83360317E-01, 0.23211154E-01) (-0.46415613E+00, 0.34327621E+00)
  (-0.30174715E-01, 0.38357299E-01) (-0.69908959E-02, 0.49506971E-02)
  ( 0.66693365E-02,-0.74447638E-03) (-0.28009418E-02, 0.97427387E-03)
  ( 0.21247899E-04, 0.12207715E-03) ( 0.13061034E-03,-0.64318938E-04)
  (-0.54894118E-05, 0.89943105E-05) ( 0.12087588E-05, 0.83027757E-05)
  ( 0.10839401E-06,-0.14642165E-06) ( 0.74775530E-06,-0.10451080E-07)
  (-0.36099341E-06,-0.25342156E-06) ( 0.42808207E-08, 0.44702948E-07)
  ( 0.34558310E-07,-0.43177673E-08) ( 0.68990473E-09,-0.16550479E-08)
  ( 0.96554742E-10,-0.15232176E-08) (-0.52251895E-09, 0.57076136E-09)
  ( 0.15491107E-10,-0.22243429E-10) ( 0.54318031E-10, 0.86799635E-11)
  (-0.20012803E-10,-0.51371812E-10) (-0.12352032E-12, 0.12444282E-12)
  (-0.30306201E-12,-0.28782359E-11) (-0.17234232E-11,-0.42491839E-12)
  ( 0.10693041E-11, 0.89705495E-12)
     ROW  3
  ( 0.50554838E-01, 0.43189396E-01) (-0.30174715E-01, 0.38357299E-01)
  (-0.15745486E+00, 0.32820175E-01) ( 0.10275151E-01,-0.78925104E-03)
  ( 0.60012283E-02, 0.14879820E-02) ( 0.17357247E-02,-0.74688957E-03)
  (-0.19995876E-03, 0.11352107E-03) (-0.11037731E-03, 0.28213736E-04)
  (-0.12204410E-04, 0.50640083E-05) (-0.17288456E-04, 0.74423396E-05)
  ( 0.28086092E-06,-0.95588294E-07) (-0.12416623E-05, 0.53035936E-06)
  ( 0.11235377E-05,-0.45758464E-06) (-0.10704449E-06, 0.46611445E-07)
  (-0.49938194E-07, 0.21586128E-07) ( 0.28391410E-08,-0.12304183E-08)
  ( 0.34695682E-08,-0.13695845E-08) (-0.43556132E-09, 0.14053489E-09)
  ( 0.40130736E-10,-0.13361200E-10) (-0.10415706E-09, 0.53930416E-10)
  ( 0.15867124E-09,-0.66904399E-10) (-0.32208540E-12, 0.29605569E-13)
  ( 0.65531486E-11,-0.30987921E-11) ( 0.39225121E-11,-0.18411213E-11)
  (-0.39828728E-11, 0.17693880E-11)
     ROW  4
  ( 0.35135150E-02, 0.46557152E-02) (-0.69908959E-02, 0.49506971E-02)
  ( 0.10275151E-01,-0.78925104E-03) ( 0.77302596E-02, 0.27443618E-03)
  (-0.54095696E-03, 0.24209262E-03) (-0.79698352E-03,-0.13652730E-04)
  (-0.11226381E-03, 0.37260880E-05) (-0.15454269E-04,-0.15297229E-05)
  (-0.18015292E-04, 0.33396470E-07) ( 0.47496957E-05, 0.47047548E-06)
  (-0.29109860E-06,-0.81516032E-08) ( 0.39565445E-07, 0.72307894E-08)
  ( 0.26603857E-06, 0.10045366E-08) ( 0.41657626E-07, 0.42607071E-08)
  (-0.13611700E-07,-0.54741191E-09) (-0.19408533E-08,-0.15690232E-09)
  (-0.82415917E-09,-0.93762058E-12) ( 0.55318981E-09,-0.53679074E-10)
  ( 0.14323383E-10, 0.59239507E-11) (-0.10800861E-10,-0.27972891E-11)
  ( 0.23155814E-11,-0.12160694E-11) (-0.96722621E-12, 0.15055310E-13)
  (-0.29380735E-11, 0.28437506E-12) ( 0.65583531E-12,-0.72804736E-13)
  (-0.70427901E-12, 0.57553411E-13)
     ROW  5
  ( 0.23493132E-01, 0.32996690E-01) ( 0.66693365E-02,-0.74447641E-03)
  ( 0.60012284E-02, 0.14879820E-02) (-0.54095696E-03, 0.24209262E-03)
  ( 0.58338159E-03, 0.17279410E-02) ( 0.28312524E-03,-0.36270415E-03)
  ( 0.20152245E-03, 0.45272336E-04) (-0.19252841E-03, 0.10638305E-04)
  ( 0.24702464E-05, 0.14058084E-05) (-0.13031327E-04, 0.25701355E-05)
  ( 0.20278089E-07,-0.14936544E-07) ( 0.73695771E-06, 0.15527318E-06)
  (-0.60593056E-07,-0.13697419E-06) ( 0.81529013E-07, 0.10860735E-07)
  ( 0.12412566E-07, 0.10842995E-07) (-0.11969686E-08,-0.35458640E-09)
  (-0.23161120E-08,-0.53944577E-09) ( 0.79996163E-09, 0.96383746E-10)
  (-0.31729888E-11,-0.44879443E-11) ( 0.92591777E-10, 0.51937572E-11)
  (-0.84772765E-10,-0.20340387E-10) (-0.18504617E-13, 0.13282754E-13)
  (-0.50634761E-11,-0.51857773E-12) (-0.11085321E-11,-0.22469178E-12)
  ( 0.14810030E-11, 0.37195509E-12)
     ROW  6
  (-0.51127770E-02,-0.70338223E-02) (-0.28009418E-02, 0.97427386E-03)
  ( 0.17357247E-02,-0.74688960E-03) (-0.79698353E-03,-0.13652723E-04)
  ( 0.28312523E-03,-0.36270415E-03) (-0.85376488E-03, 0.90238541E-04)
  ( 0.27348240E-03,-0.10305095E-04) ( 0.75034080E-03,-0.44752522E-05)
  ( 0.31222407E-04,-0.40514331E-06) (-0.18712758E-03,-0.27729984E-06)
  (-0.31284266E-06, 0.12862122E-07) ( 0.13845566E-04,-0.75156670E-07)
  (-0.84522254E-05,-0.10142174E-06) (-0.32265943E-06,-0.10857010E-07)
  (-0.10518935E-07, 0.12006489E-07) (-0.51746780E-08, 0.31907756E-09)
  ( 0.33395829E-08,-0.25362568E-08) ( 0.70566061E-08, 0.19312717E-08)
  (-0.17149012E-09,-0.51180717E-11) (-0.97711507E-09,-0.55783204E-10)
  ( 0.14984696E-09, 0.63136200E-10) ( 0.60599494E-12, 0.81467747E-13)
  ( 0.24328847E-10,-0.26341068E-11) ( 0.24615916E-10, 0.75928054E-12)
  (-0.74788858E-11,-0.13929838E-11)
     ROW  7
  ( 0.68900516E-03, 0.89945780E-03) ( 0.21248004E-04, 0.12207737E-03)
  (-0.19995902E-03, 0.11352149E-03) (-0.11226379E-03, 0.37260583E-05)
  ( 0.20152249E-03, 0.45272253E-04) ( 0.27348240E-03,-0.10305084E-04)
  ( 0.15089244E-03, 0.16944492E-05) (-0.77486960E-04, 0.49664522E-06)
  (-0.31623764E-03,-0.25051363E-06) (-0.26433051E-03, 0.14784242E-06)
  ( 0.82735649E-05,-0.52372569E-07) (-0.11581499E-03,-0.23464886E-07)
  ( 0.37347671E-05,-0.53701221E-07) (-0.12070258E-04, 0.24569999E-07)
  ( 0.21649263E-05, 0.44969200E-07) (-0.30524160E-06,-0.45409938E-08)
  ( 0.80597878E-07, 0.77176257E-08) ( 0.52756514E-07, 0.88096692E-09)
  (-0.18034957E-08, 0.19601519E-10) ( 0.29193755E-08, 0.15183072E-08)
  (-0.12684852E-08,-0.42037144E-09) (-0.32987543E-10,-0.21740513E-11)
  (-0.61478043E-09,-0.42688013E-10) (-0.78222525E-11, 0.60721254E-11)
  (-0.16149247E-10,-0.11679723E-10)
     ROW  8
  ( 0.15572889E-03, 0.19182155E-03) ( 0.13061007E-03,-0.64319934E-04)
  (-0.11037630E-03, 0.28207637E-04) (-0.15454272E-04,-0.15297702E-05)
  (-0.19252900E-03, 0.10638803E-04) ( 0.75034094E-03,-0.44752991E-05)
  (-0.77486964E-04, 0.49666002E-06) (-0.12565342E-02, 0.23467420E-05)
  (-0.10505839E-05, 0.57462292E-07) ( 0.20881201E-03,-0.52834119E-06)
  (-0.81961918E-08,-0.12346128E-08) ( 0.19703570E-04,-0.39324310E-09)
  (-0.14858016E-03, 0.31624589E-06) (-0.26385577E-07, 0.11646945E-08)
  (-0.10322896E-04,-0.23330045E-07) ( 0.19932202E-08, 0.78882636E-10)
  ( 0.13981082E-07,-0.89859079E-09) ( 0.14958730E-06, 0.13322270E-07)
  ( 0.38908323E-11, 0.31335429E-12) ( 0.45506765E-08,-0.17350926E-09)
  ( 0.27316910E-08, 0.17940062E-08) ( 0.19949767E-13, 0.53001881E-14)
  (-0.29784972E-10,-0.19556588E-11) (-0.36068958E-09,-0.39070754E-10)
  ( 0.56418974E-10, 0.10188680E-10)
     ROW  9
  ( 0.24850304E-04, 0.29386798E-04) (-0.54884707E-05, 0.89942784E-05)
  (-0.12201789E-04, 0.50650289E-05) (-0.18015927E-04, 0.33377579E-07)
  ( 0.24702113E-05, 0.14056962E-05) ( 0.31222374E-04,-0.40517417E-06)
  (-0.31623765E-03,-0.25051329E-06) (-0.10505779E-05, 0.57463203E-07)
  ( 0.80595388E-03, 0.80763291E-06) (-0.12131674E-04, 0.80194524E-07)
  ( 0.19721100E-03, 0.36679333E-06) ( 0.10648198E-03, 0.10429921E-06)
  ( 0.16258577E-06,-0.60635912E-08) (-0.67306831E-04,-0.70157461E-07)
  ( 0.46955698E-06,-0.95233058E-08) ( 0.88992510E-05,-0.96304106E-09)
  (-0.70291474E-06,-0.13762951E-07) (-0.76114033E-08, 0.25447917E-09)
  (-0.22519157E-06,-0.19710829E-08) ( 0.31411270E-07, 0.32090642E-08)
  ( 0.60384661E-08, 0.13676434E-09) ( 0.16320768E-08,-0.32668460E-10)
  (-0.17466398E-08,-0.73447414E-09) ( 0.43127558E-09, 0.10294799E-09)
  ( 0.68751517E-10,-0.18073402E-12)
     ROW 10
  ( 0.42020891E-04, 0.55068746E-04) ( 0.12131692E-05, 0.83032531E-05)
  (-0.17287620E-04, 0.74426480E-05) ( 0.47497739E-05, 0.47060037E-06)
  (-0.13032154E-04, 0.25703758E-05) (-0.18712753E-03,-0.27736011E-06)
  (-0.26433053E-03, 0.14785402E-06) ( 0.20881202E-03,-0.52834259E-06)
  (-0.12131674E-04, 0.80194524E-07) (-0.65211830E-03, 0.64382846E-06)
  ( 0.11083501E-06,-0.48281784E-08) ( 0.20603953E-04, 0.20543524E-07)
  ( 0.22116052E-03,-0.32284341E-06) ( 0.77642577E-05,-0.69855329E-09)
  (-0.12261921E-03, 0.14230140E-06) (-0.13585413E-07, 0.60628314E-09)
  ( 0.72973201E-05,-0.56670483E-08) (-0.49105606E-05,-0.28953769E-07)
  ( 0.28825719E-09, 0.17644177E-10) (-0.68026309E-07,-0.99113280E-09)
  ( 0.76372740E-07, 0.87797843E-08) (-0.52314290E-12,-0.47463608E-13)
  (-0.11473168E-08, 0.51829579E-10) (-0.81453462E-09,-0.10073974E-08)
  ( 0.17450910E-08, 0.76960118E-09)
     ROW 11
  (-0.26912317E-06,-0.22033714E-06) ( 0.96374290E-07,-0.67243930E-07)
  ( 0.23934670E-06,-0.22999321E-06) (-0.28672145E-06, 0.37387154E-08)
  ( 0.14492573E-07,-0.49401778E-08) (-0.31039053E-06, 0.64575512E-08)
  ( 0.82746775E-05,-0.52749478E-07) (-0.81820560E-08,-0.12345168E-08)
  ( 0.19721101E-03, 0.36678310E-06) ( 0.11089349E-06,-0.48517283E-08)
  ( 0.10585678E-02, 0.11616813E-05) (-0.24132144E-05, 0.20260963E-07)
  ( 0.99101626E-09, 0.13605995E-09) (-0.33720389E-04,-0.54223181E-07)
  (-0.13071020E-07, 0.50663538E-09) (-0.31308388E-04,-0.42008463E-07)
  ( 0.76847571E-07,-0.17592622E-08) (-0.45152153E-10,-0.82916303E-11)
  (-0.54454713E-05,-0.60938642E-08) ( 0.17414416E-06, 0.31921663E-08)
  ( 0.51011725E-09,-0.17613046E-10) (-0.16717421E-06,-0.46747642E-09)
  ( 0.95137141E-08, 0.10044633E-08) ( 0.75638847E-09, 0.20714811E-10)
  ( 0.37500591E-12, 0.18212793E-12)
     ROW 12
  ( 0.28505336E-05, 0.34022785E-05) ( 0.74810296E-06, 0.19002723E-07)
  (-0.12309425E-05, 0.53073410E-06) ( 0.39085169E-07, 0.73722122E-08)
  ( 0.73577170E-06, 0.15475216E-06) ( 0.13845447E-04,-0.75142047E-07)
  (-0.11581500E-03,-0.23474498E-07) ( 0.19703568E-04,-0.39121820E-09)
  ( 0.10648198E-03, 0.10429929E-06) ( 0.20603952E-04, 0.20543466E-07)
  (-0.24132154E-05, 0.20256439E-07) (-0.21435862E-03, 0.95280647E-07)
  (-0.18638761E-04, 0.73130638E-08) (-0.70763158E-04,-0.59585007E-09)
  (-0.10230749E-03, 0.59107616E-07) ( 0.39115013E-05,-0.35040639E-08)
  (-0.87527272E-04, 0.33407137E-07) ( 0.17542898E-05,-0.76854588E-08)
  ( 0.77992864E-08,-0.35952146E-09) (-0.65618774E-05, 0.72509013E-08)
  ( 0.15748055E-05, 0.12461026E-07) ( 0.48811258E-10, 0.38421190E-11)
  (-0.86942326E-07,-0.83786420E-09) ( 0.50909396E-07, 0.52411706E-08)
  ( 0.77594135E-08, 0.17461632E-09)
     ROW 13
  (-0.25338729E-05,-0.31823772E-05) (-0.36407132E-06,-0.25370067E-06)
  ( 0.11242878E-05,-0.45749756E-06) ( 0.26597176E-06, 0.10435855E-08)
  (-0.60643566E-07,-0.13700678E-06) (-0.84522333E-05,-0.10142064E-06)
  ( 0.37347659E-05,-0.53701247E-07) (-0.14858016E-03, 0.31624523E-06)
  ( 0.16258572E-06,-0.60635665E-08) ( 0.22116052E-03,-0.32284345E-06)
  ( 0.99435593E-09, 0.14007676E-09) (-0.18638761E-04, 0.73130405E-08)
  (-0.62208516E-03, 0.47661455E-06) (-0.52447718E-07, 0.28623955E-08)
  ( 0.85336709E-04,-0.11954749E-06) (-0.11492435E-08,-0.87121410E-10)
  ( 0.49766929E-05,-0.55045172E-09) (-0.10413969E-03, 0.10876829E-06)
  (-0.22250474E-11,-0.18830003E-12) (-0.59316445E-08, 0.24758725E-09)
  (-0.57234742E-05,-0.69656908E-08) (-0.66611260E-14,-0.19386239E-14)
  ( 0.15355315E-09, 0.87122987E-11) (-0.15398255E-07,-0.10964191E-09)
  ( 0.71931374E-07, 0.72907750E-08)
     ROW 14
  ( 0.19552420E-06, 0.18020204E-06) ( 0.20985649E-06,-0.14323698E-07)
  (-0.79668027E-07, 0.13037920E-06) ( 0.41083019E-07,-0.29895994E-08)
  ( 0.83832348E-07, 0.53923362E-08) (-0.32317003E-06,-0.10285261E-07)
  (-0.12070244E-04, 0.24485421E-07) (-0.26325238E-07, 0.11271134E-08)
  (-0.67306848E-04,-0.70166650E-07) ( 0.77642453E-05,-0.70581754E-09)
  (-0.33720389E-04,-0.54223181E-07) (-0.70763158E-04,-0.59744126E-09)
  (-0.52446865E-07, 0.28632930E-08) ( 0.89967198E-04, 0.31396662E-07)
  (-0.50992364E-05, 0.72220101E-08) ( 0.72700230E-04, 0.27773421E-07)
  ( 0.57975296E-04, 0.55912648E-09) ( 0.20456090E-07,-0.95694339E-09)
  ( 0.18216954E-05,-0.30227464E-08) (-0.60955199E-04,-0.48313886E-08)
  ( 0.37397598E-06,-0.23537123E-08) (-0.25501397E-08, 0.12163939E-09)
  ( 0.54597379E-05,-0.35819250E-08) (-0.68732260E-06,-0.58037073E-08)
  (-0.17927544E-08, 0.77971415E-10)
     ROW 15
  ( 0.11758758E-06, 0.10435165E-06) ( 0.48587841E-07,-0.27331465E-07)
  (-0.52641189E-07, 0.50480667E-07) (-0.16264008E-07,-0.38815949E-08)
  ( 0.14969202E-07, 0.61708799E-08) (-0.11401227E-07, 0.12888366E-07)
  ( 0.21649838E-05, 0.44749068E-07) (-0.10322835E-04,-0.23355297E-07)
  ( 0.46955893E-06,-0.95327352E-08) (-0.12261920E-03, 0.14228716E-06)
  (-0.13071020E-07, 0.50663538E-09) (-0.10230749E-03, 0.59106715E-07)
  ( 0.85336709E-04,-0.11954660E-06) (-0.50992364E-05, 0.72220101E-08)
  (-0.39819115E-03, 0.20700314E-06) ( 0.16064359E-07,-0.82721702E-09)
  (-0.67968703E-05, 0.15561116E-07) ( 0.89037639E-04,-0.79600084E-07)
  (-0.14192952E-09,-0.12630880E-10) ( 0.24518878E-05, 0.32170531E-09)
  (-0.86710716E-04, 0.60328495E-07) ( 0.20272613E-12, 0.19758806E-13)
  (-0.36333999E-09, 0.29940410E-10) ( 0.40870656E-05,-0.89200049E-09)
  (-0.30610450E-05,-0.85678359E-08)
     ROW 16
  (-0.45068660E-08,-0.45862919E-08) ( 0.18868716E-09, 0.63924869E-09)
  ( 0.26870740E-08,-0.29456363E-08) (-0.19276129E-08, 0.20027239E-10)
  (-0.12028547E-08,-0.25194856E-09) (-0.51345563E-08, 0.27086254E-09)
  (-0.30523700E-06,-0.45389001E-08) ( 0.19910874E-08, 0.80818277E-10)
  ( 0.88992513E-05,-0.96300853E-09) (-0.13585074E-07, 0.60644579E-09)
  (-0.31308388E-04,-0.42008463E-07) ( 0.39115013E-05,-0.35040163E-08)
  (-0.11492514E-08,-0.87168536E-10) ( 0.72700230E-04, 0.27773421E-07)
  ( 0.16064359E-07,-0.82721702E-09) ( 0.27036992E-03, 0.85268122E-07)
  (-0.18889008E-05, 0.42008070E-08) ( 0.25255071E-09, 0.21628069E-10)
  (-0.57434382E-04,-0.36891890E-07) (-0.29939481E-04,-0.11924682E-07)
  (-0.38234617E-08, 0.18637267E-09) ( 0.71000132E-06,-0.15687004E-08)
  (-0.39883063E-04,-0.13994628E-07) ( 0.11108139E-06,-0.83051110E-09)
  (-0.21505779E-10,-0.22307588E-11)
     ROW 17
  (-0.54486040E-08,-0.50899462E-08) (-0.19670855E-09,-0.96153110E-09)
  ( 0.19913907E-08,-0.41206167E-08) (-0.80222131E-09, 0.21093895E-09)
  (-0.24558209E-08,-0.29779348E-09) ( 0.33547644E-08,-0.25498494E-08)
  ( 0.80607042E-07, 0.77362249E-08) ( 0.13978430E-07,-0.89082690E-09)
  (-0.70291436E-06,-0.13762894E-07) ( 0.72973206E-05,-0.56667729E-08)
  ( 0.76847571E-07,-0.17592622E-08) (-0.87527272E-04, 0.33407195E-07)
  ( 0.49766929E-05,-0.55048732E-09) ( 0.57975296E-04, 0.55912648E-09)
  (-0.67968703E-05, 0.15561116E-07) (-0.18889008E-05, 0.42008070E-08)
  (-0.20632681E-03, 0.60822683E-07) (-0.61290859E-05,-0.18527497E-11)
  (-0.47992248E-08, 0.24535645E-09) (-0.17675524E-04,-0.12311786E-09)
  (-0.47607979E-04, 0.22951779E-07) (-0.20254729E-10,-0.19886397E-11)
  ( 0.15780053E-05,-0.15415522E-09) (-0.66828548E-04, 0.24445086E-07)
  ( 0.79953065E-06,-0.17508290E-08)
     ROW 18
  ( 0.83052194E-10, 0.43750954E-09) (-0.54496027E-09, 0.37725773E-09)
  ( 0.13399491E-09, 0.30426021E-09) ( 0.52703250E-09,-0.82094137E-10)
  ( 0.85317029E-09, 0.41086583E-10) ( 0.70854749E-08, 0.19202542E-08)
  ( 0.52757352E-07, 0.88080694E-09) ( 0.14958769E-06, 0.13321215E-07)
  (-0.76113579E-08, 0.25442822E-09) (-0.49105605E-05,-0.28953804E-07)
  (-0.45152153E-10,-0.82916303E-11) ( 0.17542898E-05,-0.76854294E-08)
  (-0.10413969E-03, 0.10876829E-06) ( 0.20456090E-07,-0.95694339E-09)
  ( 0.89037639E-04,-0.79600084E-07) ( 0.25255071E-09, 0.21628069E-10)
  (-0.61290859E-05,-0.18527497E-11) (-0.36300495E-03, 0.15808111E-06)
  ( 0.55612264E-12, 0.57623046E-13) (-0.49771739E-08, 0.28096144E-09)
  ( 0.41964583E-04,-0.36072640E-07) ( 0.11964712E-14, 0.39834449E-15)
  (-0.15168641E-09,-0.11581265E-10) ( 0.17612470E-05,-0.21880251E-09)
  (-0.75464523E-04, 0.46629178E-07)
     ROW 19
  (-0.53219645E-10,-0.58904811E-10) ( 0.73631976E-11,-0.83066339E-11)
  ( 0.39452284E-10,-0.15266551E-10) ( 0.14862705E-10, 0.83038866E-11)
  (-0.38446721E-11,-0.34657880E-11) (-0.17118325E-09,-0.61843337E-11)
  (-0.18034052E-08, 0.19643794E-10) ( 0.38626574E-11, 0.33461916E-12)
  (-0.22519156E-06,-0.19710822E-08) ( 0.28826446E-09, 0.17651553E-10)
  (-0.54454713E-05,-0.60938642E-08) ( 0.77992865E-08,-0.35952085E-09)
  (-0.22252292E-11,-0.18884563E-12) ( 0.18216954E-05,-0.30227464E-08)
  (-0.14192952E-09,-0.12630880E-10) (-0.57434382E-04,-0.36891890E-07)
  (-0.47992248E-08, 0.24535645E-09) ( 0.55612293E-12, 0.57623046E-13)
  ( 0.37015563E-03, 0.14244180E-06) (-0.64357351E-06, 0.17399411E-08)
  ( 0.27208159E-10, 0.26144490E-11) ( 0.36449297E-04, 0.28840928E-07)
  ( 0.13814809E-04, 0.87645262E-08) ( 0.84696915E-09,-0.42577518E-10)
  (-0.71444599E-13,-0.81478179E-14)
     ROW 20
  ( 0.22523377E-09, 0.20497547E-09) ( 0.12311311E-09,-0.13065831E-09)
  (-0.93506783E-10, 0.14488914E-09) (-0.16256007E-10,-0.55840483E-11)
  ( 0.95101479E-10,-0.11315251E-10) (-0.97646193E-09,-0.55225540E-10)
  ( 0.29193281E-08, 0.15177812E-08) ( 0.45507853E-08,-0.17359000E-09)
  ( 0.31411258E-07, 0.32090550E-08) (-0.68026322E-07,-0.99116050E-09)
  ( 0.17414416E-06, 0.31921663E-08) (-0.65618774E-05, 0.72508994E-08)
  (-0.59316441E-08, 0.24758892E-09) (-0.60955199E-04,-0.48313886E-08)
  ( 0.24518878E-05, 0.32170531E-09) (-0.29939481E-04,-0.11924682E-07)
  (-0.17675524E-04,-0.12311786E-09) (-0.49771739E-08, 0.28096144E-09)
  (-0.64357351E-06, 0.17399411E-08) (-0.54032590E-04, 0.12186673E-07)
  (-0.21789338E-05, 0.95317038E-09) ( 0.10438668E-08,-0.53693186E-10)
  ( 0.26102751E-04, 0.16520982E-08) ( 0.32065232E-04,-0.55335353E-08)
  ( 0.36802660E-08,-0.19298215E-09)
     ROW 21
  (-0.27206561E-09,-0.25177373E-09) (-0.38609074E-10,-0.59307649E-10)
  ( 0.94851251E-10,-0.20346589E-09) ( 0.20334511E-11, 0.69048754E-11)
  (-0.63011472E-10,-0.84873666E-11) ( 0.15215187E-09, 0.59969229E-10)
  (-0.12680405E-08,-0.41973575E-09) ( 0.27315769E-08, 0.17941027E-08)
  ( 0.60384891E-08, 0.13677357E-09) ( 0.76372750E-07, 0.87797873E-08)
  ( 0.51011725E-09,-0.17613046E-10) ( 0.15748055E-05, 0.12461028E-07)
  (-0.57234742E-05,-0.69656928E-08) ( 0.37397598E-06,-0.23537123E-08)
  (-0.86710716E-04, 0.60328495E-07) (-0.38234617E-08, 0.18637267E-09)
  (-0.47607979E-04, 0.22951779E-07) ( 0.41964583E-04,-0.36072640E-07)
  ( 0.27208159E-10, 0.26144490E-11) (-0.21789338E-05, 0.95317038E-09)
  (-0.26037564E-03, 0.85476760E-07) (-0.40782216E-13,-0.44690589E-14)
  ( 0.26015573E-08,-0.14107496E-09) (-0.81983756E-05, 0.76909637E-08)
  ( 0.43584415E-04,-0.25921961E-07)
     ROW 22
  ( 0.34865099E-12, 0.35954020E-12) (-0.60927747E-13, 0.57814668E-13)
  (-0.23763768E-12, 0.17677936E-13) (-0.96844680E-12, 0.19056681E-14)
  ( 0.13862377E-13,-0.39347360E-13) ( 0.60312146E-12, 0.88046114E-13)
  (-0.32988242E-10,-0.21749103E-11) ( 0.20096211E-13, 0.52367910E-14)
  ( 0.16320767E-08,-0.32668476E-10) (-0.52318457E-12,-0.47519112E-13)
  (-0.16717421E-06,-0.46747642E-09) ( 0.48811258E-10, 0.38421150E-11)
  (-0.66609849E-14,-0.19347482E-14) (-0.25501397E-08, 0.12163939E-09)
  ( 0.20272613E-12, 0.19758806E-13) ( 0.71000132E-06,-0.15687004E-08)
  (-0.20254729E-10,-0.19886397E-11) ( 0.11965432E-14, 0.39834450E-15)
  ( 0.36449297E-04, 0.28840928E-07) ( 0.10438668E-08,-0.53693186E-10)
  (-0.40782234E-13,-0.44690589E-14) ( 0.41993319E-03, 0.17783356E-06)
  (-0.17667037E-06, 0.51919458E-09) ( 0.33559462E-11, 0.34615043E-12)
  (-0.12744864E-15,-0.45642351E-16)
     ROW 23
  (-0.11583567E-10,-0.12684986E-10) ( 0.13501608E-10,-0.25372907E-10)
  ( 0.65600867E-11,-0.83316231E-11) (-0.29066942E-11, 0.76079513E-12)
  (-0.50402920E-11,-0.31799390E-12) ( 0.24248211E-10,-0.28204105E-11)
  (-0.61477604E-09,-0.42650578E-10) (-0.29791717E-10,-0.19469751E-11)
  (-0.17466390E-08,-0.73447377E-09) (-0.11473157E-08, 0.51830556E-10)
  ( 0.95137142E-08, 0.10044633E-08) (-0.86942326E-07,-0.83786410E-09)
  ( 0.15355311E-09, 0.87122057E-11) ( 0.54597379E-05,-0.35819250E-08)
  (-0.36333999E-09, 0.29940410E-10) (-0.39883063E-04,-0.13994628E-07)
  ( 0.15780053E-05,-0.15415522E-09) (-0.15168641E-09,-0.11581265E-10)
  ( 0.13814809E-04, 0.87645262E-08) ( 0.26102751E-04, 0.16520982E-08)
  ( 0.26015573E-08,-0.14107496E-09) (-0.17667037E-06, 0.51919458E-09)
  ( 0.53559724E-04, 0.78596355E-08) (-0.10598209E-05, 0.88860213E-09)
  ( 0.51447098E-10, 0.41888058E-11)
     ROW 24
  (-0.79462080E-11,-0.73016102E-11) (-0.16700523E-11, 0.21128074E-11)
  ( 0.35387949E-11,-0.51026434E-11) ( 0.79715346E-12, 0.26161087E-12)
  (-0.10553330E-11, 0.34957266E-12) ( 0.24656237E-10, 0.64322561E-12)
  (-0.78207227E-11, 0.60893402E-11) (-0.36069047E-09,-0.39048753E-10)
  ( 0.43127602E-09, 0.10294832E-09) (-0.81453408E-09,-0.10073966E-08)
  ( 0.75638847E-09, 0.20714811E-10) ( 0.50909396E-07, 0.52411707E-08)
  (-0.15398255E-07,-0.10964197E-09) (-0.68732260E-06,-0.58037073E-08)
  ( 0.40870656E-05,-0.89200049E-09) ( 0.11108139E-06,-0.83051110E-09)
  (-0.66828548E-04, 0.24445086E-07) ( 0.17612470E-05,-0.21880251E-09)
  ( 0.84696915E-09,-0.42577518E-10) ( 0.32065232E-04,-0.55335353E-08)
  (-0.81983756E-05, 0.76909637E-08) ( 0.33559464E-11, 0.34615043E-12)
  (-0.10598209E-05, 0.88860213E-09) (-0.16363111E-03, 0.35719805E-07)
  (-0.25144333E-05,-0.20838998E-09)
     ROW 25
  ( 0.75897536E-11, 0.71811572E-11) ( 0.16382296E-11,-0.34822384E-11)
  (-0.31203689E-11, 0.52537215E-11) (-0.75492063E-12, 0.23587542E-13)
  ( 0.11179983E-11, 0.91612231E-13) (-0.75141937E-11,-0.12703643E-11)
  (-0.16156357E-10,-0.11697661E-10) ( 0.56422831E-10, 0.10185621E-10)
  ( 0.68750964E-10,-0.18114172E-12) ( 0.17450904E-08, 0.76960044E-09)
  ( 0.37500566E-12, 0.18212793E-12) ( 0.77594135E-08, 0.17461625E-09)
  ( 0.71931374E-07, 0.72907751E-08) (-0.17927544E-08, 0.77971415E-10)
  (-0.30610450E-05,-0.85678359E-08) (-0.21505779E-10,-0.22307588E-11)
  ( 0.79953065E-06,-0.17508290E-08) (-0.75464523E-04, 0.46629178E-07)
  (-0.71444554E-13,-0.81478181E-14) ( 0.36802660E-08,-0.19298215E-09)
  ( 0.43584415E-04,-0.25921961E-07) (-0.12745080E-15,-0.45642348E-16)
  ( 0.51447098E-10, 0.41888058E-11) (-0.25144333E-05,-0.20838998E-09)
  (-0.23558698E-03, 0.66881550E-07)
 eigenphases
 -0.6281912E+00 -0.1608484E+00 -0.2090334E-02 -0.9479420E-03 -0.6287033E-03
 -0.5307513E-03 -0.4599722E-03 -0.3405109E-03 -0.2965535E-03 -0.2706311E-03
 -0.2196354E-03 -0.1849891E-03 -0.1472321E-03 -0.8947011E-04 -0.6539212E-04
  0.4988705E-04  0.1033388E-03  0.2748626E-03  0.3077080E-03  0.3801559E-03
  0.4450818E-03  0.8430442E-03  0.1201520E-02  0.8555657E-02  0.9332509E+00
 eigenphase sum 0.150100E+00  scattering length=  -0.62370
 eps+pi 0.329169E+01  eps+2*pi 0.643329E+01

MaxIter =  11 c.s. =     60.85309000 angs^2  rmsk=     0.00000000
Time Now =       610.4381  Delta time =       378.3396 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.15200000E+02  eV
 Do E =  0.48000000E+01 eV (  0.17639676E+00 AU)
Time Now =       610.4814  Delta time =         0.0433 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = A1    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   12
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    72
Number of partial waves (np) =    76
Number of asymptotic solutions on the right (NAsymR) =    25
Number of asymptotic solutions on the left (NAsymL) =    25
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =    25
Maximum in the asymptotic region (lpasym) =   14
Number of partial waves in the asymptotic region (npasym) =   32
Number of orthogonality constraints (NOrthUse) =    6
Number of different asymptotic potentials =    5
Maximum number of asymptotic partial waves =  211
Maximum l used in usual function (lmax) =   25
Maximum m used in usual function (LMax) =   25
Maxamum l used in expanding static potential (lpotct) =   50
Maximum l used in exapnding the exchange potential (lmaxab) =   50
Higest l included in the expansion of the wave function (lnp) =   25
Higest l included in the K matrix (lna) =   12
Highest l used at large r (lpasym) =   14
Higest l used in the asymptotic potential (lpzb) =   28
Maximum L used in the homogeneous solution (LMaxHomo) =   14
Number of partial waves in the homogeneous solution (npHomo) =   32
Time Now =       610.5010  Delta time =         0.0196 Energy independent setup

Compute solution for E =    4.8000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.11379786E-14
 i =  2  lval =   3  stpote =  0.95368485E-18
 i =  3  lval =   3  stpote =  0.46846194E-04
 i =  4  lval =   4  stpote =  0.20438575E-04
For potential     2
 i =  1  exps = -0.93155070E+02 -0.20000000E+01  stpote = -0.37963860E-16
 i =  2  exps = -0.93155070E+02 -0.20000000E+01  stpote = -0.38296338E-16
 i =  3  exps = -0.93155070E+02 -0.20000000E+01  stpote = -0.38617734E-16
 i =  4  exps = -0.93155070E+02 -0.20000000E+01  stpote = -0.38914247E-16
For potential     3
For potential     4
 i =  1  lval =   4  stpote = -0.76107671E-01
 i =  2  lval =   3  stpote = -0.15407618E-04
 i =  3  lval =   3  stpote = -0.60564730E-04
 i =  4  lval =   4  stpote = -0.38950150E-04
For potential     5
 i =  1  lval =   4  stpote =  0.76107671E-01
 i =  2  lval =   3  stpote = -0.15407618E-04
 i =  3  lval =   3  stpote =  0.60564730E-04
 i =  4  lval =   4  stpote =  0.38950150E-04
Number of asymptotic regions =     181
Final point in integration =   0.41505009E+03 Angstroms
Time Now =       641.2392  Delta time =        30.7382 End SolveHomo
      Final k matrix
     ROW  1
  (-0.23909287E+00, 0.65680154E+00) (-0.37343775E-01,-0.43654009E-01)
  ( 0.16062366E-01,-0.37435193E+00) (-0.17371271E-01, 0.64898363E-01)
  (-0.33786567E-01, 0.13236492E+00) ( 0.11662262E-01,-0.31950848E-01)
  (-0.61780337E-02, 0.13202685E-01) ( 0.12947923E-03, 0.28441045E-03)
  (-0.57089510E-03, 0.10727957E-02) (-0.86078045E-03, 0.16937946E-02)
  ( 0.19086655E-04,-0.31674597E-04) (-0.70690210E-04, 0.15700538E-03)
  ( 0.89917948E-04,-0.18030378E-03) (-0.20679174E-04, 0.37108398E-04)
  (-0.48647463E-05, 0.11664207E-04) ( 0.14059376E-05,-0.22261137E-05)
  ( 0.16293159E-05,-0.27051144E-05) (-0.48469471E-06, 0.64153050E-06)
  ( 0.44958317E-07,-0.61793384E-07) (-0.75693540E-07, 0.15361281E-06)
  ( 0.16358094E-06,-0.27533630E-06) (-0.69376638E-09, 0.81861602E-09)
  ( 0.17689518E-07,-0.27520644E-07) ( 0.62671656E-08,-0.12578225E-07)
  (-0.84219463E-08, 0.14890754E-07)
     ROW  2
  (-0.37343838E-01,-0.43653990E-01) (-0.46814587E+00, 0.63877974E+00)
  ( 0.18145905E-01, 0.34091732E-01) (-0.47667290E-01, 0.47701801E-01)
  ( 0.66372651E-02,-0.26378229E-01) (-0.21426586E-01, 0.31819415E-01)
  (-0.19969380E-02, 0.67020411E-03) ( 0.29563690E-02,-0.38853633E-02)
  (-0.48480609E-03, 0.44143417E-03) (-0.25935179E-03, 0.14963865E-03)
  ( 0.21484978E-04,-0.19733157E-04) ( 0.60727296E-04,-0.97293465E-04)
  (-0.11905192E-04, 0.35412885E-04) (-0.53488288E-05, 0.24224093E-05)
  ( 0.85342853E-05,-0.12045891E-04) ( 0.84485085E-06,-0.68791456E-06)
  ( 0.58253104E-06,-0.45727941E-06) (-0.59496043E-06, 0.67808402E-06)
  ( 0.36733888E-07,-0.28532387E-07) ( 0.59728072E-07,-0.82236425E-07)
  ( 0.20558944E-07, 0.83615220E-09) (-0.67699383E-09, 0.46105239E-09)
  ( 0.36791441E-08,-0.16370956E-08) (-0.53721879E-08, 0.73001632E-08)
  ( 0.21422890E-08,-0.39484962E-08)
     ROW  3
  ( 0.16061626E-01,-0.37435138E+00) ( 0.18145892E-01, 0.34091541E-01)
  (-0.21679315E+00, 0.27555451E+00) ( 0.25703821E-01,-0.41840353E-01)
  ( 0.30851093E-01,-0.83588818E-01) ( 0.59551586E-02, 0.17288702E-01)
  (-0.15944174E-02,-0.68704279E-02) (-0.87516261E-03,-0.63408937E-04)
  (-0.23380550E-03,-0.51181004E-03) (-0.25446677E-03,-0.86375511E-03)
  ( 0.86194736E-05, 0.13477708E-04) (-0.56998595E-04,-0.73524717E-04)
  ( 0.40338841E-04, 0.88809314E-04) (-0.11910362E-04,-0.16666871E-04)
  (-0.37255684E-05,-0.56913405E-05) ( 0.66254894E-06, 0.98427967E-06)
  ( 0.79425337E-06, 0.12159061E-05) (-0.16183386E-06,-0.27416063E-06)
  ( 0.16572945E-07, 0.28710533E-07) (-0.66448755E-07,-0.65851308E-07)
  ( 0.83626305E-07, 0.12309145E-06) (-0.23322940E-09,-0.43347327E-09)
  ( 0.98067270E-08, 0.12012905E-07) ( 0.46348757E-08, 0.57200205E-08)
  (-0.44796901E-08,-0.68302659E-08)
     ROW  4
  (-0.17371218E-01, 0.64898440E-01) (-0.47667296E-01, 0.47701789E-01)
  ( 0.25703817E-01,-0.41840382E-01) ( 0.42530352E-01, 0.13941797E-01)
  (-0.16552399E-01, 0.11464728E-01) ( 0.74648060E-02,-0.69106702E-04)
  ( 0.79263929E-03, 0.14373069E-02) (-0.13881256E-02,-0.37445485E-03)
  ( 0.32058118E-03, 0.16235451E-03) ( 0.63393271E-04, 0.17653174E-03)
  (-0.36932747E-04,-0.65262998E-05) (-0.48630631E-04, 0.38243042E-05)
  ( 0.27737184E-04,-0.12347598E-04) ( 0.75487201E-05, 0.38053222E-05)
  (-0.71677915E-05,-0.25405295E-06) (-0.13522006E-05,-0.32245648E-06)
  (-0.39085576E-06,-0.28526892E-06) ( 0.38361142E-06, 0.12442563E-06)
  (-0.52597162E-07,-0.11512383E-07) (-0.62599072E-07, 0.23192131E-08)
  ( 0.88849951E-08,-0.23492090E-07) ( 0.40315216E-09, 0.28489992E-09)
  (-0.64312486E-08,-0.25054143E-08) ( 0.57579858E-08,-0.21302868E-09)
  (-0.32717962E-08, 0.84368279E-09)
     ROW  5
  (-0.33786343E-01, 0.13236545E+00) ( 0.66372538E-02,-0.26378226E-01)
  ( 0.30850971E-01,-0.83588919E-01) (-0.16552351E-01, 0.11464730E-01)
  ( 0.14482665E-01, 0.28854413E-01) ( 0.26900294E-02,-0.71656360E-02)
  (-0.39876745E-03, 0.25293310E-02) (-0.70363006E-03, 0.15098120E-03)
  (-0.18346585E-03, 0.18243261E-03) ( 0.87746199E-04, 0.32270313E-03)
  ( 0.97698276E-05,-0.46508427E-05) ( 0.51360760E-05, 0.32624057E-04)
  (-0.35296002E-04,-0.36092944E-04) (-0.62824071E-07, 0.67234365E-05)
  ( 0.24906104E-05, 0.26613690E-05) ( 0.27566021E-06,-0.38140514E-06)
  (-0.68276374E-06,-0.49463375E-06) ( 0.26455932E-06, 0.10642867E-06)
  ( 0.15096337E-07,-0.95420665E-08) ( 0.49450652E-08, 0.29819579E-07)
  (-0.94980822E-07,-0.51799991E-07) (-0.28441857E-09, 0.95651690E-10)
  ( 0.54011988E-09,-0.49234673E-08) (-0.26372733E-08,-0.23813030E-08)
  ( 0.57163531E-08, 0.28534580E-08)
     ROW  6
  ( 0.11662285E-01,-0.31950862E-01) (-0.21426582E-01, 0.31819408E-01)
  ( 0.59551379E-02, 0.17288695E-01) ( 0.74647904E-02,-0.69123305E-04)
  ( 0.26900298E-02,-0.71656082E-02) ( 0.65779532E-02, 0.31327871E-02)
  ( 0.12185357E-02,-0.56507110E-03) ( 0.63395068E-03,-0.21232477E-03)
  ( 0.32783218E-03,-0.24755259E-04) (-0.46567875E-03,-0.75417239E-04)
  (-0.15433906E-04, 0.33548393E-06) ( 0.56540562E-04,-0.12378315E-04)
  (-0.60331757E-04, 0.94307734E-05) (-0.76972646E-05,-0.18669943E-05)
  (-0.93220221E-05,-0.11379774E-05) (-0.56221457E-06, 0.73050313E-07)
  (-0.26766875E-06, 0.58955096E-07) ( 0.99672423E-06, 0.47682893E-07)
  (-0.37882003E-07,-0.20873210E-09) (-0.22295922E-06,-0.13626015E-07)
  ( 0.25928652E-07, 0.18503457E-07) ( 0.59664530E-09, 0.63014994E-10)
  ( 0.85639445E-08, 0.80305738E-09) ( 0.15201302E-07, 0.94113255E-09)
  (-0.69724905E-08,-0.10582033E-08)
     ROW  7
  (-0.61780364E-02, 0.13202692E-01) (-0.19969382E-02, 0.67020396E-03)
  (-0.15944130E-02,-0.68704363E-02) ( 0.79264065E-03, 0.14373050E-02)
  (-0.39876836E-03, 0.25293267E-02) ( 0.12185359E-02,-0.56507153E-03)
  ( 0.41954939E-03, 0.27965308E-03) (-0.43237569E-03,-0.38275053E-05)
  (-0.88815918E-03, 0.22727574E-04) (-0.74808816E-03, 0.35296089E-04)
  ( 0.31524518E-04,-0.12598393E-05) (-0.36825734E-03, 0.26218872E-05)
  ( 0.12651689E-05,-0.40127035E-05) (-0.93075111E-04, 0.96011361E-06)
  ( 0.17624129E-04, 0.62862143E-06) (-0.75074481E-05,-0.15563178E-06)
  ( 0.13871157E-05,-0.22218877E-07) ( 0.17446433E-05, 0.45780491E-07)
  (-0.14880992E-06, 0.14016402E-08) ( 0.17254175E-06, 0.37771339E-07)
  (-0.11501311E-06,-0.15546003E-07) (-0.35056054E-08,-0.21992265E-09)
  (-0.88777154E-07,-0.24979168E-08) (-0.41442463E-09, 0.23281008E-09)
  (-0.67682407E-09,-0.67828808E-09)
     ROW  8
  ( 0.12947743E-03, 0.28441492E-03) ( 0.29563707E-02,-0.38853640E-02)
  (-0.87516000E-03,-0.63409279E-04) (-0.13881252E-02,-0.37445556E-03)
  (-0.70363037E-03, 0.15097938E-03) ( 0.63395070E-03,-0.21232516E-03)
  (-0.43237570E-03,-0.38274802E-05) (-0.13905537E-02, 0.30398193E-04)
  (-0.48575538E-04,-0.23985924E-05) ( 0.57059703E-03,-0.23699286E-05)
  ( 0.74969615E-06, 0.11814369E-06) ( 0.15033346E-03, 0.74211892E-06)
  (-0.42883469E-03, 0.10774561E-05) (-0.11557350E-05, 0.31939809E-07)
  (-0.80283011E-04,-0.14576962E-06) ( 0.24849193E-06, 0.85500109E-08)
  ( 0.14042817E-05,-0.21590822E-07) ( 0.29034970E-05, 0.65599353E-07)
  ( 0.41260365E-08, 0.50280621E-09) ( 0.34488536E-06,-0.93812731E-08)
  ( 0.15068166E-06, 0.39614140E-07) (-0.18350379E-10,-0.74396657E-11)
  (-0.46659207E-08,-0.28766727E-09) (-0.52317356E-07,-0.23288011E-08)
  ( 0.94085789E-08, 0.75830345E-09)
     ROW  9
  (-0.57089827E-03, 0.10727960E-02) (-0.48480617E-03, 0.44143383E-03)
  (-0.23380435E-03,-0.51181244E-03) ( 0.32058099E-03, 0.16235461E-03)
  (-0.18346724E-03, 0.18243161E-03) ( 0.32783251E-03,-0.24754805E-04)
  (-0.88815925E-03, 0.22727494E-04) (-0.48575609E-04,-0.23985892E-05)
  ( 0.12915731E-02, 0.55704050E-05) (-0.38243857E-04, 0.35793844E-05)
  ( 0.64093223E-03, 0.18828123E-05) ( 0.34722816E-03, 0.88181664E-06)
  ( 0.52860321E-05,-0.33645019E-06) (-0.21321475E-03,-0.29773876E-06)
  (-0.15494542E-05,-0.10657671E-06) ( 0.68001674E-04, 0.13877629E-07)
  (-0.63457063E-05,-0.14624550E-06) (-0.25218234E-06, 0.30471865E-08)
  (-0.46841491E-05,-0.52526055E-07) ( 0.59049422E-06, 0.14885421E-07)
  ( 0.21466376E-06, 0.47532059E-08) ( 0.11842197E-06,-0.18199131E-08)
  (-0.10354952E-06,-0.16781572E-07) ( 0.30310912E-07, 0.26744252E-08)
  ( 0.38956647E-09, 0.27362261E-09)
     ROW 10
  (-0.86078079E-03, 0.16937955E-02) (-0.25935181E-03, 0.14963859E-03)
  (-0.25446614E-03,-0.86375610E-03) ( 0.63393530E-04, 0.17653141E-03)
  ( 0.87746106E-04, 0.32270254E-03) (-0.46567872E-03,-0.75417295E-04)
  (-0.74808816E-03, 0.35296085E-04) ( 0.57059703E-03,-0.23699320E-05)
  (-0.38243848E-04, 0.35793937E-05) (-0.86504803E-03, 0.71494900E-05)
  ( 0.31825191E-05,-0.14122523E-06) ( 0.62756106E-04, 0.64702607E-06)
  ( 0.69919028E-03,-0.21032838E-05) ( 0.58143581E-04, 0.14683784E-06)
  (-0.36425221E-03, 0.68254942E-06) (-0.73842689E-06, 0.12869403E-07)
  ( 0.54095735E-04,-0.40009033E-07) (-0.37998051E-04,-0.25687177E-06)
  ( 0.26949279E-07, 0.90049992E-09) (-0.13013310E-05,-0.22391333E-07)
  ( 0.10025947E-05, 0.42240569E-07) (-0.34654025E-09,-0.16521232E-10)
  (-0.94634116E-07, 0.28863965E-08) (-0.16462996E-07,-0.21156583E-07)
  ( 0.10023374E-06, 0.16961352E-07)
     ROW 11
  ( 0.19084184E-04,-0.31674180E-04) ( 0.21484945E-04,-0.19733150E-04)
  ( 0.86217368E-05, 0.13477327E-04) (-0.36933627E-04,-0.65243045E-05)
  ( 0.97695440E-05,-0.46509040E-05) (-0.15434058E-04, 0.33554776E-06)
  ( 0.31524500E-04,-0.12597905E-05) ( 0.74971301E-06, 0.11809974E-06)
  ( 0.64093222E-03, 0.18828208E-05) ( 0.31825211E-05,-0.14121960E-06)
  ( 0.18098276E-02, 0.37169825E-05) (-0.61188029E-05, 0.22424715E-06)
  (-0.34578935E-07, 0.13979217E-07) (-0.11877567E-03,-0.39751062E-06)
  (-0.41535697E-06, 0.37391447E-08) (-0.98163688E-04,-0.20264207E-06)
  (-0.31764156E-06,-0.26333939E-07) ( 0.37183570E-08,-0.58840682E-09)
  (-0.40752388E-04,-0.85073440E-07) ( 0.15513625E-05, 0.35138088E-07)
  ( 0.17776690E-07, 0.67379818E-10) (-0.27705413E-05,-0.13360986E-07)
  ( 0.17568984E-06, 0.47439349E-08) ( 0.29110210E-07, 0.87253888E-09)
  (-0.29620587E-09, 0.18434458E-10)
     ROW 12
  (-0.70691808E-04, 0.15700740E-03) ( 0.60727692E-04,-0.97293538E-04)
  (-0.56992372E-04,-0.73526575E-04) (-0.48630903E-04, 0.38241988E-05)
  ( 0.51357691E-05, 0.32623455E-04) ( 0.56540624E-04,-0.12378059E-04)
  (-0.36825737E-03, 0.26217769E-05) ( 0.15033348E-03, 0.74211368E-06)
  ( 0.34722817E-03, 0.88180660E-06) ( 0.62756102E-04, 0.64701367E-06)
  (-0.61188038E-05, 0.22424737E-06) (-0.37566310E-03, 0.73564969E-06)
  (-0.11281661E-03,-0.28735283E-07) (-0.23741289E-03, 0.38269912E-08)
  (-0.34488211E-03, 0.29092190E-06) ( 0.28284937E-04,-0.24339750E-07)
  (-0.24933836E-03, 0.14063338E-06) ( 0.91335975E-05,-0.76227183E-07)
  ( 0.43076096E-06,-0.10168793E-07) (-0.47452863E-04, 0.69819503E-07)
  ( 0.11801442E-04, 0.12420585E-06) ( 0.38468282E-08, 0.29524073E-09)
  (-0.18220603E-05,-0.19881148E-07) ( 0.93861070E-06, 0.29602527E-07)
  ( 0.42004077E-06, 0.58157523E-08)
     ROW 13
  ( 0.89918746E-04,-0.18030513E-03) (-0.11905602E-04, 0.35413170E-04)
  ( 0.40334418E-04, 0.88810808E-04) ( 0.27737489E-04,-0.12347716E-04)
  (-0.35295605E-04,-0.36092354E-04) (-0.60331843E-04, 0.94305661E-05)
  ( 0.12652920E-05,-0.40125964E-05) (-0.42883469E-03, 0.10774734E-05)
  ( 0.52860413E-05,-0.33644240E-06) ( 0.69919028E-03,-0.21032650E-05)
  (-0.34578615E-07, 0.13979006E-07) (-0.11281661E-03,-0.28735265E-07)
  (-0.10070876E-02, 0.19257369E-05) (-0.23095295E-05, 0.57948372E-07)
  ( 0.28777341E-03,-0.73828188E-06) (-0.96674631E-07,-0.35543580E-08)
  ( 0.39206402E-04, 0.24387466E-07) (-0.28487514E-03, 0.52052253E-06)
  (-0.14815907E-08,-0.56117696E-10) (-0.33650185E-06, 0.91280462E-08)
  (-0.41800746E-04,-0.60130221E-07) (-0.37888415E-13,-0.59910029E-12)
  ( 0.21980473E-07, 0.52475533E-09) ( 0.93298432E-07,-0.20773624E-08)
  ( 0.13658814E-05, 0.41941706E-07)
     ROW 14
  (-0.20676975E-04, 0.37107654E-04) (-0.53140106E-05, 0.24104034E-05)
  (-0.11920443E-04,-0.16668300E-04) ( 0.75449933E-05, 0.37986469E-05)
  (-0.61173439E-07, 0.67258565E-05) (-0.76968170E-05,-0.18711223E-05)
  (-0.93075216E-04, 0.95989506E-06) (-0.11556515E-05, 0.31353451E-07)
  (-0.21321481E-03,-0.29780240E-06) ( 0.58143549E-04, 0.14679950E-06)
  (-0.11877567E-03,-0.39750810E-06) (-0.23741288E-03, 0.38449829E-08)
  (-0.23095321E-05, 0.57943377E-07) ( 0.13530673E-03, 0.29154629E-06)
  (-0.29893756E-04, 0.65778524E-07) ( 0.25880362E-03, 0.15790319E-06)
  ( 0.20791606E-03, 0.25165217E-07) ( 0.97578268E-06,-0.22495348E-07)
  ( 0.12790025E-04,-0.36678066E-07) (-0.17331807E-03,-0.34633949E-07)
  ( 0.15803062E-05,-0.29716603E-07) (-0.14892924E-06, 0.32330821E-08)
  ( 0.38439688E-04,-0.33693978E-07) (-0.52254305E-05,-0.59389868E-07)
  (-0.99819465E-07, 0.19072581E-08)
     ROW 15
  (-0.48648221E-05, 0.11664195E-04) ( 0.85343202E-05,-0.12045888E-04)
  (-0.37255772E-05,-0.56913973E-05) (-0.71678044E-05,-0.25405026E-06)
  ( 0.24905973E-05, 0.26613216E-05) (-0.93220252E-05,-0.11379575E-05)
  ( 0.17624129E-04, 0.62861841E-06) (-0.80283010E-04,-0.14576945E-06)
  (-0.15494542E-05,-0.10657670E-06) (-0.36425221E-03, 0.68254908E-06)
  (-0.41535713E-06, 0.37391421E-08) (-0.34488211E-03, 0.29092190E-06)
  ( 0.28777341E-03,-0.73828188E-06) (-0.29893757E-04, 0.65775387E-07)
  (-0.63510094E-03, 0.90646144E-06) ( 0.76759942E-06,-0.19576544E-07)
  (-0.24521721E-04, 0.11817136E-06) ( 0.31587241E-03,-0.50369533E-06)
  (-0.10565641E-07,-0.75396871E-09) ( 0.20463446E-04, 0.15526700E-07)
  (-0.24154712E-03, 0.29423129E-06) ( 0.13895634E-09, 0.75808950E-11)
  (-0.29793459E-07, 0.94116192E-09) ( 0.28573705E-04,-0.72429814E-08)
  (-0.21941027E-04,-0.80609976E-07)
     ROW 16
  ( 0.14077889E-05,-0.22234337E-05) ( 0.84611601E-06,-0.67731130E-06)
  ( 0.66537155E-06, 0.98335222E-06) (-0.13477487E-05,-0.31976735E-06)
  ( 0.27470335E-06,-0.38145358E-06) (-0.56236893E-06, 0.75448612E-07)
  (-0.75073632E-05,-0.15552840E-06) ( 0.24778384E-06, 0.14150388E-07)
  ( 0.68001714E-04, 0.13889691E-07) (-0.73840877E-06, 0.12877416E-07)
  (-0.98163690E-04,-0.20264178E-06) ( 0.28284943E-04,-0.24353469E-07)
  (-0.96674132E-07,-0.35531899E-08) ( 0.25880362E-03, 0.15790336E-06)
  ( 0.76760674E-06,-0.19580874E-07) ( 0.47029009E-03, 0.37575964E-06)
  (-0.10741784E-04, 0.50968497E-07) ( 0.17775762E-07, 0.12466519E-08)
  (-0.21454698E-03,-0.24154821E-06) (-0.11260464E-03,-0.97760819E-07)
  (-0.19600386E-06, 0.42072862E-08) ( 0.49052905E-05,-0.23222922E-07)
  (-0.11292385E-03,-0.73920468E-07) ( 0.39993508E-06,-0.12416844E-07)
  (-0.99027379E-09,-0.16075154E-09)
     ROW 17
  ( 0.16317756E-05,-0.27027348E-05) ( 0.60067135E-06,-0.45420619E-06)
  ( 0.79626001E-06, 0.12146519E-05) (-0.38751932E-06,-0.28384461E-06)
  (-0.68296447E-06,-0.49490987E-06) (-0.26689663E-06, 0.59369870E-07)
  ( 0.13872072E-05,-0.22149528E-07) ( 0.14037159E-05,-0.21633971E-07)
  (-0.63456709E-05,-0.14624233E-06) ( 0.54095751E-04,-0.40004412E-07)
  (-0.31764336E-06,-0.26333798E-07) (-0.24933837E-03, 0.14062469E-06)
  ( 0.39206403E-04, 0.24387726E-07) ( 0.20791606E-03, 0.25165326E-07)
  (-0.24521721E-04, 0.11816858E-06) (-0.10741784E-04, 0.50968497E-07)
  (-0.36859385E-03, 0.31718419E-06) (-0.43356989E-04,-0.11043276E-07)
  (-0.24718755E-06, 0.57673004E-08) (-0.64964311E-04,-0.74974793E-08)
  (-0.17641139E-03, 0.14567045E-06) (-0.13662536E-08,-0.13863543E-09)
  ( 0.13350981E-04, 0.29670077E-08) (-0.18030445E-03, 0.11530925E-06)
  ( 0.56574470E-05,-0.20631277E-07)
     ROW 18
  (-0.40199998E-06, 0.64629086E-06) (-0.46547671E-06, 0.49561874E-06)
  (-0.18449494E-06,-0.36211099E-06) ( 0.26350277E-06, 0.12033883E-06)
  ( 0.25254576E-06, 0.15783653E-06) ( 0.96014477E-06, 0.63452015E-07)
  ( 0.17439487E-05, 0.45917216E-07) ( 0.29062376E-05, 0.65512766E-07)
  (-0.25315317E-06, 0.36958612E-08) (-0.37996845E-04,-0.25790290E-06)
  ( 0.37712908E-08,-0.80147948E-09) ( 0.91338656E-05,-0.76378901E-07)
  (-0.28487540E-03, 0.52068954E-06) ( 0.97584606E-06,-0.22538430E-07)
  ( 0.31587249E-03,-0.50371424E-06) ( 0.17774418E-07, 0.12484176E-08)
  (-0.43356996E-04,-0.11039919E-07) (-0.63277559E-03, 0.64969642E-06)
  ( 0.38399528E-09, 0.21014117E-10) (-0.28513581E-06, 0.84018190E-08)
  ( 0.15538065E-03,-0.25494878E-06) (-0.14138731E-12, 0.10615397E-12)
  (-0.18983050E-07,-0.67206851E-09) ( 0.15013328E-04, 0.41815190E-08)
  (-0.20000901E-03, 0.22881308E-06)
     ROW 19
  ( 0.40423371E-07,-0.62926736E-07) ( 0.29934817E-07,-0.19981183E-07)
  ( 0.17401336E-07, 0.34043341E-07) (-0.52200513E-07,-0.10447702E-07)
  ( 0.14830726E-07,-0.11217097E-07) (-0.38129726E-07, 0.12129551E-08)
  (-0.14879829E-06, 0.14422729E-08) ( 0.40724726E-08, 0.40897130E-09)
  (-0.46847376E-05,-0.52433269E-07) ( 0.27023252E-07, 0.82091893E-09)
  (-0.40752366E-04,-0.85069780E-07) ( 0.43079320E-06,-0.10293518E-07)
  (-0.14900487E-08,-0.43824666E-10) ( 0.12790003E-04,-0.36718506E-07)
  (-0.10564664E-07,-0.75631122E-09) (-0.21454698E-03,-0.24154754E-06)
  (-0.24718599E-06, 0.57697655E-08) ( 0.38399528E-09, 0.21014118E-10)
  ( 0.67397755E-03, 0.53005577E-06) (-0.36294468E-05, 0.24650653E-07)
  ( 0.16571408E-08, 0.17739902E-09) ( 0.14168294E-03, 0.20688739E-06)
  ( 0.54057517E-04, 0.72888228E-07) ( 0.46492366E-07,-0.95248958E-09)
  (-0.54488992E-10,-0.33007100E-11)
     ROW 20
  (-0.67565406E-07, 0.15833785E-06) ( 0.35042621E-07,-0.71595437E-07)
  (-0.63434755E-07,-0.82237871E-07) (-0.58598734E-07, 0.45921688E-08)
  (-0.14289418E-09, 0.36652774E-07) (-0.21904674E-06,-0.15853047E-07)
  ( 0.17175341E-06, 0.39019083E-07) ( 0.34515440E-06,-0.10009220E-07)
  ( 0.59058070E-06, 0.14876359E-07) (-0.13016335E-05,-0.21964630E-07)
  ( 0.15513111E-05, 0.35151969E-07) (-0.47452444E-04, 0.69631641E-07)
  (-0.33656914E-06, 0.91916873E-08) (-0.17331808E-03,-0.34622057E-07)
  ( 0.20463500E-04, 0.15514406E-07) (-0.11260464E-03,-0.97767241E-07)
  (-0.64964318E-04,-0.75066412E-08) (-0.28513581E-06, 0.84018190E-08)
  (-0.36294468E-05, 0.24650653E-07) (-0.10472552E-03, 0.10539430E-06)
  (-0.15566846E-04, 0.89573632E-08) ( 0.58015754E-07,-0.12716204E-08)
  ( 0.10012423E-03, 0.10896878E-07) ( 0.12376707E-03,-0.35000848E-07)
  ( 0.22644462E-06,-0.58145377E-08)
     ROW 21
  ( 0.14171248E-06,-0.28255656E-06) ( 0.22995389E-07, 0.86750111E-08)
  ( 0.85337922E-07, 0.15594506E-06) ( 0.10460610E-07,-0.29171674E-07)
  (-0.84744169E-07,-0.69780499E-07) ( 0.24117760E-07, 0.21346227E-07)
  (-0.11365841E-06,-0.17381407E-07) ( 0.15064548E-06, 0.39626141E-07)
  ( 0.21482705E-06, 0.45332815E-08) ( 0.10026178E-05, 0.42211231E-07)
  ( 0.17770434E-07, 0.76258462E-10) ( 0.11801288E-04, 0.12433114E-06)
  (-0.41800346E-04,-0.60327907E-07) ( 0.15803135E-05,-0.29724843E-07)
  (-0.24154715E-03, 0.29424922E-06) (-0.19600550E-06, 0.42114083E-08)
  (-0.17641138E-03, 0.14567339E-06) ( 0.15538065E-03,-0.25494878E-06)
  ( 0.16571408E-08, 0.17739902E-09) (-0.15566846E-04, 0.89573632E-08)
  (-0.45115160E-03, 0.37846171E-06) (-0.30333645E-10,-0.18033514E-11)
  ( 0.16083892E-06,-0.43470835E-08) (-0.31607314E-04, 0.60701707E-07)
  ( 0.16736069E-03,-0.18785390E-06)
     ROW 22
  (-0.64254479E-09, 0.84282217E-09) (-0.54707428E-09, 0.31769311E-09)
  (-0.23946906E-09,-0.49816705E-09) ( 0.45008069E-09, 0.21957750E-09)
  (-0.28650719E-09, 0.12264846E-09) ( 0.60731320E-09, 0.32291400E-10)
  (-0.35220758E-08,-0.20030798E-09) (-0.16795359E-10,-0.64812124E-11)
  ( 0.11843291E-06,-0.18183824E-08) (-0.34896361E-09,-0.13315519E-10)
  (-0.27705416E-05,-0.13361042E-07) ( 0.38464252E-08, 0.29675152E-09)
  ( 0.75409076E-13,-0.76045947E-12) (-0.14892867E-06, 0.32333800E-08)
  ( 0.13905596E-09, 0.75318277E-11) ( 0.49052905E-05,-0.23222932E-07)
  (-0.13662865E-08,-0.13865998E-09) (-0.14138820E-12, 0.10615399E-12)
  ( 0.14168294E-03, 0.20688739E-06) ( 0.58015754E-07,-0.12716204E-08)
  (-0.30333643E-10,-0.18033508E-11) ( 0.78837581E-03, 0.64311877E-06)
  (-0.10066721E-05, 0.82191568E-08) ( 0.18553557E-09, 0.26463199E-10)
  ( 0.77928374E-13,-0.81461295E-14)
     ROW 23
  ( 0.15708525E-07,-0.27887190E-07) ( 0.36171727E-08,-0.31862149E-09)
  ( 0.97037951E-08, 0.14833544E-07) (-0.55401661E-08,-0.36013731E-08)
  ( 0.74029722E-09,-0.57446429E-08) ( 0.85869326E-08, 0.90676795E-09)
  (-0.88726897E-07,-0.25608401E-08) (-0.46832674E-08,-0.27858715E-09)
  (-0.10348680E-06,-0.16890974E-07) (-0.94680611E-07, 0.29302584E-08)
  ( 0.17568872E-06, 0.47510055E-08) (-0.18220867E-05,-0.19862478E-07)
  ( 0.21991718E-07, 0.51504665E-09) ( 0.38439669E-04,-0.33694477E-07)
  (-0.29794113E-07, 0.94174190E-09) (-0.11292385E-03,-0.73919620E-07)
  ( 0.13350982E-04, 0.29670408E-08) (-0.18983050E-07,-0.67206851E-09)
  ( 0.54057517E-04, 0.72888228E-07) ( 0.10012423E-03, 0.10896878E-07)
  ( 0.16083892E-06,-0.43470835E-08) (-0.10066721E-05, 0.82191568E-08)
  ( 0.93522525E-04, 0.63745204E-07) (-0.75975907E-05, 0.11858309E-07)
  ( 0.59971362E-08, 0.27545409E-09)
     ROW 24
  ( 0.56195225E-08,-0.13037284E-07) (-0.29791756E-08, 0.63148018E-08)
  ( 0.43916044E-08, 0.70865311E-08) ( 0.52244677E-08,-0.25561064E-09)
  (-0.20158765E-08,-0.31309246E-08) ( 0.14463304E-07, 0.15800604E-08)
  (-0.34749730E-09, 0.12152796E-09) (-0.52323886E-07,-0.22840700E-08)
  ( 0.30285117E-07, 0.26907945E-08) (-0.16469358E-07,-0.21151055E-07)
  ( 0.29112144E-07, 0.87151697E-09) ( 0.93862387E-06, 0.29569504E-07)
  ( 0.93289432E-07,-0.20638680E-08) (-0.52254337E-05,-0.59401369E-07)
  ( 0.28573698E-04,-0.72460780E-08) ( 0.39993554E-06,-0.12416905E-07)
  (-0.18030445E-03, 0.11530950E-06) ( 0.15013328E-04, 0.41815190E-08)
  ( 0.46492366E-07,-0.95248958E-09) ( 0.12376707E-03,-0.35000848E-07)
  (-0.31607314E-04, 0.60701707E-07) ( 0.18553557E-09, 0.26463199E-10)
  (-0.75975907E-05, 0.11858309E-07) (-0.30324663E-03, 0.17120494E-06)
  (-0.19777538E-04,-0.61236240E-08)
     ROW 25
  (-0.74169816E-08, 0.15336197E-07) ( 0.83200510E-09,-0.35454604E-08)
  (-0.44291592E-08,-0.85186074E-08) (-0.30100679E-08, 0.10031186E-08)
  ( 0.48232482E-08, 0.40731407E-08) (-0.64848151E-08,-0.15206560E-08)
  (-0.75871072E-09,-0.55942529E-09) ( 0.92581223E-08, 0.99137351E-09)
  ( 0.38503920E-09, 0.28393224E-09) ( 0.10018865E-06, 0.17027566E-07)
  (-0.29651200E-09, 0.18554591E-10) ( 0.42003969E-06, 0.58159589E-08)
  ( 0.13658599E-05, 0.41953484E-07) (-0.99820898E-07, 0.19096500E-08)
  (-0.21941021E-04,-0.80608259E-07) (-0.99020010E-09,-0.16108460E-09)
  ( 0.56574464E-05,-0.20631882E-07) (-0.20000901E-03, 0.22881308E-06)
  (-0.54488992E-10,-0.33007098E-11) ( 0.22644462E-06,-0.58145377E-08)
  ( 0.16736069E-03,-0.18785390E-06) ( 0.77926399E-13,-0.81460249E-14)
  ( 0.59971362E-08, 0.27545409E-09) (-0.19777538E-04,-0.61236240E-08)
  (-0.43207511E-03, 0.28597836E-06)
 eigenphases
 -0.1309162E+01 -0.9214202E+00 -0.2169994E+00 -0.2445938E-02 -0.1449936E-02
 -0.1042648E-02 -0.8612558E-03 -0.6006868E-03 -0.5535530E-03 -0.3770819E-03
 -0.3257722E-03 -0.2074648E-03 -0.1431119E-03 -0.2641387E-04  0.8332000E-04
  0.2083660E-03  0.4150865E-03  0.5374291E-03  0.7475750E-03  0.9407689E-03
  0.1562608E-02  0.2475957E-02  0.5682519E-02  0.1967377E-01  0.5622600E-01
 eigenphase sum-0.236706E+01  scattering length=  -1.64740
 eps+pi 0.774531E+00  eps+2*pi 0.391612E+01

MaxIter =  10 c.s. =     16.13275160 angs^2  rmsk=     0.00000000
Time Now =      1085.3070  Delta time =       444.0678 End ScatStab
Time Now =      1085.3075  Delta time =         0.0005 Finalize