Execution on login004

----------------------------------------------------------------------
ePolyScat Version E3
----------------------------------------------------------------------

Authors: R. R. Lucchese, N. Sanna, A. P. P. Natalense, and F. A. Gianturco
http://www.chem.tamu.edu/rgroup/lucchese/ePolyScat.E3.manual/manual.html
Please cite the following two papers when reporting results obtained with  this program
F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 100, 6464 (1994).
A. P. P. Natalense and R. R. Lucchese, J. Chem. Phys. 111, 5344 (1999).

----------------------------------------------------------------------

Starting at 2011-08-29  10:54:16.525 (GMT -0500)
Using    16 processors

----------------------------------------------------------------------


+ Start of Input Records
#
# input file for test19
#
# C2H6 staggered conformation, electron scattering
#
 LMax   25     # maximum l to be used for wave functions
 EMax  60.0    # EMax, maximum asymptotic energy in eV
 EngForm       # Energy formulas
   0 0         # charge, formula type
  VCorr 'PZ'
 ScatEng 0.1 30.   # list of scattering energies
 FegeEng 9.5    # Energy correction used in the fege potential
 ScatContSym 'EU'  # Scattering symmetry
 LMaxK   10      # Maximum l in the K matirx

Convert '/g/home/rrl581a/Applications/ePolyScat.E3/tests/test19.g03' 'g03'
GetBlms
ExpOrb
GetPot
Scat
+ End of input reached
+ Data Record LMax - 25
+ Data Record EMax - 60.0
+ Data Record EngForm - 0 0
+ Data Record VCorr - 'PZ'
+ Data Record ScatEng - 0.1 30.
+ Data Record FegeEng - 9.5
+ Data Record ScatContSym - 'EU'
+ Data Record LMaxK - 10

+ Command Convert
+ '/g/home/rrl581a/Applications/ePolyScat.E3/tests/test19.g03' 'g03'

----------------------------------------------------------------------
g03cnv - read input from G03 output
----------------------------------------------------------------------

Expansion center is (in Angstroms) -
     0.0000000000   0.0000000000   0.0000000000
Command line = #HF/D95 6D 10F SCF=TIGHT GFINPUT PUNCH=MO
CardFlag =    T
Normal Mode flag =    F
Selecting orbitals
from     1  to     9  number already selected     0
Number of orbitals selected is     9
Highest orbital read in is =    9
Time Now =         0.1116  Delta time =         0.1116 End g03cnv

Atoms found    8  Coordinates in Angstroms
Z =  6 ZS =  6 r =   0.0000000000   0.0000000000   0.7680000000
Z =  6 ZS =  6 r =   0.0000000000   0.0000000000  -0.7680000000
Z =  1 ZS =  1 r =   0.0000000000   1.0320820000   1.1683180000
Z =  1 ZS =  1 r =  -0.8938100000  -0.5160410000   1.1683180000
Z =  1 ZS =  1 r =   0.8938100000  -0.5160410000   1.1683180000
Z =  1 ZS =  1 r =   0.0000000000  -1.0320820000  -1.1683180000
Z =  1 ZS =  1 r =  -0.8938100000   0.5160410000  -1.1683180000
Z =  1 ZS =  1 r =   0.8938100000   0.5160410000  -1.1683180000
Maximum distance from expansion center is    1.5588975524

+ Command GetBlms
+

----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------

Found point group  D3d
Reduce angular grid using nthd =  2  nphid =  1
Found point group for abelian subgroup C2h
Time Now =         0.9439  Delta time =         0.8323 End GetPGroup
List of unique axes
  N  Vector                      Z   R
  1  0.00000  0.00000  1.00000   6  0.76800   6  0.76800
  2  0.00000  0.66206  0.74945   1  1.55890   1  1.55890
  3 -0.57336 -0.33103  0.74945   1  1.55890   1  1.55890
  4  0.57336 -0.33103  0.74945   1  1.55890   1  1.55890
List of corresponding x axes
  N  Vector
  1  1.00000  0.00000  0.00000
  2  1.00000  0.00000  0.00000
  3  0.81930 -0.23166  0.52448
  4  0.81930  0.23166 -0.52448
Computed default value of LMaxA =   16
Determining angular grid in GetAxMax  LMax =   25  LMaxA =   16  LMaxAb =   50
MMax =    3  MMaxAbFlag =    1
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16   3   3   3
   3   3   3   3   3   3
For axis     2  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3   3
   3   3   3   2   2   2
For axis     3  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3   3
   3   3   3   2   2   2
For axis     4  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3   3
   3   3   3   2   2   2
On the double L grid used for products
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19
  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39
  40  41  42  43  44  45  46  47  48  49  50
For axis     2  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
For axis     3  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
For axis     4  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is D3d
LMax = =   25
 The dimension of each irreducable representation is
    A1G   (  1)    A2G   (  1)    EG    (  2)    A1U   (  1)    A2U   (  1)
    EU    (  2)
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     2     3     6
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A1G       1         1         53       1  1  1
 A2G       1         2         36       1 -1 -1
 EG        1         3         85       1 -1 -1
 EG        2         4         85       1  1  1
 A1U       1         5         37      -1 -1  1
 A2U       1         6         55      -1  1 -1
 EU        1         7         86      -1 -1  1
 EU        2         8         86      -1  1 -1
Time Now =         1.8946  Delta time =         0.9507 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
A1G   1    0(   1)    1(   1)    2(   2)    3(   2)    4(   4)    5(   4)    6(   7)    7(   7)    8(  10)    9(  10)
          10(  14)   11(  14)   12(  19)   13(  19)   14(  24)   15(  24)   16(  30)
A2G   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   1)    6(   3)    7(   3)    8(   5)    9(   5)
          10(   8)   11(   8)   12(  12)   13(  12)   14(  16)   15(  16)   16(  21)
EG    1    0(   0)    1(   0)    2(   2)    3(   2)    4(   5)    5(   5)    6(   9)    7(   9)    8(  15)    9(  15)
          10(  22)   11(  22)   12(  30)   13(  30)   14(  40)   15(  40)   16(  51)
EG    2    0(   0)    1(   0)    2(   2)    3(   2)    4(   5)    5(   5)    6(   9)    7(   9)    8(  15)    9(  15)
          10(  22)   11(  22)   12(  30)   13(  30)   14(  40)   15(  40)   16(  51)
A1U   1    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   2)    6(   2)    7(   4)    8(   4)    9(   7)
          10(   7)   11(  10)   12(  10)   13(  14)   14(  14)   15(  19)   16(  19)
A2U   1    0(   0)    1(   1)    2(   1)    3(   3)    4(   3)    5(   5)    6(   5)    7(   8)    8(   8)    9(  12)
          10(  12)   11(  16)   12(  16)   13(  21)   14(  21)   15(  27)   16(  27)
EU    1    0(   0)    1(   1)    2(   1)    3(   3)    4(   3)    5(   7)    6(   7)    7(  12)    8(  12)    9(  18)
          10(  18)   11(  26)   12(  26)   13(  35)   14(  35)   15(  45)   16(  45)
EU    2    0(   0)    1(   1)    2(   1)    3(   3)    4(   3)    5(   7)    6(   7)    7(  12)    8(  12)    9(  18)
          10(  18)   11(  26)   12(  26)   13(  35)   14(  35)   15(  45)   16(  45)

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is C2h
LMax = =   50
 The dimension of each irreducable representation is
    AG    (  1)    BG    (  1)    AU    (  1)    BU    (  1)
Abelian axes
    1       0.000000       1.000000       0.000000
    2       0.000000       0.000000       1.000000
    3       1.000000       0.000000       0.000000
Symmetry operation directions
  1       0.000000       0.000000       1.000000 ang =  0  1 type = 0 axis = 3
  2       0.000000       0.000000       1.000000 ang =  1  2 type = 3 axis = 3
  3       1.000000       0.000000       0.000000 ang =  0  1 type = 1 axis = 3
  4      -1.000000       0.000000       0.000000 ang =  1  2 type = 2 axis = 3
irep =    1  sym =AG    1  eigs =   1   1   1   1
irep =    2  sym =BG    1  eigs =   1   1  -1  -1
irep =    3  sym =AU    1  eigs =   1  -1  -1   1
irep =    4  sym =BU    1  eigs =   1  -1   1  -1
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     2     3     4
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 AG        1         1        676       1  1  1
 BG        1         2        650       1 -1 -1
 AU        1         3        625      -1 -1  1
 BU        1         4        650      -1  1 -1
Time Now =         3.0262  Delta time =         1.1316 End SymGen

+ Command ExpOrb
+
In GetRMax, RMaxEps =  0.10000000E-05  RMax =    7.2081171781 Angs

----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------

Maximum R in the grid (RMax) =     7.20812 Angs
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) =   10.0
In regions controlled by the wave length (HFacWave) =   10.0
Factor used to control the minimum exponent at each center (MinExpFac) =  300.0
Maximum asymptotic kinetic energy (EMAx) =  60.00000 eV
Maximum step size (MaxStep) =   7.20812 Angs
Factor to increase grid by (GridFac) =     1

    1  Center at =     0.00000 Angs  Alpha Max = 0.10000E+01
    2  Center at =     0.76800 Angs  Alpha Max = 0.10800E+05
    3  Center at =     1.55890 Angs  Alpha Max = 0.30000E+03

Generated Grid

  irg  nin  ntot      step Angs     R end Angs
    1    8     8    0.26867E-02     0.02149
    2    8    16    0.37255E-02     0.05130
    3    8    24    0.59728E-02     0.09908
    4    8    32    0.79967E-02     0.16305
    5    8    40    0.93321E-02     0.23771
    6    8    48    0.95358E-02     0.31400
    7    8    56    0.87995E-02     0.38439
    8    8    64    0.78436E-02     0.44714
    9    8    72    0.68236E-02     0.50173
   10    8    80    0.63576E-02     0.55259
   11    8    88    0.66641E-02     0.60590
   12    8    96    0.73071E-02     0.66436
   13    8   104    0.47203E-02     0.70212
   14    8   112    0.30004E-02     0.72613
   15    8   120    0.19072E-02     0.74138
   16    8   128    0.12123E-02     0.75108
   17    8   136    0.77538E-03     0.75728
   18    8   144    0.58340E-03     0.76195
   19    8   152    0.51623E-03     0.76608
   20    8   160    0.23984E-03     0.76800
   21    8   168    0.50920E-03     0.77207
   22    8   176    0.54286E-03     0.77642
   23    8   184    0.66917E-03     0.78177
   24    8   192    0.10153E-02     0.78989
   25    8   200    0.16142E-02     0.80281
   26    8   208    0.25663E-02     0.82334
   27    8   216    0.40801E-02     0.85598
   28    8   224    0.64868E-02     0.90787
   29    8   232    0.10313E-01     0.99038
   30    8   240    0.11944E-01     1.08593
   31    8   248    0.13096E-01     1.19069
   32    8   256    0.14360E-01     1.30557
   33    8   264    0.11537E-01     1.39786
   34    8   272    0.73343E-02     1.45654
   35    8   280    0.46865E-02     1.49403
   36    8   288    0.35128E-02     1.52213
   37    8   296    0.31008E-02     1.54694
   38    8   304    0.14948E-02     1.55890
   39    8   312    0.30552E-02     1.58334
   40    8   320    0.32571E-02     1.60940
   41    8   328    0.40150E-02     1.64152
   42    8   336    0.60918E-02     1.69025
   43    8   344    0.96851E-02     1.76773
   44    8   352    0.15398E-01     1.89091
   45    8   360    0.22804E-01     2.07335
   46    8   368    0.25004E-01     2.27338
   47    8   376    0.27416E-01     2.49271
   48    8   384    0.34257E-01     2.76677
   49    8   392    0.44585E-01     3.12345
   50    8   400    0.47865E-01     3.50637
   51    8   408    0.50675E-01     3.91177
   52    8   416    0.53100E-01     4.33657
   53    8   424    0.55205E-01     4.77821
   54    8   432    0.57043E-01     5.23455
   55    8   440    0.58655E-01     5.70380
   56    8   448    0.60078E-01     6.18442
   57    8   456    0.61338E-01     6.67512
   58    8   464    0.62460E-01     7.17480
   59    8   472    0.41651E-02     7.20812
Time Now =         3.0512  Delta time =         0.0250 End GenGrid

----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------

Maximum scattering l (lmax) =   25
Maximum scattering m (mmaxs) =   25
Maximum numerical integration l (lmaxi) =   50
Maximum numerical integration m (mmaxi) =   50
Maximum l to include in the asymptotic region (lmasym) =   16
Parameter used to determine the cutoff points (PCutRd) =  0.10000000E-07 au
Maximum E used to determine grid (in eV) =       60.00000
Print flag (iprnfg) =    0
lmasymtyts =   16
 Actual value of lmasym found =     16
Number of regions of the same l expansion (NAngReg) =   11
Angular regions
    1 L =    2  from (    1)         0.00269  to (    7)         0.01881
    2 L =    4  from (    8)         0.02149  to (   15)         0.04757
    3 L =    6  from (   16)         0.05130  to (   23)         0.09311
    4 L =    8  from (   24)         0.09908  to (   31)         0.15506
    5 L =   16  from (   32)         0.16305  to (   63)         0.43930
    6 L =   24  from (   64)         0.44714  to (   79)         0.54623
    7 L =   25  from (   80)         0.55259  to (  240)         1.08593
    8 L =   24  from (  241)         1.09902  to (  247)         1.17760
    9 L =   25  from (  248)         1.19069  to (  360)         2.07335
   10 L =   24  from (  361)         2.09835  to (  376)         2.49271
   11 L =   16  from (  377)         2.52697  to (  472)         7.20812
There are     2 angular regions for computing spherical harmonics
    1 lval =   16
    2 lval =   25
Last grid points by processor WorkExp =     1.500
Proc id =   -1  Last grid point =       1
Proc id =    0  Last grid point =      72
Proc id =    1  Last grid point =      96
Proc id =    2  Last grid point =     120
Proc id =    3  Last grid point =     144
Proc id =    4  Last grid point =     168
Proc id =    5  Last grid point =     192
Proc id =    6  Last grid point =     216
Proc id =    7  Last grid point =     240
Proc id =    8  Last grid point =     264
Proc id =    9  Last grid point =     288
Proc id =   10  Last grid point =     312
Proc id =   11  Last grid point =     336
Proc id =   12  Last grid point =     360
Proc id =   13  Last grid point =     384
Proc id =   14  Last grid point =     432
Proc id =   15  Last grid point =     472
Time Now =         3.2500  Delta time =         0.1989 End AngGCt

----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------


 R of maximum density
     1  A1G   1 at max irg =   21  r =   0.77207
     2  A2U   1 at max irg =   21  r =   0.77207
     3  A1G   1 at max irg =   22  r =   0.77642
     4  A2U   1 at max irg =   32  r =   1.30557
     5  EU    1 at max irg =   33  r =   1.39786
     6  EU    2 at max irg =   33  r =   1.39786
     7  A1G   1 at max irg =   10  r =   0.55259
     8  EG    1 at max irg =   36  r =   1.52213
     9  EG    2 at max irg =   36  r =   1.52213

Rotation coefficients for orbital     1  grp =    1 A1G   1
     1  1.0000000000

Rotation coefficients for orbital     2  grp =    2 A2U   1
     2  1.0000000000

Rotation coefficients for orbital     3  grp =    3 A1G   1
     3  1.0000000000

Rotation coefficients for orbital     4  grp =    4 A2U   1
     4  1.0000000000

Rotation coefficients for orbital     5  grp =    5 EU    1
     5  1.0000000000    6  0.0000000000

Rotation coefficients for orbital     6  grp =    5 EU    2
     5  0.0000000000    6  1.0000000000

Rotation coefficients for orbital     7  grp =    6 A1G   1
     7  1.0000000000

Rotation coefficients for orbital     8  grp =    7 EG    1
     8  1.0000000000    9  0.0000000000

Rotation coefficients for orbital     9  grp =    7 EG    2
     8  0.0000000000    9  1.0000000000
Number of orbital groups and degeneracis are         7
  1  1  1  1  2  1  2
Number of orbital groups and number of electrons when fully occupied
         7
  2  2  2  2  4  2  4
Time Now =         3.7853  Delta time =         0.5353 End RotOrb

----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------

 First orbital group to expand (mofr) =    1
 Last orbital group to expand (moto) =    7
Orbital     1 of  A1G   1 symmetry normalization integral =  0.99687018
Orbital     2 of  A2U   1 symmetry normalization integral =  0.99734509
Orbital     3 of  A1G   1 symmetry normalization integral =  0.99985465
Orbital     4 of  A2U   1 symmetry normalization integral =  0.99990156
Orbital     5 of  EU    1 symmetry normalization integral =  0.99998728
Orbital     6 of  A1G   1 symmetry normalization integral =  0.99999127
Orbital     7 of  EG    1 symmetry normalization integral =  0.99997926
Time Now =         4.1070  Delta time =         0.3217 End ExpOrb

+ Command GetPot
+

----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------

Total density =     18.00000000
Time Now =         4.1266  Delta time =         0.0196 End Den

----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------

 vasymp =  0.18000000E+02 facnorm =  0.10000000E+01
Time Now =         4.2183  Delta time =         0.0917 Electronic part
Time Now =         4.3348  Delta time =         0.1165 End StPot

----------------------------------------------------------------------
vcppol - VCP polarization potential program
----------------------------------------------------------------------

Time Now =         4.4094  Delta time =         0.0746 End VcpPol

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.95000000E+01  eV
 Do E =  0.10000000E+00 eV (  0.36749326E-02 AU)
Time Now =         4.4886  Delta time =         0.0792 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = EU    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    59
Number of partial waves (np) =    86
Number of asymptotic solutions on the right (NAsymR) =    18
Number of asymptotic solutions on the left (NAsymL) =    18
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =    18
Maximum in the asymptotic region (lpasym) =   16
Number of partial waves in the asymptotic region (npasym) =   45
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  289
Found polarization potential
Maximum l used in usual function (lmax) =   25
Maximum m used in usual function (LMax) =   25
Maxamum l used in expanding static potential (lpotct) =   50
Maximum l used in exapnding the exchange potential (lmaxab) =   50
Higest l included in the expansion of the wave function (lnp) =   25
Higest l included in the K matrix (lna) =    9
Highest l used at large r (lpasym) =   16
Higest l used in the asymptotic potential (lpzb) =   32
Maximum L used in the homogeneous solution (LMaxHomo) =   16
Number of partial waves in the homogeneous solution (npHomo) =   45
Time Now =         4.5081  Delta time =         0.0195 Energy independent setup

Compute solution for E =    0.1000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.39968029E-14
 i =  2  lval =   3  stpote = -0.25095645E-03
 i =  3  lval =   3  stpote = -0.14490209E-03
 i =  4  lval =   3  stpote =  0.43368087E-17
For potential     2
 i =  1  exps = -0.54485470E+02 -0.20000000E+01  stpote = -0.52919911E-15
 i =  2  exps = -0.54485470E+02 -0.20000000E+01  stpote = -0.52915237E-15
 i =  3  exps = -0.54485470E+02 -0.20000000E+01  stpote = -0.52910976E-15
 i =  4  exps = -0.54485470E+02 -0.20000000E+01  stpote = -0.52907355E-15
For potential     3
 i =  1  exps = -0.18007176E+01 -0.85801564E-01  stpote = -0.35472923E-05
 i =  2  exps = -0.18007178E+01 -0.85799614E-01  stpote = -0.35472960E-05
 i =  3  exps = -0.18007179E+01 -0.85797827E-01  stpote = -0.35472994E-05
 i =  4  exps = -0.18007180E+01 -0.85796303E-01  stpote = -0.35473023E-05
Number of asymptotic regions =      30
Final point in integration =   0.45261673E+03 Angstroms
Time Now =        19.3733  Delta time =        14.8652 End SolveHomo
     REAL PART -  Final k matrix
     ROW  1
  0.10152499E-01-0.84878688E-04-0.63380520E-03-0.15090324E-07-0.22126300E-05
  0.57615682E-06-0.12793068E-05-0.16904424E-09 0.54139451E-11-0.75476732E-09
  0.31719716E-09-0.22146061E-10 0.27922730E-15-0.13242748E-12 0.27665906E-13
  0.98640895E-14-0.27261663E-14 0.89705361E-13
     ROW  2
 -0.84878699E-04 0.16112002E-04-0.86835797E-05 0.36544991E-05 0.10740109E-07
 -0.19906095E-03 0.27761801E-05 0.25374866E-14 0.28438463E-06-0.91409461E-10
 -0.15664128E-06-0.48024177E-07-0.90083923E-11 0.36362216E-15 0.57818053E-10
  0.31203510E-12-0.17891394E-11-0.15255090E-10
     ROW  3
 -0.63380519E-03-0.86835797E-05-0.65947301E-03 0.32090394E-08-0.75406223E-06
 -0.29712877E-05-0.24050699E-03 0.28760046E-09-0.18315175E-09-0.22530930E-06
  0.94637076E-07-0.20245883E-06-0.64491146E-16-0.48319851E-11 0.94597864E-12
 -0.54701215E-10 0.28352083E-10-0.20977499E-11
     ROW  4
 -0.15091379E-07 0.36544991E-05 0.32090328E-08 0.50502148E-03 0.76955889E-11
 -0.17275124E-05-0.52286609E-09 0.46996498E-08-0.45801617E-04-0.16972243E-11
  0.16826741E-06 0.38703682E-10-0.75638447E-07 0.42614636E-12-0.15077600E-07
  0.30846583E-13-0.17464325E-08-0.94786466E-12
     ROW  5
 -0.22126373E-05 0.10740119E-07-0.75406224E-06 0.76955889E-11 0.20399829E-03
 -0.83360271E-08 0.20726123E-05 0.79845180E-06 0.96587572E-12-0.72864573E-04
  0.41932829E-09-0.33418890E-06 0.25215993E-16 0.82304151E-07-0.16480235E-12
 -0.28512123E-07-0.27863560E-11 0.47535598E-08
     ROW  6
  0.57614740E-06-0.19906095E-03-0.29712877E-05-0.17275124E-05-0.83360271E-08
 -0.20233966E-03-0.60057504E-06-0.15020117E-14 0.97978229E-07 0.29177972E-08
 -0.10850684E-03 0.58975859E-06 0.36615672E-10 0.33340038E-15 0.63900389E-07
 -0.10970680E-10-0.51290638E-07-0.16702022E-07
     ROW  7
 -0.12793089E-05 0.27761801E-05-0.24050699E-03-0.52286609E-09 0.20726123E-05
 -0.60057504E-06-0.30480291E-03-0.14967202E-09 0.23918379E-09 0.25573258E-06
 -0.60117426E-06-0.11743942E-03-0.33638296E-16 0.33337242E-10-0.18514993E-10
 -0.50473618E-07 0.26037568E-07-0.57875547E-07
     ROW  8
 -0.16904449E-09 0.25379384E-14 0.28760046E-09 0.46996498E-08 0.79845180E-06
 -0.15020117E-14-0.14967202E-09 0.28922411E-03-0.19315439E-08-0.34977754E-06
  0.12367364E-14 0.31749993E-10-0.88071211E-12-0.21235132E-04 0.50239872E-10
  0.31338654E-07-0.12978695E-15-0.26591431E-11
     ROW  9
  0.54134459E-11 0.28438463E-06-0.18315176E-09-0.45801617E-04 0.96587572E-12
  0.97978229E-07 0.23918379E-09-0.19315439E-08 0.60924343E-04-0.42072600E-12
 -0.54851487E-06-0.94549844E-10-0.21612603E-06 0.21726560E-08-0.45529946E-04
 -0.68312537E-12 0.10596777E-06 0.12742927E-10
     ROW 10
 -0.75477076E-09-0.91409454E-10-0.22530930E-06-0.16972243E-11-0.72864573E-04
  0.29177972E-08 0.25573258E-06-0.34977754E-06-0.42072600E-12-0.25119447E-04
 -0.48765551E-08 0.48022971E-06 0.25591822E-16 0.12372138E-06-0.24862314E-12
 -0.54523541E-04 0.31935170E-09-0.14444718E-06
     ROW 11
  0.31719697E-09-0.15664128E-06 0.94637076E-07 0.16826741E-06 0.41932829E-09
 -0.10850684E-03-0.60117426E-06 0.12367357E-14-0.54851487E-06-0.48765551E-08
 -0.14021067E-03-0.11476093E-06-0.29970045E-10-0.12222838E-15-0.64699750E-07
  0.13968541E-08-0.66518128E-04 0.19531460E-06
     ROW 12
 -0.22146016E-10-0.48024177E-07-0.20245883E-06 0.38703682E-10-0.33418890E-06
  0.58975859E-06-0.11743942E-03 0.31749993E-10-0.94549844E-10 0.48022971E-06
 -0.11476093E-06-0.16904319E-03 0.22814121E-16-0.37905362E-10 0.39657809E-10
  0.13279148E-06-0.19690972E-06-0.69521087E-04
     ROW 13
  0.27920912E-15-0.90083923E-11-0.64490629E-16-0.75638447E-07 0.25215866E-16
  0.36615672E-10-0.33638345E-16-0.88071211E-12-0.21612603E-06 0.25592016E-16
 -0.29970045E-10 0.22814210E-16 0.12470112E-03-0.57349527E-12 0.16200647E-06
 -0.26273886E-16 0.85240202E-11-0.67243711E-17
     ROW 14
 -0.13242792E-12 0.36362317E-15-0.48319851E-11 0.42614636E-12 0.82304151E-07
  0.33340036E-15 0.33337242E-10-0.21235132E-04 0.21726560E-08 0.12372138E-06
 -0.12222849E-15-0.37905362E-10-0.57349527E-12 0.69810508E-04-0.20898566E-08
 -0.19680024E-06 0.48323508E-15 0.13761599E-10
     ROW 15
  0.27666018E-13 0.57818053E-10 0.94597864E-12-0.15077600E-07-0.16480235E-12
  0.63900389E-07-0.18514993E-10 0.50239872E-10-0.45529946E-04-0.24862314E-12
 -0.64699750E-07 0.39657809E-10 0.16200647E-06-0.20898566E-08-0.18208823E-04
 -0.47763108E-12-0.18904838E-06-0.23186852E-10
     ROW 16
  0.98635428E-14 0.31203510E-12-0.54701214E-10 0.30846583E-13-0.28512123E-07
 -0.10970680E-10-0.50473618E-07 0.31338654E-07-0.68312537E-12-0.54523541E-04
  0.13968541E-08 0.13279148E-06-0.26273493E-16-0.19680024E-06-0.47763108E-12
 -0.51277748E-04-0.31810670E-08 0.15144477E-06
     ROW 17
 -0.27260989E-14-0.17891386E-11 0.28352083E-10-0.17464325E-08-0.27863560E-11
 -0.51290638E-07 0.26037568E-07-0.12978696E-15 0.10596777E-06 0.31935170E-09
 -0.66518128E-04-0.19690972E-06 0.85240202E-11 0.48323483E-15-0.18904838E-06
 -0.31810670E-08-0.95421985E-04-0.33686213E-07
     ROW 18
  0.89732203E-13-0.15255090E-10-0.20977492E-11-0.94786466E-12 0.47535598E-08
 -0.16702022E-07-0.57875547E-07-0.26591431E-11 0.12742927E-10-0.14444718E-06
  0.19531460E-06-0.69521087E-04-0.67242850E-17 0.13761599E-10-0.23186852E-10
  0.15144477E-06-0.33686213E-07-0.10646388E-03
 eigenphases
 -0.8148736E-03 -0.3638648E-03 -0.2961222E-03 -0.1619656E-03 -0.1347401E-03
 -0.1015893E-03 -0.4255140E-04 -0.3963542E-04 -0.3115440E-04  0.3123636E-05
  0.6777502E-04  0.7764256E-04  0.1247027E-03  0.1458165E-03  0.2260744E-03
  0.2912717E-03  0.5097798E-03  0.1018989E-01
 eigenphase sum 0.964958E-02  scattering length=  -0.11256
 eps+pi 0.315124E+01  eps+2*pi 0.629283E+01

MaxIter =   6 c.s. =      0.05037525 angs^2  rmsk=     0.00000000
Time Now =        57.2788  Delta time =        37.9055 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.95000000E+01  eV
 Do E =  0.30000000E+02 eV (  0.11024798E+01 AU)
Time Now =        57.3386  Delta time =         0.0597 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = EU    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    59
Number of partial waves (np) =    86
Number of asymptotic solutions on the right (NAsymR) =    18
Number of asymptotic solutions on the left (NAsymL) =    18
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =    18
Maximum in the asymptotic region (lpasym) =   16
Number of partial waves in the asymptotic region (npasym) =   45
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  289
Found polarization potential
Maximum l used in usual function (lmax) =   25
Maximum m used in usual function (LMax) =   25
Maxamum l used in expanding static potential (lpotct) =   50
Maximum l used in exapnding the exchange potential (lmaxab) =   50
Higest l included in the expansion of the wave function (lnp) =   25
Higest l included in the K matrix (lna) =    9
Highest l used at large r (lpasym) =   16
Higest l used in the asymptotic potential (lpzb) =   32
Maximum L used in the homogeneous solution (LMaxHomo) =   16
Number of partial waves in the homogeneous solution (npHomo) =   45
Time Now =        57.3570  Delta time =         0.0184 Energy independent setup

Compute solution for E =   30.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.39968029E-14
 i =  2  lval =   3  stpote = -0.25095645E-03
 i =  3  lval =   3  stpote = -0.14490209E-03
 i =  4  lval =   3  stpote =  0.43368087E-17
For potential     2
 i =  1  exps = -0.54485470E+02 -0.20000000E+01  stpote = -0.13144972E-15
 i =  2  exps = -0.54485470E+02 -0.20000000E+01  stpote = -0.13156820E-15
 i =  3  exps = -0.54485470E+02 -0.20000000E+01  stpote = -0.13167697E-15
 i =  4  exps = -0.54485470E+02 -0.20000000E+01  stpote = -0.13176995E-15
For potential     3
 i =  1  exps = -0.18007176E+01 -0.85801564E-01  stpote = -0.35472923E-05
 i =  2  exps = -0.18007178E+01 -0.85799614E-01  stpote = -0.35472960E-05
 i =  3  exps = -0.18007179E+01 -0.85797827E-01  stpote = -0.35472994E-05
 i =  4  exps = -0.18007180E+01 -0.85796303E-01  stpote = -0.35473023E-05
Number of asymptotic regions =      68
Final point in integration =   0.67585798E+02 Angstroms
Time Now =        76.5165  Delta time =        19.1595 End SolveHomo
     REAL PART -  Final k matrix
     ROW  1
 -0.34259587E+01-0.54411824E+01 0.40804852E+01-0.10724642E+00-0.59065585E+00
 -0.13483994E+01-0.10925392E+00-0.77175414E-02-0.48905102E-01-0.10662373E+00
 -0.22835870E-01-0.94493764E-01-0.58380004E-04-0.16774767E-02-0.37415438E-02
 -0.49077469E-02 0.15491109E-02-0.18901157E-02
     ROW  2
 -0.54411824E+01-0.10676289E+02 0.13874494E+02-0.18366548E+00-0.11954651E+01
 -0.27996547E+01 0.64381398E+00-0.15601309E-01-0.88207871E-01-0.19631827E+00
 -0.72630331E-01-0.13843972E+00-0.33160927E-03-0.29498284E-02-0.60564708E-02
 -0.83435301E-02 0.70017645E-03-0.15230138E-02
     ROW  3
  0.40804852E+01 0.13874494E+02-0.16431000E+02 0.24535811E+00 0.12673679E+01
  0.34676301E+01-0.77918727E+00 0.16212632E-01 0.10761653E+00 0.19972523E+00
  0.96213226E-01 0.14804637E+00 0.29785085E-03 0.28227717E-02 0.73203759E-02
  0.81448153E-02 0.43297125E-04 0.12730512E-02
     ROW  4
 -0.10724643E+00-0.18366548E+00 0.24535811E+00 0.12144304E+00-0.20827687E-01
 -0.61223517E-01 0.14895705E-01-0.26776612E-03 0.14402074E-01-0.35192761E-02
 -0.36533254E-02-0.26044078E-02-0.14964589E-03-0.48096597E-04 0.57953528E-03
 -0.17108009E-03 0.19711538E-04-0.10832363E-03
     ROW  5
 -0.59065585E+00-0.11954651E+01 0.12673679E+01-0.20827687E-01 0.10809871E+00
 -0.30549206E+00 0.98745107E-01 0.65741165E-02-0.90585180E-02 0.85894593E-02
 -0.10568643E-01-0.11623708E-01-0.32410668E-04 0.83711240E-03-0.66143306E-03
 -0.19924617E-03 0.64105879E-05-0.66567951E-03
     ROW  6
 -0.13483994E+01-0.27996546E+01 0.34676301E+01-0.61223517E-01-0.30549206E+00
 -0.43687603E+00 0.12169034E+00-0.40883192E-02-0.15035685E-01-0.45903145E-01
  0.13793431E-02-0.21260684E-01-0.58824155E-04-0.74288238E-03 0.14699739E-03
 -0.15374111E-02-0.43147923E-03 0.50639878E-03
     ROW  7
 -0.10925392E+00 0.64381398E+00-0.77918727E+00 0.14895707E-01 0.98745107E-01
  0.12169034E+00 0.23397742E+00 0.14626096E-02 0.76270480E-02 0.13963605E-01
 -0.14094411E-01 0.20778730E-01-0.35498673E-04 0.51909470E-03 0.37554345E-03
 -0.49046401E-03-0.38165107E-03-0.66404494E-03
     ROW  8
 -0.77175414E-02-0.15601308E-01 0.16212631E-01-0.26776612E-03 0.65741165E-02
 -0.40883192E-02 0.14626096E-02 0.58015615E-01-0.12133047E-03-0.26375460E-02
 -0.15941681E-03-0.12184556E-03-0.10074791E-05 0.54695754E-02-0.84900534E-05
  0.17930393E-03 0.11777768E-04-0.56346838E-04
     ROW  9
 -0.48905104E-01-0.88207871E-01 0.10761653E+00 0.14402074E-01-0.90585179E-02
 -0.15035685E-01 0.76270479E-02-0.12133047E-03 0.87564987E-01-0.13215352E-02
 -0.96242714E-02-0.71173350E-03-0.32480719E-02-0.23447332E-04 0.72534655E-02
 -0.80148977E-04 0.73432211E-03-0.55686916E-04
     ROW 10
 -0.10662371E+00-0.19631826E+00 0.19972522E+00-0.35192761E-02 0.85894595E-02
 -0.45903145E-01 0.13963605E-01-0.26375460E-02-0.13215352E-02 0.90425409E-01
 -0.19841473E-02 0.80392998E-02-0.49358582E-05 0.26165176E-02-0.41326138E-04
  0.64187153E-02-0.82281430E-04-0.16315636E-02
     ROW 11
 -0.22835870E-01-0.72630331E-01 0.96213226E-01-0.36533254E-02-0.10568643E-01
  0.13793433E-02-0.14094411E-01-0.15941681E-03-0.96242714E-02-0.19841473E-02
  0.89133525E-01-0.37170407E-02 0.23201962E-04-0.63175393E-04-0.86904130E-03
  0.72422349E-04 0.43280930E-02 0.34206153E-02
     ROW 12
 -0.94493765E-01-0.13843972E+00 0.14804637E+00-0.26044078E-02-0.11623708E-01
 -0.21260684E-01 0.20778731E-01-0.12184556E-03-0.71173350E-03 0.80392998E-02
 -0.37170407E-02 0.85835163E-01 0.10073588E-04-0.45278694E-04 0.14094912E-03
  0.23988230E-02-0.37987784E-02 0.36180233E-02
     ROW 13
 -0.58377513E-04-0.33160912E-03 0.29785087E-03-0.14964589E-03-0.32410612E-04
 -0.58824128E-04-0.35498564E-04-0.10074784E-05-0.32480719E-02-0.49358500E-05
  0.23201959E-04 0.10073592E-04 0.31959475E-01-0.72276104E-06 0.17126449E-02
 -0.14831918E-05 0.24100951E-04 0.35625333E-05
     ROW 14
 -0.16774756E-02-0.29498290E-02 0.28227714E-02-0.48096629E-04 0.83711213E-03
 -0.74288291E-03 0.51909405E-03 0.54695754E-02-0.23447351E-04 0.26165176E-02
 -0.63175360E-04-0.45278770E-04-0.72276104E-06 0.35795041E-01-0.18442940E-05
 -0.25101361E-02 0.24864708E-05 0.35645115E-04
     ROW 15
 -0.37415606E-02-0.60564781E-02 0.73203737E-02 0.57953524E-03-0.66143329E-03
  0.14699741E-03 0.37554399E-03-0.84900581E-05 0.72534655E-02-0.41326247E-04
 -0.86904121E-03 0.14094914E-03 0.17126449E-02-0.18442940E-05 0.38703304E-01
  0.97426441E-05-0.31476739E-02-0.65739577E-04
     ROW 16
 -0.49077471E-02-0.83435299E-02 0.81448152E-02-0.17108009E-03-0.19924616E-03
 -0.15374111E-02-0.49046402E-03 0.17930394E-03-0.80148977E-04 0.64187153E-02
  0.72422349E-04 0.23988230E-02-0.14831920E-05-0.25101361E-02 0.97426775E-05
  0.38570604E-01-0.60852192E-04 0.27417631E-02
     ROW 17
  0.15491110E-02 0.70017642E-03 0.43297166E-04 0.19711538E-04 0.64105880E-05
 -0.43147925E-03-0.38165110E-03 0.11777768E-04 0.73432211E-03-0.82281430E-04
  0.43280930E-02-0.37987784E-02 0.24100951E-04 0.24864684E-05-0.31476739E-02
 -0.60852192E-04 0.37340912E-01-0.67069045E-03
     ROW 18
 -0.18901203E-02-0.15230139E-02 0.12730507E-02-0.10832360E-03-0.66567889E-03
  0.50639903E-03-0.66404474E-03-0.56346823E-04-0.55686903E-04-0.16315636E-02
  0.34206154E-02 0.36180234E-02 0.35625333E-05 0.35645115E-04-0.65739577E-04
  0.27417631E-02-0.67069045E-03 0.36842495E-01
 eigenphases
 -0.1537791E+01 -0.1204258E+01  0.3079793E-01  0.3204807E-01  0.3440674E-01
  0.3573452E-01  0.4052498E-01  0.4079581E-01  0.5848908E-01  0.7503191E-01
  0.7824765E-01  0.9228386E-01  0.9747770E-01  0.1297488E+00  0.1884809E+00
  0.2630892E+00  0.3300199E+00  0.9721514E+00
 eigenphase sum-0.242721E+00  scattering length=   0.16675
 eps+pi 0.289887E+01  eps+2*pi 0.604046E+01

MaxIter =   8 c.s. =      4.49771862 angs^2  rmsk=     0.00000000
Time Now =       186.7585  Delta time =       110.2421 End ScatStab
Time Now =       186.7590  Delta time =         0.0005 Finalize