Execution on login004

----------------------------------------------------------------------
ePolyScat Version E3
----------------------------------------------------------------------

Authors: R. R. Lucchese, N. Sanna, A. P. P. Natalense, and F. A. Gianturco
http://www.chem.tamu.edu/rgroup/lucchese/ePolyScat.E3.manual/manual.html
Please cite the following two papers when reporting results obtained with  this program
F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 100, 6464 (1994).
A. P. P. Natalense and R. R. Lucchese, J. Chem. Phys. 111, 5344 (1999).

----------------------------------------------------------------------

Starting at 2011-08-29  10:50:31.162 (GMT -0500)
Using    16 processors

----------------------------------------------------------------------


+ Start of Input Records
#
# input file for test16
#
# electron scattering from CH4 using only local potential
#
  LMax   20     # maximum l to be used for wave functions
  EMax  50.0    # EMax, maximum asymptotic energy in eV
  EngForm      # Energy formulas
   0 2         # charge, formula type
   3           # number of terms in the formulas
   2.0 -1.0 1  # orbital occupation and coefficient for the K operators
   2.0 -1.0 1
   2.0 -1.0 1
  VCorr 'PZ'
  AsyPol
   0.25  # SwitchD, distance where switching function is down to 0.1
   1     # nterm, number of terms needed to define asymptotic potential
   1     # center for polarization term 1 is for C atom
   1     # ittyp type of polarization term, = 1 for spherically symmetric
         # = 2 for reading in the full tensor
   17.50 # value of the spherical polarizability
   3     # icrtyp, flag to determine where r match is, 3 for second crossing
         # or at nearest approach
   0     # ilntyp, flag to determine what matching line is used, 0 - use
         # l = 0 radial function as matching function
  FegeEng 13.0   # Energy correction (in eV) used in the fege potential
  LMaxK   10     # Maximum l in the K matirx
 ScatEng     # list of scattering energies
  0.1 0.5 2.0 10.0 20.0

 IterMax -1

Convert '/g/home/rrl581a/Applications/ePolyScat.E3/tests/test16.g03' 'g03'
GetBlms
ExpOrb
GetPot

 ScatContSym 'A1'  # Scattering symmetry
Scat
#
 ScatContSym 'A2'  # Scattering symmetry
Scat
#
 ScatContSym 'E'  # Scattering symmetry
Scat
#
 ScatContSym 'T1'  # Scattering symmetry
Scat
#
 ScatContSym 'T2'  # Scattering symmetry
Scat
TotalCrossSection
+ End of input reached
+ Data Record LMax - 20
+ Data Record EMax - 50.0
+ Data Record EngForm
+ 0 2 / 3 / 2.0 -1.0 1 / 2.0 -1.0 1 / 2.0 -1.0 1
+ Data Record VCorr - 'PZ'
+ Data Record AsyPol
+ 0.25 / 1 / 1 / 1 / 17.50 / 3 / 0
+ Data Record FegeEng - 13.0
+ Data Record LMaxK - 10
+ Data Record ScatEng - 0.1 0.5 2.0 10.0 20.0
+ Data Record IterMax - -1

+ Command Convert
+ '/g/home/rrl581a/Applications/ePolyScat.E3/tests/test16.g03' 'g03'

----------------------------------------------------------------------
g03cnv - read input from G03 output
----------------------------------------------------------------------

Expansion center is (in Angstroms) -
     0.0000000000   0.0000000000   0.0000000000
Command line = # HF/AUG-CC-PVQZ SCF=TIGHT 6D 10F GFINPUT PUNCH=MO
CardFlag =    T
Normal Mode flag =    F
Selecting orbitals
from     1  to     5  number already selected     0
Number of orbitals selected is     5
Highest orbital read in is =    5
Time Now =         0.0552  Delta time =         0.0552 End g03cnv

Atoms found    5  Coordinates in Angstroms
Z =  6 ZS =  6 r =   0.0000000000   0.0000000000   0.0000000000
Z =  1 ZS =  1 r =   0.6254700000   0.6254700000   0.6254700000
Z =  1 ZS =  1 r =  -0.6254700000  -0.6254700000   0.6254700000
Z =  1 ZS =  1 r =   0.6254700000  -0.6254700000  -0.6254700000
Z =  1 ZS =  1 r =  -0.6254700000   0.6254700000  -0.6254700000
Maximum distance from expansion center is    1.0833458186

+ Command GetBlms
+

----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------

Found point group  Td
Reduce angular grid using nthd =  1  nphid =  4
Found point group for abelian subgroup D2
Time Now =         0.0612  Delta time =         0.0060 End GetPGroup
List of unique axes
  N  Vector                      Z   R
  1  0.00000  0.00000  1.00000
  2  0.57735  0.57735  0.57735   1  1.08335
  3 -0.57735 -0.57735  0.57735   1  1.08335
  4  0.57735 -0.57735 -0.57735   1  1.08335
  5 -0.57735  0.57735 -0.57735   1  1.08335
List of corresponding x axes
  N  Vector
  1  1.00000  0.00000  0.00000
  2  0.81650 -0.40825 -0.40825
  3  0.81650 -0.40825  0.40825
  4  0.81650  0.40825  0.40825
  5  0.81650  0.40825 -0.40825
Computed default value of LMaxA =   13
Determining angular grid in GetAxMax  LMax =   20  LMaxA =   13  LMaxAb =   40
MMax =    3  MMaxAbFlag =    1
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11  12  13  -1  -1  -1  -1  -1  -1
  -1
For axis     2  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3   3   2   2   2
   2
For axis     3  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3   3   2   2   2
   2
For axis     4  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3   3   2   2   2
   2
For axis     5  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3   3   2   2   2
   2
On the double L grid used for products
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19
  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39
  40
For axis     2  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1
For axis     3  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1
For axis     4  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1
For axis     5  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is Td
LMax = =   20
 The dimension of each irreducable representation is
    A1    (  1)    A2    (  1)    E     (  2)    T1    (  3)    T2    (  3)
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     8    11    14
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A1        1         1         21       1  1  1
 A2        1         2          8       1  1  1
 E         1         3         30       1  1  1
 E         2         4         30       1  1  1
 T1        1         5         38      -1 -1  1
 T1        2         6         38      -1  1 -1
 T1        3         7         38       1 -1 -1
 T2        1         8         52      -1 -1  1
 T2        2         9         52      -1  1 -1
 T2        3        10         52       1 -1 -1
Time Now =         0.7107  Delta time =         0.6496 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
A1    1    0(   1)    1(   1)    2(   1)    3(   2)    4(   3)    5(   3)    6(   4)    7(   5)    8(   6)    9(   7)
          10(   8)   11(   9)   12(  11)   13(  12)
A2    1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   1)    7(   1)    8(   1)    9(   2)
          10(   3)   11(   3)   12(   4)   13(   5)
E     1    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   3)    6(   4)    7(   5)    8(   7)    9(   8)
          10(  10)   11(  12)   12(  14)   13(  16)
E     2    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   3)    6(   4)    7(   5)    8(   7)    9(   8)
          10(  10)   11(  12)   12(  14)   13(  16)
T1    1    0(   0)    1(   0)    2(   0)    3(   1)    4(   2)    5(   3)    6(   4)    7(   6)    8(   8)    9(  10)
          10(  12)   11(  15)   12(  18)   13(  21)
T1    2    0(   0)    1(   0)    2(   0)    3(   1)    4(   2)    5(   3)    6(   4)    7(   6)    8(   8)    9(  10)
          10(  12)   11(  15)   12(  18)   13(  21)
T1    3    0(   0)    1(   0)    2(   0)    3(   1)    4(   2)    5(   3)    6(   4)    7(   6)    8(   8)    9(  10)
          10(  12)   11(  15)   12(  18)   13(  21)
T2    1    0(   0)    1(   1)    2(   2)    3(   3)    4(   4)    5(   6)    6(   8)    7(  10)    8(  12)    9(  15)
          10(  18)   11(  21)   12(  24)   13(  28)
T2    2    0(   0)    1(   1)    2(   2)    3(   3)    4(   4)    5(   6)    6(   8)    7(  10)    8(  12)    9(  15)
          10(  18)   11(  21)   12(  24)   13(  28)
T2    3    0(   0)    1(   1)    2(   2)    3(   3)    4(   4)    5(   6)    6(   8)    7(  10)    8(  12)    9(  15)
          10(  18)   11(  21)   12(  24)   13(  28)

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is D2
LMax = =   40
 The dimension of each irreducable representation is
    A     (  1)    B1    (  1)    B2    (  1)    B3    (  1)
Abelian axes
    1       1.000000       0.000000       0.000000
    2       0.000000       1.000000       0.000000
    3       0.000000       0.000000       1.000000
Symmetry operation directions
  1       0.000000       0.000000       1.000000 ang =  0  1 type = 0 axis = 3
  2       0.000000       0.000000       1.000000 ang =  1  2 type = 2 axis = 3
  3       1.000000       0.000000       0.000000 ang =  1  2 type = 2 axis = 1
  4       0.000000       1.000000       0.000000 ang =  1  2 type = 2 axis = 2
irep =    1  sym =A     1  eigs =   1   1   1   1
irep =    2  sym =B1    1  eigs =   1   1  -1  -1
irep =    3  sym =B2    1  eigs =   1  -1  -1   1
irep =    4  sym =B3    1  eigs =   1  -1   1  -1
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     2     3     4
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A         1         1        421       1  1  1
 B1        1         2        420       1 -1 -1
 B2        1         3        420      -1 -1  1
 B3        1         4        420      -1  1 -1
Time Now =         0.7421  Delta time =         0.0314 End SymGen

+ Command ExpOrb
+
In GetRMax, RMaxEps =  0.10000000E-05  RMax =   12.5498886709 Angs

----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------

Maximum R in the grid (RMax) =    12.54989 Angs
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) =   10.0
In regions controlled by the wave length (HFacWave) =   10.0
Factor used to control the minimum exponent at each center (MinExpFac) =  300.0
Maximum asymptotic kinetic energy (EMAx) =  50.00000 eV
Maximum step size (MaxStep) =   0.01058 Angs
Factor to increase grid by (GridFac) =     1

    1  Center at =     0.00000 Angs  Alpha Max = 0.33980E+05
    2  Center at =     1.08335 Angs  Alpha Max = 0.30000E+03

Generated Grid

  irg  nin  ntot      step Angs     R end Angs
    1    8     8    0.28707E-03     0.00230
    2    8    16    0.30604E-03     0.00474
    3    8    24    0.37726E-03     0.00776
    4    8    32    0.57239E-03     0.01234
    5    8    40    0.91002E-03     0.01962
    6    8    48    0.14468E-02     0.03120
    7    8    56    0.23002E-02     0.04960
    8    8    64    0.36571E-02     0.07886
    9    8    72    0.58142E-02     0.12537
   10    8    80    0.92438E-02     0.19932
   11   32   112    0.10584E-01     0.53799
   12    8   120    0.10220E-01     0.61975
   13    8   128    0.99060E-02     0.69900
   14   16   144    0.10584E-01     0.86834
   15    8   152    0.97241E-02     0.94613
   16    8   160    0.62495E-02     0.99613
   17    8   168    0.41277E-02     1.02915
   18    8   176    0.33083E-02     1.05561
   19    8   184    0.30585E-02     1.08008
   20    8   192    0.40782E-03     1.08335
   21    8   200    0.30552E-02     1.10779
   22    8   208    0.32571E-02     1.13384
   23    8   216    0.40150E-02     1.16596
   24    8   224    0.60918E-02     1.21470
   25    8   232    0.96851E-02     1.29218
   26   64   296    0.10584E-01     1.96953
   27   64   360    0.10584E-01     2.64687
   28   64   424    0.10584E-01     3.32422
   29   64   488    0.10584E-01     4.00157
   30   64   552    0.10584E-01     4.67891
   31   64   616    0.10584E-01     5.35626
   32   64   680    0.10584E-01     6.03361
   33   64   744    0.10584E-01     6.71095
   34   64   808    0.10584E-01     7.38830
   35   64   872    0.10584E-01     8.06565
   36   64   936    0.10584E-01     8.74299
   37   64  1000    0.10584E-01     9.42034
   38   64  1064    0.10584E-01    10.09769
   39   64  1128    0.10584E-01    10.77503
   40   64  1192    0.10584E-01    11.45238
   41   64  1256    0.10584E-01    12.12973
   42   32  1288    0.10584E-01    12.46840
   43    8  1296    0.10186E-01    12.54989
Time Now =         0.7816  Delta time =         0.0395 End GenGrid

----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------

Maximum scattering l (lmax) =   20
Maximum scattering m (mmaxs) =   20
Maximum numerical integration l (lmaxi) =   40
Maximum numerical integration m (mmaxi) =   40
Maximum l to include in the asymptotic region (lmasym) =   13
Parameter used to determine the cutoff points (PCutRd) =  0.10000000E-07 au
Maximum E used to determine grid (in eV) =       50.00000
Print flag (iprnfg) =    0
lmasymtyts =   13
 Actual value of lmasym found =     13
Number of regions of the same l expansion (NAngReg) =   12
Angular regions
    1 L =    2  from (    1)         0.00029  to (    7)         0.00201
    2 L =    4  from (    8)         0.00230  to (   15)         0.00444
    3 L =    5  from (   16)         0.00474  to (   31)         0.01177
    4 L =    6  from (   32)         0.01234  to (   47)         0.02975
    5 L =    7  from (   48)         0.03120  to (   55)         0.04730
    6 L =    8  from (   56)         0.04960  to (   63)         0.07520
    7 L =    9  from (   64)         0.07886  to (   71)         0.11955
    8 L =   11  from (   72)         0.12537  to (   79)         0.19008
    9 L =   12  from (   80)         0.19932  to (   87)         0.27340
   10 L =   13  from (   88)         0.28399  to (  127)         0.68910
   11 L =   20  from (  128)         0.69900  to (  280)         1.80019
   12 L =   13  from (  281)         1.81077  to ( 1296)        12.54989
There are     2 angular regions for computing spherical harmonics
    1 lval =   13
    2 lval =   20
Last grid points by processor WorkExp =     1.500
Proc id =   -1  Last grid point =       1
Proc id =    0  Last grid point =     136
Proc id =    1  Last grid point =     184
Proc id =    2  Last grid point =     232
Proc id =    3  Last grid point =     272
Proc id =    4  Last grid point =     352
Proc id =    5  Last grid point =     440
Proc id =    6  Last grid point =     520
Proc id =    7  Last grid point =     608
Proc id =    8  Last grid point =     696
Proc id =    9  Last grid point =     784
Proc id =   10  Last grid point =     872
Proc id =   11  Last grid point =     952
Proc id =   12  Last grid point =    1040
Proc id =   13  Last grid point =    1128
Proc id =   14  Last grid point =    1216
Proc id =   15  Last grid point =    1296
Time Now =         0.8463  Delta time =         0.0648 End AngGCt

----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------


 R of maximum density
     1  A1    1 at max irg =    8  r =   0.07886
     2  A1    1 at max irg =   17  r =   0.78367
     3  T2    1 at max irg =   21  r =   1.02915
     4  T2    2 at max irg =   21  r =   1.02915
     5  T2    3 at max irg =   21  r =   1.02915

Rotation coefficients for orbital     1  grp =    1 A1    1
     1  1.0000000000

Rotation coefficients for orbital     2  grp =    2 A1    1
     2  1.0000000000

Rotation coefficients for orbital     3  grp =    3 T2    1
     3  0.0000000000    4  1.0000000000    5  0.0000000000

Rotation coefficients for orbital     4  grp =    3 T2    2
     3  1.0000000000    4  0.0000000000    5  0.0000000000

Rotation coefficients for orbital     5  grp =    3 T2    3
     3  0.0000000000    4  0.0000000000    5  1.0000000000
Number of orbital groups and degeneracis are         3
  1  1  3
Number of orbital groups and number of electrons when fully occupied
         3
  2  2  6
Time Now =         1.4253  Delta time =         0.5790 End RotOrb

----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------

 First orbital group to expand (mofr) =    1
 Last orbital group to expand (moto) =    3
Orbital     1 of  A1    1 symmetry normalization integral =  0.99999999
Orbital     2 of  A1    1 symmetry normalization integral =  0.99999556
Orbital     3 of  T2    1 symmetry normalization integral =  0.99999258
Time Now =         2.6058  Delta time =         1.1805 End ExpOrb

+ Command GetPot
+

----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------

Total density =     10.00000000
Time Now =         2.6195  Delta time =         0.0137 End Den

----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------

 vasymp =  0.10000000E+02 facnorm =  0.10000000E+01
Time Now =         2.7001  Delta time =         0.0806 Electronic part
Time Now =         2.7065  Delta time =         0.0064 End StPot

----------------------------------------------------------------------
vcppol - VCP polarization potential program
----------------------------------------------------------------------

Time Now =         2.7394  Delta time =         0.0330 End VcpPol

----------------------------------------------------------------------
AsyPol - Program to match polarization potential to asymptotic form
----------------------------------------------------------------------

Switching distance (SwitchD) =     0.25000
Number of terms in the asymptotic polarization potential (nterm) =    1
Term =    1  At center =    1
Explicit coordinates =  0.00000000E+00  0.00000000E+00  0.00000000E+00
Type =    1
Polarizability =  0.17500000E+02 au
Last center is at (RCenterX) =   0.00000 Angs
 Radial matching parameter (icrtyp) =    3
 Matching line type (ilntyp) =    0
 Matching point is at r =   2.2208154305 Angs
Matching uses curve crossing (iMatchType = 1)
First nonzero weight at(RFirstWt)  R =        1.46152 Angs
Last point of the switching region (RLastWt) R=        2.98555 Angs
Total asymptotic potential is   0.17500000E+02 a.u.
Time Now =         2.7680  Delta time =         0.0286 End AsyPol
+ Data Record ScatContSym - 'A1'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.10000000E+00 eV (  0.36749326E-02 AU)
Time Now =         2.8483  Delta time =         0.0803 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = A1    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.17500000E+02  au
Number of integration regions used =    55
Number of partial waves (np) =    21
Number of asymptotic solutions on the right (NAsymR) =     8
Number of asymptotic solutions on the left (NAsymL) =     8
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     8
Maximum in the asymptotic region (lpasym) =   13
Number of partial waves in the asymptotic region (npasym) =   12
Number of orthogonality constraints (NOrthUse) =    2
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  183
Found polarization potential
Maximum l used in usual function (lmax) =   20
Maximum m used in usual function (LMax) =   20
Maxamum l used in expanding static potential (lpotct) =   40
Maximum l used in exapnding the exchange potential (lmaxab) =   40
Higest l included in the expansion of the wave function (lnp) =   20
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   13
Higest l used in the asymptotic potential (lpzb) =   26
Maximum L used in the homogeneous solution (LMaxHomo) =   20
Number of partial waves in the homogeneous solution (npHomo) =   21
Time Now =         2.8664  Delta time =         0.0182 Energy independent setup

Compute solution for E =    0.1000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.17500000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.38857806E-15
 i =  2  lval =   3  stpote =  0.81597167E-19
 i =  3  lval =   3  stpote =  0.18411772E-18
 i =  4  lval =   4  stpote = -0.15747508E-04
For potential     2
 i =  1  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.24574990E-16
 i =  2  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.24553937E-16
 i =  3  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.24542037E-16
 i =  4  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.24537962E-16
For potential     3
 i =  1  lvals =   6   6  stpote = -0.40657581E-19  second term =  0.00000000E+00
 i =  2  lvals =   6   6  stpote = -0.87821766E-20  second term =  0.00000000E+00
 i =  3  lvals =   6   6  stpote =  0.58508566E-20  second term =  0.00000000E+00
 i =  4  lvals =   7   9  stpote = -0.60857196E-07  second term = -0.60857196E-07
Number of asymptotic regions =       4
Final point in integration =   0.22265874E+03 Angstroms
Time Now =        10.0546  Delta time =         7.1881 End SolveHomo
     REAL PART -  Final k matrix
     ROW  1
  0.10982660E-01 0.24752797E-03-0.52581561E-05-0.15774718E-08-0.19150923E-10
  0.72346613E-13-0.29456388E-14 0.42430678E-16
     ROW  2
  0.24752797E-03 0.12937002E-02-0.95790957E-04-0.81998413E-05-0.83741441E-07
  0.75446475E-12-0.12896526E-10 0.96936245E-13
     ROW  3
 -0.52581561E-05-0.95790957E-04 0.58057894E-03 0.72302078E-06 0.38057572E-05
 -0.49144983E-07 0.82234650E-12-0.37560073E-11
     ROW  4
 -0.15774718E-08-0.81998413E-05 0.72302078E-06 0.18838574E-03 0.13013285E-04
  0.94314546E-07 0.19090426E-05-0.12055932E-07
     ROW  5
 -0.19150923E-10-0.83741441E-07 0.38057572E-05 0.13013285E-04 0.12143912E-03
 -0.77737887E-05 0.10286089E-06-0.12149217E-05
     ROW  6
  0.72346616E-13 0.75446476E-12-0.49144983E-07 0.94314546E-07-0.77737887E-05
  0.82812299E-04 0.19681979E-05 0.54253535E-07
     ROW  7
 -0.29456390E-14-0.12896526E-10 0.82234650E-12 0.19090426E-05 0.10286089E-06
  0.19681979E-05 0.59175673E-04-0.39181441E-05
     ROW  8
  0.42430687E-16 0.96936247E-13-0.37560073E-11-0.12055932E-07-0.12149217E-05
  0.54253535E-07-0.39181441E-05 0.43590244E-04
 eigenphases
  0.4263714E-04  0.5990835E-04  0.8141128E-04  0.1205437E-03  0.1908095E-03
  0.5678962E-03  0.1300150E-02  0.1098854E-01
 eigenphase sum 0.133519E-01  scattering length=  -0.15575
 eps+pi 0.315494E+01  eps+2*pi 0.629654E+01

MaxIter =   1 c.s. =      0.05880288 angs^2  rmsk=     0.00000547
Time Now =        10.0584  Delta time =         0.0039 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+00 eV (  0.18374663E-01 AU)
Time Now =        10.0954  Delta time =         0.0370 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = A1    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.17500000E+02  au
Number of integration regions used =    55
Number of partial waves (np) =    21
Number of asymptotic solutions on the right (NAsymR) =     8
Number of asymptotic solutions on the left (NAsymL) =     8
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     8
Maximum in the asymptotic region (lpasym) =   13
Number of partial waves in the asymptotic region (npasym) =   12
Number of orthogonality constraints (NOrthUse) =    2
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  183
Found polarization potential
Maximum l used in usual function (lmax) =   20
Maximum m used in usual function (LMax) =   20
Maxamum l used in expanding static potential (lpotct) =   40
Maximum l used in exapnding the exchange potential (lmaxab) =   40
Higest l included in the expansion of the wave function (lnp) =   20
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   13
Higest l used in the asymptotic potential (lpzb) =   26
Maximum L used in the homogeneous solution (LMaxHomo) =   20
Number of partial waves in the homogeneous solution (npHomo) =   21
Time Now =        10.1129  Delta time =         0.0175 Energy independent setup

Compute solution for E =    0.5000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.17500000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.38857806E-15
 i =  2  lval =   3  stpote =  0.81597167E-19
 i =  3  lval =   3  stpote =  0.18411772E-18
 i =  4  lval =   4  stpote = -0.15747508E-04
For potential     2
 i =  1  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.22222515E-16
 i =  2  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.22148593E-16
 i =  3  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.22078069E-16
 i =  4  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.22013952E-16
For potential     3
 i =  1  lvals =   6   6  stpote = -0.40657581E-19  second term =  0.00000000E+00
 i =  2  lvals =   6   6  stpote = -0.87821766E-20  second term =  0.00000000E+00
 i =  3  lvals =   6   6  stpote =  0.58508566E-20  second term =  0.00000000E+00
 i =  4  lvals =   7   9  stpote = -0.60857196E-07  second term = -0.60857196E-07
Number of asymptotic regions =       5
Final point in integration =   0.14892033E+03 Angstroms
Time Now =        17.2981  Delta time =         7.1852 End SolveHomo
     REAL PART -  Final k matrix
     ROW  1
 -0.14495919E+00 0.15907655E-02-0.69335881E-04-0.95286473E-07-0.25946196E-08
  0.21437529E-10-0.13464819E-11 0.35329163E-13
     ROW  2
  0.15907655E-02 0.65703702E-02-0.48481207E-03-0.41152592E-04-0.95542067E-06
  0.31648543E-09-0.73070246E-09 0.12547207E-10
     ROW  3
 -0.69335881E-04-0.48481207E-03 0.28948731E-02 0.81334785E-05 0.19011197E-04
 -0.54859726E-06 0.13523945E-09-0.21445048E-09
     ROW  4
 -0.95286473E-07-0.41152592E-04 0.81334785E-05 0.94641653E-03 0.65177052E-04
  0.10462745E-05 0.94599807E-05-0.13655189E-06
     ROW  5
 -0.25946197E-08-0.95542067E-06 0.19011197E-04 0.65177052E-04 0.60918087E-03
 -0.38927883E-04 0.11495563E-05-0.59736336E-05
     ROW  6
  0.21437529E-10 0.31648543E-09-0.54859726E-06 0.10462745E-05-0.38927883E-04
  0.41472266E-03 0.98552412E-05 0.60577399E-06
     ROW  7
 -0.13464819E-11-0.73070246E-09 0.13523945E-09 0.94599807E-05 0.11495563E-05
  0.98552412E-05 0.29813886E-03-0.19642928E-04
     ROW  8
  0.35329163E-13 0.12547207E-10-0.21445048E-09-0.13655189E-06-0.59736336E-05
  0.60577399E-06-0.19642928E-04 0.21972420E-03
 eigenphases
 -0.1439728E+00  0.2149619E-03  0.3017829E-03  0.4077476E-03  0.6047630E-03
  0.9584537E-03  0.2832281E-02  0.6650057E-02
 eigenphase sum-0.132003E+00  scattering length=   0.69261
 eps+pi 0.300959E+01  eps+2*pi 0.615118E+01

MaxIter =   1 c.s. =      1.97631115 angs^2  rmsk=     0.00002759
Time Now =        17.2986  Delta time =         0.0005 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.20000000E+01 eV (  0.73498652E-01 AU)
Time Now =        17.3357  Delta time =         0.0371 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = A1    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.17500000E+02  au
Number of integration regions used =    55
Number of partial waves (np) =    21
Number of asymptotic solutions on the right (NAsymR) =     8
Number of asymptotic solutions on the left (NAsymL) =     8
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     8
Maximum in the asymptotic region (lpasym) =   13
Number of partial waves in the asymptotic region (npasym) =   12
Number of orthogonality constraints (NOrthUse) =    2
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  183
Found polarization potential
Maximum l used in usual function (lmax) =   20
Maximum m used in usual function (LMax) =   20
Maxamum l used in expanding static potential (lpotct) =   40
Maximum l used in exapnding the exchange potential (lmaxab) =   40
Higest l included in the expansion of the wave function (lnp) =   20
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   13
Higest l used in the asymptotic potential (lpzb) =   26
Maximum L used in the homogeneous solution (LMaxHomo) =   20
Number of partial waves in the homogeneous solution (npHomo) =   21
Time Now =        17.3530  Delta time =         0.0173 Energy independent setup

Compute solution for E =    2.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.17500000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.38857806E-15
 i =  2  lval =   3  stpote =  0.81597167E-19
 i =  3  lval =   3  stpote =  0.18411772E-18
 i =  4  lval =   4  stpote = -0.15747508E-04
For potential     2
 i =  1  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.19373060E-16
 i =  2  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.19078381E-16
 i =  3  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.18794733E-16
 i =  4  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.18534399E-16
For potential     3
 i =  1  lvals =   6   6  stpote = -0.40657581E-19  second term =  0.00000000E+00
 i =  2  lvals =   6   6  stpote = -0.87821766E-20  second term =  0.00000000E+00
 i =  3  lvals =   6   6  stpote =  0.58508566E-20  second term =  0.00000000E+00
 i =  4  lvals =   7   9  stpote = -0.60857196E-07  second term = -0.60857196E-07
Number of asymptotic regions =       7
Final point in integration =   0.10531979E+03 Angstroms
Time Now =        24.5524  Delta time =         7.1994 End SolveHomo
     REAL PART -  Final k matrix
     ROW  1
 -0.58462349E+00 0.11193210E-01-0.89144642E-03-0.47367237E-05-0.25541119E-06
  0.41360505E-08-0.44866935E-09 0.21000836E-10
     ROW  2
  0.11193210E-01 0.27850684E-01-0.21306551E-02-0.17355804E-03-0.83312286E-05
  0.25953387E-07-0.22813984E-07 0.82580285E-09
     ROW  3
 -0.89144642E-03-0.21306551E-02 0.11560740E-01 0.67168248E-04 0.77863911E-04
 -0.43431072E-05 0.95445689E-08-0.68645352E-08
     ROW  4
 -0.47367237E-05-0.17355804E-03 0.67168248E-04 0.38113774E-02 0.26284384E-03
  0.81623549E-05 0.38119184E-04-0.11240727E-05
     ROW  5
 -0.25541119E-06-0.83312286E-05 0.77863911E-04 0.26284384E-03 0.24412366E-02
 -0.15648558E-03 0.92469667E-05-0.23980680E-04
     ROW  6
  0.41360505E-08 0.25953387E-07-0.43431072E-05 0.81623549E-05-0.15648558E-03
  0.16547750E-02 0.39556210E-04 0.48620781E-05
     ROW  7
 -0.44866935E-09-0.22813984E-07 0.95445689E-08 0.38119184E-04 0.92469667E-05
  0.39556210E-04 0.11983303E-02-0.78780478E-04
     ROW  8
  0.21000836E-10 0.82580285E-09-0.68645352E-08-0.11240727E-05-0.23980680E-04
  0.48620781E-05-0.78780478E-04 0.88183950E-03
 eigenphases
 -0.5291898E+00  0.8628126E-03  0.1212675E-02  0.1626919E-02  0.2423791E-02
  0.3859035E-02  0.1128763E-01  0.2832375E-01
 eigenphase sum-0.479593E+00  scattering length=   1.35652
 eps+pi 0.266200E+01  eps+2*pi 0.580359E+01

MaxIter =   1 c.s. =      6.12385107 angs^2  rmsk=     0.00011071
Time Now =        24.5528  Delta time =         0.0005 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.10000000E+02 eV (  0.36749326E+00 AU)
Time Now =        24.5896  Delta time =         0.0367 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = A1    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.17500000E+02  au
Number of integration regions used =    55
Number of partial waves (np) =    21
Number of asymptotic solutions on the right (NAsymR) =     8
Number of asymptotic solutions on the left (NAsymL) =     8
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     8
Maximum in the asymptotic region (lpasym) =   13
Number of partial waves in the asymptotic region (npasym) =   12
Number of orthogonality constraints (NOrthUse) =    2
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  183
Found polarization potential
Maximum l used in usual function (lmax) =   20
Maximum m used in usual function (LMax) =   20
Maxamum l used in expanding static potential (lpotct) =   40
Maximum l used in exapnding the exchange potential (lmaxab) =   40
Higest l included in the expansion of the wave function (lnp) =   20
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   13
Higest l used in the asymptotic potential (lpzb) =   26
Maximum L used in the homogeneous solution (LMaxHomo) =   20
Number of partial waves in the homogeneous solution (npHomo) =   21
Time Now =        24.6069  Delta time =         0.0173 Energy independent setup

Compute solution for E =   10.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.17500000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.38857806E-15
 i =  2  lval =   3  stpote =  0.81597167E-19
 i =  3  lval =   3  stpote =  0.18411772E-18
 i =  4  lval =   4  stpote = -0.15747508E-04
For potential     2
 i =  1  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.13702616E-16
 i =  2  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.13801389E-16
 i =  3  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.13893143E-16
 i =  4  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.13974667E-16
For potential     3
 i =  1  lvals =   6   6  stpote = -0.40657581E-19  second term =  0.00000000E+00
 i =  2  lvals =   6   6  stpote = -0.87821766E-20  second term =  0.00000000E+00
 i =  3  lvals =   6   6  stpote =  0.58508566E-20  second term =  0.00000000E+00
 i =  4  lvals =   7   9  stpote = -0.60857196E-07  second term = -0.60857196E-07
Number of asymptotic regions =      10
Final point in integration =   0.70451080E+02 Angstroms
Time Now =        31.8115  Delta time =         7.2046 End SolveHomo
     REAL PART -  Final k matrix
     ROW  1
 -0.50484592E+01 0.55979890E+00-0.93941057E-01-0.28073375E-02-0.32946556E-03
  0.11728344E-04-0.25755851E-05 0.25893969E-06
     ROW  2
  0.55979890E+00 0.16975081E+00-0.20958385E-01-0.18564826E-02-0.20017434E-03
  0.46671388E-05-0.18433064E-05 0.18938339E-06
     ROW  3
 -0.93941057E-01-0.20958385E-01 0.60544791E-01 0.10245564E-02 0.55871941E-03
 -0.54518526E-04 0.15135744E-05-0.43125594E-06
     ROW  4
 -0.28073375E-02-0.18564826E-02 0.10245564E-02 0.19525974E-01 0.14423782E-02
  0.81166286E-04 0.21406824E-03-0.14825576E-04
     ROW  5
 -0.32946556E-03-0.20017434E-03 0.55871941E-03 0.14423782E-02 0.12291879E-01
 -0.82282273E-03 0.10811506E-03-0.12981774E-03
     ROW  6
  0.11728344E-04 0.46671388E-05-0.54518526E-04 0.81166286E-04-0.82282273E-03
  0.82119236E-02 0.20406455E-03 0.55904486E-04
     ROW  7
 -0.25755851E-05-0.18433064E-05 0.15135744E-05 0.21406824E-03 0.10811506E-03
  0.20406455E-03 0.60495008E-02-0.40433829E-03
     ROW  8
  0.25893969E-06 0.18938339E-06-0.43125594E-06-0.14825576E-04-0.12981774E-03
  0.55904486E-04-0.40433829E-03 0.44302889E-02
 eigenphases
 -0.1377524E+01  0.4331284E-02  0.6119126E-02  0.8063524E-02  0.1218404E-01
  0.1976539E-01  0.5663090E-01  0.2304666E+00
 eigenphase sum-0.103996E+01  scattering length=   1.98698
 eps+pi 0.210163E+01  eps+2*pi 0.524322E+01

MaxIter =   1 c.s. =      4.87946635 angs^2  rmsk=     0.00055637
Time Now =        31.8120  Delta time =         0.0005 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.20000000E+02 eV (  0.73498652E+00 AU)
Time Now =        31.8490  Delta time =         0.0370 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = A1    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.17500000E+02  au
Number of integration regions used =    55
Number of partial waves (np) =    21
Number of asymptotic solutions on the right (NAsymR) =     8
Number of asymptotic solutions on the left (NAsymL) =     8
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     8
Maximum in the asymptotic region (lpasym) =   13
Number of partial waves in the asymptotic region (npasym) =   12
Number of orthogonality constraints (NOrthUse) =    2
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  183
Found polarization potential
Maximum l used in usual function (lmax) =   20
Maximum m used in usual function (LMax) =   20
Maxamum l used in expanding static potential (lpotct) =   40
Maximum l used in exapnding the exchange potential (lmaxab) =   40
Higest l included in the expansion of the wave function (lnp) =   20
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   13
Higest l used in the asymptotic potential (lpzb) =   26
Maximum L used in the homogeneous solution (LMaxHomo) =   20
Number of partial waves in the homogeneous solution (npHomo) =   21
Time Now =        31.8665  Delta time =         0.0175 Energy independent setup

Compute solution for E =   20.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.17500000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.38857806E-15
 i =  2  lval =   3  stpote =  0.81597167E-19
 i =  3  lval =   3  stpote =  0.18411772E-18
 i =  4  lval =   4  stpote = -0.15747508E-04
For potential     2
 i =  1  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.10763642E-16
 i =  2  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.10951718E-16
 i =  3  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.11132649E-16
 i =  4  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.11298648E-16
For potential     3
 i =  1  lvals =   6   6  stpote = -0.40657581E-19  second term =  0.00000000E+00
 i =  2  lvals =   6   6  stpote = -0.87821766E-20  second term =  0.00000000E+00
 i =  3  lvals =   6   6  stpote =  0.58508566E-20  second term =  0.00000000E+00
 i =  4  lvals =   7   9  stpote = -0.60857196E-07  second term = -0.60857196E-07
Number of asymptotic regions =      11
Final point in integration =   0.59251441E+02 Angstroms
Time Now =        39.0686  Delta time =         7.2022 End SolveHomo
     REAL PART -  Final k matrix
     ROW  1
  0.62977450E+01-0.25483748E+01 0.58914795E+00 0.34704864E-01 0.57863863E-02
 -0.29400459E-03 0.93910575E-04-0.13279410E-04
     ROW  2
 -0.25483748E+01 0.18076476E+01-0.40156490E+00-0.27499140E-01-0.45110928E-02
  0.21842501E-03-0.76846116E-04 0.10920015E-04
     ROW  3
  0.58914795E+00-0.40156490E+00 0.20096991E+00 0.90518952E-02 0.28512105E-02
 -0.27012781E-03 0.30419086E-04-0.62461683E-05
     ROW  4
  0.34704864E-01-0.27499140E-01 0.90518952E-02 0.41147424E-01 0.36322707E-02
  0.20321670E-03 0.55769964E-03-0.55320160E-04
     ROW  5
  0.57863863E-02-0.45110928E-02 0.28512105E-02 0.36322707E-02 0.25047200E-01
 -0.18361707E-02 0.33484540E-03-0.30825392E-03
     ROW  6
 -0.29400459E-03 0.21842501E-03-0.27012781E-03 0.20321670E-03-0.18361707E-02
  0.16383183E-01 0.43321283E-03 0.16623556E-03
     ROW  7
  0.93910575E-04-0.76846116E-04 0.30419086E-04 0.55769964E-03 0.33484540E-03
  0.43321283E-03 0.12207596E-01-0.85232099E-03
     ROW  8
 -0.13279410E-04 0.10920015E-04-0.62461683E-05-0.55320160E-04-0.30825392E-03
  0.16623556E-03-0.85232099E-03 0.89002312E-02
 eigenphases
  0.8682305E-02  0.1234538E-01  0.1603115E-01  0.2465780E-01  0.4132728E-01
  0.1058734E+00  0.5999573E+00  0.1438535E+01
 eigenphase sum 0.224741E+01  scattering length=   1.02705
 eps+pi 0.538900E+01  eps+2*pi 0.853059E+01

MaxIter =   1 c.s. =      3.14880922 angs^2  rmsk=     0.00111850
Time Now =        39.0691  Delta time =         0.0005 End ScatStab
+ Data Record ScatContSym - 'A2'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.10000000E+00 eV (  0.36749326E-02 AU)
Time Now =        39.1062  Delta time =         0.0371 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = A2    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.17500000E+02  au
Number of integration regions used =    55
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     3
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     3
Maximum in the asymptotic region (lpasym) =   13
Number of partial waves in the asymptotic region (npasym) =    5
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  183
Found polarization potential
Maximum l used in usual function (lmax) =   20
Maximum m used in usual function (LMax) =   20
Maxamum l used in expanding static potential (lpotct) =   40
Maximum l used in exapnding the exchange potential (lmaxab) =   40
Higest l included in the expansion of the wave function (lnp) =   16
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   13
Higest l used in the asymptotic potential (lpzb) =   26
Maximum L used in the homogeneous solution (LMaxHomo) =   20
Number of partial waves in the homogeneous solution (npHomo) =    8
Time Now =        39.1235  Delta time =         0.0174 Energy independent setup

Compute solution for E =    0.1000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.17500000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.38857806E-15
 i =  2  lval =   3  stpote =  0.81597167E-19
 i =  3  lval =   3  stpote =  0.18411772E-18
 i =  4  lval =   4  stpote = -0.15747508E-04
For potential     2
 i =  1  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.24574990E-16
 i =  2  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.24553937E-16
 i =  3  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.24542037E-16
 i =  4  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.24537962E-16
For potential     3
 i =  1  lvals =   6   6  stpote = -0.40657581E-19  second term =  0.00000000E+00
 i =  2  lvals =   6   6  stpote = -0.87821766E-20  second term =  0.00000000E+00
 i =  3  lvals =   6   6  stpote =  0.58508566E-20  second term =  0.00000000E+00
 i =  4  lvals =   7   9  stpote = -0.60857196E-07  second term = -0.60857196E-07
Number of asymptotic regions =       4
Final point in integration =   0.22265874E+03 Angstroms
Time Now =        41.5212  Delta time =         2.3977 End SolveHomo
     REAL PART -  Final k matrix
     ROW  1
  0.18772348E-03 0.15781247E-05-0.14775400E-07
     ROW  2
  0.15781247E-05 0.59127777E-04-0.29983390E-05
     ROW  3
 -0.14775400E-07-0.29983390E-05 0.43505618E-04
 eigenphases
  0.4294940E-04  0.5966461E-04  0.1877429E-03
 eigenphase sum 0.290357E-03  scattering length=  -0.00339
 eps+pi 0.314188E+01  eps+2*pi 0.628348E+01

MaxIter =   1 c.s. =      0.00001946 angs^2  rmsk=     0.00001454
Time Now =        41.5214  Delta time =         0.0003 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+00 eV (  0.18374663E-01 AU)
Time Now =        41.6116  Delta time =         0.0901 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = A2    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.17500000E+02  au
Number of integration regions used =    55
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     3
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     3
Maximum in the asymptotic region (lpasym) =   13
Number of partial waves in the asymptotic region (npasym) =    5
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  183
Found polarization potential
Maximum l used in usual function (lmax) =   20
Maximum m used in usual function (LMax) =   20
Maxamum l used in expanding static potential (lpotct) =   40
Maximum l used in exapnding the exchange potential (lmaxab) =   40
Higest l included in the expansion of the wave function (lnp) =   16
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   13
Higest l used in the asymptotic potential (lpzb) =   26
Maximum L used in the homogeneous solution (LMaxHomo) =   20
Number of partial waves in the homogeneous solution (npHomo) =    8
Time Now =        41.6290  Delta time =         0.0174 Energy independent setup

Compute solution for E =    0.5000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.17500000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.38857806E-15
 i =  2  lval =   3  stpote =  0.81597167E-19
 i =  3  lval =   3  stpote =  0.18411772E-18
 i =  4  lval =   4  stpote = -0.15747508E-04
For potential     2
 i =  1  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.22222515E-16
 i =  2  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.22148593E-16
 i =  3  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.22078069E-16
 i =  4  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.22013952E-16
For potential     3
 i =  1  lvals =   6   6  stpote = -0.40657581E-19  second term =  0.00000000E+00
 i =  2  lvals =   6   6  stpote = -0.87821766E-20  second term =  0.00000000E+00
 i =  3  lvals =   6   6  stpote =  0.58508566E-20  second term =  0.00000000E+00
 i =  4  lvals =   7   9  stpote = -0.60857196E-07  second term = -0.60857196E-07
Number of asymptotic regions =       5
Final point in integration =   0.14892033E+03 Angstroms
Time Now =        44.0247  Delta time =         2.3957 End SolveHomo
     REAL PART -  Final k matrix
     ROW  1
  0.93897929E-03 0.78199306E-05-0.16576251E-06
     ROW  2
  0.78199306E-05 0.29760156E-03-0.15031603E-04
     ROW  3
 -0.16576251E-06-0.15031603E-04 0.21877462E-03
 eigenphases
  0.2160033E-03  0.3002774E-03  0.9390745E-03
 eigenphase sum 0.145536E-02  scattering length=  -0.00759
 eps+pi 0.314305E+01  eps+2*pi 0.628464E+01

MaxIter =   1 c.s. =      0.00009754 angs^2  rmsk=     0.00007310
Time Now =        44.0249  Delta time =         0.0003 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.20000000E+01 eV (  0.73498652E-01 AU)
Time Now =        44.1144  Delta time =         0.0895 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = A2    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.17500000E+02  au
Number of integration regions used =    55
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     3
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     3
Maximum in the asymptotic region (lpasym) =   13
Number of partial waves in the asymptotic region (npasym) =    5
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  183
Found polarization potential
Maximum l used in usual function (lmax) =   20
Maximum m used in usual function (LMax) =   20
Maxamum l used in expanding static potential (lpotct) =   40
Maximum l used in exapnding the exchange potential (lmaxab) =   40
Higest l included in the expansion of the wave function (lnp) =   16
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   13
Higest l used in the asymptotic potential (lpzb) =   26
Maximum L used in the homogeneous solution (LMaxHomo) =   20
Number of partial waves in the homogeneous solution (npHomo) =    8
Time Now =        44.1319  Delta time =         0.0175 Energy independent setup

Compute solution for E =    2.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.17500000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.38857806E-15
 i =  2  lval =   3  stpote =  0.81597167E-19
 i =  3  lval =   3  stpote =  0.18411772E-18
 i =  4  lval =   4  stpote = -0.15747508E-04
For potential     2
 i =  1  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.19373060E-16
 i =  2  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.19078381E-16
 i =  3  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.18794733E-16
 i =  4  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.18534399E-16
For potential     3
 i =  1  lvals =   6   6  stpote = -0.40657581E-19  second term =  0.00000000E+00
 i =  2  lvals =   6   6  stpote = -0.87821766E-20  second term =  0.00000000E+00
 i =  3  lvals =   6   6  stpote =  0.58508566E-20  second term =  0.00000000E+00
 i =  4  lvals =   7   9  stpote = -0.60857196E-07  second term = -0.60857196E-07
Number of asymptotic regions =       7
Final point in integration =   0.10531979E+03 Angstroms
Time Now =        46.5304  Delta time =         2.3985 End SolveHomo
     REAL PART -  Final k matrix
     ROW  1
  0.37508036E-02 0.31494612E-04-0.13153495E-05
     ROW  2
  0.31494612E-04 0.11939985E-02-0.60283380E-04
     ROW  3
 -0.13153495E-05-0.60283380E-04 0.87419457E-03
 eigenphases
  0.8632017E-03  0.1204601E-02  0.3751175E-02
 eigenphase sum 0.581898E-02  scattering length=  -0.01518
 eps+pi 0.314741E+01  eps+2*pi 0.628900E+01

MaxIter =   1 c.s. =      0.00038942 angs^2  rmsk=     0.00029209
Time Now =        46.5306  Delta time =         0.0003 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.10000000E+02 eV (  0.36749326E+00 AU)
Time Now =        46.6221  Delta time =         0.0914 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = A2    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.17500000E+02  au
Number of integration regions used =    55
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     3
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     3
Maximum in the asymptotic region (lpasym) =   13
Number of partial waves in the asymptotic region (npasym) =    5
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  183
Found polarization potential
Maximum l used in usual function (lmax) =   20
Maximum m used in usual function (LMax) =   20
Maxamum l used in expanding static potential (lpotct) =   40
Maximum l used in exapnding the exchange potential (lmaxab) =   40
Higest l included in the expansion of the wave function (lnp) =   16
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   13
Higest l used in the asymptotic potential (lpzb) =   26
Maximum L used in the homogeneous solution (LMaxHomo) =   20
Number of partial waves in the homogeneous solution (npHomo) =    8
Time Now =        46.6395  Delta time =         0.0174 Energy independent setup

Compute solution for E =   10.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.17500000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.38857806E-15
 i =  2  lval =   3  stpote =  0.81597167E-19
 i =  3  lval =   3  stpote =  0.18411772E-18
 i =  4  lval =   4  stpote = -0.15747508E-04
For potential     2
 i =  1  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.13702616E-16
 i =  2  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.13801389E-16
 i =  3  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.13893143E-16
 i =  4  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.13974667E-16
For potential     3
 i =  1  lvals =   6   6  stpote = -0.40657581E-19  second term =  0.00000000E+00
 i =  2  lvals =   6   6  stpote = -0.87821766E-20  second term =  0.00000000E+00
 i =  3  lvals =   6   6  stpote =  0.58508566E-20  second term =  0.00000000E+00
 i =  4  lvals =   7   9  stpote = -0.60857196E-07  second term = -0.60857196E-07
Number of asymptotic regions =      10
Final point in integration =   0.70451080E+02 Angstroms
Time Now =        49.0422  Delta time =         2.4027 End SolveHomo
     REAL PART -  Final k matrix
     ROW  1
  0.18748763E-01 0.17468674E-03-0.14494010E-04
     ROW  2
  0.17468674E-03 0.59987528E-02-0.30902813E-03
     ROW  3
 -0.14494010E-04-0.30902813E-03 0.43417203E-02
 eigenphases
  0.4285919E-02  0.6052037E-02  0.1874898E-01
 eigenphase sum 0.290869E-01  scattering length=  -0.03394
 eps+pi 0.317068E+01  eps+2*pi 0.631227E+01

MaxIter =   1 c.s. =      0.00194612 angs^2  rmsk=     0.00145091
Time Now =        49.0424  Delta time =         0.0003 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.20000000E+02 eV (  0.73498652E+00 AU)
Time Now =        49.1351  Delta time =         0.0927 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = A2    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.17500000E+02  au
Number of integration regions used =    55
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     3
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     3
Maximum in the asymptotic region (lpasym) =   13
Number of partial waves in the asymptotic region (npasym) =    5
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  183
Found polarization potential
Maximum l used in usual function (lmax) =   20
Maximum m used in usual function (LMax) =   20
Maxamum l used in expanding static potential (lpotct) =   40
Maximum l used in exapnding the exchange potential (lmaxab) =   40
Higest l included in the expansion of the wave function (lnp) =   16
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   13
Higest l used in the asymptotic potential (lpzb) =   26
Maximum L used in the homogeneous solution (LMaxHomo) =   20
Number of partial waves in the homogeneous solution (npHomo) =    8
Time Now =        49.1525  Delta time =         0.0174 Energy independent setup

Compute solution for E =   20.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.17500000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.38857806E-15
 i =  2  lval =   3  stpote =  0.81597167E-19
 i =  3  lval =   3  stpote =  0.18411772E-18
 i =  4  lval =   4  stpote = -0.15747508E-04
For potential     2
 i =  1  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.10763642E-16
 i =  2  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.10951718E-16
 i =  3  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.11132649E-16
 i =  4  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.11298648E-16
For potential     3
 i =  1  lvals =   6   6  stpote = -0.40657581E-19  second term =  0.00000000E+00
 i =  2  lvals =   6   6  stpote = -0.87821766E-20  second term =  0.00000000E+00
 i =  3  lvals =   6   6  stpote =  0.58508566E-20  second term =  0.00000000E+00
 i =  4  lvals =   7   9  stpote = -0.60857196E-07  second term = -0.60857196E-07
Number of asymptotic regions =      11
Final point in integration =   0.59251441E+02 Angstroms
Time Now =        51.5564  Delta time =         2.4039 End SolveHomo
     REAL PART -  Final k matrix
     ROW  1
  0.38013485E-01 0.43966442E-03-0.45317028E-04
     ROW  2
  0.43966442E-03 0.12053418E-01-0.64893073E-03
     ROW  3
 -0.45317028E-04-0.64893073E-03 0.86369658E-02
 eigenphases
  0.8517611E-02  0.1216441E-01  0.3800273E-01
 eigenphase sum 0.586848E-01  scattering length=  -0.04846
 eps+pi 0.320028E+01  eps+2*pi 0.634187E+01

MaxIter =   1 c.s. =      0.00398348 angs^2  rmsk=     0.00288714
Time Now =        51.5567  Delta time =         0.0003 End ScatStab
+ Data Record ScatContSym - 'E'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.10000000E+00 eV (  0.36749326E-02 AU)
Time Now =        51.6466  Delta time =         0.0899 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = E     1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.17500000E+02  au
Number of integration regions used =    55
Number of partial waves (np) =    30
Number of asymptotic solutions on the right (NAsymR) =    10
Number of asymptotic solutions on the left (NAsymL) =    10
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =    10
Maximum in the asymptotic region (lpasym) =   13
Number of partial waves in the asymptotic region (npasym) =   16
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  183
Found polarization potential
Maximum l used in usual function (lmax) =   20
Maximum m used in usual function (LMax) =   20
Maxamum l used in expanding static potential (lpotct) =   40
Maximum l used in exapnding the exchange potential (lmaxab) =   40
Higest l included in the expansion of the wave function (lnp) =   20
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   13
Higest l used in the asymptotic potential (lpzb) =   26
Maximum L used in the homogeneous solution (LMaxHomo) =   20
Number of partial waves in the homogeneous solution (npHomo) =   30
Time Now =        51.6640  Delta time =         0.0174 Energy independent setup

Compute solution for E =    0.1000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.17500000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.38857806E-15
 i =  2  lval =   3  stpote =  0.81597167E-19
 i =  3  lval =   3  stpote =  0.18411772E-18
 i =  4  lval =   4  stpote = -0.15747508E-04
For potential     2
 i =  1  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.24574990E-16
 i =  2  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.24553937E-16
 i =  3  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.24542037E-16
 i =  4  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.24537962E-16
For potential     3
 i =  1  lvals =   6   6  stpote = -0.40657581E-19  second term =  0.00000000E+00
 i =  2  lvals =   6   6  stpote = -0.87821766E-20  second term =  0.00000000E+00
 i =  3  lvals =   6   6  stpote =  0.58508566E-20  second term =  0.00000000E+00
 i =  4  lvals =   7   9  stpote = -0.60857196E-07  second term = -0.60857196E-07
Number of asymptotic regions =       4
Final point in integration =   0.22265874E+03 Angstroms
Time Now =        61.0188  Delta time =         9.3548 End SolveHomo
     REAL PART -  Final k matrix
     ROW  1
  0.38402585E-02 0.48794523E-05 0.15492514E-04-0.23277021E-06 0.92529844E-11
  0.43570947E-11-0.35561059E-10-0.33915319E-12 0.12571195E-15 0.10461425E-14
     ROW  2
  0.48794523E-05 0.58251668E-03 0.20627703E-04 0.32227668E-06 0.41421810E-05
 -0.39283266E-07-0.21466056E-07 0.16180897E-12-0.43131237E-11-0.44119071E-12
     ROW  3
  0.15492514E-04 0.20627703E-04 0.31414120E-03-0.20521190E-04 0.21006010E-06
  0.33660757E-06-0.27497814E-05-0.22220964E-07-0.16134316E-12 0.10891056E-12
     ROW  4
 -0.23277021E-06 0.32227668E-06-0.20521190E-04 0.18755863E-03 0.45244109E-05
  0.63845708E-08 0.15773115E-06 0.15020265E-05-0.20338070E-08-0.15739673E-07
     ROW  5
  0.92529844E-11 0.41421810E-05 0.21006010E-06 0.45244109E-05 0.12156445E-03
 -0.54760961E-05-0.50236598E-05 0.53675718E-07-0.12819360E-05-0.13106556E-06
     ROW  6
  0.43570947E-11-0.39283266E-07 0.33660757E-06 0.63845708E-08-0.54760961E-05
  0.82835716E-04-0.45605624E-07-0.47023844E-12 0.33219205E-07 0.33963335E-08
     ROW  7
 -0.35561059E-10-0.21466056E-07-0.27497814E-05 0.15773115E-06-0.50236598E-05
 -0.45605624E-07 0.83060016E-04 0.55669067E-05 0.39568358E-07 0.26901661E-07
     ROW  8
 -0.33915320E-12 0.16180897E-12-0.22220964E-07 0.15020265E-05 0.53675718E-07
 -0.47023844E-12 0.55669067E-05 0.59091922E-04-0.13175404E-05-0.34462120E-05
     ROW  9
  0.12571193E-15-0.43131237E-11-0.16134316E-12-0.20338070E-08-0.12819360E-05
  0.33219205E-07 0.39568358E-07-0.13175404E-05 0.43614282E-04 0.57883098E-08
     ROW 10
  0.10461427E-14-0.44119072E-12 0.10891056E-12-0.15739673E-07-0.13106556E-06
  0.33963335E-08 0.26901661E-07-0.34462120E-05 0.57883098E-08 0.43503770E-04
 eigenphases
  0.4264667E-04  0.4358037E-04  0.5867650E-04  0.8180273E-04  0.8393467E-04
  0.1226185E-03  0.1846196E-03  0.3158093E-03  0.5841226E-03  0.3840315E-02
 eigenphase sum 0.535813E-02  scattering length=  -0.06250
 eps+pi 0.314695E+01  eps+2*pi 0.628854E+01

MaxIter =   1 c.s. =      0.00730560 angs^2  rmsk=     0.00000436
Time Now =        61.0195  Delta time =         0.0007 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+00 eV (  0.18374663E-01 AU)
Time Now =        61.0563  Delta time =         0.0368 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = E     1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.17500000E+02  au
Number of integration regions used =    55
Number of partial waves (np) =    30
Number of asymptotic solutions on the right (NAsymR) =    10
Number of asymptotic solutions on the left (NAsymL) =    10
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =    10
Maximum in the asymptotic region (lpasym) =   13
Number of partial waves in the asymptotic region (npasym) =   16
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  183
Found polarization potential
Maximum l used in usual function (lmax) =   20
Maximum m used in usual function (LMax) =   20
Maxamum l used in expanding static potential (lpotct) =   40
Maximum l used in exapnding the exchange potential (lmaxab) =   40
Higest l included in the expansion of the wave function (lnp) =   20
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   13
Higest l used in the asymptotic potential (lpzb) =   26
Maximum L used in the homogeneous solution (LMaxHomo) =   20
Number of partial waves in the homogeneous solution (npHomo) =   30
Time Now =        61.0737  Delta time =         0.0174 Energy independent setup

Compute solution for E =    0.5000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.17500000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.38857806E-15
 i =  2  lval =   3  stpote =  0.81597167E-19
 i =  3  lval =   3  stpote =  0.18411772E-18
 i =  4  lval =   4  stpote = -0.15747508E-04
For potential     2
 i =  1  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.22222515E-16
 i =  2  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.22148593E-16
 i =  3  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.22078069E-16
 i =  4  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.22013952E-16
For potential     3
 i =  1  lvals =   6   6  stpote = -0.40657581E-19  second term =  0.00000000E+00
 i =  2  lvals =   6   6  stpote = -0.87821766E-20  second term =  0.00000000E+00
 i =  3  lvals =   6   6  stpote =  0.58508566E-20  second term =  0.00000000E+00
 i =  4  lvals =   7   9  stpote = -0.60857196E-07  second term = -0.60857196E-07
Number of asymptotic regions =       5
Final point in integration =   0.14892033E+03 Angstroms
Time Now =        70.4220  Delta time =         9.3483 End SolveHomo
     REAL PART -  Final k matrix
     ROW  1
  0.19623733E-01 0.55515581E-04 0.78384168E-04-0.25914886E-05 0.15785513E-08
  0.23200436E-09-0.19955326E-08-0.42850519E-10 0.26599619E-13 0.29607064E-12
     ROW  2
  0.55515581E-04 0.29160859E-02 0.10361096E-03 0.35682671E-05 0.20690778E-04
 -0.43804477E-06-0.24354851E-06 0.87450841E-11-0.24545542E-09-0.25526216E-10
     ROW  3
  0.78384168E-04 0.10361096E-03 0.15770629E-02-0.10284328E-03 0.23468564E-05
  0.16755499E-05-0.13690338E-04-0.25122352E-06-0.24282431E-10 0.28751631E-10
     ROW  4
 -0.25914886E-05 0.35682671E-05-0.10284328E-03 0.93716388E-03 0.22659695E-04
  0.68922589E-07 0.17653132E-05 0.74430181E-05-0.23292306E-07-0.17662835E-06
     ROW  5
  0.15785513E-08 0.20690778E-04 0.23468564E-05 0.22659695E-04 0.61057340E-03
 -0.27422157E-04-0.25156633E-04 0.59786469E-06-0.63030803E-05-0.64447235E-06
     ROW  6
  0.23200436E-09-0.43804477E-06 0.16755499E-05 0.68922589E-07-0.27422157E-04
  0.41498234E-03-0.50865183E-06-0.66468273E-10 0.37137001E-06 0.37968718E-07
     ROW  7
 -0.19955326E-08-0.24354851E-06-0.13690338E-04 0.17653132E-05-0.25156633E-04
 -0.50865183E-06 0.41749598E-03 0.27875168E-04 0.44164072E-06 0.29888672E-06
     ROW  8
 -0.42850520E-10 0.87450841E-11-0.25122352E-06 0.74430181E-05 0.59786469E-06
 -0.66468273E-10 0.27875168E-04 0.29720256E-03-0.66052295E-05-0.17276897E-04
     ROW  9
  0.26599621E-13-0.24545542E-09-0.24282431E-10-0.23292306E-07-0.63030803E-05
  0.37137001E-06 0.44164072E-06-0.66052295E-05 0.21999240E-03 0.65354329E-07
     ROW 10
  0.29607065E-12-0.25526217E-10 0.28751631E-10-0.17662835E-06-0.64447235E-06
  0.37968718E-07 0.29888672E-06-0.17276897E-04 0.65354329E-07 0.21875418E-03
 eigenphases
  0.2145394E-03  0.2197415E-03  0.2951486E-03  0.4098453E-03  0.4218639E-03
  0.6157742E-03  0.9225704E-03  0.1585273E-02  0.2924019E-02  0.1962174E-01
 eigenphase sum 0.272305E-01  scattering length=  -0.14208
 eps+pi 0.316882E+01  eps+2*pi 0.631042E+01

MaxIter =   1 c.s. =      0.03808992 angs^2  rmsk=     0.00002194
Time Now =        70.4227  Delta time =         0.0007 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.20000000E+01 eV (  0.73498652E-01 AU)
Time Now =        70.4593  Delta time =         0.0366 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = E     1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.17500000E+02  au
Number of integration regions used =    55
Number of partial waves (np) =    30
Number of asymptotic solutions on the right (NAsymR) =    10
Number of asymptotic solutions on the left (NAsymL) =    10
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =    10
Maximum in the asymptotic region (lpasym) =   13
Number of partial waves in the asymptotic region (npasym) =   16
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  183
Found polarization potential
Maximum l used in usual function (lmax) =   20
Maximum m used in usual function (LMax) =   20
Maxamum l used in expanding static potential (lpotct) =   40
Maximum l used in exapnding the exchange potential (lmaxab) =   40
Higest l included in the expansion of the wave function (lnp) =   20
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   13
Higest l used in the asymptotic potential (lpzb) =   26
Maximum L used in the homogeneous solution (LMaxHomo) =   20
Number of partial waves in the homogeneous solution (npHomo) =   30
Time Now =        70.4768  Delta time =         0.0175 Energy independent setup

Compute solution for E =    2.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.17500000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.38857806E-15
 i =  2  lval =   3  stpote =  0.81597167E-19
 i =  3  lval =   3  stpote =  0.18411772E-18
 i =  4  lval =   4  stpote = -0.15747508E-04
For potential     2
 i =  1  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.19373060E-16
 i =  2  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.19078381E-16
 i =  3  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.18794733E-16
 i =  4  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.18534399E-16
For potential     3
 i =  1  lvals =   6   6  stpote = -0.40657581E-19  second term =  0.00000000E+00
 i =  2  lvals =   6   6  stpote = -0.87821766E-20  second term =  0.00000000E+00
 i =  3  lvals =   6   6  stpote =  0.58508566E-20  second term =  0.00000000E+00
 i =  4  lvals =   7   9  stpote = -0.60857196E-07  second term = -0.60857196E-07
Number of asymptotic regions =       7
Final point in integration =   0.10531979E+03 Angstroms
Time Now =        79.8498  Delta time =         9.3730 End SolveHomo
     REAL PART -  Final k matrix
     ROW  1
  0.86224117E-01 0.51607617E-03 0.36534207E-03-0.21651646E-04 0.11890131E-06
  0.53928200E-08-0.63397452E-07-0.26500178E-08-0.31953378E-11 0.35348555E-10
     ROW  2
  0.51607617E-03 0.11717140E-01 0.42663093E-03 0.27675585E-04 0.84671529E-04
 -0.34546871E-05-0.20513302E-05 0.12993757E-09-0.77347418E-08-0.86075211E-09
     ROW  3
  0.36534207E-03 0.42663093E-03 0.63528536E-02-0.41702695E-03 0.18831241E-04
  0.67720392E-05-0.55502216E-04-0.20640736E-05-0.16364618E-08 0.22028312E-08
     ROW  4
 -0.21651646E-04 0.27675585E-04-0.41702695E-03 0.37371204E-02 0.91326840E-04
  0.47875211E-06 0.14249774E-04 0.29987555E-04-0.19954305E-06-0.14029732E-05
     ROW  5
  0.11890131E-06 0.84671529E-04 0.18831241E-04 0.91326840E-04 0.24520985E-02
 -0.11024409E-03-0.10114283E-03 0.47480840E-05-0.25299771E-04-0.25895920E-05
     ROW  6
  0.53928200E-08-0.34546871E-05 0.67720392E-05 0.47875211E-06-0.11024409E-03
  0.16567821E-02-0.40216610E-05-0.44417544E-08 0.29945885E-05 0.30614372E-06
     ROW  7
 -0.63397452E-07-0.20513302E-05-0.55502216E-04 0.14249774E-04-0.10114283E-03
 -0.40216610E-05 0.16770233E-02 0.11190463E-03 0.35398574E-05 0.23538169E-05
     ROW  8
 -0.26500178E-08 0.12993757E-09-0.20640736E-05 0.29987555E-04 0.47480840E-05
 -0.44417544E-08 0.11190463E-03 0.11908800E-02-0.26489278E-04-0.69285905E-04
     ROW  9
 -0.31953378E-11-0.77347418E-08-0.16364618E-08-0.19954305E-06-0.25299771E-04
  0.29945885E-05 0.35398574E-05-0.26489278E-04 0.88395254E-03 0.53847855E-06
     ROW 10
  0.35348555E-10-0.86075211E-09 0.22028312E-08-0.14029732E-05-0.25895920E-05
  0.30614372E-06 0.23538169E-05-0.69285905E-04 0.53847855E-06 0.87403908E-03
 eigenphases
  0.8575768E-03  0.8824730E-03  0.1182800E-02  0.1636234E-02  0.1694396E-02
  0.2472481E-02  0.3678434E-02  0.6384404E-02  0.1174716E-01  0.8601662E-01
 eigenphase sum 0.116553E+00  scattering length=  -0.30538
 eps+pi 0.325815E+01  eps+2*pi 0.639974E+01

MaxIter =   1 c.s. =      0.18163544 angs^2  rmsk=     0.00008768
Time Now =        79.8505  Delta time =         0.0007 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.10000000E+02 eV (  0.36749326E+00 AU)
Time Now =        79.8874  Delta time =         0.0369 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = E     1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.17500000E+02  au
Number of integration regions used =    55
Number of partial waves (np) =    30
Number of asymptotic solutions on the right (NAsymR) =    10
Number of asymptotic solutions on the left (NAsymL) =    10
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =    10
Maximum in the asymptotic region (lpasym) =   13
Number of partial waves in the asymptotic region (npasym) =   16
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  183
Found polarization potential
Maximum l used in usual function (lmax) =   20
Maximum m used in usual function (LMax) =   20
Maxamum l used in expanding static potential (lpotct) =   40
Maximum l used in exapnding the exchange potential (lmaxab) =   40
Higest l included in the expansion of the wave function (lnp) =   20
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   13
Higest l used in the asymptotic potential (lpzb) =   26
Maximum L used in the homogeneous solution (LMaxHomo) =   20
Number of partial waves in the homogeneous solution (npHomo) =   30
Time Now =        79.9048  Delta time =         0.0175 Energy independent setup

Compute solution for E =   10.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.17500000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.38857806E-15
 i =  2  lval =   3  stpote =  0.81597167E-19
 i =  3  lval =   3  stpote =  0.18411772E-18
 i =  4  lval =   4  stpote = -0.15747508E-04
For potential     2
 i =  1  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.13702616E-16
 i =  2  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.13801389E-16
 i =  3  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.13893143E-16
 i =  4  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.13974667E-16
For potential     3
 i =  1  lvals =   6   6  stpote = -0.40657581E-19  second term =  0.00000000E+00
 i =  2  lvals =   6   6  stpote = -0.87821766E-20  second term =  0.00000000E+00
 i =  3  lvals =   6   6  stpote =  0.58508566E-20  second term =  0.00000000E+00
 i =  4  lvals =   7   9  stpote = -0.60857196E-07  second term = -0.60857196E-07
Number of asymptotic regions =      10
Final point in integration =   0.70451080E+02 Angstroms
Time Now =        89.2824  Delta time =         9.3775 End SolveHomo
     REAL PART -  Final k matrix
     ROW  1
  0.45868876E+00 0.99882842E-02 0.56913546E-02-0.51721707E-03 0.23666502E-04
 -0.10928095E-06-0.81524657E-05-0.63593966E-06-0.14343302E-07 0.14997371E-07
     ROW  2
  0.99882842E-02 0.61867423E-01 0.31001281E-02 0.28634638E-03 0.59178961E-03
 -0.42765039E-04-0.33733643E-04-0.13568376E-06-0.42509005E-06-0.59553179E-07
     ROW  3
  0.56913546E-02 0.31001281E-02 0.33145197E-01-0.24560858E-02 0.22823957E-03
  0.38400583E-04-0.33670374E-03-0.28001307E-04-0.20644271E-06 0.28948082E-06
     ROW  4
 -0.51721707E-03 0.28634638E-03-0.24560858E-02 0.18643334E-01 0.49335997E-03
  0.11003782E-05 0.17118695E-03 0.16780974E-03-0.30388481E-05-0.15525061E-04
     ROW  5
  0.23666502E-04 0.59178961E-03 0.22823957E-03 0.49335997E-03 0.12398704E-01
 -0.58088337E-03-0.53387140E-03 0.51860287E-04-0.13649774E-03-0.14309080E-04
     ROW  6
 -0.10928095E-06-0.42765039E-04 0.38400583E-04 0.11003782E-05-0.58088337E-03
  0.82303337E-02-0.42511010E-04-0.55456084E-06 0.35256474E-04 0.36005261E-05
     ROW  7
 -0.81524657E-05-0.33733643E-04-0.33670374E-03 0.17118695E-03-0.53387140E-03
 -0.42511010E-04 0.84666657E-02 0.58020241E-03 0.40455398E-04 0.24397953E-04
     ROW  8
 -0.63593966E-06-0.13568376E-06-0.28001307E-04 0.16780974E-03 0.51860287E-04
 -0.55456084E-06 0.58020241E-03 0.59681206E-02-0.13571392E-03-0.35492240E-03
     ROW  9
 -0.14343302E-07-0.42509005E-06-0.20644271E-06-0.30388481E-05-0.13649774E-03
  0.35256474E-04 0.40455398E-04-0.13571392E-03 0.44520260E-02 0.69752659E-05
     ROW 10
  0.14997371E-07-0.59553179E-07 0.28948082E-06-0.15525061E-04-0.14309080E-04
  0.36005261E-05 0.24397953E-04-0.35492240E-03 0.69752659E-05 0.43404617E-02
 eigenphases
  0.4258224E-02  0.4439914E-02  0.5925097E-02  0.8120314E-02  0.8553011E-02
  0.1249731E-01  0.1826998E-01  0.3317628E-01  0.6184774E-01  0.4303286E+00
 eigenphase sum 0.587416E+00  scattering length=  -0.77664
 eps+pi 0.372901E+01  eps+2*pi 0.687060E+01

MaxIter =   1 c.s. =      0.86013556 angs^2  rmsk=     0.00043551
Time Now =        89.2831  Delta time =         0.0007 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.20000000E+02 eV (  0.73498652E+00 AU)
Time Now =        89.3198  Delta time =         0.0367 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = E     1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.17500000E+02  au
Number of integration regions used =    55
Number of partial waves (np) =    30
Number of asymptotic solutions on the right (NAsymR) =    10
Number of asymptotic solutions on the left (NAsymL) =    10
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =    10
Maximum in the asymptotic region (lpasym) =   13
Number of partial waves in the asymptotic region (npasym) =   16
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  183
Found polarization potential
Maximum l used in usual function (lmax) =   20
Maximum m used in usual function (LMax) =   20
Maxamum l used in expanding static potential (lpotct) =   40
Maximum l used in exapnding the exchange potential (lmaxab) =   40
Higest l included in the expansion of the wave function (lnp) =   20
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   13
Higest l used in the asymptotic potential (lpzb) =   26
Maximum L used in the homogeneous solution (LMaxHomo) =   20
Number of partial waves in the homogeneous solution (npHomo) =   30
Time Now =        89.3373  Delta time =         0.0175 Energy independent setup

Compute solution for E =   20.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.17500000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.38857806E-15
 i =  2  lval =   3  stpote =  0.81597167E-19
 i =  3  lval =   3  stpote =  0.18411772E-18
 i =  4  lval =   4  stpote = -0.15747508E-04
For potential     2
 i =  1  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.10763642E-16
 i =  2  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.10951718E-16
 i =  3  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.11132649E-16
 i =  4  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.11298648E-16
For potential     3
 i =  1  lvals =   6   6  stpote = -0.40657581E-19  second term =  0.00000000E+00
 i =  2  lvals =   6   6  stpote = -0.87821766E-20  second term =  0.00000000E+00
 i =  3  lvals =   6   6  stpote =  0.58508566E-20  second term =  0.00000000E+00
 i =  4  lvals =   7   9  stpote = -0.60857196E-07  second term = -0.60857196E-07
Number of asymptotic regions =      11
Final point in integration =   0.59251441E+02 Angstroms
Time Now =        98.7103  Delta time =         9.3731 End SolveHomo
     REAL PART -  Final k matrix
     ROW  1
  0.71511216E+00 0.25360752E-01 0.15080083E-01-0.15856109E-02 0.16770605E-03
 -0.31652119E-05-0.63163030E-04-0.60489738E-05-0.23756935E-06 0.17951760E-06
     ROW  2
  0.25360752E-01 0.12419207E+00 0.10062236E-01 0.71481964E-03 0.20696982E-02
 -0.17760799E-03-0.17555596E-03-0.30347251E-05-0.37293091E-05-0.49778852E-06
     ROW  3
  0.15080083E-01 0.10062236E-01 0.70851143E-01-0.68175622E-02 0.80988674E-03
  0.10163386E-03-0.10341879E-02-0.11718511E-03-0.18823845E-05 0.25576789E-05
     ROW  4
 -0.15856109E-02 0.71481964E-03-0.68175622E-02 0.37902500E-01 0.11664809E-02
 -0.12382017E-04 0.56409606E-03 0.43267609E-03-0.12049741E-04-0.48793080E-04
     ROW  5
  0.16770605E-03 0.20696982E-02 0.80988674E-03 0.11664809E-02 0.25298151E-01
 -0.13021924E-02-0.12037967E-02 0.14752722E-03-0.32099130E-03-0.35495624E-04
     ROW  6
 -0.31652119E-05-0.17760799E-03 0.10163386E-03-0.12382017E-04-0.13021924E-02
  0.16422339E-01-0.11447033E-03-0.43753146E-05 0.10760728E-03 0.10996015E-04
     ROW  7
 -0.63163030E-04-0.17555596E-03-0.10341879E-02 0.56409606E-03-0.12037967E-02
 -0.11447033E-03 0.17144925E-01 0.12513502E-02 0.11974529E-03 0.63591302E-04
     ROW  8
 -0.60489738E-05-0.30347251E-05-0.11718511E-03 0.43267609E-03 0.14752722E-03
 -0.43753146E-05 0.12513502E-02 0.11980564E-01-0.28456269E-03-0.74392860E-03
     ROW  9
 -0.23756935E-06-0.37293091E-05-0.18823845E-05-0.12049741E-04-0.32099130E-03
  0.10760728E-03 0.11974529E-03-0.28456269E-03 0.89556125E-02 0.23227753E-04
     ROW 10
  0.17951760E-06-0.49778852E-06 0.25576789E-05-0.48793080E-04-0.35495624E-04
  0.10996015E-04 0.63591302E-04-0.74392860E-03 0.23227753E-04 0.86350491E-02
 eigenphases
  0.8459961E-02  0.8922634E-02  0.1187449E-01  0.1616428E-01  0.1731076E-01
  0.2547519E-01  0.3659384E-01  0.7019062E-01  0.1241445E+00  0.6217638E+00
 eigenphase sum 0.940900E+00  scattering length=  -1.13147
 eps+pi 0.408249E+01  eps+2*pi 0.722409E+01

MaxIter =   1 c.s. =      0.86745406 angs^2  rmsk=     0.00086675
Time Now =        98.7110  Delta time =         0.0007 End ScatStab
+ Data Record ScatContSym - 'T1'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.10000000E+00 eV (  0.36749326E-02 AU)
Time Now =        98.7480  Delta time =         0.0369 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = T1    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.17500000E+02  au
Number of integration regions used =    55
Number of partial waves (np) =    38
Number of asymptotic solutions on the right (NAsymR) =    12
Number of asymptotic solutions on the left (NAsymL) =    12
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =    12
Maximum in the asymptotic region (lpasym) =   13
Number of partial waves in the asymptotic region (npasym) =   21
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  183
Found polarization potential
Maximum l used in usual function (lmax) =   20
Maximum m used in usual function (LMax) =   20
Maxamum l used in expanding static potential (lpotct) =   40
Maximum l used in exapnding the exchange potential (lmaxab) =   40
Higest l included in the expansion of the wave function (lnp) =   20
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   13
Higest l used in the asymptotic potential (lpzb) =   26
Maximum L used in the homogeneous solution (LMaxHomo) =   20
Number of partial waves in the homogeneous solution (npHomo) =   38
Time Now =        98.7655  Delta time =         0.0175 Energy independent setup

Compute solution for E =    0.1000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.17500000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.38857806E-15
 i =  2  lval =   3  stpote =  0.81597167E-19
 i =  3  lval =   3  stpote =  0.18411772E-18
 i =  4  lval =   4  stpote = -0.15747508E-04
For potential     2
 i =  1  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.24574990E-16
 i =  2  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.24553937E-16
 i =  3  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.24542037E-16
 i =  4  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.24537962E-16
For potential     3
 i =  1  lvals =   6   6  stpote = -0.40657581E-19  second term =  0.00000000E+00
 i =  2  lvals =   6   6  stpote = -0.87821766E-20  second term =  0.00000000E+00
 i =  3  lvals =   6   6  stpote =  0.58508566E-20  second term =  0.00000000E+00
 i =  4  lvals =   7   9  stpote = -0.60857196E-07  second term = -0.60857196E-07
Number of asymptotic regions =       4
Final point in integration =   0.22265874E+03 Angstroms
Time Now =       111.7807  Delta time =        13.0152 End SolveHomo
     REAL PART -  Final k matrix
     ROW  1
  0.12854490E-02 0.61832811E-04 0.83514348E-06-0.76702173E-05 0.70781891E-07
  0.56693247E-07-0.93722916E-12-0.43897989E-12 0.18613710E-11-0.11624768E-10
 -0.66127075E-13-0.67645603E-13
     ROW  2
  0.61832811E-04 0.58170930E-03-0.15754607E-04-0.52358998E-06-0.33377959E-06
  0.39915081E-05 0.14583311E-07-0.44298697E-07 0.19258157E-12-0.53199061E-12
  0.56833119E-12-0.40603648E-11
     ROW  3
  0.83514348E-06-0.15754607E-04 0.31314786E-03-0.72553317E-05-0.38693362E-07
 -0.15459999E-06-0.24459251E-05 0.18016323E-11-0.23064815E-07-0.96219553E-08
 -0.72876627E-14 0.10213298E-12
     ROW  4
 -0.76702173E-05-0.52358998E-06-0.72553317E-05 0.18828235E-03-0.78759951E-05
 -0.94183230E-05 0.79857113E-07-0.58665219E-07-0.29457101E-06 0.18395994E-05
  0.88096868E-08 0.89939801E-08
     ROW  5
  0.70781891E-07-0.33377959E-06-0.38693362E-07-0.78759951E-05 0.12123273E-03
 -0.62447136E-07 0.72028889E-06 0.74537654E-12 0.50505957E-08-0.52503174E-07
 -0.10484927E-05-0.19877844E-12
     ROW  6
  0.56693247E-07 0.39915081E-05-0.15459999E-06-0.94183230E-05-0.62447136E-07
  0.12150700E-03 0.36019718E-05-0.66811024E-05-0.54548857E-08-0.79875925E-07
  0.87679102E-07-0.12523124E-05
     ROW  7
 -0.93722917E-12 0.14583311E-07-0.24459251E-05 0.79857113E-07 0.72028889E-06
  0.36019718E-05 0.83020870E-04 0.15850456E-07 0.39055229E-05 0.27099982E-05
 -0.88258393E-08-0.31537371E-07
     ROW  8
 -0.43897990E-12-0.44298697E-07 0.18016323E-11-0.58665219E-07 0.74537653E-12
 -0.66811024E-05 0.15850456E-07 0.82822702E-04 0.13208745E-12-0.12704662E-05
  0.10294603E-08 0.44370530E-07
     ROW  9
  0.18613710E-11 0.19258157E-12-0.23064815E-07-0.29457101E-06 0.50505957E-08
 -0.54548857E-08 0.39055229E-05 0.13208745E-12 0.59008835E-04-0.32689071E-07
 -0.28133601E-06-0.19314694E-12
     ROW 10
 -0.11624768E-10-0.53199061E-12-0.96219553E-08 0.18395994E-05-0.52503174E-07
 -0.79875925E-07 0.27099982E-05-0.12704662E-05-0.32689071E-07 0.59159970E-04
  0.24133824E-05 0.30333596E-05
     ROW 11
 -0.66127076E-13 0.56833120E-12-0.72876628E-14 0.88096868E-08-0.10484927E-05
  0.87679102E-07-0.88258393E-08 0.10294603E-08-0.28133601E-06 0.24133824E-05
  0.43577004E-04-0.14147179E-07
     ROW 12
 -0.67645604E-13-0.40603648E-11 0.10213298E-12 0.89939801E-08-0.19877844E-12
 -0.12523124E-05-0.31537371E-07 0.44370530E-07-0.19314694E-12 0.30333596E-05
 -0.14147179E-07 0.43602130E-04
 eigenphases
  0.4263876E-04  0.4357961E-04  0.5822477E-04  0.5984806E-04  0.8163542E-04
  0.8368613E-04  0.1197713E-03  0.1222600E-03  0.1900304E-03  0.3126560E-03
  0.5772947E-03  0.1290894E-02
 eigenphase sum 0.298252E-02  scattering length=  -0.03479
 eps+pi 0.314458E+01  eps+2*pi 0.628617E+01

MaxIter =   1 c.s. =      0.00104718 angs^2  rmsk=     0.00000364
Time Now =       111.7817  Delta time =         0.0010 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+00 eV (  0.18374663E-01 AU)
Time Now =       111.8188  Delta time =         0.0371 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = T1    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.17500000E+02  au
Number of integration regions used =    55
Number of partial waves (np) =    38
Number of asymptotic solutions on the right (NAsymR) =    12
Number of asymptotic solutions on the left (NAsymL) =    12
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =    12
Maximum in the asymptotic region (lpasym) =   13
Number of partial waves in the asymptotic region (npasym) =   21
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  183
Found polarization potential
Maximum l used in usual function (lmax) =   20
Maximum m used in usual function (LMax) =   20
Maxamum l used in expanding static potential (lpotct) =   40
Maximum l used in exapnding the exchange potential (lmaxab) =   40
Higest l included in the expansion of the wave function (lnp) =   20
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   13
Higest l used in the asymptotic potential (lpzb) =   26
Maximum L used in the homogeneous solution (LMaxHomo) =   20
Number of partial waves in the homogeneous solution (npHomo) =   38
Time Now =       111.8364  Delta time =         0.0175 Energy independent setup

Compute solution for E =    0.5000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.17500000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.38857806E-15
 i =  2  lval =   3  stpote =  0.81597167E-19
 i =  3  lval =   3  stpote =  0.18411772E-18
 i =  4  lval =   4  stpote = -0.15747508E-04
For potential     2
 i =  1  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.22222515E-16
 i =  2  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.22148593E-16
 i =  3  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.22078069E-16
 i =  4  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.22013952E-16
For potential     3
 i =  1  lvals =   6   6  stpote = -0.40657581E-19  second term =  0.00000000E+00
 i =  2  lvals =   6   6  stpote = -0.87821766E-20  second term =  0.00000000E+00
 i =  3  lvals =   6   6  stpote =  0.58508566E-20  second term =  0.00000000E+00
 i =  4  lvals =   7   9  stpote = -0.60857196E-07  second term = -0.60857196E-07
Number of asymptotic regions =       5
Final point in integration =   0.14892033E+03 Angstroms
Time Now =       124.8586  Delta time =        13.0222 End SolveHomo
     REAL PART -  Final k matrix
     ROW  1
  0.64710121E-02 0.31282040E-03 0.92555499E-05-0.38487733E-04 0.78756253E-06
  0.64677522E-06-0.11792751E-09-0.18411847E-09 0.10406634E-09-0.65914863E-09
 -0.84289568E-11-0.87550886E-11
     ROW  2
  0.31282040E-03 0.29072454E-02-0.79121583E-04-0.58746665E-05-0.16661612E-05
  0.19938541E-04 0.16545652E-06-0.49450692E-06 0.45284184E-10-0.81582255E-10
  0.31937200E-10-0.23142183E-09
     ROW  3
  0.92555499E-05-0.79121583E-04 0.15658570E-02-0.36360117E-04-0.42764574E-06
 -0.17272136E-05-0.12177013E-04 0.26598803E-09-0.25815731E-06-0.10878070E-06
 -0.34553420E-11 0.14004039E-10
     ROW  4
 -0.38487733E-04-0.58746665E-05-0.36360117E-04 0.94525991E-03-0.39446394E-04
 -0.47171466E-04 0.89078062E-06-0.65079919E-06-0.14596140E-05 0.91158571E-05
  0.99445070E-07 0.10187032E-06
     ROW  5
  0.78756253E-06-0.16661612E-05-0.42764574E-06-0.39446394E-04 0.60685675E-03
 -0.69383834E-06 0.36068280E-05 0.10656062E-09 0.56802568E-07-0.58735263E-06
 -0.51552253E-05-0.24405997E-10
     ROW  6
  0.64677522E-06 0.19938541E-04-0.17272136E-05-0.47171466E-04-0.69383834E-06
  0.60993515E-03 0.18037277E-04-0.33456279E-04-0.59631330E-07-0.89204077E-06
  0.43106864E-06-0.61574540E-05
     ROW  7
 -0.11792751E-09 0.16545652E-06-0.12177013E-04 0.89078062E-06 0.36068280E-05
  0.18037277E-04 0.41705613E-03 0.17545611E-06 0.19556061E-04 0.13569743E-04
 -0.98140647E-07-0.35177304E-06
     ROW  8
 -0.18411847E-09-0.49450692E-06 0.26598803E-09-0.65079919E-06 0.10656062E-09
 -0.33456279E-04 0.17545611E-06 0.41483782E-03 0.18402069E-10-0.63615220E-05
  0.11211711E-07 0.49566180E-06
     ROW  9
  0.10406634E-09 0.45284185E-10-0.25815731E-06-0.14596140E-05 0.56802568E-07
 -0.59631330E-07 0.19556061E-04 0.18402069E-10 0.29626963E-03-0.36544906E-06
 -0.14104371E-05-0.27069225E-10
     ROW 10
 -0.65914864E-09-0.81582255E-10-0.10878070E-06 0.91158571E-05-0.58735263E-06
 -0.89204077E-06 0.13569743E-04-0.63615220E-05-0.36544906E-06 0.29796331E-03
  0.12099060E-04 0.15207203E-04
     ROW 11
 -0.84289570E-11 0.31937201E-10-0.34553421E-11 0.99445070E-07-0.51552253E-05
  0.43106864E-06-0.98140647E-07 0.11211711E-07-0.14104371E-05 0.12099060E-04
  0.21957480E-03-0.15791859E-06
     ROW 12
 -0.87550889E-11-0.23142183E-09 0.14004039E-10 0.10187032E-06-0.24405997E-10
 -0.61574540E-05-0.35177304E-06 0.49566180E-06-0.27069225E-10 0.15207203E-04
 -0.15791859E-06 0.21985688E-03
 eigenphases
  0.2148902E-03  0.2197406E-03  0.2923369E-03  0.3014178E-03  0.4089606E-03
  0.4203440E-03  0.5996623E-03  0.6136081E-03  0.9539161E-03  0.1563331E-02
  0.2884970E-02  0.6498446E-02
 eigenphase sum 0.149716E-01  scattering length=  -0.07810
 eps+pi 0.315656E+01  eps+2*pi 0.629816E+01

MaxIter =   1 c.s. =      0.00529115 angs^2  rmsk=     0.00001837
Time Now =       124.8596  Delta time =         0.0010 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.20000000E+01 eV (  0.73498652E-01 AU)
Time Now =       124.8968  Delta time =         0.0372 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = T1    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.17500000E+02  au
Number of integration regions used =    55
Number of partial waves (np) =    38
Number of asymptotic solutions on the right (NAsymR) =    12
Number of asymptotic solutions on the left (NAsymL) =    12
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =    12
Maximum in the asymptotic region (lpasym) =   13
Number of partial waves in the asymptotic region (npasym) =   21
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  183
Found polarization potential
Maximum l used in usual function (lmax) =   20
Maximum m used in usual function (LMax) =   20
Maxamum l used in expanding static potential (lpotct) =   40
Maximum l used in exapnding the exchange potential (lmaxab) =   40
Higest l included in the expansion of the wave function (lnp) =   20
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   13
Higest l used in the asymptotic potential (lpzb) =   26
Maximum L used in the homogeneous solution (LMaxHomo) =   20
Number of partial waves in the homogeneous solution (npHomo) =   38
Time Now =       124.9144  Delta time =         0.0176 Energy independent setup

Compute solution for E =    2.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.17500000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.38857806E-15
 i =  2  lval =   3  stpote =  0.81597167E-19
 i =  3  lval =   3  stpote =  0.18411772E-18
 i =  4  lval =   4  stpote = -0.15747508E-04
For potential     2
 i =  1  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.19373060E-16
 i =  2  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.19078381E-16
 i =  3  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.18794733E-16
 i =  4  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.18534399E-16
For potential     3
 i =  1  lvals =   6   6  stpote = -0.40657581E-19  second term =  0.00000000E+00
 i =  2  lvals =   6   6  stpote = -0.87821766E-20  second term =  0.00000000E+00
 i =  3  lvals =   6   6  stpote =  0.58508566E-20  second term =  0.00000000E+00
 i =  4  lvals =   7   9  stpote = -0.60857196E-07  second term = -0.60857196E-07
Number of asymptotic regions =       7
Final point in integration =   0.10531979E+03 Angstroms
Time Now =       137.9529  Delta time =        13.0385 End SolveHomo
     REAL PART -  Final k matrix
     ROW  1
  0.26659107E-01 0.13596987E-02 0.73099142E-04-0.16168088E-03 0.62341945E-05
  0.56265499E-05-0.69651538E-08-0.15030222E-07 0.30487280E-08-0.20598196E-07
 -0.51454174E-09-0.57473887E-09
     ROW  2
  0.13596987E-02 0.11651304E-01-0.32488056E-03-0.48036508E-04-0.67426218E-05
  0.81621642E-04 0.13931514E-05-0.39160435E-05 0.34077593E-08-0.55990616E-08
  0.94398825E-09-0.73453973E-08
     ROW  3
  0.73099142E-04-0.32488056E-03 0.62597528E-02-0.14741104E-03-0.32868071E-05
 -0.13855312E-04-0.49331440E-04 0.17887958E-07-0.20402313E-05-0.89341644E-06
 -0.29532287E-09 0.91411802E-09
     ROW  4
 -0.16168088E-03-0.48036508E-04-0.14741104E-03 0.38020897E-02-0.15904160E-03
 -0.19021734E-03 0.71003349E-05-0.50769903E-05-0.58757727E-05 0.36731881E-04
  0.80820303E-06 0.83853824E-06
     ROW  5
  0.62341945E-05-0.67426218E-05-0.32868071E-05-0.15904160E-03 0.24221529E-02
 -0.54112516E-05 0.14493947E-04 0.70748203E-08 0.46781963E-06-0.47422206E-05
 -0.20688928E-04-0.15690409E-08
     ROW  6
  0.56265499E-05 0.81621642E-04-0.13855312E-04-0.19021734E-03-0.54112516E-05
  0.24471201E-02 0.72514898E-04-0.13449759E-03-0.43905886E-06-0.71560523E-05
  0.17279843E-05-0.24717013E-04
     ROW  7
 -0.69651538E-08 0.13931514E-05-0.49331440E-04 0.71003349E-05 0.14493947E-04
  0.72514898E-04 0.16734458E-02 0.13464336E-05 0.78503700E-04 0.54473698E-04
 -0.77540250E-06-0.28125303E-05
     ROW  8
 -0.15030222E-07-0.39160435E-05 0.17887958E-07-0.50769903E-05 0.70748203E-08
 -0.13449759E-03 0.13464336E-05 0.16556586E-02 0.12031773E-08-0.25532846E-04
  0.81382262E-07 0.39855202E-05
     ROW  9
  0.30487280E-08 0.34077593E-08-0.20402313E-05-0.58757727E-05 0.46781963E-06
 -0.43905886E-06 0.78503700E-04 0.12031773E-08 0.11833331E-02-0.29078064E-05
 -0.56572789E-05-0.18114857E-08
     ROW 10
 -0.20598196E-07-0.55990616E-08-0.89341644E-06 0.36731881E-04-0.47422206E-05
 -0.71560523E-05 0.54473698E-04-0.25532846E-04-0.29078064E-05 0.11969333E-02
  0.48524250E-04 0.60989619E-04
     ROW 11
 -0.51454174E-09 0.94398825E-09-0.29532287E-09 0.80820303E-06-0.20688928E-04
  0.17279843E-05-0.77540250E-06 0.81382262E-07-0.56572789E-05 0.48524250E-04
  0.88061131E-03-0.12462579E-05
     ROW 12
 -0.57473887E-09-0.73453973E-08 0.91411802E-09 0.83853824E-06-0.15690409E-08
 -0.24717013E-04-0.28125303E-05 0.39855202E-05-0.18114857E-08 0.60989619E-04
 -0.12462579E-05 0.88288658E-03
 eigenphases
  0.8619225E-03  0.8823715E-03  0.1167512E-02  0.1210790E-02  0.1632381E-02
  0.1686292E-02  0.2393815E-02  0.2461367E-02  0.3836115E-02  0.6248580E-02
  0.1155002E-01  0.2677620E-01
 eigenphase sum 0.607074E-01  scattering length=  -0.15853
 eps+pi 0.320230E+01  eps+2*pi 0.634389E+01

MaxIter =   1 c.s. =      0.02215772 angs^2  rmsk=     0.00007378
Time Now =       137.9540  Delta time =         0.0010 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.10000000E+02 eV (  0.36749326E+00 AU)
Time Now =       137.9910  Delta time =         0.0370 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = T1    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.17500000E+02  au
Number of integration regions used =    55
Number of partial waves (np) =    38
Number of asymptotic solutions on the right (NAsymR) =    12
Number of asymptotic solutions on the left (NAsymL) =    12
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =    12
Maximum in the asymptotic region (lpasym) =   13
Number of partial waves in the asymptotic region (npasym) =   21
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  183
Found polarization potential
Maximum l used in usual function (lmax) =   20
Maximum m used in usual function (LMax) =   20
Maxamum l used in expanding static potential (lpotct) =   40
Maximum l used in exapnding the exchange potential (lmaxab) =   40
Higest l included in the expansion of the wave function (lnp) =   20
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   13
Higest l used in the asymptotic potential (lpzb) =   26
Maximum L used in the homogeneous solution (LMaxHomo) =   20
Number of partial waves in the homogeneous solution (npHomo) =   38
Time Now =       138.0085  Delta time =         0.0175 Energy independent setup

Compute solution for E =   10.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.17500000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.38857806E-15
 i =  2  lval =   3  stpote =  0.81597167E-19
 i =  3  lval =   3  stpote =  0.18411772E-18
 i =  4  lval =   4  stpote = -0.15747508E-04
For potential     2
 i =  1  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.13702616E-16
 i =  2  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.13801389E-16
 i =  3  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.13893143E-16
 i =  4  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.13974667E-16
For potential     3
 i =  1  lvals =   6   6  stpote = -0.40657581E-19  second term =  0.00000000E+00
 i =  2  lvals =   6   6  stpote = -0.87821766E-20  second term =  0.00000000E+00
 i =  3  lvals =   6   6  stpote =  0.58508566E-20  second term =  0.00000000E+00
 i =  4  lvals =   7   9  stpote = -0.60857196E-07  second term = -0.60857196E-07
Number of asymptotic regions =      10
Final point in integration =   0.70451080E+02 Angstroms
Time Now =       151.0636  Delta time =        13.0550 End SolveHomo
     REAL PART -  Final k matrix
     ROW  1
  0.15444658E+00 0.13928389E-01 0.96723656E-03-0.16396046E-02 0.10136088E-03
  0.13223882E-03-0.53581312E-06-0.27393254E-05 0.18012223E-06-0.15771666E-05
 -0.75858094E-07-0.12653073E-06
     ROW  2
  0.13928389E-01 0.61405341E-01-0.22053640E-02-0.70229253E-03-0.35991070E-04
  0.57698383E-03 0.22513834E-04-0.49396205E-04 0.48264166E-06-0.85211144E-06
  0.20843804E-07-0.42936522E-06
     ROW  3
  0.96723656E-03-0.22053640E-02 0.31738966E-01-0.86228360E-03-0.30317901E-04
 -0.16619016E-03-0.29390375E-03 0.22301345E-05-0.22939839E-04-0.11996043E-04
 -0.50178217E-07 0.11255823E-06
     ROW  4
 -0.16396046E-02-0.70229253E-03-0.86228360E-03 0.19413067E-01-0.86720780E-03
 -0.10417843E-02 0.80086411E-04-0.50469367E-04-0.32285420E-04 0.20618141E-03
  0.10061855E-04 0.11044825E-04
     ROW  5
  0.10136088E-03-0.35991070E-04-0.30317901E-04-0.86720780E-03 0.12045197E-01
 -0.53048988E-04 0.75543016E-04 0.82710812E-06 0.61109007E-05-0.56404415E-04
 -0.11114896E-03-0.20702110E-06
     ROW  6
  0.13223882E-03 0.57698383E-03-0.16619016E-03-0.10417843E-02-0.53048988E-04
  0.12349741E-01 0.38222120E-03-0.70807165E-03-0.27030710E-05-0.82503802E-04
  0.90297764E-05-0.13358747E-03
     ROW  7
 -0.53581312E-06 0.22513834E-04-0.29390375E-03 0.80086411E-04 0.75543016E-04
  0.38222120E-03 0.84226510E-02 0.11744788E-04 0.40647941E-03 0.28216849E-03
 -0.81886132E-05-0.31718953E-04
     ROW  8
 -0.27393254E-05-0.49396205E-04 0.22301345E-05-0.50469367E-04 0.82710812E-06
 -0.70807165E-03 0.11744788E-04 0.82196263E-02 0.13392130E-06-0.13165850E-03
  0.42177704E-06 0.46257624E-04
     ROW  9
  0.18012223E-06 0.48264166E-06-0.22939839E-04-0.32285420E-04 0.61109007E-05
 -0.27030710E-05 0.40647941E-03 0.13392130E-06 0.58783541E-02-0.31727230E-04
 -0.29102985E-04-0.23128631E-06
     ROW 10
 -0.15771666E-05-0.85211144E-06-0.11996043E-04 0.20618141E-03-0.56404415E-04
 -0.82503802E-04 0.28216849E-03-0.13165850E-03-0.31727230E-04 0.60342420E-02
  0.24897488E-03 0.31292047E-03
     ROW 11
 -0.75858094E-07 0.20843804E-07-0.50178217E-07 0.10061855E-04-0.11114896E-03
  0.90297764E-05-0.81886132E-05 0.42177704E-06-0.29102985E-04 0.24897488E-03
  0.44145331E-02-0.12945066E-04
     ROW 12
 -0.12653073E-06-0.42936522E-06 0.11255823E-06 0.11044825E-04-0.20702110E-06
 -0.13358747E-03-0.31718953E-04 0.46257624E-04-0.23128631E-06 0.31292047E-03
 -0.12945066E-04 0.44411679E-02
 eigenphases
  0.4318639E-02  0.4436726E-02  0.5794343E-02  0.6104648E-02  0.8097597E-02
  0.8484619E-02  0.1189237E-01  0.1241171E-01  0.1957201E-01  0.3159997E-01
  0.5949931E-01  0.1552529E+00
 eigenphase sum 0.327465E+00  scattering length=  -0.39623
 eps+pi 0.346906E+01  eps+2*pi 0.661065E+01

MaxIter =   1 c.s. =      0.14061592 angs^2  rmsk=     0.00037121
Time Now =       151.0646  Delta time =         0.0010 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.20000000E+02 eV (  0.73498652E+00 AU)
Time Now =       151.1015  Delta time =         0.0369 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = T1    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.17500000E+02  au
Number of integration regions used =    55
Number of partial waves (np) =    38
Number of asymptotic solutions on the right (NAsymR) =    12
Number of asymptotic solutions on the left (NAsymL) =    12
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =    12
Maximum in the asymptotic region (lpasym) =   13
Number of partial waves in the asymptotic region (npasym) =   21
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  183
Found polarization potential
Maximum l used in usual function (lmax) =   20
Maximum m used in usual function (LMax) =   20
Maxamum l used in expanding static potential (lpotct) =   40
Maximum l used in exapnding the exchange potential (lmaxab) =   40
Higest l included in the expansion of the wave function (lnp) =   20
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   13
Higest l used in the asymptotic potential (lpzb) =   26
Maximum L used in the homogeneous solution (LMaxHomo) =   20
Number of partial waves in the homogeneous solution (npHomo) =   38
Time Now =       151.1190  Delta time =         0.0175 Energy independent setup

Compute solution for E =   20.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.17500000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.38857806E-15
 i =  2  lval =   3  stpote =  0.81597167E-19
 i =  3  lval =   3  stpote =  0.18411772E-18
 i =  4  lval =   4  stpote = -0.15747508E-04
For potential     2
 i =  1  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.10763642E-16
 i =  2  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.10951718E-16
 i =  3  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.11132649E-16
 i =  4  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.11298648E-16
For potential     3
 i =  1  lvals =   6   6  stpote = -0.40657581E-19  second term =  0.00000000E+00
 i =  2  lvals =   6   6  stpote = -0.87821766E-20  second term =  0.00000000E+00
 i =  3  lvals =   6   6  stpote =  0.58508566E-20  second term =  0.00000000E+00
 i =  4  lvals =   7   9  stpote = -0.60857196E-07  second term = -0.60857196E-07
Number of asymptotic regions =      11
Final point in integration =   0.59251441E+02 Angstroms
Time Now =       164.1965  Delta time =        13.0775 End SolveHomo
     REAL PART -  Final k matrix
     ROW  1
  0.29826965E+00 0.42815599E-01 0.28290217E-02-0.63512409E-02 0.46321596E-03
  0.77036032E-03-0.19191848E-05-0.29310666E-04 0.20308726E-05-0.17770660E-04
 -0.10852336E-05-0.20475131E-05
     ROW  2
  0.42815599E-01 0.12430852E+00-0.64128056E-02-0.29521883E-02-0.57421371E-04
  0.20767384E-02 0.11128036E-03-0.20971376E-03 0.48401885E-05-0.98376408E-05
 -0.15944151E-06-0.40787787E-05
     ROW  3
  0.28290217E-02-0.64128056E-02 0.64848263E-01-0.23346759E-02-0.67765478E-04
 -0.56794693E-03-0.86121872E-03 0.18754855E-04-0.80872405E-04-0.48692081E-04
 -0.57675737E-06 0.98879862E-06
     ROW  4
 -0.63512409E-02-0.29521883E-02-0.23346759E-02 0.40461203E-01-0.21110057E-02
 -0.25743356E-02 0.24563423E-03-0.12796305E-03-0.79988461E-04 0.53561528E-03
  0.35622521E-04 0.40953807E-04
     ROW  5
  0.46321596E-03-0.57421371E-04-0.67765478E-04-0.21110057E-02 0.24176265E-01
 -0.12784666E-03 0.16415104E-03 0.59148478E-05 0.20947510E-04-0.17711604E-03
 -0.25838059E-03-0.18450821E-05
     ROW  6
  0.77036032E-03 0.20767384E-02-0.56794693E-03-0.25743356E-02-0.12784666E-03
  0.25179569E-01 0.85862587E-03-0.15843687E-02 0.52866308E-07-0.25127981E-03
  0.19394349E-04-0.31569261E-03
     ROW  7
 -0.19191848E-05 0.11128036E-03-0.86121872E-03 0.24563423E-03 0.16415104E-03
  0.85862587E-03 0.17001294E-01 0.22134550E-04 0.87283324E-03 0.60670327E-03
 -0.21897699E-04-0.92397531E-04
     ROW  8
 -0.29310666E-04-0.20971376E-03 0.18754855E-04-0.12796305E-03 0.59148478E-05
 -0.15843687E-02 0.22134550E-04 0.16397869E-01 0.85057732E-06-0.27922549E-03
 -0.48296516E-06 0.13902143E-03
     ROW  9
  0.20308726E-05 0.48401885E-05-0.80872405E-04-0.79988461E-04 0.20947510E-04
  0.52866308E-07 0.87283324E-03 0.85057732E-06 0.11704585E-01-0.88195561E-04
 -0.61725046E-04-0.18631630E-05
     ROW 10
 -0.17770660E-04-0.98376408E-05-0.48692081E-04 0.53561528E-03-0.17711604E-03
 -0.25127981E-03 0.60670327E-03-0.27922549E-03-0.88195561E-04 0.12165023E-01
  0.52436372E-03 0.65895109E-03
     ROW 11
 -0.10852336E-05-0.15944151E-06-0.57675737E-06 0.35622521E-04-0.25838059E-03
  0.19394349E-04-0.21897699E-04-0.48296516E-06-0.61725046E-04 0.52436372E-03
  0.88481155E-02-0.33449463E-04
     ROW 12
 -0.20475131E-05-0.40787787E-05 0.98879862E-06 0.40953807E-04-0.18450821E-05
 -0.31569261E-03-0.92397531E-04 0.13902143E-03-0.18631630E-05 0.65895109E-03
 -0.33449463E-04 0.89283582E-02
 eigenphases
  0.8643278E-02  0.8911253E-02  0.1151677E-01  0.1230809E-01  0.1611181E-01
  0.1712020E-01  0.2378024E-01  0.2524127E-01  0.4067790E-01  0.6408505E-01
  0.1148344E+00  0.2991692E+00
 eigenphase sum 0.642399E+00  scattering length=  -0.61718
 eps+pi 0.378399E+01  eps+2*pi 0.692558E+01

MaxIter =   1 c.s. =      0.25839807 angs^2  rmsk=     0.00074666
Time Now =       164.1976  Delta time =         0.0010 End ScatStab
+ Data Record ScatContSym - 'T2'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.10000000E+00 eV (  0.36749326E-02 AU)
Time Now =       164.2346  Delta time =         0.0370 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = T2    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.17500000E+02  au
Number of integration regions used =    55
Number of partial waves (np) =    52
Number of asymptotic solutions on the right (NAsymR) =    18
Number of asymptotic solutions on the left (NAsymL) =    18
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =    18
Maximum in the asymptotic region (lpasym) =   13
Number of partial waves in the asymptotic region (npasym) =   28
Number of orthogonality constraints (NOrthUse) =    1
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  183
Found polarization potential
Maximum l used in usual function (lmax) =   20
Maximum m used in usual function (LMax) =   20
Maxamum l used in expanding static potential (lpotct) =   40
Maximum l used in exapnding the exchange potential (lmaxab) =   40
Higest l included in the expansion of the wave function (lnp) =   20
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   13
Higest l used in the asymptotic potential (lpzb) =   26
Maximum L used in the homogeneous solution (LMaxHomo) =   20
Number of partial waves in the homogeneous solution (npHomo) =   52
Time Now =       164.2521  Delta time =         0.0176 Energy independent setup

Compute solution for E =    0.1000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.17500000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.38857806E-15
 i =  2  lval =   3  stpote =  0.81597167E-19
 i =  3  lval =   3  stpote =  0.18411772E-18
 i =  4  lval =   4  stpote = -0.15747508E-04
For potential     2
 i =  1  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.24574990E-16
 i =  2  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.24553937E-16
 i =  3  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.24542037E-16
 i =  4  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.24537962E-16
For potential     3
 i =  1  lvals =   6   6  stpote = -0.40657581E-19  second term =  0.00000000E+00
 i =  2  lvals =   6   6  stpote = -0.87821766E-20  second term =  0.00000000E+00
 i =  3  lvals =   6   6  stpote =  0.58508566E-20  second term =  0.00000000E+00
 i =  4  lvals =   7   9  stpote = -0.60857196E-07  second term = -0.60857196E-07
Number of asymptotic regions =       4
Final point in integration =   0.22265874E+03 Angstroms
Time Now =       182.5699  Delta time =        18.3178 End SolveHomo
     REAL PART -  Final k matrix
     ROW  1
  0.17514812E-01 0.64501314E-03 0.22017229E-04-0.43441622E-04-0.67033430E-06
  0.34749367E-06-0.66832772E-10-0.24638042E-11-0.69483830E-10-0.15089721E-09
  0.14706090E-11-0.93728337E-12 0.49059009E-14-0.25224611E-14-0.19496510E-14
  0.10566701E-15 0.17658340E-15 0.48953481E-18
     ROW  2
  0.64501314E-03 0.39095914E-02 0.19307725E-03-0.24617751E-05 0.43646554E-05
  0.15492807E-04-0.11389217E-06-0.19300102E-06-0.32481522E-11-0.42983555E-11
 -0.13061909E-10-0.35562726E-10-0.10149546E-12-0.15788141E-12-0.28544819E-12
  0.41359757E-15-0.32473357E-15 0.84016899E-15
     ROW  3
  0.22017229E-04 0.19307725E-03 0.12789133E-02-0.18102964E-04 0.94842925E-06
  0.11256428E-05-0.72315383E-05-0.20710069E-10-0.92182350E-07 0.28506702E-07
 -0.13005745E-11-0.16980403E-11-0.54991691E-11-0.92628341E-11-0.11009535E-15
  0.88002548E-13-0.34457168E-13 0.11625225E-18
     ROW  4
 -0.43441622E-04-0.24617751E-05-0.18102964E-04 0.58495783E-03 0.34867193E-04
 -0.20627743E-04 0.18055626E-06-0.26721779E-06 0.19077548E-05 0.41421884E-05
 -0.34143926E-07 0.21466065E-07-0.14742014E-12 0.30553353E-12-0.13618287E-12
 -0.25032508E-11-0.42545375E-11 0.17613553E-15
     ROW  5
 -0.67033430E-06 0.43646554E-05 0.94842925E-06 0.34867193E-04 0.31295083E-03
  0.50239498E-06-0.90489935E-05-0.13424969E-10 0.19073851E-06 0.20738382E-06
 -0.23896916E-05 0.35756195E-12-0.25253157E-07 0.60549284E-08-0.41211060E-14
 -0.12529301E-12-0.19037055E-12 0.76715897E-19
     ROW  6
  0.34749367E-06 0.15492807E-04 0.11256428E-05-0.20627743E-04 0.50239498E-06
  0.31414120E-03-0.11471710E-04-0.17015272E-04 0.48116435E-07-0.21006006E-06
 -0.33660921E-06-0.27497814E-05 0.49356939E-09-0.12000691E-07-0.18701728E-07
  0.56480958E-13 0.13280108E-12 0.10196224E-12
     ROW  7
 -0.66832772E-10-0.11389217E-06-0.72315383E-05 0.18055626E-06-0.90489935E-05
 -0.11471710E-04 0.18815500E-03-0.76407876E-07 0.11648752E-04-0.25292229E-05
  0.97091605E-07 0.88174409E-07 0.92301072E-06 0.15547451E-05 0.61740704E-12
 -0.12429099E-07 0.48728852E-08 0.82442300E-15
     ROW  8
 -0.24638045E-11-0.19300102E-06-0.20710069E-10-0.26721779E-06-0.13424969E-10
 -0.17015272E-04-0.76407876E-07 0.18761015E-03-0.20987886E-11-0.37514433E-05
 -0.52938096E-08 0.13078376E-06-0.13365228E-12-0.69879950E-07 0.15246143E-05
 -0.41518664E-10 0.30703634E-08-0.15230132E-07
     ROW  9
 -0.69483831E-10-0.32481522E-11-0.92182350E-07 0.19077548E-05 0.19073851E-06
  0.48116435E-07 0.11648752E-04-0.20987886E-11 0.12125903E-03 0.15902397E-06
 -0.44507727E-05 0.12789954E-11 0.62295960E-07 0.63008692E-07-0.32693720E-14
 -0.10769128E-05-0.80522590E-13 0.48392348E-19
     ROW 10
 -0.15089721E-09-0.42983555E-11 0.28506702E-07 0.41421884E-05 0.20738382E-06
 -0.21006006E-06-0.25292229E-05-0.37514433E-05 0.15902397E-06 0.12156445E-03
 -0.54760979E-05 0.50236598E-05 0.22501310E-07-0.28988196E-07-0.45174849E-07
 -0.24799491E-06-0.12645302E-05 0.27028275E-12
     ROW 11
  0.14706091E-11-0.13061909E-10-0.13005745E-11-0.34143926E-07-0.23896916E-05
 -0.33660921E-06 0.97091605E-07-0.52938096E-08-0.44507727E-05-0.54760979E-05
  0.82992248E-04 0.45605630E-07 0.52073637E-05 0.39228778E-12 0.39576473E-12
  0.44958535E-07 0.32768165E-07 0.41497967E-15
     ROW 12
 -0.93728340E-12-0.35562726E-10-0.16980403E-11 0.21466065E-07 0.35756195E-12
 -0.27497814E-05 0.88174409E-07 0.13078376E-06 0.12789954E-11 0.50236598E-05
  0.45605630E-07 0.83060016E-04 0.51973270E-12 0.30064733E-05 0.46852502E-05
  0.47549935E-08-0.43833819E-07 0.18583342E-07
     ROW 13
  0.49059014E-14-0.10149546E-12-0.54991692E-11-0.14742014E-12-0.25253157E-07
  0.49356939E-09 0.92301072E-06-0.13365228E-12 0.62295960E-07 0.22501310E-07
  0.52073637E-05 0.51973270E-12 0.59032952E-04 0.63523423E-07-0.81780062E-15
 -0.24551108E-05 0.17086193E-12 0.98701607E-20
     ROW 14
 -0.25224614E-14-0.15788142E-12-0.92628341E-11 0.30553353E-12 0.60549284E-08
 -0.12000691E-07 0.15547451E-05-0.69879950E-07 0.63008692E-07-0.28988196E-07
  0.39228778E-12 0.30064733E-05 0.63523423E-07 0.59117320E-04-0.16297140E-07
 -0.28572274E-05 0.14746008E-05 0.10348221E-12
     ROW 15
 -0.19496512E-14-0.28544819E-12-0.11009542E-15-0.13618287E-12-0.41211060E-14
 -0.18701728E-07 0.61740704E-12 0.15246143E-05-0.32693721E-14-0.45174849E-07
  0.39576473E-12 0.46852502E-05-0.81780072E-15-0.16297140E-07 0.59102380E-04
  0.98307686E-13 0.14247596E-05-0.31990925E-05
     ROW 16
  0.10566705E-15 0.41359760E-15 0.88002550E-13-0.25032508E-11-0.12529301E-12
  0.56480959E-13-0.12429099E-07-0.41518664E-10-0.10769128E-05-0.24799491E-06
  0.44958535E-07 0.47549935E-08-0.24551108E-05-0.28572274E-05 0.98307686E-13
  0.43575699E-04 0.23585891E-07 0.83306610E-16
     ROW 17
  0.17658344E-15-0.32473358E-15-0.34457168E-13-0.42545376E-11-0.19037055E-12
  0.13280108E-12 0.48728852E-08 0.30703634E-08-0.80522590E-13-0.12645302E-05
  0.32768165E-07-0.43833819E-07 0.17086193E-12 0.14746008E-05 0.14247596E-05
  0.23585891E-07 0.43609061E-04 0.45918143E-08
     ROW 18
  0.48949466E-18 0.84016914E-15 0.11620568E-18 0.17613550E-15 0.76692252E-19
  0.10196224E-12 0.82442304E-15-0.15230132E-07 0.48376410E-19 0.27028275E-12
  0.41497973E-15 0.18583342E-07 0.98886388E-20 0.10348221E-12-0.31990925E-05
  0.83306593E-16 0.45918143E-08 0.43504365E-04
 eigenphases
  0.4252332E-04  0.4279369E-04  0.4353921E-04  0.5804972E-04  0.5878993E-04
  0.5977183E-04  0.8242676E-04  0.8405832E-04  0.1193384E-03  0.1230560E-03
  0.1850329E-03  0.1891332E-03  0.3074632E-03  0.3176158E-03  0.5903328E-03
  0.1265300E-02  0.3893209E-02  0.1754369E-01
 eigenphase sum 0.250061E-01  scattering length=  -0.29174
 eps+pi 0.316660E+01  eps+2*pi 0.630819E+01

MaxIter =   1 c.s. =      0.15568886 angs^2  rmsk=     0.00000242
Time Now =       182.5733  Delta time =         0.0034 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+00 eV (  0.18374663E-01 AU)
Time Now =       182.6103  Delta time =         0.0370 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = T2    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.17500000E+02  au
Number of integration regions used =    55
Number of partial waves (np) =    52
Number of asymptotic solutions on the right (NAsymR) =    18
Number of asymptotic solutions on the left (NAsymL) =    18
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =    18
Maximum in the asymptotic region (lpasym) =   13
Number of partial waves in the asymptotic region (npasym) =   28
Number of orthogonality constraints (NOrthUse) =    1
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  183
Found polarization potential
Maximum l used in usual function (lmax) =   20
Maximum m used in usual function (LMax) =   20
Maxamum l used in expanding static potential (lpotct) =   40
Maximum l used in exapnding the exchange potential (lmaxab) =   40
Higest l included in the expansion of the wave function (lnp) =   20
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   13
Higest l used in the asymptotic potential (lpzb) =   26
Maximum L used in the homogeneous solution (LMaxHomo) =   20
Number of partial waves in the homogeneous solution (npHomo) =   52
Time Now =       182.6278  Delta time =         0.0175 Energy independent setup

Compute solution for E =    0.5000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.17500000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.38857806E-15
 i =  2  lval =   3  stpote =  0.81597167E-19
 i =  3  lval =   3  stpote =  0.18411772E-18
 i =  4  lval =   4  stpote = -0.15747508E-04
For potential     2
 i =  1  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.22222515E-16
 i =  2  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.22148593E-16
 i =  3  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.22078069E-16
 i =  4  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.22013952E-16
For potential     3
 i =  1  lvals =   6   6  stpote = -0.40657581E-19  second term =  0.00000000E+00
 i =  2  lvals =   6   6  stpote = -0.87821766E-20  second term =  0.00000000E+00
 i =  3  lvals =   6   6  stpote =  0.58508566E-20  second term =  0.00000000E+00
 i =  4  lvals =   7   9  stpote = -0.60857196E-07  second term = -0.60857196E-07
Number of asymptotic regions =       5
Final point in integration =   0.14892033E+03 Angstroms
Time Now =       200.9036  Delta time =        18.2758 End SolveHomo
     REAL PART -  Final k matrix
     ROW  1
  0.33287166E-01 0.98467450E-03 0.15518620E-03-0.22555280E-03-0.74764824E-05
  0.41823582E-05-0.10064960E-07-0.39750903E-08-0.38837556E-08-0.82431758E-08
  0.17931381E-09-0.12234330E-09 0.12789248E-11-0.81571467E-12-0.63300585E-12
  0.48002476E-13 0.76846497E-13 0.78211049E-15
     ROW  2
  0.98467450E-03 0.20582891E-01 0.10355182E-02-0.29861559E-04 0.22081012E-04
  0.78486350E-04-0.13409023E-05-0.21494905E-05-0.13134410E-08-0.55050326E-09
 -0.72533273E-09-0.19941330E-08-0.13217073E-10-0.20617790E-10-0.36085344E-10
  0.13097845E-12-0.91669362E-13 0.23865447E-12
     ROW  3
  0.15518620E-03 0.10355182E-02 0.63989295E-02-0.91680359E-04 0.10598636E-04
  0.12789913E-04-0.36284561E-04-0.50946599E-08-0.10293465E-05 0.31311980E-06
 -0.19144451E-09-0.30159431E-09-0.31322420E-09-0.52531872E-09-0.16006369E-11
  0.11259349E-10-0.43648823E-11 0.52256847E-15
     ROW  4
 -0.22555280E-03-0.29861559E-04-0.91680359E-04 0.29438585E-02 0.17513084E-03
 -0.10361640E-03 0.20206086E-05-0.29587629E-05 0.95305979E-05 0.20692172E-04
 -0.38644512E-06 0.24355714E-06-0.57772671E-10 0.67326775E-10-0.73608118E-11
 -0.14262517E-09-0.24207398E-09 0.35030843E-12
     ROW  5
 -0.74764824E-05 0.22081012E-04 0.10598636E-04 0.17513084E-03 0.15637180E-02
  0.56001694E-05-0.45349764E-04-0.20236587E-08 0.21285098E-05 0.23301796E-05
 -0.11897355E-04 0.19814114E-10-0.28346444E-06 0.66739804E-07-0.22383102E-11
 -0.16044128E-10-0.32082250E-10 0.31813687E-15
     ROW  6
  0.41823582E-05 0.78486350E-04 0.12789913E-04-0.10361640E-03 0.56001694E-05
  0.15770631E-02-0.57493806E-04-0.85273146E-04 0.52455941E-06-0.23468391E-05
 -0.16758209E-05-0.13690338E-04 0.47180452E-08-0.13567553E-06-0.21143610E-06
  0.14180655E-10 0.17389205E-10 0.25395183E-10
     ROW  7
 -0.10064960E-07-0.13409023E-05-0.36284561E-04 0.20206086E-05-0.45349764E-04
 -0.57493806E-04 0.94384342E-03-0.84148207E-06 0.58341754E-04-0.12667171E-04
  0.10841014E-05 0.98684730E-06 0.45739065E-05 0.77042730E-05 0.82865774E-10
 -0.14041845E-06 0.54930779E-07 0.35766623E-12
     ROW  8
 -0.39750904E-08-0.21494905E-05-0.50946599E-08-0.29587629E-05-0.20236587E-08
 -0.85273146E-04-0.84148207E-06 0.93773119E-03-0.31458565E-09-0.18788427E-04
 -0.57148807E-07 0.14637204E-05-0.20585043E-10-0.34619348E-06 0.75548936E-05
 -0.38922985E-09 0.34834538E-07-0.17086356E-06
     ROW  9
 -0.38837556E-08-0.13134410E-08-0.10293465E-05 0.95305979E-05 0.21285098E-05
  0.52455941E-06 0.58341754E-04-0.31458565E-09 0.60715819E-03 0.17809315E-05
 -0.22287700E-04 0.18345181E-09 0.69481067E-06 0.70511361E-06-0.12164517E-11
 -0.52950224E-05-0.17590535E-10 0.14407591E-15
     ROW 10
 -0.82431759E-08-0.55050326E-09 0.31311980E-06 0.20692172E-04 0.23301796E-05
 -0.23468391E-05-0.12667171E-04-0.18788427E-04 0.17809315E-05 0.61057341E-03
 -0.27422420E-04 0.25156633E-04 0.24894458E-06-0.32288213E-06-0.50317812E-06
 -0.12193764E-05-0.62175081E-05 0.36552715E-10
     ROW 11
  0.17931381E-09-0.72533274E-09-0.19144451E-09-0.38644512E-06-0.11897355E-04
 -0.16758209E-05 0.10841014E-05-0.57148807E-07-0.22287700E-04-0.27422420E-04
  0.41673864E-03 0.50865402E-06 0.26074723E-04 0.53961056E-10 0.55941712E-10
  0.50137166E-06 0.36632850E-06 0.14539182E-12
     ROW 12
 -0.12234330E-09-0.19941330E-08-0.30159431E-09 0.24355714E-06 0.19814114E-10
 -0.13690338E-04 0.98684730E-06 0.14637204E-05 0.18345181E-09 0.25156633E-04
  0.50865402E-06 0.41749598E-03 0.72604901E-10 0.15054311E-04 0.23460450E-04
  0.52326345E-07-0.48896055E-06 0.20629920E-06
     ROW 13
  0.12789249E-11-0.13217074E-10-0.31322421E-09-0.57772671E-10-0.28346444E-06
  0.47180452E-08 0.45739065E-05-0.20585043E-10 0.69481067E-06 0.24894458E-06
  0.26074723E-04 0.72604901E-10 0.29654112E-03 0.71211687E-06-0.28643446E-12
 -0.12308222E-04 0.24420602E-10 0.35659250E-16
     ROW 14
 -0.81571467E-12-0.20617791E-10-0.52531872E-09 0.67326775E-10 0.66739804E-07
 -0.13567553E-06 0.77042730E-05-0.34619348E-06 0.70511361E-06-0.32288213E-06
  0.53961056E-10 0.15054311E-04 0.71211687E-06 0.29748519E-03-0.18135795E-06
 -0.14324204E-04 0.73926228E-05 0.14391492E-10
     ROW 15
 -0.63300585E-12-0.36085345E-10-0.16006369E-11-0.73608118E-11-0.22383102E-11
 -0.21143610E-06 0.82865773E-10 0.75548936E-05-0.12164517E-11-0.50317812E-06
  0.55941712E-10 0.23460450E-04-0.28643445E-12-0.18135795E-06 0.29731894E-03
  0.13459074E-10 0.71427486E-05-0.16038021E-04
     ROW 16
  0.48002477E-13 0.13097846E-12 0.11259350E-10-0.14262517E-09-0.16044128E-10
  0.14180655E-10-0.14041845E-06-0.38922985E-09-0.52950224E-05-0.12193764E-05
  0.50137166E-06 0.52326345E-07-0.12308222E-04-0.14324204E-04 0.13459074E-10
  0.21956099E-03 0.26406573E-06 0.27903896E-13
     ROW 17
  0.76846498E-13-0.91669366E-13-0.43648824E-11-0.24207398E-09-0.32082250E-10
  0.17389205E-10 0.54930779E-07 0.34834538E-07-0.17590535E-10-0.62175081E-05
  0.36632850E-06-0.48896055E-06 0.24420602E-10 0.73926228E-05 0.71427486E-05
  0.26406573E-06 0.21993411E-03 0.51041410E-07
     ROW 18
  0.78211033E-15 0.23865448E-12 0.52256823E-15 0.35030843E-12 0.31813683E-15
  0.25395183E-10 0.35766623E-12-0.17086356E-06 0.14407588E-15 0.36552715E-10
  0.14539182E-12 0.20629920E-06 0.35659360E-16 0.14391492E-10-0.16038021E-04
  0.27903896E-13 0.51041410E-07 0.21876069E-03
 eigenphases
  0.2141267E-03  0.2153748E-03  0.2195739E-03  0.2914388E-03  0.2957758E-03
  0.3009532E-03  0.4138270E-03  0.4225930E-03  0.5971773E-03  0.6183739E-03
  0.9250806E-03  0.9485671E-03  0.1535411E-02  0.1595372E-02  0.2969446E-02
  0.6325974E-02  0.2057791E-01  0.3335441E-01
 eigenphase sum 0.718214E-01  scattering length=  -0.37530
 eps+pi 0.321341E+01  eps+2*pi 0.635501E+01

MaxIter =   1 c.s. =      0.15248844 angs^2  rmsk=     0.00001219
Time Now =       200.9059  Delta time =         0.0023 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.20000000E+01 eV (  0.73498652E-01 AU)
Time Now =       200.9429  Delta time =         0.0370 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = T2    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.17500000E+02  au
Number of integration regions used =    55
Number of partial waves (np) =    52
Number of asymptotic solutions on the right (NAsymR) =    18
Number of asymptotic solutions on the left (NAsymL) =    18
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =    18
Maximum in the asymptotic region (lpasym) =   13
Number of partial waves in the asymptotic region (npasym) =   28
Number of orthogonality constraints (NOrthUse) =    1
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  183
Found polarization potential
Maximum l used in usual function (lmax) =   20
Maximum m used in usual function (LMax) =   20
Maxamum l used in expanding static potential (lpotct) =   40
Maximum l used in exapnding the exchange potential (lmaxab) =   40
Higest l included in the expansion of the wave function (lnp) =   20
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   13
Higest l used in the asymptotic potential (lpzb) =   26
Maximum L used in the homogeneous solution (LMaxHomo) =   20
Number of partial waves in the homogeneous solution (npHomo) =   52
Time Now =       200.9604  Delta time =         0.0175 Energy independent setup

Compute solution for E =    2.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.17500000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.38857806E-15
 i =  2  lval =   3  stpote =  0.81597167E-19
 i =  3  lval =   3  stpote =  0.18411772E-18
 i =  4  lval =   4  stpote = -0.15747508E-04
For potential     2
 i =  1  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.19373060E-16
 i =  2  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.19078381E-16
 i =  3  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.18794733E-16
 i =  4  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.18534399E-16
For potential     3
 i =  1  lvals =   6   6  stpote = -0.40657581E-19  second term =  0.00000000E+00
 i =  2  lvals =   6   6  stpote = -0.87821766E-20  second term =  0.00000000E+00
 i =  3  lvals =   6   6  stpote =  0.58508566E-20  second term =  0.00000000E+00
 i =  4  lvals =   7   9  stpote = -0.60857196E-07  second term = -0.60857196E-07
Number of asymptotic regions =       7
Final point in integration =   0.10531979E+03 Angstroms
Time Now =       219.2617  Delta time =        18.3013 End SolveHomo
     REAL PART -  Final k matrix
     ROW  1
 -0.84009644E-01-0.16147415E-01-0.41452924E-03-0.10822594E-02-0.69833659E-04
  0.34824500E-04-0.12313062E-06-0.12678375E-06-0.12851788E-06-0.26903502E-06
  0.11435413E-07-0.96528060E-08 0.12920008E-09-0.16709376E-09-0.14449281E-09
  0.15036760E-10 0.20534711E-10 0.10666163E-11
     ROW  2
 -0.16147415E-01 0.10066466E+00 0.64229266E-02-0.36671676E-03 0.10279585E-03
  0.37854361E-03-0.14232855E-04-0.18217627E-04-0.13345775E-06-0.57901553E-07
 -0.21498921E-07-0.64737330E-07-0.96964588E-09-0.15514810E-08-0.22740276E-08
  0.27438309E-10-0.10398559E-10 0.29454503E-10
     ROW  3
 -0.41452924E-03 0.64229266E-02 0.26122326E-01-0.40917214E-03 0.86606725E-04
  0.11262206E-03-0.15234098E-03-0.42623877E-06-0.82582308E-05 0.23447870E-05
 -0.12809878E-07-0.22577224E-07-0.99879005E-08-0.16438315E-07-0.32924111E-09
  0.69961746E-09-0.25797787E-09 0.85632032E-12
     ROW  4
 -0.10822594E-02-0.36671676E-03-0.40917214E-03 0.11958962E-01 0.72074542E-03
 -0.42710254E-03 0.16376866E-04-0.22964349E-04 0.39079196E-04 0.84776535E-04
 -0.32276585E-05 0.20528547E-05-0.46508090E-08 0.49923844E-08-0.10997083E-09
 -0.45240730E-08-0.76277241E-08 0.56914091E-10
     ROW  5
 -0.69833659E-04 0.10279585E-03 0.86606725E-04 0.72074542E-03 0.62445864E-02
  0.44457801E-04-0.18390563E-03-0.13674964E-06 0.16998581E-04 0.19100476E-04
 -0.48218524E-04 0.83581494E-09-0.22653987E-05 0.49521890E-06-0.34857710E-09
 -0.10219160E-08-0.22759325E-08 0.43864912E-12
     ROW  6
  0.34824500E-04 0.37854361E-03 0.11262206E-03-0.42710254E-03 0.44457801E-04
  0.63528975E-02-0.23331780E-03-0.34578080E-03 0.38073769E-05-0.18828724E-04
 -0.67907080E-05-0.55502226E-04 0.11897495E-07-0.11146459E-05-0.17371769E-05
  0.11119883E-08 0.11157588E-08 0.19270576E-08
     ROW  7
 -0.12313062E-06-0.14232855E-04-0.15234098E-03 0.16376866E-04-0.18390563E-03
 -0.23331780E-03 0.37909688E-02-0.63443116E-05 0.23520953E-03-0.51053944E-04
  0.86741689E-05 0.79669399E-05 0.18434551E-04 0.31041886E-04 0.54868101E-08
 -0.11447468E-05 0.44408810E-06 0.49568450E-10
     ROW  8
 -0.12678375E-06-0.18217627E-04-0.42623877E-06-0.22964349E-04-0.13674964E-06
 -0.34578080E-03-0.63443116E-05 0.37413964E-02-0.20923778E-07-0.75724228E-04
 -0.39709785E-06 0.11815289E-04-0.13531454E-08-0.13893841E-05 0.30434823E-04
 -0.68543774E-09 0.28843475E-06-0.13557577E-05
     ROW  9
 -0.12851788E-06-0.13345775E-06-0.82582308E-05 0.39079196E-04 0.16998581E-04
  0.38073769E-05 0.23520953E-03-0.20923778E-07 0.24247899E-02 0.14323849E-04
 -0.89599903E-04 0.12463509E-07 0.55462046E-05 0.57002487E-05-0.16747544E-09
 -0.21253968E-04-0.13147702E-08 0.16648339E-12
     ROW 10
 -0.26903502E-06-0.57901553E-07 0.23447870E-05 0.84776535E-04 0.19100476E-04
 -0.18828724E-04-0.51053944E-04-0.75724228E-04 0.14323849E-04 0.24520998E-02
 -0.11026194E-03 0.10114283E-03 0.19256349E-05-0.25640178E-05-0.39961082E-05
 -0.48960711E-05-0.24956875E-04 0.23916513E-08
     ROW 11
  0.11435413E-07-0.21498921E-07-0.12809878E-07-0.32276585E-05-0.48218524E-04
 -0.67907080E-05 0.86741689E-05-0.39709785E-06-0.89599903E-04-0.11026194E-03
  0.16709891E-02 0.40219675E-05 0.10466990E-03 0.35680067E-08 0.37386681E-08
  0.40054701E-05 0.29540516E-05 0.18886712E-10
     ROW 12
 -0.96528060E-08-0.64737330E-07-0.22577224E-07 0.20528547E-05 0.83581494E-09
 -0.55502226E-04 0.79669399E-05 0.11815289E-04 0.12463509E-07 0.10114283E-03
  0.40219675E-05 0.16770233E-02 0.48301663E-08 0.60435409E-04 0.94181783E-04
  0.39673276E-06-0.39103472E-05 0.16195259E-05
     ROW 13
  0.12920008E-09-0.96964588E-09-0.99879005E-08-0.46508090E-08-0.22653987E-05
  0.11897495E-07 0.18434551E-04-0.13531454E-08 0.55462046E-05 0.19256349E-05
  0.10466990E-03 0.48301663E-08 0.11855505E-02 0.57259426E-05-0.37575255E-10
 -0.49360751E-04 0.16585570E-08 0.38389073E-13
     ROW 14
 -0.16709376E-09-0.15514809E-08-0.16438315E-07 0.49923844E-08 0.49521890E-06
 -0.11146459E-05 0.31041886E-04-0.13893841E-05 0.57002487E-05-0.25640178E-05
  0.35680067E-08 0.60435409E-04 0.57259426E-05 0.11930891E-02-0.14174405E-05
 -0.57448785E-04 0.29647130E-04 0.95031044E-09
     ROW 15
 -0.14449281E-09-0.22740276E-08-0.32924111E-09-0.10997083E-09-0.34857710E-09
 -0.17371769E-05 0.54868101E-08 0.30434823E-04-0.16747544E-09-0.39961082E-05
  0.37386681E-08 0.94181783E-04-0.37575255E-10-0.14174405E-05 0.11917895E-02
  0.88277304E-09 0.28644712E-04-0.64318169E-04
     ROW 16
  0.15036760E-10 0.27438309E-10 0.69961746E-09-0.45240730E-08-0.10219160E-08
  0.11119883E-08-0.11447468E-05-0.68543775E-09-0.21253968E-04-0.48960711E-05
  0.40054701E-05 0.39673276E-06-0.49360751E-04-0.57448785E-04 0.88277304E-09
  0.88052524E-03 0.21080572E-05 0.35075970E-11
     ROW 17
  0.20534711E-10-0.10398558E-10-0.25797787E-09-0.76277241E-08-0.22759325E-08
  0.11157588E-08 0.44408810E-06 0.28843475E-06-0.13147702E-08-0.24956875E-04
  0.29540516E-05-0.39103472E-05 0.16585570E-08 0.29647130E-04 0.28644712E-04
  0.21080572E-05 0.88349178E-03 0.39621681E-06
     ROW 18
  0.10666163E-11 0.29454503E-10 0.85632032E-12 0.56914092E-10 0.43864912E-12
  0.19270576E-08 0.49568450E-10-0.13557577E-05 0.16648339E-12 0.23916513E-08
  0.18886712E-10 0.16195259E-05 0.38389073E-13 0.95031044E-09-0.64318169E-04
  0.35075970E-11 0.39621681E-06 0.87408643E-03
 eigenphases
 -0.8521691E-01  0.8571339E-03  0.8620475E-03  0.8820931E-03  0.1163776E-02
  0.1185712E-02  0.1208358E-02  0.1658490E-02  0.1698021E-02  0.2381827E-02
  0.2485923E-02  0.3691309E-02  0.3808762E-02  0.6121864E-02  0.6433135E-02
  0.1208035E-01  0.2558821E-01  0.1022521E+00
 eigenphase sum 0.891422E-01  scattering length=  -0.23312
 eps+pi 0.323073E+01  eps+2*pi 0.637233E+01

MaxIter =   1 c.s. =      0.44514150 angs^2  rmsk=     0.00004869
Time Now =       219.2639  Delta time =         0.0023 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.10000000E+02 eV (  0.36749326E+00 AU)
Time Now =       219.3009  Delta time =         0.0370 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = T2    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.17500000E+02  au
Number of integration regions used =    55
Number of partial waves (np) =    52
Number of asymptotic solutions on the right (NAsymR) =    18
Number of asymptotic solutions on the left (NAsymL) =    18
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =    18
Maximum in the asymptotic region (lpasym) =   13
Number of partial waves in the asymptotic region (npasym) =   28
Number of orthogonality constraints (NOrthUse) =    1
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  183
Found polarization potential
Maximum l used in usual function (lmax) =   20
Maximum m used in usual function (LMax) =   20
Maxamum l used in expanding static potential (lpotct) =   40
Maximum l used in exapnding the exchange potential (lmaxab) =   40
Higest l included in the expansion of the wave function (lnp) =   20
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   13
Higest l used in the asymptotic potential (lpzb) =   26
Maximum L used in the homogeneous solution (LMaxHomo) =   20
Number of partial waves in the homogeneous solution (npHomo) =   52
Time Now =       219.3184  Delta time =         0.0175 Energy independent setup

Compute solution for E =   10.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.17500000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.38857806E-15
 i =  2  lval =   3  stpote =  0.81597167E-19
 i =  3  lval =   3  stpote =  0.18411772E-18
 i =  4  lval =   4  stpote = -0.15747508E-04
For potential     2
 i =  1  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.13702616E-16
 i =  2  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.13801389E-16
 i =  3  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.13893143E-16
 i =  4  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.13974667E-16
For potential     3
 i =  1  lvals =   6   6  stpote = -0.40657581E-19  second term =  0.00000000E+00
 i =  2  lvals =   6   6  stpote = -0.87821766E-20  second term =  0.00000000E+00
 i =  3  lvals =   6   6  stpote =  0.58508566E-20  second term =  0.00000000E+00
 i =  4  lvals =   7   9  stpote = -0.60857196E-07  second term = -0.60857196E-07
Number of asymptotic regions =      10
Final point in integration =   0.70451080E+02 Angstroms
Time Now =       237.6629  Delta time =        18.3445 End SolveHomo
     REAL PART -  Final k matrix
     ROW  1
 -0.78381631E+00-0.11565447E+00-0.10211723E-01-0.13414271E-01-0.18922168E-02
  0.71685981E-03 0.10622813E-04-0.61053545E-05-0.16930664E-04-0.36691874E-04
  0.33320307E-05-0.30554577E-05 0.59880812E-07-0.13683647E-06-0.12045402E-06
  0.23573814E-07 0.26981950E-07 0.26284471E-08
     ROW  2
 -0.11565447E+00 0.11956512E+01 0.20204382E+00-0.34499170E-01 0.12133088E-02
  0.12768302E-01-0.13036783E-02-0.74289523E-03-0.87523221E-04-0.66620462E-04
  0.35962109E-07-0.19055597E-04-0.60213924E-06-0.12723961E-05-0.10555903E-05
  0.87483445E-07 0.20098673E-07 0.23691767E-07
     ROW  3
 -0.10211723E-01 0.20204382E+00 0.17106839E+00-0.10017697E-01 0.13169351E-02
  0.37876662E-02-0.16704364E-02-0.13420554E-03-0.15242782E-03 0.14149582E-04
 -0.15731798E-05-0.70821641E-05-0.87323525E-06-0.14103522E-05-0.33204525E-06
  0.12367784E-06-0.23511247E-07 0.58839122E-08
     ROW  4
 -0.13414271E-01-0.34499170E-01-0.10017697E-01 0.67813351E-01 0.51752764E-02
 -0.34588721E-02 0.26578940E-03-0.23087690E-03 0.28962266E-03 0.61441882E-03
 -0.52187462E-04 0.34942978E-04-0.65480594E-06 0.74578115E-06 0.13164325E-06
 -0.27471210E-06-0.43497254E-06 0.13081737E-07
     ROW  5
 -0.18922168E-02 0.12133088E-02 0.13169351E-02 0.51752764E-02 0.31703845E-01
  0.52258031E-03-0.10848437E-02-0.18007040E-04 0.19943697E-03 0.25560913E-03
 -0.29034054E-03 0.23519568E-06-0.26927313E-04 0.36454896E-05-0.12279846E-06
 -0.12528036E-06-0.32489516E-06 0.17510176E-08
     ROW  6
  0.71685981E-03 0.12768302E-01 0.37876662E-02-0.34588721E-02 0.52258031E-03
  0.33229926E-01-0.14133838E-02-0.20398667E-02 0.19055030E-04-0.22812832E-03
 -0.40626557E-04-0.33685394E-03-0.14630956E-05-0.15151464E-04-0.23573125E-04
  0.17916950E-06 0.13687744E-06 0.25263871E-06
     ROW  7
  0.10622813E-04-0.13036783E-02-0.16704364E-02 0.26578940E-03-0.10848437E-02
 -0.14133838E-02 0.19296607E-01-0.48402059E-04 0.12809319E-02-0.27589585E-03
  0.99847849E-04 0.96112434E-04 0.10401415E-03 0.17401633E-03 0.73279911E-06
 -0.14437009E-04 0.53867185E-05 0.98398291E-08
     ROW  8
 -0.61053545E-05-0.74289523E-03-0.13420554E-03-0.23087690E-03-0.18007040E-04
 -0.20398667E-02-0.48402059E-04 0.18676439E-01-0.22319803E-05-0.40910214E-03
 -0.88493357E-06 0.14194512E-03-0.12138248E-06-0.70441764E-05 0.16984301E-03
  0.13870614E-06 0.38618378E-05-0.14925545E-04
     ROW  9
 -0.16930664E-04-0.87523221E-04-0.15242782E-03 0.28962266E-03 0.19943697E-03
  0.19055030E-04 0.12809319E-02-0.22319803E-05 0.12088987E-01 0.16777263E-03
 -0.47186670E-03 0.16972586E-05 0.62225782E-04 0.68245081E-04-0.41643507E-07
 -0.11471237E-03-0.18065459E-06 0.54742733E-09
     ROW 10
 -0.36691874E-04-0.66620462E-04 0.14149582E-04 0.61441882E-03 0.25560913E-03
 -0.22812832E-03-0.27589585E-03-0.40910214E-03 0.16777263E-03 0.12399228E-01
 -0.58331751E-03 0.53387491E-03 0.17958953E-04-0.27937454E-04-0.43647102E-04
 -0.26635752E-04-0.13471961E-03 0.28744957E-06
     ROW 11
  0.33320307E-05 0.35962109E-07-0.15731798E-05-0.52187462E-04-0.29034054E-03
 -0.40626557E-04 0.99847849E-04-0.88493357E-06-0.47186670E-03-0.58331751E-03
  0.83999421E-02 0.42595268E-04 0.54179104E-03 0.44899754E-06 0.46809024E-06
  0.44983117E-04 0.34818082E-04 0.33377811E-08
     ROW 12
 -0.30554577E-05-0.19055597E-04-0.70821641E-05 0.34942978E-04 0.23519568E-06
 -0.33685394E-03 0.96112434E-04 0.14194512E-03 0.16972586E-05 0.53387491E-03
  0.42595268E-04 0.84666663E-02 0.60604609E-06 0.31334652E-03 0.48831310E-03
  0.31821509E-05-0.44163636E-04 0.16473952E-04
     ROW 13
  0.59880812E-07-0.60213924E-06-0.87323525E-06-0.65480594E-06-0.26927313E-04
 -0.14630956E-05 0.10401415E-03-0.12138248E-06 0.62225782E-04 0.17958953E-04
  0.54179104E-03 0.60604609E-06 0.59060026E-02 0.66081779E-04-0.72081437E-08
 -0.25295939E-03 0.22119353E-06 0.11356772E-09
     ROW 14
 -0.13683647E-06-0.12723961E-05-0.14103522E-05 0.74578115E-06 0.36454896E-05
 -0.15151464E-04 0.17401633E-03-0.70441764E-05 0.68245081E-04-0.27937454E-04
  0.44899754E-06 0.31334652E-03 0.66081779E-04 0.59898702E-02-0.13923260E-04
 -0.29482332E-03 0.15190982E-03 0.11338479E-06
     ROW 15
 -0.12045402E-06-0.10555903E-05-0.33204525E-06 0.13164325E-06-0.12279846E-06
 -0.23573125E-04 0.73279911E-06 0.16984301E-03-0.41643507E-07-0.43647102E-04
  0.46809024E-06 0.48831310E-03-0.72081437E-08-0.13923260E-04 0.59770550E-02
  0.10514230E-06 0.14673260E-03-0.32954240E-03
     ROW 16
  0.23573814E-07 0.87483445E-07 0.12367784E-06-0.27471210E-06-0.12528036E-06
  0.17916950E-06-0.14437009E-04 0.13870614E-06-0.11471237E-03-0.26635752E-04
  0.44983117E-04 0.31821509E-05-0.25295939E-03-0.29482332E-03 0.10514230E-06
  0.44150438E-02 0.23369909E-04 0.50461417E-09
     ROW 17
  0.26981950E-07 0.20098673E-07-0.23511247E-07-0.43497254E-06-0.32489516E-06
  0.13687744E-06 0.53867185E-05 0.38618378E-05-0.18065459E-06-0.13471961E-03
  0.34818082E-04-0.44163636E-04 0.22119353E-06 0.15190982E-03 0.14673260E-03
  0.23369909E-04 0.44471998E-02 0.37122971E-05
     ROW 18
  0.26284471E-08 0.23691767E-07 0.58839122E-08 0.13081737E-07 0.17510176E-08
  0.25263871E-06 0.98398291E-08-0.14925545E-04 0.54742733E-09 0.28744957E-06
  0.33377811E-08 0.16473952E-04 0.11356772E-09 0.11338479E-06-0.32954240E-03
  0.50461417E-09 0.37122971E-05 0.43407077E-02
 eigenphases
 -0.6691276E+00  0.4262447E-02  0.4306009E-02  0.4441419E-02  0.5773962E-02
  0.5944486E-02  0.6085491E-02  0.8319765E-02  0.8579492E-02  0.1180926E-01
  0.1260814E-01  0.1837045E-01  0.1934773E-01  0.3061238E-01  0.3362124E-01
  0.6778238E-01  0.1322778E+00  0.8928572E+00
 eigenphase sum 0.597872E+00  scattering length=  -0.79436
 eps+pi 0.373946E+01  eps+2*pi 0.688106E+01

MaxIter =   1 c.s. =      4.86807009 angs^2  rmsk=     0.00024185
Time Now =       237.6652  Delta time =         0.0022 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.20000000E+02 eV (  0.73498652E+00 AU)
Time Now =       237.7037  Delta time =         0.0385 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = T2    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.17500000E+02  au
Number of integration regions used =    55
Number of partial waves (np) =    52
Number of asymptotic solutions on the right (NAsymR) =    18
Number of asymptotic solutions on the left (NAsymL) =    18
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =    18
Maximum in the asymptotic region (lpasym) =   13
Number of partial waves in the asymptotic region (npasym) =   28
Number of orthogonality constraints (NOrthUse) =    1
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  183
Found polarization potential
Maximum l used in usual function (lmax) =   20
Maximum m used in usual function (LMax) =   20
Maxamum l used in expanding static potential (lpotct) =   40
Maximum l used in exapnding the exchange potential (lmaxab) =   40
Higest l included in the expansion of the wave function (lnp) =   20
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   13
Higest l used in the asymptotic potential (lpzb) =   26
Maximum L used in the homogeneous solution (LMaxHomo) =   20
Number of partial waves in the homogeneous solution (npHomo) =   52
Time Now =       237.7212  Delta time =         0.0175 Energy independent setup

Compute solution for E =   20.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.17500000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.38857806E-15
 i =  2  lval =   3  stpote =  0.81597167E-19
 i =  3  lval =   3  stpote =  0.18411772E-18
 i =  4  lval =   4  stpote = -0.15747508E-04
For potential     2
 i =  1  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.10763642E-16
 i =  2  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.10951718E-16
 i =  3  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.11132649E-16
 i =  4  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.11298648E-16
For potential     3
 i =  1  lvals =   6   6  stpote = -0.40657581E-19  second term =  0.00000000E+00
 i =  2  lvals =   6   6  stpote = -0.87821766E-20  second term =  0.00000000E+00
 i =  3  lvals =   6   6  stpote =  0.58508566E-20  second term =  0.00000000E+00
 i =  4  lvals =   7   9  stpote = -0.60857196E-07  second term = -0.60857196E-07
Number of asymptotic regions =      11
Final point in integration =   0.59251441E+02 Angstroms
Time Now =       256.0794  Delta time =        18.3582 End SolveHomo
     REAL PART -  Final k matrix
     ROW  1
 -0.12428814E+01 0.69465873E+00 0.22078244E+00-0.12333990E+00-0.11660502E-01
  0.25714664E-01-0.32380274E-02-0.13003911E-02-0.59542377E-03-0.80922496E-03
  0.78618124E-04-0.13778273E-03-0.98409197E-06-0.10826696E-04-0.79379808E-05
  0.15373777E-05 0.11893225E-05 0.21166198E-06
     ROW  2
  0.69465873E+00 0.34648230E+01 0.84544405E+00-0.23584600E+00-0.42612731E-02
  0.77359937E-01-0.11436864E-01-0.46652917E-02-0.13421145E-02-0.12916230E-02
  0.72371764E-04-0.33681654E-03-0.10075584E-04-0.29440706E-04-0.21603435E-04
  0.33005671E-05 0.16610790E-05 0.59784912E-06
     ROW  3
  0.22078244E+00 0.84544405E+00 0.45695314E+00-0.72776229E-01 0.26038248E-02
  0.26791002E-01-0.82225328E-02-0.14716980E-02-0.96818844E-03-0.27395715E-03
  0.38733593E-05-0.13200013E-03-0.11056413E-04-0.20740778E-04-0.86557743E-05
  0.23910895E-05 0.13098994E-06 0.23451617E-06
     ROW  4
 -0.12333990E+00-0.23584600E+00-0.72776229E-01 0.16309192E+00 0.17193058E-01
 -0.15933681E-01 0.17745443E-02-0.37223140E-03 0.12098403E-02 0.24050437E-02
 -0.28048268E-03 0.21241402E-03-0.61601135E-05 0.97477007E-05 0.39086180E-05
 -0.30335901E-05-0.43267139E-05 0.74540781E-07
     ROW  5
 -0.11660502E-01-0.42612731E-02 0.26038248E-02 0.17193058E-01 0.65495384E-01
  0.15074250E-02-0.29926359E-02-0.14772674E-03 0.67380563E-03 0.99986788E-03
 -0.87650785E-03 0.48661744E-05-0.10032746E-03 0.61726242E-05-0.17630041E-05
 -0.11214634E-05-0.33636268E-05 0.60665692E-07
     ROW  6
  0.25714664E-01 0.77359937E-01 0.26791002E-01-0.15933681E-01 0.15074250E-02
  0.72525799E-01-0.43765803E-02-0.57413774E-02-0.81500028E-04-0.83318632E-03
 -0.11738603E-03-0.10424073E-02-0.11881045E-04-0.65016843E-04-0.99113232E-04
  0.21469332E-05 0.12618311E-05 0.22481966E-05
     ROW  7
 -0.32380274E-02-0.11436864E-01-0.82225328E-02 0.17745443E-02-0.29926359E-02
 -0.43765803E-02 0.40159628E-01-0.28063834E-04 0.31146810E-02-0.65018019E-03
  0.31459111E-03 0.32294090E-03 0.27352499E-03 0.45135162E-03 0.69475367E-05
 -0.51563408E-04 0.18573706E-04 0.33178395E-07
     ROW  8
 -0.13003911E-02-0.46652917E-02-0.14716980E-02-0.37223140E-03-0.14772674E-03
 -0.57413774E-02-0.28063834E-04 0.37942437E-01-0.12223771E-04-0.96729149E-03
  0.11620860E-04 0.46809304E-03-0.28932327E-06-0.13109986E-04 0.43470189E-03
  0.91253698E-06 0.14157538E-04-0.46661523E-04
     ROW  9
 -0.59542377E-03-0.13421145E-02-0.96818844E-03 0.12098403E-02 0.67380563E-03
 -0.81500028E-04 0.31146810E-02-0.12223771E-04 0.24362951E-01 0.53140623E-03
 -0.10571247E-02 0.15876140E-04 0.18297576E-03 0.21590909E-03-0.34825762E-06
 -0.27002526E-03-0.15696102E-05 0.17615099E-07
     ROW 10
 -0.80922496E-03-0.12916230E-02-0.27395715E-03 0.24050437E-02 0.99986788E-03
 -0.83318632E-03-0.65018019E-03-0.96729149E-03 0.53140623E-03 0.25307401E-01
 -0.13247671E-02 0.12040623E-02 0.39914237E-04-0.78828701E-04-0.12416500E-03
 -0.64029166E-04-0.31723350E-03 0.21769659E-05
     ROW 11
  0.78618124E-04 0.72371764E-04 0.38733593E-05-0.28048268E-03-0.87650785E-03
 -0.11738603E-03 0.31459111E-03 0.11620860E-04-0.10571247E-02-0.13247671E-02
  0.16952957E-01 0.11535513E-03 0.11627526E-02 0.36209502E-05 0.37303172E-05
  0.13036692E-03 0.10669121E-03 0.47400271E-08
     ROW 12
 -0.13778273E-03-0.33681654E-03-0.13200013E-03 0.21241402E-03 0.48661744E-05
 -0.10424073E-02 0.32294090E-03 0.46809304E-03 0.15876140E-04 0.12040623E-02
  0.11535513E-03 0.17144984E-01 0.48583325E-05 0.67586387E-03 0.10531709E-02
  0.47292636E-05-0.12890818E-03 0.41749123E-04
     ROW 13
 -0.98409197E-06-0.10075584E-04-0.11056413E-04-0.61601135E-05-0.10032746E-03
 -0.11881045E-04 0.27352499E-03-0.28932327E-06 0.18297576E-03 0.39914237E-04
  0.11627526E-02 0.48583325E-05 0.11793885E-01 0.19672330E-03-0.22326289E-07
 -0.53085209E-03 0.18803178E-05 0.33808680E-08
     ROW 14
 -0.10826696E-04-0.29440706E-04-0.20740778E-04 0.97477007E-05 0.61726242E-05
 -0.65016843E-04 0.45135162E-03-0.13109986E-04 0.21590909E-03-0.78828701E-04
  0.36209502E-05 0.67586387E-03 0.19672330E-03 0.12032850E-01-0.33113952E-04
 -0.62130851E-03 0.31862052E-03 0.82320595E-06
     ROW 15
 -0.79379808E-05-0.21603435E-04-0.86557743E-05 0.39086180E-05-0.17630041E-05
 -0.99113232E-04 0.69475367E-05 0.43470189E-03-0.34825762E-06-0.12416500E-03
  0.37303172E-05 0.10531709E-02-0.22326289E-07-0.33113952E-04 0.12001813E-01
  0.76696630E-06 0.30753731E-03-0.69109698E-03
     ROW 16
  0.15373777E-05 0.33005671E-05 0.23910895E-05-0.30335901E-05-0.11214634E-05
  0.21469332E-05-0.51563408E-04 0.91253698E-06-0.27002526E-03-0.64029166E-04
  0.13036692E-03 0.47292636E-05-0.53085209E-03-0.62130851E-03 0.76696630E-06
  0.88547838E-02 0.66006406E-04-0.16685379E-08
     ROW 17
  0.11893225E-05 0.16610790E-05 0.13098994E-06-0.43267139E-05-0.33636268E-05
  0.12618311E-05 0.18573706E-04 0.14157538E-04-0.15696102E-05-0.31723350E-03
  0.10669121E-03-0.12890818E-03 0.18803178E-05 0.31862052E-03 0.30753731E-03
  0.66006406E-04 0.89429953E-02 0.80692628E-05
     ROW 18
  0.21166198E-06 0.59784912E-06 0.23451617E-06 0.74540781E-07 0.60665692E-07
  0.22481966E-05 0.33178395E-07-0.46661523E-04 0.17615099E-07 0.21769659E-05
  0.47400271E-08 0.41749123E-04 0.33808680E-08 0.82320595E-06-0.69109698E-03
 -0.16685379E-08 0.80692628E-05 0.86347609E-02
 eigenphases
 -0.9347254E+00  0.8471873E-02  0.8605098E-02  0.8930207E-02  0.1147309E-01
  0.1192137E-01  0.1225808E-01  0.1672888E-01  0.1737861E-01  0.2356043E-01
  0.2579809E-01  0.3689974E-01  0.3997193E-01  0.6079439E-01  0.7202696E-01
  0.1511555E+00  0.2343062E+00  0.1314263E+01
 eigenphase sum 0.111982E+01  scattering length=  -1.70320
 eps+pi 0.426141E+01  eps+2*pi 0.740300E+01

MaxIter =   1 c.s. =      4.00639014 angs^2  rmsk=     0.00048126
Time Now =       256.0817  Delta time =         0.0023 End ScatStab

+ Command TotalCrossSection
+
Symmetry A1 -
        E (eV)      XS(angs^2)    EPS(radians)
       0.100000       0.058803       0.013352
       0.500000       1.976311      -0.132003
       2.000000       6.123851      -0.479593
      10.000000       4.879466      -1.039963
      20.000000       3.148809      -0.894183
Symmetry A2 -
        E (eV)      XS(angs^2)    EPS(radians)
       0.100000       0.000019       0.000290
       0.500000       0.000098       0.001455
       2.000000       0.000389       0.005819
      10.000000       0.001946       0.029087
      20.000000       0.003983       0.058685
Symmetry E -
        E (eV)      XS(angs^2)    EPS(radians)
       0.100000       0.007306       0.005358
       0.500000       0.038090       0.027231
       2.000000       0.181635       0.116553
      10.000000       0.860136       0.587416
      20.000000       0.867454       0.940900
Symmetry T1 -
        E (eV)      XS(angs^2)    EPS(radians)
       0.100000       0.001047       0.002983
       0.500000       0.005291       0.014972
       2.000000       0.022158       0.060707
      10.000000       0.140616       0.327465
      20.000000       0.258398       0.642399
Symmetry T2 -
        E (eV)      XS(angs^2)    EPS(radians)
       0.100000       0.155689       0.025006
       0.500000       0.152488       0.071821
       2.000000       0.445141       0.089142
      10.000000       4.868070       0.597872
      20.000000       4.006390       1.119818

 Total Cross Sections

 Energy      Total Cross Section
   0.10000     0.54364
   0.50000     2.52593
   2.00000     7.88941
  10.00000    21.62774
  20.00000    17.68207
Time Now =       256.0976  Delta time =         0.0159 Finalize