Execution on login004

----------------------------------------------------------------------
ePolyScat Version E3
----------------------------------------------------------------------

Authors: R. R. Lucchese, N. Sanna, A. P. P. Natalense, and F. A. Gianturco
http://www.chem.tamu.edu/rgroup/lucchese/ePolyScat.E3.manual/manual.html
Please cite the following two papers when reporting results obtained with  this program
F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 100, 6464 (1994).
A. P. P. Natalense and R. R. Lucchese, J. Chem. Phys. 111, 5344 (1999).

----------------------------------------------------------------------

Starting at 2011-08-29  10:50:36.426 (GMT -0500)
Using    16 processors

----------------------------------------------------------------------


+ Start of Input Records
#
# inpute file for test17
#
# electron scattering from C6H6
#

 LMax   25     # maximum l to be used for wave functions
 EMax  60.0    # EMax, maximum asymptotic energy in eV
 EngForm       # Energy formulas
   0 0         # charge, formula type
  VCorr 'PZ'
  AsyPol
 0.15  # SwitchD, distance where switching function is down to 0.1
 6     # nterm, number of terms needed to define asymptotic potential
 1     # center for polarization term 1 is for C atom
 1     # ittyp type of polarization term, = 1 for spherically symmetric
       # = 2 for reading in the full tensor
 11.85 # value of the spherical polarizability
 2     # center for polarization term 1 is for C atom
 1     # ittyp type of polarization term, = 1 for spherically symmetric
       # = 2 for reading in the full tensor
 11.85 # value of the spherical polarizability
 3     # center for polarization term 1 is for C atom
 1     # ittyp type of polarization term, = 1 for spherically symmetric
       # = 2 for reading in the full tensor
 11.85 # value of the spherical polarizability
 4     # center for polarization term 1 is for C atom
 1     # ittyp type of polarization term, = 1 for spherically symmetric
       # = 2 for reading in the full tensor
 11.85 # value of the spherical polarizability
 5     # center for polarization term 1 is for C atom
 1     # ittyp type of polarization term, = 1 for spherically symmetric
       # = 2 for reading in the full tensor
 11.85 # value of the spherical polarizability
 6     # center for polarization term 1 is for C atom
 1     # ittyp type of polarization term, = 1 for spherically symmetric
       # = 2 for reading in the full tensor
 11.85 # value of the spherical polarizability
 3     # icrtyp, flag to determine where r match is, 3 for second crossing
       # or at nearest approach
 0     # ilntyp, flag to determine what matching line is used, 0 - use
       # l = 0 radial function as matching function
 ScatEng 30.   # list of scattering energies
 FegeEng 9.25    # Energy correction used in the fege potential
 ScatContSym 'A1G'  # Scattering symmetry
 LMaxK   10      # Maximum l in the K matirx
Convert '/g/home/rrl581a/Applications/ePolyScat.E3/tests/test17.g03' 'g03'
GetBlms
ExpOrb
GetPot
Scat
+ End of input reached
+ Data Record LMax - 25
+ Data Record EMax - 60.0
+ Data Record EngForm - 0 0
+ Data Record VCorr - 'PZ'
+ Data Record AsyPol
+ 0.15 / 6 / 1 / 1 / 11.85 / 2 / 1 / 11.85 / 3 / 1 / 11.85 / 4 / 1 / 11.85 / 5 / 1 / 11.85 / 6 / 1 / 11.85 / 3 / 0
+ Data Record ScatEng - 30.
+ Data Record FegeEng - 9.25
+ Data Record ScatContSym - 'A1G'
+ Data Record LMaxK - 10

+ Command Convert
+ '/g/home/rrl581a/Applications/ePolyScat.E3/tests/test17.g03' 'g03'

----------------------------------------------------------------------
g03cnv - read input from G03 output
----------------------------------------------------------------------

Expansion center is (in Angstroms) -
     0.0000000000   0.0000000000   0.0000000000
Command line = # RHF/6-311G(2D,2P) 6D 10F UNITS=AU SCF=TIGHT GFINPUT PUNCH=MO
CardFlag =    T
Normal Mode flag =    F
Selecting orbitals
from     1  to    21  number already selected     0
Number of orbitals selected is    21
Highest orbital read in is =   21
Time Now =         0.0514  Delta time =         0.0514 End g03cnv

Atoms found   12  Coordinates in Angstroms
Z =  6 ZS =  6 r =   0.0000000000   1.3970000000   0.0000000000
Z =  6 ZS =  6 r =   1.2098370000   0.6985000000   0.0000000000
Z =  6 ZS =  6 r =   1.2098370000  -0.6985000000   0.0000000000
Z =  6 ZS =  6 r =   0.0000000000  -1.3970000000   0.0000000000
Z =  6 ZS =  6 r =  -1.2098370000  -0.6985000000   0.0000000000
Z =  6 ZS =  6 r =  -1.2098370000   0.6985000000   0.0000000000
Z =  1 ZS =  1 r =   0.0000000000   2.4810000000   0.0000000000
Z =  1 ZS =  1 r =   2.1486090000   1.2405000000   0.0000000000
Z =  1 ZS =  1 r =   2.1486090000  -1.2405000000   0.0000000000
Z =  1 ZS =  1 r =   0.0000000000  -2.4810000000   0.0000000000
Z =  1 ZS =  1 r =  -2.1486090000  -1.2405000000   0.0000000000
Z =  1 ZS =  1 r =  -2.1486090000   1.2405000000   0.0000000000
Maximum distance from expansion center is    2.4810000000

+ Command GetBlms
+

----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------

Found point group  D6h
Reduce angular grid using nthd =  2  nphid =  4
Found point group for abelian subgroup D2h
Time Now =         0.5507  Delta time =         0.4993 End GetPGroup
List of unique axes
  N  Vector                      Z   R
  1  0.00000  0.00000  1.00000
  2  0.00000  1.00000  0.00000   6  1.39700   6  1.39700   1  2.48100   1  2.48100
  3  0.86603  0.50000  0.00000   6  1.39700   6  1.39700   1  2.48100   1  2.48100
  4  0.86603 -0.50000  0.00000   6  1.39700   6  1.39700   1  2.48100   1  2.48100
List of corresponding x axes
  N  Vector
  1  1.00000  0.00000  0.00000
  2  1.00000  0.00000  0.00000
  3  0.50000 -0.86603  0.00000
  4  0.50000  0.86603  0.00000
Computed default value of LMaxA =   19
Determining angular grid in GetAxMax  LMax =   25  LMaxA =   19  LMaxAb =   50
MMax =    3  MMaxAbFlag =    1
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19
  -1  -1  -1  -1  -1  -1
For axis     2  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
   3   3   3   3   3   3
For axis     3  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
   3   3   3   3   3   3
For axis     4  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
   3   3   3   3   3   3
On the double L grid used for products
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19
  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39
  40  41  42  43  44  45  46  47  48  49  50
For axis     2  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
For axis     3  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
For axis     4  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is D6h
LMax = =   25
 The dimension of each irreducable representation is
    A1G   (  1)    A2G   (  1)    B1G   (  1)    B2G   (  1)    E1G   (  2)
    E2G   (  2)    A1U   (  1)    A2U   (  1)    B1U   (  1)    B2U   (  1)
    E1U   (  2)    E2U   (  2)
 Number of symmetry operations in the abelian subgroup (excluding E) =    7
 The operations are -
    12    15    16     2     3     9     6
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A1G       1         1         28       1  1  1  1  1  1  1
 A2G       1         2         18       1 -1 -1  1  1 -1 -1
 B1G       1         3         18      -1 -1  1  1 -1 -1  1
 B2G       1         4         21      -1  1 -1  1 -1  1 -1
 E1G       1         5         39      -1 -1  1  1 -1 -1  1
 E1G       2         6         39      -1  1 -1  1 -1  1 -1
 E2G       1         7         45       1 -1 -1  1  1 -1 -1
 E2G       2         8         45       1  1  1  1  1  1  1
 A1U       1         9         15       1  1  1 -1 -1 -1 -1
 A2U       1        10         28       1 -1 -1 -1 -1  1  1
 B1U       1        11         24      -1 -1  1 -1  1  1 -1
 B2U       1        12         24      -1  1 -1 -1  1 -1  1
 E1U       1        13         49      -1 -1  1 -1  1  1 -1
 E1U       2        14         49      -1  1 -1 -1  1 -1  1
 E2U       1        15         42       1 -1 -1 -1 -1  1  1
 E2U       2        16         42       1  1  1 -1 -1 -1 -1
Time Now =         2.1765  Delta time =         1.6258 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
A1G   1    0(   1)    1(   1)    2(   2)    3(   2)    4(   3)    5(   3)    6(   5)    7(   5)    8(   7)    9(   7)
          10(   9)   11(   9)   12(  12)   13(  12)   14(  15)   15(  15)   16(  18)   17(  18)   18(  22)   19(  22)
A2G   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   1)    7(   1)    8(   2)    9(   2)
          10(   3)   11(   3)   12(   5)   13(   5)   14(   7)   15(   7)   16(   9)   17(   9)   18(  12)   19(  12)
B1G   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   1)    6(   2)    7(   2)    8(   3)    9(   3)
          10(   5)   11(   5)   12(   7)   13(   7)   14(   9)   15(   9)   16(  12)   17(  12)   18(  15)   19(  15)
B2G   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   1)    6(   2)    7(   2)    8(   3)    9(   3)
          10(   5)   11(   5)   12(   7)   13(   7)   14(   9)   15(   9)   16(  12)   17(  12)   18(  15)   19(  15)
E1G   1    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)    6(   4)    7(   4)    8(   7)    9(   7)
          10(  10)   11(  10)   12(  14)   13(  14)   14(  19)   15(  19)   16(  24)   17(  24)   18(  30)   19(  30)
E1G   2    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)    6(   4)    7(   4)    8(   7)    9(   7)
          10(  10)   11(  10)   12(  14)   13(  14)   14(  19)   15(  19)   16(  24)   17(  24)   18(  30)   19(  30)
E2G   1    0(   0)    1(   0)    2(   1)    3(   1)    4(   3)    5(   3)    6(   5)    7(   5)    8(   8)    9(   8)
          10(  12)   11(  12)   12(  16)   13(  16)   14(  21)   15(  21)   16(  27)   17(  27)   18(  33)   19(  33)
E2G   2    0(   0)    1(   0)    2(   1)    3(   1)    4(   3)    5(   3)    6(   5)    7(   5)    8(   8)    9(   8)
          10(  12)   11(  12)   12(  16)   13(  16)   14(  21)   15(  21)   16(  27)   17(  27)   18(  33)   19(  33)
A1U   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   0)    7(   1)    8(   1)    9(   2)
          10(   2)   11(   3)   12(   3)   13(   5)   14(   5)   15(   7)   16(   7)   17(   9)   18(   9)   19(  12)
A2U   1    0(   0)    1(   1)    2(   1)    3(   2)    4(   2)    5(   3)    6(   3)    7(   5)    8(   5)    9(   7)
          10(   7)   11(   9)   12(   9)   13(  12)   14(  12)   15(  15)   16(  15)   17(  18)   18(  18)   19(  22)
B1U   1    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   2)    6(   2)    7(   3)    8(   3)    9(   5)
          10(   5)   11(   7)   12(   7)   13(   9)   14(   9)   15(  12)   16(  12)   17(  15)   18(  15)   19(  18)
B2U   1    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   2)    6(   2)    7(   3)    8(   3)    9(   5)
          10(   5)   11(   7)   12(   7)   13(   9)   14(   9)   15(  12)   16(  12)   17(  15)   18(  15)   19(  18)
E1U   1    0(   0)    1(   1)    2(   1)    3(   2)    4(   2)    5(   4)    6(   4)    7(   7)    8(   7)    9(  10)
          10(  10)   11(  14)   12(  14)   13(  19)   14(  19)   15(  24)   16(  24)   17(  30)   18(  30)   19(  37)
E1U   2    0(   0)    1(   1)    2(   1)    3(   2)    4(   2)    5(   4)    6(   4)    7(   7)    8(   7)    9(  10)
          10(  10)   11(  14)   12(  14)   13(  19)   14(  19)   15(  24)   16(  24)   17(  30)   18(  30)   19(  37)
E2U   1    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   3)    6(   3)    7(   5)    8(   5)    9(   8)
          10(   8)   11(  12)   12(  12)   13(  16)   14(  16)   15(  21)   16(  21)   17(  27)   18(  27)   19(  33)
E2U   2    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   3)    6(   3)    7(   5)    8(   5)    9(   8)
          10(   8)   11(  12)   12(  12)   13(  16)   14(  16)   15(  21)   16(  21)   17(  27)   18(  27)   19(  33)

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is D2h
LMax = =   50
 The dimension of each irreducable representation is
    AG    (  1)    B1G   (  1)    B2G   (  1)    B3G   (  1)    AU    (  1)
    B1U   (  1)    B2U   (  1)    B3U   (  1)
Abelian axes
    1       1.000000       0.000000       0.000000
    2       0.000000       1.000000       0.000000
    3       0.000000       0.000000       1.000000
Symmetry operation directions
  1       0.000000       0.000000       1.000000 ang =  0  1 type = 0 axis = 3
  2       0.000000       0.000000       1.000000 ang =  1  2 type = 2 axis = 3
  3       1.000000       0.000000       0.000000 ang =  1  2 type = 2 axis = 1
  4       0.000000       1.000000       0.000000 ang =  1  2 type = 2 axis = 2
  5       0.000000       0.000000       1.000000 ang =  1  2 type = 3 axis = 3
  6       0.000000       0.000000       1.000000 ang =  0  1 type = 1 axis = 3
  7       1.000000       0.000000       0.000000 ang =  0  1 type = 1 axis = 1
  8       0.000000       1.000000       0.000000 ang =  0  1 type = 1 axis = 2
irep =    1  sym =AG    1  eigs =   1   1   1   1   1   1   1   1
irep =    2  sym =B1G   1  eigs =   1   1  -1  -1   1   1  -1  -1
irep =    3  sym =B2G   1  eigs =   1  -1  -1   1   1  -1  -1   1
irep =    4  sym =B3G   1  eigs =   1  -1   1  -1   1  -1   1  -1
irep =    5  sym =AU    1  eigs =   1   1   1   1  -1  -1  -1  -1
irep =    6  sym =B1U   1  eigs =   1   1  -1  -1  -1  -1   1   1
irep =    7  sym =B2U   1  eigs =   1  -1  -1   1  -1   1   1  -1
irep =    8  sym =B3U   1  eigs =   1  -1   1  -1  -1   1  -1   1
 Number of symmetry operations in the abelian subgroup (excluding E) =    7
 The operations are -
     2     3     4     5     6     7     8
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 AG        1         1        351       1  1  1  1  1  1  1
 B1G       1         2        325       1 -1 -1  1  1 -1 -1
 B2G       1         3        325      -1 -1  1  1 -1 -1  1
 B3G       1         4        325      -1  1 -1  1 -1  1 -1
 AU        1         5        300       1  1  1 -1 -1 -1 -1
 B1U       1         6        325       1 -1 -1 -1 -1  1  1
 B2U       1         7        325      -1 -1  1 -1  1  1 -1
 B3U       1         8        325      -1  1 -1 -1  1 -1  1
Time Now =         2.2194  Delta time =         0.0429 End SymGen

+ Command ExpOrb
+
In GetRMax, RMaxEps =  0.10000000E-05  RMax =    8.8462201314 Angs

----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------

Maximum R in the grid (RMax) =     8.84622 Angs
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) =   10.0
In regions controlled by the wave length (HFacWave) =   10.0
Factor used to control the minimum exponent at each center (MinExpFac) =  300.0
Maximum asymptotic kinetic energy (EMAx) =  60.00000 eV
Maximum step size (MaxStep) =   0.01058 Angs
Factor to increase grid by (GridFac) =     1

    1  Center at =     0.00000 Angs  Alpha Max = 0.10000E+01
    2  Center at =     1.39700 Angs  Alpha Max = 0.10800E+05
    3  Center at =     2.48100 Angs  Alpha Max = 0.30000E+03

Generated Grid

  irg  nin  ntot      step Angs     R end Angs
    1    8     8    0.50599E-02     0.04048
    2    8    16    0.69146E-02     0.09580
    3   64    80    0.10584E-01     0.77314
    4   40   120    0.10584E-01     1.19648
    5    8   128    0.91394E-02     1.26960
    6    8   136    0.58025E-02     1.31602
    7    8   144    0.36883E-02     1.34553
    8    8   152    0.23444E-02     1.36428
    9    8   160    0.14902E-02     1.37620
   10    8   168    0.94723E-03     1.38378
   11    8   176    0.64695E-03     1.38896
   12    8   184    0.53663E-03     1.39325
   13    8   192    0.46890E-03     1.39700
   14    8   200    0.50920E-03     1.40107
   15    8   208    0.54286E-03     1.40542
   16    8   216    0.66917E-03     1.41077
   17    8   224    0.10153E-02     1.41889
   18    8   232    0.16142E-02     1.43181
   19    8   240    0.25663E-02     1.45234
   20    8   248    0.40801E-02     1.48498
   21    8   256    0.64868E-02     1.53687
   22    8   264    0.10313E-01     1.61938
   23   64   328    0.10584E-01     2.29672
   24    8   336    0.83989E-02     2.36391
   25    8   344    0.53327E-02     2.40658
   26    8   352    0.37450E-02     2.43654
   27    8   360    0.31727E-02     2.46192
   28    8   368    0.23854E-02     2.48100
   29    8   376    0.30552E-02     2.50544
   30    8   384    0.32571E-02     2.53150
   31    8   392    0.40150E-02     2.56362
   32    8   400    0.60918E-02     2.61235
   33    8   408    0.96851E-02     2.68983
   34   64   472    0.10584E-01     3.36718
   35   64   536    0.10584E-01     4.04453
   36   64   600    0.10584E-01     4.72187
   37   64   664    0.10584E-01     5.39922
   38   64   728    0.10584E-01     6.07657
   39   64   792    0.10584E-01     6.75391
   40   64   856    0.10584E-01     7.43126
   41   64   920    0.10584E-01     8.10861
   42   64   984    0.10584E-01     8.78595
   43    8   992    0.75332E-02     8.84622
Time Now =         2.2717  Delta time =         0.0523 End GenGrid

----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------

Maximum scattering l (lmax) =   25
Maximum scattering m (mmaxs) =   25
Maximum numerical integration l (lmaxi) =   50
Maximum numerical integration m (mmaxi) =   50
Maximum l to include in the asymptotic region (lmasym) =   19
Parameter used to determine the cutoff points (PCutRd) =  0.10000000E-07 au
Maximum E used to determine grid (in eV) =       60.00000
Print flag (iprnfg) =    0
lmasymtyts =   18
 Actual value of lmasym found =     19
Number of regions of the same l expansion (NAngReg) =    6
Angular regions
    1 L =    2  from (    1)         0.00506  to (    7)         0.03542
    2 L =    7  from (    8)         0.04048  to (   15)         0.08888
    3 L =   10  from (   16)         0.09580  to (   23)         0.16988
    4 L =   19  from (   24)         0.18046  to (   87)         0.84723
    5 L =   25  from (   88)         0.85781  to (  496)         3.62119
    6 L =   19  from (  497)         3.63177  to (  992)         8.84622
There are     2 angular regions for computing spherical harmonics
    1 lval =   19
    2 lval =   25
Last grid points by processor WorkExp =     1.500
Proc id =   -1  Last grid point =       1
Proc id =    0  Last grid point =      96
Proc id =    1  Last grid point =     144
Proc id =    2  Last grid point =     192
Proc id =    3  Last grid point =     240
Proc id =    4  Last grid point =     288
Proc id =    5  Last grid point =     336
Proc id =    6  Last grid point =     392
Proc id =    7  Last grid point =     440
Proc id =    8  Last grid point =     488
Proc id =    9  Last grid point =     552
Proc id =   10  Last grid point =     624
Proc id =   11  Last grid point =     704
Proc id =   12  Last grid point =     776
Proc id =   13  Last grid point =     848
Proc id =   14  Last grid point =     920
Proc id =   15  Last grid point =     992
Time Now =         2.3977  Delta time =         0.1260 End AngGCt

----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------


 R of maximum density
     1  A1G   1 at max irg =   24  r =   1.39700
     2  E1U   1 at max irg =   24  r =   1.39700
     3  E1U   2 at max irg =   24  r =   1.39700
     4  E2G   1 at max irg =   24  r =   1.39700
     5  E2G   2 at max irg =   24  r =   1.39700
     6  B1U   1 at max irg =   24  r =   1.39700
     7  A1G   1 at max irg =   24  r =   1.39700
     8  E1U   1 at max irg =   25  r =   1.40107
     9  E1U   2 at max irg =   25  r =   1.40107
    10  E2G   1 at max irg =   34  r =   1.70405
    11  E2G   2 at max irg =   34  r =   1.70405
    12  A1G   1 at max irg =   40  r =   2.21206
    13  B1U   1 at max irg =   40  r =   2.21206
    14  B2U   1 at max irg =   30  r =   1.45234
    15  E1U   1 at max irg =   14  r =   1.11182
    16  E1U   2 at max irg =   14  r =   1.11182
    17  A2U   1 at max irg =   30  r =   1.45234
    18  E2G   1 at max irg =   17  r =   1.31602
    19  E2G   2 at max irg =   17  r =   1.31602
    20  E1G   1 at max irg =   31  r =   1.48498
    21  E1G   2 at max irg =   31  r =   1.48498

Rotation coefficients for orbital     1  grp =    1 A1G   1
     1  1.0000000000

Rotation coefficients for orbital     2  grp =    2 E1U   1
     2  1.0000000000    3  0.0000000000

Rotation coefficients for orbital     3  grp =    2 E1U   2
     2  0.0000000000    3  1.0000000000

Rotation coefficients for orbital     4  grp =    3 E2G   1
     4  0.0000000000    5  1.0000000000

Rotation coefficients for orbital     5  grp =    3 E2G   2
     4 -1.0000000000    5  0.0000000000

Rotation coefficients for orbital     6  grp =    4 B1U   1
     6  1.0000000000

Rotation coefficients for orbital     7  grp =    5 A1G   1
     7  1.0000000000

Rotation coefficients for orbital     8  grp =    6 E1U   1
     8  0.0000000000    9  1.0000000000

Rotation coefficients for orbital     9  grp =    6 E1U   2
     8  1.0000000000    9  0.0000000000

Rotation coefficients for orbital    10  grp =    7 E2G   1
    10  1.0000000000   11  0.0000000000

Rotation coefficients for orbital    11  grp =    7 E2G   2
    10  0.0000000000   11 -1.0000000000

Rotation coefficients for orbital    12  grp =    8 A1G   1
    12  1.0000000000

Rotation coefficients for orbital    13  grp =    9 B1U   1
    13  1.0000000000

Rotation coefficients for orbital    14  grp =   10 B2U   1
    14  1.0000000000

Rotation coefficients for orbital    15  grp =   11 E1U   1
    15  0.0000000000   16 -1.0000000000

Rotation coefficients for orbital    16  grp =   11 E1U   2
    15 -1.0000000000   16  0.0000000000

Rotation coefficients for orbital    17  grp =   12 A2U   1
    17  1.0000000000

Rotation coefficients for orbital    18  grp =   13 E2G   1
    18  1.0000000000   19  0.0000000000

Rotation coefficients for orbital    19  grp =   13 E2G   2
    18  0.0000000000   19 -1.0000000000

Rotation coefficients for orbital    20  grp =   14 E1G   1
    20  1.0000000000   21  0.0000000000

Rotation coefficients for orbital    21  grp =   14 E1G   2
    20  0.0000000000   21  1.0000000000
Number of orbital groups and degeneracis are        14
  1  2  2  1  1  2  2  1  1  1  2  1  2  2
Number of orbital groups and number of electrons when fully occupied
        14
  2  4  4  2  2  4  4  2  2  2  4  2  4  4
Time Now =         3.0919  Delta time =         0.6942 End RotOrb

----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------

 First orbital group to expand (mofr) =    1
 Last orbital group to expand (moto) =   14
Orbital     1 of  A1G   1 symmetry normalization integral =  0.96650918
Orbital     2 of  E1U   1 symmetry normalization integral =  0.97039415
Orbital     3 of  E2G   1 symmetry normalization integral =  0.96487322
Orbital     4 of  B1U   1 symmetry normalization integral =  0.96821783
Orbital     5 of  A1G   1 symmetry normalization integral =  0.99811453
Orbital     6 of  E1U   1 symmetry normalization integral =  0.99840375
Orbital     7 of  E2G   1 symmetry normalization integral =  0.99879725
Orbital     8 of  A1G   1 symmetry normalization integral =  0.99989255
Orbital     9 of  B1U   1 symmetry normalization integral =  0.99922987
Orbital    10 of  B2U   1 symmetry normalization integral =  0.99993249
Orbital    11 of  E1U   1 symmetry normalization integral =  0.99985680
Orbital    12 of  A2U   1 symmetry normalization integral =  0.99996766
Orbital    13 of  E2G   1 symmetry normalization integral =  0.99985483
Orbital    14 of  E1G   1 symmetry normalization integral =  0.99995330
Time Now =         3.8612  Delta time =         0.7692 End ExpOrb

+ Command GetPot
+

----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------

Total density =     42.00000000
Time Now =         3.8795  Delta time =         0.0183 End Den

----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------

 vasymp =  0.42000000E+02 facnorm =  0.10000000E+01
Time Now =         3.9692  Delta time =         0.0897 Electronic part
Time Now =         3.9823  Delta time =         0.0131 End StPot

----------------------------------------------------------------------
vcppol - VCP polarization potential program
----------------------------------------------------------------------

Time Now =         4.0112  Delta time =         0.0289 End VcpPol

----------------------------------------------------------------------
AsyPol - Program to match polarization potential to asymptotic form
----------------------------------------------------------------------

Switching distance (SwitchD) =     0.15000
Number of terms in the asymptotic polarization potential (nterm) =    6
Term =    1  At center =    1
Explicit coordinates =  0.00000000E+00  0.13970000E+01  0.00000000E+00
Type =    1
Polarizability =  0.11850000E+02 au
Term =    2  At center =    2
Explicit coordinates =  0.12098370E+01  0.69850000E+00  0.00000000E+00
Type =    1
Polarizability =  0.11850000E+02 au
Term =    3  At center =    3
Explicit coordinates =  0.12098370E+01 -0.69850000E+00  0.00000000E+00
Type =    1
Polarizability =  0.11850000E+02 au
Term =    4  At center =    4
Explicit coordinates =  0.00000000E+00 -0.13970000E+01  0.00000000E+00
Type =    1
Polarizability =  0.11850000E+02 au
Term =    5  At center =    5
Explicit coordinates = -0.12098370E+01 -0.69850000E+00  0.00000000E+00
Type =    1
Polarizability =  0.11850000E+02 au
Term =    6  At center =    6
Explicit coordinates = -0.12098370E+01  0.69850000E+00  0.00000000E+00
Type =    1
Polarizability =  0.11850000E+02 au
Last center is at (RCenterX) =   1.39700 Angs
 Radial matching parameter (icrtyp) =    3
 Matching line type (ilntyp) =    0
 Using closest approach for matching r
 Matching point is at r =   4.1640524550 Angs
Matching uses closest approach (iMatchType = 2)
First nonzero weight at(RFirstWt)  R =        3.70585 Angs
Last point of the switching region (RLastWt) R=        4.63721 Angs
Total asymptotic potential is   0.71100000E+02 a.u.
Time Now =         4.0706  Delta time =         0.0594 End AsyPol

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.92500000E+01  eV
 Do E =  0.30000000E+02 eV (  0.11024798E+01 AU)
Time Now =         4.0904  Delta time =         0.0198 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = A1G   1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.71100000E+02  au
Number of integration regions used =    47
Number of partial waves (np) =    28
Number of asymptotic solutions on the right (NAsymR) =     9
Number of asymptotic solutions on the left (NAsymL) =     9
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     9
Maximum in the asymptotic region (lpasym) =   19
Number of partial waves in the asymptotic region (npasym) =   22
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  210
Found polarization potential
Maximum l used in usual function (lmax) =   25
Maximum m used in usual function (LMax) =   25
Maxamum l used in expanding static potential (lpotct) =   50
Maximum l used in exapnding the exchange potential (lmaxab) =   50
Higest l included in the expansion of the wave function (lnp) =   24
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   19
Higest l used in the asymptotic potential (lpzb) =   38
Maximum L used in the homogeneous solution (LMaxHomo) =   19
Number of partial waves in the homogeneous solution (npHomo) =   22
Time Now =         4.1182  Delta time =         0.0278 Energy independent setup

Compute solution for E =   30.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.71100000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.21094237E-14
 i =  2  lval =   3  stpote =  0.30291252E-07
 i =  3  lval =   3  stpote =  0.22661143E-02
 i =  4  lval =   5  stpote = -0.28769305E-15
For potential     2
 i =  1  exps = -0.66867733E+02 -0.20000000E+01  stpote = -0.29790100E-17
 i =  2  exps = -0.66867733E+02 -0.20000000E+01  stpote = -0.29338994E-17
 i =  3  exps = -0.66867733E+02 -0.20000000E+01  stpote = -0.28451907E-17
 i =  4  exps = -0.66867733E+02 -0.20000000E+01  stpote = -0.27158361E-17
For potential     3
 i =  1  lvals =   6   8  stpote = -0.44475835E-04  second term = -0.38002696E-04
 i =  2  lvals =   6   6  stpote = -0.14891531E-10  second term =  0.00000000E+00
 i =  3  lvals =   6   8  stpote =  0.19130275E-03  second term =  0.18466622E-03
 i =  4  lvals =   8   8  stpote =  0.19250818E-12  second term =  0.00000000E+00
Number of asymptotic regions =      59
Final point in integration =   0.16655616E+03 Angstroms
Time Now =        14.2228  Delta time =        10.1046 End SolveHomo
     REAL PART -  Final k matrix
     ROW  1
  0.23517274E+01-0.99237542E-01-0.39614245E+00-0.97476251E+00-0.33267580E+00
  0.24034897E+00 0.13007442E+00-0.32466167E-01-0.20376133E-01
     ROW  2
 -0.99237542E-01 0.96931835E-01-0.51805924E+00 0.55585118E+00 0.14371260E+00
 -0.46074739E-01-0.17983423E-01 0.22192883E-02 0.11915435E-02
     ROW  3
 -0.39614245E+00-0.51805924E+00 0.54547914E+00 0.74532589E+00 0.23734319E-01
 -0.98903008E-01-0.41463953E-01 0.12098284E-01 0.79221097E-02
     ROW  4
 -0.97476251E+00 0.55585118E+00 0.74532589E+00 0.26579274E+01 0.62584931E+00
 -0.53936012E+00-0.26287209E+00 0.70756948E-01 0.42934910E-01
     ROW  5
 -0.33267580E+00 0.14371260E+00 0.23734319E-01 0.62584931E+00 0.39865541E+00
 -0.17860016E+00-0.13493573E+00 0.25766842E-01 0.16886388E-01
     ROW  6
  0.24034897E+00-0.46074692E-01-0.98903006E-01-0.53936011E+00-0.17860016E+00
  0.25541252E+00 0.79504395E-01-0.42260109E-01-0.15140942E-01
     ROW  7
  0.13007442E+00-0.17983405E-01-0.41463951E-01-0.26287209E+00-0.13493573E+00
  0.79504395E-01 0.10473319E+00-0.18005741E-01-0.33211296E-01
     ROW  8
 -0.32466167E-01 0.22192878E-02 0.12098284E-01 0.70756947E-01 0.25766842E-01
 -0.42260109E-01-0.18005741E-01 0.59459670E-01 0.74073138E-02
     ROW  9
 -0.20376133E-01 0.11915431E-02 0.79221095E-02 0.42934909E-01 0.16886387E-01
 -0.15140942E-01-0.33211296E-01 0.74073138E-02 0.31444975E-01
 eigenphases
 -0.4641567E+00  0.1334280E-01  0.4716439E-01  0.6711694E-01  0.1288438E+00
  0.2630940E+00  0.7141461E+00  0.1012515E+01  0.1326279E+01
 eigenphase sum 0.310835E+01  scattering length=   0.02240
 eps+pi 0.624994E+01  eps+2*pi 0.939153E+01

MaxIter =   9 c.s. =      3.80024070 angs^2  rmsk=     0.00000000
Time Now =        76.0410  Delta time =        61.8181 End ScatStab
Time Now =        76.0414  Delta time =         0.0005 Finalize