Execution on login004

----------------------------------------------------------------------
ePolyScat Version E3
----------------------------------------------------------------------

Authors: R. R. Lucchese, N. Sanna, A. P. P. Natalense, and F. A. Gianturco
http://www.chem.tamu.edu/rgroup/lucchese/ePolyScat.E3.manual/manual.html
Please cite the following two papers when reporting results obtained with  this program
F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 100, 6464 (1994).
A. P. P. Natalense and R. R. Lucchese, J. Chem. Phys. 111, 5344 (1999).

----------------------------------------------------------------------

Starting at 2011-08-29  10:43:16.772 (GMT -0500)
Using    16 processors

----------------------------------------------------------------------


+ Start of Input Records
#
# input file for test15
#
# CH4,  T2^-1 photoionization
#
  LMax   15     # maximum l to be used for wave functions
  EMax  50.0    # EMax, maximum asymptotic energy in eV
  FegeEng 13.0   # Energy correction (in eV) used in the fege potential
  ScatEng  0.1 5.8 15.8 25.8    # list of scattering energies

 InitSym 'A1'      # Initial state symmetry
 InitSpinDeg 1     # Initial state spin degeneracy
 OrbOccInit 2 2 6  # Orbital occupation of initial state

 OrbOcc  2 2 5     # occupation of the orbital groups of target
 SpinDeg 1         # Spin degeneracy of the total scattering state (=1 singlet)
 TargSym 'T2'      # Symmetry of the target state
 TargSpinDeg 2     # Target spin degeneracy
 IPot 14.2         # ionization potentail

Convert '/g/home/rrl581a/Applications/ePolyScat.E3/tests/test15.g03' 'g03'
GetBlms
ExpOrb

 FileName 'MatrixElements' 'test15T2T1.idy' 'REWIND'
 ScatSym     'T2'  # Scattering symmetry of total final state
 ScatContSym 'T1'  # Scattering symmetry of continuum electron

GenFormPhIon
DipoleOp
GetPot
PhIon
GetCro 'test15T2T1.idy'
#

 FileName 'MatrixElements' 'test15T2T2.idy' 'REWIND'

 ScatSym     'T2'  # Scattering symmetry of total final state
 ScatContSym 'T2'  # Scattering symmetry of continuum electron

GenFormPhIon
DipoleOp
GetPot
PhIon 0.1
PhIonN 5.8 10.0 3
GetCro 'test15T2T2.idy'
#

 FileName 'MatrixElements' 'test15T2E.idy' 'REWIND'

 ScatSym     'T2'  # Scattering symmetry of total final state
 ScatContSym 'E'  # Scattering symmetry of continuum electron

GenFormPhIon
DipoleOp
GetPot
PhIon 0.1 5.8 15.8 25.8
GetCro 'test15T2E.idy'
#
 FileName 'MatrixElements' 'test15T2A1.idy' 'REWIND'

 ScatSym     'T2'  # Scattering symmetry of total final state
 ScatContSym 'A1'  # Scattering symmetry of continuum electron

GenFormPhIon
DipoleOp
GetPot
PhIon 0.1 5.8 15.8 25.8
GetCro 'test15T2A1.idy'
#
#
GetCro 'test15T2A1.idy' 'test15T2E.idy' 'test15T2T2.idy'  'test15T2T1.idy'
#
+ End of input reached
+ Data Record LMax - 15
+ Data Record EMax - 50.0
+ Data Record FegeEng - 13.0
+ Data Record ScatEng - 0.1 5.8 15.8 25.8
+ Data Record InitSym - 'A1'
+ Data Record InitSpinDeg - 1
+ Data Record OrbOccInit - 2 2 6
+ Data Record OrbOcc - 2 2 5
+ Data Record SpinDeg - 1
+ Data Record TargSym - 'T2'
+ Data Record TargSpinDeg - 2
+ Data Record IPot - 14.2

+ Command Convert
+ '/g/home/rrl581a/Applications/ePolyScat.E3/tests/test15.g03' 'g03'

----------------------------------------------------------------------
g03cnv - read input from G03 output
----------------------------------------------------------------------

Expansion center is (in Angstroms) -
     0.0000000000   0.0000000000   0.0000000000
Command line = # HF/AUG-CC-PVQZ SCF=TIGHT 6D 10F GFINPUT PUNCH=MO
CardFlag =    T
Normal Mode flag =    F
Selecting orbitals
from     1  to     5  number already selected     0
Number of orbitals selected is     5
Highest orbital read in is =    5
Time Now =         0.0499  Delta time =         0.0499 End g03cnv

Atoms found    5  Coordinates in Angstroms
Z =  6 ZS =  6 r =   0.0000000000   0.0000000000   0.0000000000
Z =  1 ZS =  1 r =   0.6254700000   0.6254700000   0.6254700000
Z =  1 ZS =  1 r =  -0.6254700000  -0.6254700000   0.6254700000
Z =  1 ZS =  1 r =   0.6254700000  -0.6254700000  -0.6254700000
Z =  1 ZS =  1 r =  -0.6254700000   0.6254700000  -0.6254700000
Maximum distance from expansion center is    1.0833458186

+ Command GetBlms
+

----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------

Found point group  Td
Reduce angular grid using nthd =  1  nphid =  4
Found point group for abelian subgroup D2
Time Now =         0.0675  Delta time =         0.0176 End GetPGroup
List of unique axes
  N  Vector                      Z   R
  1  0.00000  0.00000  1.00000
  2  0.57735  0.57735  0.57735   1  1.08335
  3 -0.57735 -0.57735  0.57735   1  1.08335
  4  0.57735 -0.57735 -0.57735   1  1.08335
  5 -0.57735  0.57735 -0.57735   1  1.08335
List of corresponding x axes
  N  Vector
  1  1.00000  0.00000  0.00000
  2  0.81650 -0.40825 -0.40825
  3  0.81650 -0.40825  0.40825
  4  0.81650  0.40825  0.40825
  5  0.81650  0.40825 -0.40825
Computed default value of LMaxA =   13
Determining angular grid in GetAxMax  LMax =   15  LMaxA =   13  LMaxAb =   30
MMax =    3  MMaxAbFlag =    1
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11  12  13  -1  -1
For axis     2  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3
For axis     3  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3
For axis     4  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3
For axis     5  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3
On the double L grid used for products
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19
  20  21  22  23  24  25  26  27  28  29  30
For axis     2  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
For axis     3  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
For axis     4  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
For axis     5  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is Td
LMax = =   15
 The dimension of each irreducable representation is
    A1    (  1)    A2    (  1)    E     (  2)    T1    (  3)    T2    (  3)
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     8    11    14
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A1        1         1         15       1  1  1
 A2        1         2          7       1  1  1
 E         1         3         20       1  1  1
 E         2         4         20       1  1  1
 T1        1         5         27      -1 -1  1
 T1        2         6         27      -1  1 -1
 T1        3         7         27       1 -1 -1
 T2        1         8         36      -1 -1  1
 T2        2         9         36      -1  1 -1
 T2        3        10         36       1 -1 -1
Time Now =         0.3074  Delta time =         0.2399 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
A1    1    0(   1)    1(   1)    2(   1)    3(   2)    4(   3)    5(   3)    6(   4)    7(   5)    8(   6)    9(   7)
          10(   8)   11(   9)   12(  11)   13(  12)
A2    1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   1)    7(   1)    8(   1)    9(   2)
          10(   3)   11(   3)   12(   4)   13(   5)
E     1    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   3)    6(   4)    7(   5)    8(   7)    9(   8)
          10(  10)   11(  12)   12(  14)   13(  16)
E     2    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   3)    6(   4)    7(   5)    8(   7)    9(   8)
          10(  10)   11(  12)   12(  14)   13(  16)
T1    1    0(   0)    1(   0)    2(   0)    3(   1)    4(   2)    5(   3)    6(   4)    7(   6)    8(   8)    9(  10)
          10(  12)   11(  15)   12(  18)   13(  21)
T1    2    0(   0)    1(   0)    2(   0)    3(   1)    4(   2)    5(   3)    6(   4)    7(   6)    8(   8)    9(  10)
          10(  12)   11(  15)   12(  18)   13(  21)
T1    3    0(   0)    1(   0)    2(   0)    3(   1)    4(   2)    5(   3)    6(   4)    7(   6)    8(   8)    9(  10)
          10(  12)   11(  15)   12(  18)   13(  21)
T2    1    0(   0)    1(   1)    2(   2)    3(   3)    4(   4)    5(   6)    6(   8)    7(  10)    8(  12)    9(  15)
          10(  18)   11(  21)   12(  24)   13(  28)
T2    2    0(   0)    1(   1)    2(   2)    3(   3)    4(   4)    5(   6)    6(   8)    7(  10)    8(  12)    9(  15)
          10(  18)   11(  21)   12(  24)   13(  28)
T2    3    0(   0)    1(   1)    2(   2)    3(   3)    4(   4)    5(   6)    6(   8)    7(  10)    8(  12)    9(  15)
          10(  18)   11(  21)   12(  24)   13(  28)

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is D2
LMax = =   30
 The dimension of each irreducable representation is
    A     (  1)    B1    (  1)    B2    (  1)    B3    (  1)
Abelian axes
    1       1.000000       0.000000       0.000000
    2       0.000000       1.000000       0.000000
    3       0.000000       0.000000       1.000000
Symmetry operation directions
  1       0.000000       0.000000       1.000000 ang =  0  1 type = 0 axis = 3
  2       0.000000       0.000000       1.000000 ang =  1  2 type = 2 axis = 3
  3       1.000000       0.000000       0.000000 ang =  1  2 type = 2 axis = 1
  4       0.000000       1.000000       0.000000 ang =  1  2 type = 2 axis = 2
irep =    1  sym =A     1  eigs =   1   1   1   1
irep =    2  sym =B1    1  eigs =   1   1  -1  -1
irep =    3  sym =B2    1  eigs =   1  -1  -1   1
irep =    4  sym =B3    1  eigs =   1  -1   1  -1
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     2     3     4
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A         1         1        241       1  1  1
 B1        1         2        240       1 -1 -1
 B2        1         3        240      -1 -1  1
 B3        1         4        240      -1  1 -1
Time Now =         0.3259  Delta time =         0.0185 End SymGen

+ Command ExpOrb
+
In GetRMax, RMaxEps =  0.10000000E-05  RMax =   12.5498886709 Angs

----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------

Maximum R in the grid (RMax) =    12.54989 Angs
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) =   10.0
In regions controlled by the wave length (HFacWave) =   10.0
Factor used to control the minimum exponent at each center (MinExpFac) =  300.0
Maximum asymptotic kinetic energy (EMAx) =  50.00000 eV
Maximum step size (MaxStep) =  12.54989 Angs
Factor to increase grid by (GridFac) =     1

    1  Center at =     0.00000 Angs  Alpha Max = 0.33980E+05
    2  Center at =     1.08335 Angs  Alpha Max = 0.30000E+03

Generated Grid

  irg  nin  ntot      step Angs     R end Angs
    1    8     8    0.28707E-03     0.00230
    2    8    16    0.30604E-03     0.00474
    3    8    24    0.37726E-03     0.00776
    4    8    32    0.57239E-03     0.01234
    5    8    40    0.91002E-03     0.01962
    6    8    48    0.14468E-02     0.03120
    7    8    56    0.23002E-02     0.04960
    8    8    64    0.36571E-02     0.07886
    9    8    72    0.58142E-02     0.12537
   10    8    80    0.92438E-02     0.19932
   11    8    88    0.11380E-01     0.29036
   12    8    96    0.12337E-01     0.38905
   13    8   104    0.11857E-01     0.48391
   14    8   112    0.11284E-01     0.57418
   15    8   120    0.11908E-01     0.66944
   16    8   128    0.13884E-01     0.78051
   17    8   136    0.13776E-01     0.89072
   18    8   144    0.87733E-02     0.96090
   19    8   152    0.55766E-02     1.00552
   20    8   160    0.38388E-02     1.03623
   21    8   168    0.32048E-02     1.06187
   22    8   176    0.26851E-02     1.08335
   23    8   184    0.30552E-02     1.10779
   24    8   192    0.32571E-02     1.13384
   25    8   200    0.40150E-02     1.16596
   26    8   208    0.60918E-02     1.21470
   27    8   216    0.96851E-02     1.29218
   28    8   224    0.15398E-01     1.41536
   29    8   232    0.24481E-01     1.61121
   30    8   240    0.33415E-01     1.87853
   31    8   248    0.38959E-01     2.19021
   32    8   256    0.46359E-01     2.56107
   33    8   264    0.58081E-01     3.02572
   34    8   272    0.61727E-01     3.51954
   35    8   280    0.64635E-01     4.03662
   36    8   288    0.66998E-01     4.57261
   37    8   296    0.68947E-01     5.12418
   38    8   304    0.70575E-01     5.68878
   39    8   312    0.71953E-01     6.26441
   40    8   320    0.73130E-01     6.84945
   41    8   328    0.74146E-01     7.44262
   42    8   336    0.75030E-01     8.04286
   43    8   344    0.75805E-01     8.64930
   44    8   352    0.76489E-01     9.26121
   45    8   360    0.77097E-01     9.87799
   46    8   368    0.77640E-01    10.49911
   47    8   376    0.78128E-01    11.12414
   48    8   384    0.78569E-01    11.75269
   49    8   392    0.78969E-01    12.38444
   50    8   400    0.20681E-01    12.54989
Time Now =         0.3641  Delta time =         0.0382 End GenGrid

----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------

Maximum scattering l (lmax) =   15
Maximum scattering m (mmaxs) =   15
Maximum numerical integration l (lmaxi) =   30
Maximum numerical integration m (mmaxi) =   30
Maximum l to include in the asymptotic region (lmasym) =   13
Parameter used to determine the cutoff points (PCutRd) =  0.10000000E-07 au
Maximum E used to determine grid (in eV) =       50.00000
Print flag (iprnfg) =    0
lmasymtyts =   13
 Actual value of lmasym found =     13
Number of regions of the same l expansion (NAngReg) =   12
Angular regions
    1 L =    2  from (    1)         0.00029  to (    7)         0.00201
    2 L =    4  from (    8)         0.00230  to (   15)         0.00444
    3 L =    5  from (   16)         0.00474  to (   31)         0.01177
    4 L =    6  from (   32)         0.01234  to (   47)         0.02975
    5 L =    7  from (   48)         0.03120  to (   55)         0.04730
    6 L =    8  from (   56)         0.04960  to (   63)         0.07520
    7 L =    9  from (   64)         0.07886  to (   71)         0.11955
    8 L =   11  from (   72)         0.12537  to (   79)         0.19008
    9 L =   12  from (   80)         0.19932  to (   87)         0.27898
   10 L =   13  from (   88)         0.29036  to (  119)         0.65753
   11 L =   15  from (  120)         0.66944  to (  240)         1.87853
   12 L =   13  from (  241)         1.91749  to (  400)        12.54989
There are     2 angular regions for computing spherical harmonics
    1 lval =   13
    2 lval =   15
Last grid points by processor WorkExp =     1.500
Proc id =   -1  Last grid point =       1
Proc id =    0  Last grid point =      80
Proc id =    1  Last grid point =     104
Proc id =    2  Last grid point =     128
Proc id =    3  Last grid point =     144
Proc id =    4  Last grid point =     168
Proc id =    5  Last grid point =     184
Proc id =    6  Last grid point =     200
Proc id =    7  Last grid point =     224
Proc id =    8  Last grid point =     240
Proc id =    9  Last grid point =     264
Proc id =   10  Last grid point =     288
Proc id =   11  Last grid point =     312
Proc id =   12  Last grid point =     336
Proc id =   13  Last grid point =     360
Proc id =   14  Last grid point =     384
Proc id =   15  Last grid point =     400
Time Now =         0.3734  Delta time =         0.0093 End AngGCt

----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------


 R of maximum density
     1  A1    1 at max irg =    8  r =   0.07886
     2  A1    1 at max irg =   16  r =   0.78051
     3  T2    1 at max irg =   19  r =   1.00552
     4  T2    2 at max irg =   19  r =   1.00552
     5  T2    3 at max irg =   19  r =   1.00552

Rotation coefficients for orbital     1  grp =    1 A1    1
     1  1.0000000000

Rotation coefficients for orbital     2  grp =    2 A1    1
     2  1.0000000000

Rotation coefficients for orbital     3  grp =    3 T2    1
     3  0.0000000000    4  1.0000000000    5  0.0000000000

Rotation coefficients for orbital     4  grp =    3 T2    2
     3  1.0000000000    4  0.0000000000    5  0.0000000000

Rotation coefficients for orbital     5  grp =    3 T2    3
     3  0.0000000000    4  0.0000000000    5  1.0000000000
Number of orbital groups and degeneracis are         3
  1  1  3
Number of orbital groups and number of electrons when fully occupied
         3
  2  2  6
Time Now =         0.7798  Delta time =         0.4064 End RotOrb

----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------

 First orbital group to expand (mofr) =    1
 Last orbital group to expand (moto) =    3
Orbital     1 of  A1    1 symmetry normalization integral =  0.99999999
Orbital     2 of  A1    1 symmetry normalization integral =  0.99997860
Orbital     3 of  T2    1 symmetry normalization integral =  0.99997267
Time Now =         1.4094  Delta time =         0.6296 End ExpOrb

+ Command FileName
+ 'MatrixElements' 'test15T2T1.idy' 'REWIND'
Opening file test15T2T1.idy at position REWIND
+ Data Record ScatSym - 'T2'
+ Data Record ScatContSym - 'T1'

+ Command GenFormPhIon
+

----------------------------------------------------------------------
SymProd - Construct products of symmetry types
----------------------------------------------------------------------

Number of sets of degenerate orbitals =    3
Set    1  has degeneracy     1
Orbital     1  is num     1  type =   1  name - A1    1
Set    2  has degeneracy     1
Orbital     1  is num     2  type =   1  name - A1    1
Set    3  has degeneracy     3
Orbital     1  is num     3  type =   8  name - T2    1
Orbital     2  is num     4  type =   9  name - T2    2
Orbital     3  is num     5  type =  10  name - T2    3
Orbital occupations by degenerate group
    1  A1       occ = 2
    2  A1       occ = 2
    3  T2       occ = 5
The dimension of each irreducable representation is
    A1    (  1)    A2    (  1)    E     (  2)    T1    (  3)    T2    (  3)
Symmetry of the continuum orbital is T1
Symmetry of the total state is T2
Spin degeneracy of the total state is =    1
Symmetry of the target state is T2
Spin degeneracy of the target state is =    2
Symmetry of the initial state is A1
Spin degeneracy of the initial state is =    1
Orbital occupations of initial state by degenerate group
    1  A1       occ = 2
    2  A1       occ = 2
    3  T2       occ = 6
Open shell symmetry types
    1  T2     iele =    5
Use only configuration of type T2
MS2 =    1  SDGN =    2
NumAlpha =    3
List of determinants found
    1:   1.00000   0.00000    1    2    3    4    5
    2:   1.00000   0.00000    1    2    3    4    6
    3:   1.00000   0.00000    1    2    3    5    6
Spin adapted configurations
Configuration    1
    1:   1.00000   0.00000    1    2    3    4    5
Configuration    2
    1:   1.00000   0.00000    1    2    3    4    6
Configuration    3
    1:   1.00000   0.00000    1    2    3    5    6
 Each irreducable representation is present the number of times indicated
    T2    (  1)

 representation T2     component     1  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1    2    3    5    6

 representation T2     component     2  fun    1
Symmeterized Function
    1:  -1.00000   0.00000    1    2    3    4    6

 representation T2     component     3  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1    2    3    4    5
Open shell symmetry types
    1  T2     iele =    5
    2  T1     iele =    1
Use only configuration of type T2
 Each irreducable representation is present the number of times indicated
    A2    (  1)
    E     (  1)
    T1    (  1)
    T2    (  1)

 representation T2     component     1  fun    1
Symmeterized Function from AddNewShell
    1:  -0.50000   0.00000    1    2    3    4    5   11
    2:   0.50000   0.00000    1    2    3    4    6   12
    3:   0.50000   0.00000    1    2    4    5    6    8
    4:  -0.50000   0.00000    1    3    4    5    6    9

 representation T2     component     2  fun    1
Symmeterized Function from AddNewShell
    1:  -0.50000   0.00000    1    2    3    4    5   10
    2:   0.50000   0.00000    1    2    3    5    6   12
    3:   0.50000   0.00000    1    2    4    5    6    7
    4:  -0.50000   0.00000    2    3    4    5    6    9

 representation T2     component     3  fun    1
Symmeterized Function from AddNewShell
    1:  -0.50000   0.00000    1    2    3    4    6   10
    2:   0.50000   0.00000    1    2    3    5    6   11
    3:   0.50000   0.00000    1    3    4    5    6    7
    4:  -0.50000   0.00000    2    3    4    5    6    8
Open shell symmetry types
    1  T2     iele =    5
Use only configuration of type T2
MS2 =    1  SDGN =    2
NumAlpha =    3
List of determinants found
    1:   1.00000   0.00000    1    2    3    4    5
    2:   1.00000   0.00000    1    2    3    4    6
    3:   1.00000   0.00000    1    2    3    5    6
Spin adapted configurations
Configuration    1
    1:   1.00000   0.00000    1    2    3    4    5
Configuration    2
    1:   1.00000   0.00000    1    2    3    4    6
Configuration    3
    1:   1.00000   0.00000    1    2    3    5    6
 Each irreducable representation is present the number of times indicated
    T2    (  1)

 representation T2     component     1  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1    2    3    5    6

 representation T2     component     2  fun    1
Symmeterized Function
    1:  -1.00000   0.00000    1    2    3    4    6

 representation T2     component     3  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1    2    3    4    5
Direct product basis set
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    9   10   14
    2:   0.70711   0.00000    1    2    3    4    6    7    8    9   10   11
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    9   10   15
    2:   0.70711   0.00000    1    2    3    4    6    7    8    9   10   12
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    9   10   16
    2:   0.70711   0.00000    1    2    3    4    6    7    8    9   10   13
Direct product basis function
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   14
    2:  -0.70711   0.00000    1    2    3    4    5    7    8    9   10   11
Direct product basis function
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   15
    2:  -0.70711   0.00000    1    2    3    4    5    7    8    9   10   12
Direct product basis function
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   16
    2:  -0.70711   0.00000    1    2    3    4    5    7    8    9   10   13
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   14
    2:   0.70711   0.00000    1    2    3    4    5    6    8    9   10   11
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   15
    2:   0.70711   0.00000    1    2    3    4    5    6    8    9   10   12
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   16
    2:   0.70711   0.00000    1    2    3    4    5    6    8    9   10   13
Closed shell target
Time Now =         1.4155  Delta time =         0.0061 End SymProd

----------------------------------------------------------------------
MatEle - Program to compute Matrix Elements over Determinants
----------------------------------------------------------------------

Configuration     1
    1:  -0.50000   0.00000    1    2    3    4    5    6    7    8    9   15
    2:   0.50000   0.00000    1    2    3    4    5    6    7    8   10   16
    3:   0.50000   0.00000    1    2    3    4    5    6    8    9   10   12
    4:  -0.50000   0.00000    1    2    3    4    5    7    8    9   10   13
Configuration     2
    1:  -0.50000   0.00000    1    2    3    4    5    6    7    8    9   14
    2:   0.50000   0.00000    1    2    3    4    5    6    7    9   10   16
    3:   0.50000   0.00000    1    2    3    4    5    6    8    9   10   11
    4:  -0.50000   0.00000    1    2    3    4    6    7    8    9   10   13
Configuration     3
    1:  -0.50000   0.00000    1    2    3    4    5    6    7    8   10   14
    2:   0.50000   0.00000    1    2    3    4    5    6    7    9   10   15
    3:   0.50000   0.00000    1    2    3    4    5    7    8    9   10   11
    4:  -0.50000   0.00000    1    2    3    4    6    7    8    9   10   12
Direct product Configuration Cont sym =    1  Targ sym =    1
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    9   10   14
    2:   0.70711   0.00000    1    2    3    4    6    7    8    9   10   11
Direct product Configuration Cont sym =    2  Targ sym =    1
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    9   10   15
    2:   0.70711   0.00000    1    2    3    4    6    7    8    9   10   12
Direct product Configuration Cont sym =    3  Targ sym =    1
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    9   10   16
    2:   0.70711   0.00000    1    2    3    4    6    7    8    9   10   13
Direct product Configuration Cont sym =    1  Targ sym =    2
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   14
    2:  -0.70711   0.00000    1    2    3    4    5    7    8    9   10   11
Direct product Configuration Cont sym =    2  Targ sym =    2
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   15
    2:  -0.70711   0.00000    1    2    3    4    5    7    8    9   10   12
Direct product Configuration Cont sym =    3  Targ sym =    2
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   16
    2:  -0.70711   0.00000    1    2    3    4    5    7    8    9   10   13
Direct product Configuration Cont sym =    1  Targ sym =    3
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   14
    2:   0.70711   0.00000    1    2    3    4    5    6    8    9   10   11
Direct product Configuration Cont sym =    2  Targ sym =    3
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   15
    2:   0.70711   0.00000    1    2    3    4    5    6    8    9   10   12
Direct product Configuration Cont sym =    3  Targ sym =    3
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   16
    2:   0.70711   0.00000    1    2    3    4    5    6    8    9   10   13
Overlap of Direct Product expansion and Symmeterized states
Symmetry of Continuum =    4
Symmetry of target =    5
Symmetry of total states =    5

Total symmetry component =    1

Cont      Target Component
Comp        1               2               3
   1   0.00000000E+00  0.00000000E+00  0.00000000E+00
   2   0.00000000E+00  0.00000000E+00  0.70710678E+00
   3   0.00000000E+00  0.70710678E+00  0.00000000E+00

Total symmetry component =    2

Cont      Target Component
Comp        1               2               3
   1   0.00000000E+00  0.00000000E+00  0.70710678E+00
   2   0.00000000E+00  0.00000000E+00  0.00000000E+00
   3  -0.70710678E+00  0.00000000E+00  0.00000000E+00

Total symmetry component =    3

Cont      Target Component
Comp        1               2               3
   1   0.00000000E+00 -0.70710678E+00  0.00000000E+00
   2  -0.70710678E+00  0.00000000E+00  0.00000000E+00
   3   0.00000000E+00  0.00000000E+00  0.00000000E+00
Initial State Configuration
    1:   1.00000   0.00000    1    2    3    4    5    6    7    8    9   10
One electron matrix elements between initial and final states
    1:   -1.000000000    0.000000000  <    6|   13>
    2:   -1.000000000    0.000000000  <    7|   12>

Reduced formula list
    3    3    2 -0.1000000000E+01
    2    3    3 -0.1000000000E+01
Time Now =         1.4159  Delta time =         0.0004 End MatEle

+ Command DipoleOp
+

----------------------------------------------------------------------
DipoleOp - Dipole Operator Program
----------------------------------------------------------------------

Number of orbitals in formula for the dipole operator (NOrbSel) =    2
Symmetry of the continuum orbital (iContSym) =     4 or T1
Symmetry of total final state (iTotalSym) =     5 or T2
Symmetry of the initial state (iInitSym) =     1 or A1
Symmetry of the ionized target state (iTargSym) =     5 or T2
List of unique symmetry types
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
Unique dipole matrix type     1 Dipole symmetry type =T2
     Final state symmetry type = T2     Target sym =T2
     Continuum type =A1
In the product of the symmetry types T2    A2
 Each irreducable representation is present the number of times indicated
    T1    (  1)
In the product of the symmetry types T2    E
 Each irreducable representation is present the number of times indicated
    T1    (  1)
    T2    (  1)
Unique dipole matrix type     2 Dipole symmetry type =T2
     Final state symmetry type = T2     Target sym =T2
     Continuum type =E
In the product of the symmetry types T2    T1
 Each irreducable representation is present the number of times indicated
    A2    (  1)
    E     (  1)
    T1    (  1)
    T2    (  1)
Unique dipole matrix type     3 Dipole symmetry type =T2
     Final state symmetry type = T2     Target sym =T2
     Continuum type =T1
In the product of the symmetry types T2    T2
 Each irreducable representation is present the number of times indicated
    A1    (  1)
    E     (  1)
    T1    (  1)
    T2    (  1)
Unique dipole matrix type     4 Dipole symmetry type =T2
     Final state symmetry type = T2     Target sym =T2
     Continuum type =T2
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
Irreducible representation containing the dipole operator is T2
Number of different dipole operators in this representation is     1
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
Vector of the total symmetry
ie =    1  ij =    1
    1 (  0.10000000E+01,  0.00000000E+00)
    2 (  0.00000000E+00,  0.00000000E+00)
    3 (  0.00000000E+00,  0.00000000E+00)
Vector of the total symmetry
ie =    2  ij =    1
    1 (  0.00000000E+00,  0.00000000E+00)
    2 (  0.10000000E+01,  0.00000000E+00)
    3 (  0.00000000E+00,  0.00000000E+00)
Vector of the total symmetry
ie =    3  ij =    1
    1 (  0.00000000E+00,  0.00000000E+00)
    2 (  0.00000000E+00,  0.00000000E+00)
    3 (  0.10000000E+01,  0.00000000E+00)
Component Dipole Op Sym =  1 goes to Total Sym component   1 phase = 1.0
Component Dipole Op Sym =  2 goes to Total Sym component   2 phase = 1.0
Component Dipole Op Sym =  3 goes to Total Sym component   3 phase = 1.0

Dipole operator types by symmetry components (x=1, y=2, z=3)
sym comp =  1
  coefficients =  0.00000000  1.00000000  0.00000000
sym comp =  2
  coefficients =  1.00000000  0.00000000  0.00000000
sym comp =  3
  coefficients =  0.00000000  0.00000000  1.00000000

Formula for dipole operator

Dipole operator sym comp 1  index =    1
  1  Cont comp  3  Orb  4  Coef =  -1.0000000000
  2  Cont comp  2  Orb  5  Coef =  -1.0000000000
Symmetry type to write out (SymTyp) =T1
Time Now =        29.0755  Delta time =        27.6596 End DipoleOp

+ Command GetPot
+

----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------

Total density =      9.00000000
Time Now =        29.0810  Delta time =         0.0054 End Den

----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------

 vasymp =  0.90000000E+01 facnorm =  0.10000000E+01
Time Now =        29.0999  Delta time =         0.0190 Electronic part
Time Now =        29.1014  Delta time =         0.0014 End StPot

+ Command PhIon
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.10000000E+00 eV (  0.36749326E-02 AU)
Time Now =        29.1191  Delta time =         0.0178 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = T1    1
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =      T
Maximum l for computed scattering solutions (LMaxK) =   11
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    50
Number of partial waves (np) =    27
Number of asymptotic solutions on the right (NAsymR) =    15
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   13
Number of partial waves in the asymptotic region (npasym) =   21
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =   10
Maximum number of asymptotic partial waves =  183
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =   11
Highest l used at large r (lpasym) =   13
Higest l used in the asymptotic potential (lpzb) =   26
Maximum L used in the homogeneous solution (LMaxHomo) =   13
Number of partial waves in the homogeneous solution (npHomo) =   21
Time Now =        29.1256  Delta time =         0.0065 Energy independent setup

Compute solution for E =    0.1000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.83266727E-16
 i =  2  lval =   3  stpote =  0.67637547E-19
 i =  3  lval =   3  stpote =  0.15768643E-18
 i =  4  lval =   4  stpote = -0.29206878E-04
For potential     2
 i =  1  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.18436994E-16
 i =  2  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.18267832E-16
 i =  3  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.18107865E-16
 i =  4  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.17963371E-16
For potential     3
For potential     4
 i =  1  lval =   4  stpote =  0.49824728E-01
 i =  2  lval =   3  stpote = -0.40034376E-04
 i =  3  lval =   3  stpote = -0.23113857E-04
 i =  4  lval =   4  stpote =  0.44848819E-05
For potential     5
 i =  1  lval =   4  stpote =  0.49824728E-01
 i =  2  lval =   3  stpote =  0.40034376E-04
 i =  3  lval =   3  stpote = -0.23113857E-04
 i =  4  lval =   4  stpote =  0.44848819E-05
For potential     6
 i =  1  lval =   2  stpote = -0.10455010E-02
 i =  2  lval =   3  stpote = -0.11169353E-03
 i =  3  lval =   4  stpote = -0.25000191E-05
 i =  4  lval =   4  stpote = -0.32275107E-05
For potential     7
 i =  1  lval =   4  stpote = -0.74737092E-01
 i =  2  lval =   3  stpote = -0.60051563E-04
 i =  3  lval =   3  stpote =  0.34670786E-04
 i =  4  lval =   4  stpote = -0.67273229E-05
For potential     8
 i =  1  lval =   4  stpote =  0.49824728E-01
 i =  2  lval =   3  stpote =  0.17979165E-20
 i =  3  lval =   3  stpote =  0.46227715E-04
 i =  4  lval =   4  stpote =  0.44848819E-05
For potential     9
 i =  1  lval =   4  stpote = -0.74737092E-01
 i =  2  lval =   3  stpote = -0.26968748E-20
 i =  3  lval =   3  stpote = -0.69341572E-04
 i =  4  lval =   4  stpote = -0.67273229E-05
For potential    10
 i =  1  lval =   2  stpote = -0.10455010E-02
 i =  2  lval =   3  stpote = -0.11169353E-03
 i =  3  lval =   4  stpote = -0.25000191E-05
 i =  4  lval =   4  stpote = -0.32275107E-05
Number of asymptotic regions =      75
Final point in integration =   0.11284440E+04 Angstroms
Last asymptotic region is special region for dipole potential
Time Now =        47.3624  Delta time =        18.2367 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.30057480E+00,-0.15823263E-01) ( 0.40207404E-02,-0.47626068E-02)
  ( 0.32150247E-03, 0.53909493E-05) ( 0.80992255E-05, 0.24965689E-05)
  (-0.55973629E-06, 0.84834425E-08) (-0.45591272E-06, 0.69468031E-07)
  ( 0.41608287E-08, 0.34961599E-08) (-0.39168117E-08,-0.74599663E-08)
  (-0.89937700E-10,-0.47605965E-10) ( 0.90521015E-09,-0.56028387E-10)
  ( 0.99742302E-11, 0.47341392E-12) ( 0.69686505E-11,-0.85547696E-11)
  ( 0.61667030E-13,-0.10138997E-14) ( 0.37886228E-13, 0.27646082E-14)
  (-0.18827831E-13,-0.12467184E-12)
     ROW  2
  ( 0.13901346E+00,-0.73166070E-02) ( 0.17622755E-02,-0.22014356E-02)
  ( 0.14734442E-03, 0.90810646E-06) (-0.51870086E-05, 0.12053564E-05)
  (-0.74268434E-07, 0.97104345E-08) (-0.32884718E-07,-0.68896697E-07)
  (-0.85039953E-09, 0.51511469E-09) (-0.12020016E-08,-0.72191657E-09)
  (-0.42147874E-10,-0.13576826E-10) ( 0.22470678E-09, 0.17778032E-11)
  ( 0.28345901E-11, 0.29509690E-12) ( 0.22050125E-11,-0.21163391E-11)
  ( 0.18677714E-13, 0.14055870E-14) ( 0.96915905E-14, 0.34539994E-14)
  (-0.32923945E-15,-0.35763015E-13)
MaxIter =   5 c.s. =      0.11002079 rmsk=     0.00000000
Time Now =        53.5180  Delta time =         6.1557 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.58000000E+01 eV (  0.21314609E+00 AU)
Time Now =        53.5348  Delta time =         0.0168 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = T1    1
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =      T
Maximum l for computed scattering solutions (LMaxK) =   11
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    50
Number of partial waves (np) =    27
Number of asymptotic solutions on the right (NAsymR) =    15
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   13
Number of partial waves in the asymptotic region (npasym) =   21
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =   10
Maximum number of asymptotic partial waves =  183
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =   11
Highest l used at large r (lpasym) =   13
Higest l used in the asymptotic potential (lpzb) =   26
Maximum L used in the homogeneous solution (LMaxHomo) =   13
Number of partial waves in the homogeneous solution (npHomo) =   21
Time Now =        53.5411  Delta time =         0.0063 Energy independent setup

Compute solution for E =    5.8000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.83266727E-16
 i =  2  lval =   3  stpote =  0.67637547E-19
 i =  3  lval =   3  stpote =  0.15768643E-18
 i =  4  lval =   4  stpote = -0.29206878E-04
For potential     2
 i =  1  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.12172836E-16
 i =  2  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.12045935E-16
 i =  3  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.11925986E-16
 i =  4  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.11817746E-16
For potential     3
For potential     4
 i =  1  lval =   4  stpote =  0.49824728E-01
 i =  2  lval =   3  stpote = -0.40034376E-04
 i =  3  lval =   3  stpote = -0.23113857E-04
 i =  4  lval =   4  stpote =  0.44848819E-05
For potential     5
 i =  1  lval =   4  stpote =  0.49824728E-01
 i =  2  lval =   3  stpote =  0.40034376E-04
 i =  3  lval =   3  stpote = -0.23113857E-04
 i =  4  lval =   4  stpote =  0.44848819E-05
For potential     6
 i =  1  lval =   2  stpote = -0.10455010E-02
 i =  2  lval =   3  stpote = -0.11169353E-03
 i =  3  lval =   4  stpote = -0.25000191E-05
 i =  4  lval =   4  stpote = -0.32275107E-05
For potential     7
 i =  1  lval =   4  stpote = -0.74737092E-01
 i =  2  lval =   3  stpote = -0.60051563E-04
 i =  3  lval =   3  stpote =  0.34670786E-04
 i =  4  lval =   4  stpote = -0.67273229E-05
For potential     8
 i =  1  lval =   4  stpote =  0.49824728E-01
 i =  2  lval =   3  stpote =  0.17979165E-20
 i =  3  lval =   3  stpote =  0.46227715E-04
 i =  4  lval =   4  stpote =  0.44848819E-05
For potential     9
 i =  1  lval =   4  stpote = -0.74737092E-01
 i =  2  lval =   3  stpote = -0.26968748E-20
 i =  3  lval =   3  stpote = -0.69341572E-04
 i =  4  lval =   4  stpote = -0.67273229E-05
For potential    10
 i =  1  lval =   2  stpote = -0.10455010E-02
 i =  2  lval =   3  stpote = -0.11169353E-03
 i =  3  lval =   4  stpote = -0.25000191E-05
 i =  4  lval =   4  stpote = -0.32275107E-05
Number of asymptotic regions =     193
Final point in integration =   0.40135444E+03 Angstroms
Last asymptotic region is special region for dipole potential
Time Now =        94.3694  Delta time =        40.8283 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.53801392E+00,-0.56413573E-01) ( 0.62934940E-01,-0.30351050E-01)
  ( 0.14348173E-02, 0.13706759E-02) (-0.94828207E-03, 0.69437200E-03)
  (-0.40249736E-04,-0.26835868E-04) ( 0.22223616E-04,-0.85349127E-04)
  (-0.10584147E-05,-0.12000185E-05) ( 0.56191917E-06, 0.11508682E-05)
  (-0.49172822E-06,-0.88734092E-07) ( 0.30105042E-05, 0.48378461E-06)
  ( 0.19384943E-06, 0.14688212E-07) ( 0.31653110E-06,-0.12189277E-07)
  ( 0.56234813E-08, 0.50021994E-09) (-0.62455219E-08, 0.21469458E-08)
  ( 0.12703949E-07,-0.31813783E-08)
     ROW  2
  ( 0.33819797E+00,-0.35517154E-01) ( 0.40570867E-01,-0.19095869E-01)
  ( 0.10162300E-02, 0.89522333E-03) (-0.10397987E-02, 0.44657483E-03)
  ( 0.17113363E-04,-0.17285755E-04) ( 0.73185799E-04,-0.64375628E-04)
  (-0.51326891E-06,-0.14514031E-05) (-0.16701802E-05, 0.19151087E-05)
  (-0.12866976E-06,-0.92339891E-07) ( 0.58233778E-06, 0.42067775E-06)
  ( 0.48515653E-07, 0.15838080E-07) ( 0.92227528E-07, 0.24073282E-07)
  ( 0.14555371E-08, 0.43530922E-09) (-0.23387990E-08, 0.36905134E-09)
  ( 0.47995070E-08,-0.10228578E-10)
MaxIter =   5 c.s. =      0.41518190 rmsk=     0.00000000
Time Now =       100.6889  Delta time =         6.3195 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.15800000E+02 eV (  0.58063935E+00 AU)
Time Now =       100.7057  Delta time =         0.0169 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = T1    1
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =      T
Maximum l for computed scattering solutions (LMaxK) =   11
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    50
Number of partial waves (np) =    27
Number of asymptotic solutions on the right (NAsymR) =    15
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   13
Number of partial waves in the asymptotic region (npasym) =   21
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =   10
Maximum number of asymptotic partial waves =  183
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =   11
Highest l used at large r (lpasym) =   13
Higest l used in the asymptotic potential (lpzb) =   26
Maximum L used in the homogeneous solution (LMaxHomo) =   13
Number of partial waves in the homogeneous solution (npHomo) =   21
Time Now =       100.7120  Delta time =         0.0063 Energy independent setup

Compute solution for E =   15.8000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.83266727E-16
 i =  2  lval =   3  stpote =  0.67637547E-19
 i =  3  lval =   3  stpote =  0.15768643E-18
 i =  4  lval =   4  stpote = -0.29206878E-04
For potential     2
 i =  1  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.10841077E-16
 i =  2  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.10672925E-16
 i =  3  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.10514985E-16
 i =  4  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.10373231E-16
For potential     3
For potential     4
 i =  1  lval =   4  stpote =  0.49824728E-01
 i =  2  lval =   3  stpote = -0.40034376E-04
 i =  3  lval =   3  stpote = -0.23113857E-04
 i =  4  lval =   4  stpote =  0.44848819E-05
For potential     5
 i =  1  lval =   4  stpote =  0.49824728E-01
 i =  2  lval =   3  stpote =  0.40034376E-04
 i =  3  lval =   3  stpote = -0.23113857E-04
 i =  4  lval =   4  stpote =  0.44848819E-05
For potential     6
 i =  1  lval =   2  stpote = -0.10455010E-02
 i =  2  lval =   3  stpote = -0.11169353E-03
 i =  3  lval =   4  stpote = -0.25000191E-05
 i =  4  lval =   4  stpote = -0.32275107E-05
For potential     7
 i =  1  lval =   4  stpote = -0.74737092E-01
 i =  2  lval =   3  stpote = -0.60051563E-04
 i =  3  lval =   3  stpote =  0.34670786E-04
 i =  4  lval =   4  stpote = -0.67273229E-05
For potential     8
 i =  1  lval =   4  stpote =  0.49824728E-01
 i =  2  lval =   3  stpote =  0.17979165E-20
 i =  3  lval =   3  stpote =  0.46227715E-04
 i =  4  lval =   4  stpote =  0.44848819E-05
For potential     9
 i =  1  lval =   4  stpote = -0.74737092E-01
 i =  2  lval =   3  stpote = -0.26968748E-20
 i =  3  lval =   3  stpote = -0.69341572E-04
 i =  4  lval =   4  stpote = -0.67273229E-05
For potential    10
 i =  1  lval =   2  stpote = -0.10455010E-02
 i =  2  lval =   3  stpote = -0.11169353E-03
 i =  3  lval =   4  stpote = -0.25000191E-05
 i =  4  lval =   4  stpote = -0.32275107E-05
Number of asymptotic regions =     244
Final point in integration =   0.31112956E+03 Angstroms
Last asymptotic region is special region for dipole potential
Time Now =       153.3535  Delta time =        52.6415 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.46429548E+00,-0.97638641E-01) ( 0.90542233E-01,-0.41727537E-01)
  ( 0.22270469E-02, 0.19230023E-02) (-0.69739125E-02, 0.27908345E-02)
  ( 0.10162350E-03,-0.16197982E-03) ( 0.91111875E-03,-0.59002154E-03)
  (-0.22360360E-05,-0.22136801E-04) (-0.43355743E-04, 0.27885826E-04)
  (-0.56738639E-05,-0.23339769E-05) ( 0.27430173E-04, 0.96347830E-05)
  ( 0.35952948E-05, 0.54435830E-06) ( 0.61112077E-05, 0.86549894E-06)
  ( 0.17468640E-06, 0.23044166E-07) (-0.27072638E-06, 0.23315908E-07)
  ( 0.49681264E-06,-0.81833196E-08)
     ROW  2
  ( 0.43604083E+00,-0.92078303E-01) ( 0.89685876E-01,-0.39390477E-01)
  ( 0.22220685E-02, 0.19981410E-02) (-0.69823592E-02, 0.26527321E-02)
  ( 0.31873946E-03,-0.15368335E-03) ( 0.95113716E-03,-0.57449325E-03)
  ( 0.24236122E-05,-0.20338831E-04) (-0.41295430E-04, 0.32482695E-04)
  (-0.95194353E-06,-0.20897618E-05) ( 0.17531079E-05, 0.96601041E-05)
  ( 0.80727493E-06, 0.56230666E-06) ( 0.20762330E-05, 0.12876298E-05)
  ( 0.42893723E-07, 0.21115055E-07) (-0.11512234E-06,-0.77346214E-08)
  ( 0.24989770E-06, 0.51760741E-07)
MaxIter =   5 c.s. =      0.44338025 rmsk=     0.00000000
Time Now =       159.7461  Delta time =         6.3926 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.25800000E+02 eV (  0.94813261E+00 AU)
Time Now =       159.7629  Delta time =         0.0168 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = T1    1
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =      T
Maximum l for computed scattering solutions (LMaxK) =   11
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    50
Number of partial waves (np) =    27
Number of asymptotic solutions on the right (NAsymR) =    15
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   13
Number of partial waves in the asymptotic region (npasym) =   21
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =   10
Maximum number of asymptotic partial waves =  183
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =   11
Highest l used at large r (lpasym) =   13
Higest l used in the asymptotic potential (lpzb) =   26
Maximum L used in the homogeneous solution (LMaxHomo) =   13
Number of partial waves in the homogeneous solution (npHomo) =   21
Time Now =       159.7691  Delta time =         0.0062 Energy independent setup

Compute solution for E =   25.8000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.83266727E-16
 i =  2  lval =   3  stpote =  0.67637547E-19
 i =  3  lval =   3  stpote =  0.15768643E-18
 i =  4  lval =   4  stpote = -0.29206878E-04
For potential     2
 i =  1  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.53720238E-17
 i =  2  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.53801648E-17
 i =  3  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.53884798E-17
 i =  4  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.53964813E-17
For potential     3
For potential     4
 i =  1  lval =   4  stpote =  0.49824728E-01
 i =  2  lval =   3  stpote = -0.40034376E-04
 i =  3  lval =   3  stpote = -0.23113857E-04
 i =  4  lval =   4  stpote =  0.44848819E-05
For potential     5
 i =  1  lval =   4  stpote =  0.49824728E-01
 i =  2  lval =   3  stpote =  0.40034376E-04
 i =  3  lval =   3  stpote = -0.23113857E-04
 i =  4  lval =   4  stpote =  0.44848819E-05
For potential     6
 i =  1  lval =   2  stpote = -0.10455010E-02
 i =  2  lval =   3  stpote = -0.11169353E-03
 i =  3  lval =   4  stpote = -0.25000191E-05
 i =  4  lval =   4  stpote = -0.32275107E-05
For potential     7
 i =  1  lval =   4  stpote = -0.74737092E-01
 i =  2  lval =   3  stpote = -0.60051563E-04
 i =  3  lval =   3  stpote =  0.34670786E-04
 i =  4  lval =   4  stpote = -0.67273229E-05
For potential     8
 i =  1  lval =   4  stpote =  0.49824728E-01
 i =  2  lval =   3  stpote =  0.17979165E-20
 i =  3  lval =   3  stpote =  0.46227715E-04
 i =  4  lval =   4  stpote =  0.44848819E-05
For potential     9
 i =  1  lval =   4  stpote = -0.74737092E-01
 i =  2  lval =   3  stpote = -0.26968748E-20
 i =  3  lval =   3  stpote = -0.69341572E-04
 i =  4  lval =   4  stpote = -0.67273229E-05
For potential    10
 i =  1  lval =   2  stpote = -0.10455010E-02
 i =  2  lval =   3  stpote = -0.11169353E-03
 i =  3  lval =   4  stpote = -0.25000191E-05
 i =  4  lval =   4  stpote = -0.32275107E-05
Number of asymptotic regions =     274
Final point in integration =   0.27519774E+03 Angstroms
Last asymptotic region is special region for dipole potential
Time Now =       217.1217  Delta time =        57.3526 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.33060064E+00,-0.95996479E-01) ( 0.85170330E-01,-0.40212907E-01)
  ( 0.26325599E-02, 0.18841200E-02) (-0.12228648E-01, 0.42658657E-02)
  ( 0.53049566E-03,-0.29231380E-03) ( 0.20294399E-02,-0.11317166E-02)
  (-0.16288852E-04,-0.47795936E-04) (-0.99781528E-04, 0.76483018E-04)
  (-0.15595099E-04,-0.59643336E-05) ( 0.64715156E-04, 0.29144423E-04)
  ( 0.11244990E-04, 0.20420563E-05) ( 0.25947505E-04, 0.38853812E-05)
  ( 0.64089424E-06, 0.12522689E-06) (-0.16354345E-05, 0.14359293E-06)
  ( 0.32222201E-05, 0.56673487E-07)
     ROW  2
  ( 0.40686706E+00,-0.11882406E+00) ( 0.11151478E+00,-0.50002589E-01)
  ( 0.29297304E-02, 0.26293303E-02) (-0.14761737E-01, 0.52935988E-02)
  ( 0.10361577E-02,-0.35855391E-03) ( 0.26719102E-02,-0.14165741E-02)
  ( 0.20525692E-04,-0.60294180E-04) (-0.14762798E-03, 0.10683539E-03)
  ( 0.16709578E-05,-0.76854827E-05) (-0.22755675E-04, 0.36817687E-04)
  ( 0.33485966E-06, 0.26264716E-05) ( 0.61388854E-05, 0.68961736E-05)
  ( 0.49007718E-07, 0.12017467E-06) (-0.57826299E-06,-0.10068805E-06)
  ( 0.14433091E-05, 0.42898675E-06)
MaxIter =   5 c.s. =      0.32243476 rmsk=     0.00000000
Time Now =       223.5847  Delta time =         6.4630 End ScatStab

+ Command GetCro
+ 'test15T2T1.idy'
Taking dipole matrix from file test15T2T1.idy

----------------------------------------------------------------------
CnvIdy - read in and convert dynamical matrix elements and convert to raw form
----------------------------------------------------------------------

Time Now =       223.5917  Delta time =         0.0070 End CnvIdy
Found     4 energies :
     0.10000     5.80000    15.80000    25.80000
List of matrix element types found   Number =    1
    1  Cont Sym T1     Targ Sym T2     Total Sym T2
Keeping     4 energies :
     0.10000     5.80000    15.80000    25.80000
Time Now =       223.5918  Delta time =         0.0001 End SelIdy

----------------------------------------------------------------------
CrossSection - compute photoionization cross section
----------------------------------------------------------------------

Ionization potential (IPot) =     14.2000 eV
Label -
Cross section by partial wave      F
Cross Sections for

     Sigma LENGTH   at all energies
      Eng
    14.3000  0.24461698E+00
    20.0000  0.11230932E+01
    30.0000  0.13312122E+01
    40.0000  0.96306536E+00

     Sigma MIXED    at all energies
      Eng
    14.3000  0.21527872E+00
    20.0000  0.96088494E+00
    30.0000  0.11364089E+01
    40.0000  0.80965339E+00

     Sigma VELOCITY at all energies
      Eng
    14.3000  0.18945925E+00
    20.0000  0.82211293E+00
    30.0000  0.97021095E+00
    40.0000  0.68082842E+00

     Beta LENGTH   at all energies
      Eng
    14.3000  0.49999921E+00
    20.0000  0.49999125E+00
    30.0000  0.49997762E+00
    40.0000  0.49994791E+00

     Beta MIXED    at all energies
      Eng
    14.3000  0.49999922E+00
    20.0000  0.49999035E+00
    30.0000  0.49997422E+00
    40.0000  0.49994472E+00

     Beta VELOCITY at all energies
      Eng
    14.3000  0.49999922E+00
    20.0000  0.49998933E+00
    30.0000  0.49997030E+00
    40.0000  0.49994101E+00

          COMPOSITE CROSS SECTIONS AT ALL ENERGIES
         Energy  SIGMA LEN  SIGMA MIX  SIGMA VEL   BETA LEN   BETA MIX   BETA VEL
EPhi     14.3000     0.2446     0.2153     0.1895     0.5000     0.5000     0.5000
EPhi     20.0000     1.1231     0.9609     0.8221     0.5000     0.5000     0.5000
EPhi     30.0000     1.3312     1.1364     0.9702     0.5000     0.5000     0.5000
EPhi     40.0000     0.9631     0.8097     0.6808     0.4999     0.4999     0.4999
Time Now =       223.6463  Delta time =         0.0545 End CrossSection

+ Command FileName
+ 'MatrixElements' 'test15T2T2.idy' 'REWIND'
Opening file test15T2T2.idy at position REWIND
+ Data Record ScatSym - 'T2'
+ Data Record ScatContSym - 'T2'

+ Command GenFormPhIon
+

----------------------------------------------------------------------
SymProd - Construct products of symmetry types
----------------------------------------------------------------------

Number of sets of degenerate orbitals =    3
Set    1  has degeneracy     1
Orbital     1  is num     1  type =   1  name - A1    1
Set    2  has degeneracy     1
Orbital     1  is num     2  type =   1  name - A1    1
Set    3  has degeneracy     3
Orbital     1  is num     3  type =   8  name - T2    1
Orbital     2  is num     4  type =   9  name - T2    2
Orbital     3  is num     5  type =  10  name - T2    3
Orbital occupations by degenerate group
    1  A1       occ = 2
    2  A1       occ = 2
    3  T2       occ = 5
The dimension of each irreducable representation is
    A1    (  1)    A2    (  1)    E     (  2)    T1    (  3)    T2    (  3)
Symmetry of the continuum orbital is T2
Symmetry of the total state is T2
Spin degeneracy of the total state is =    1
Symmetry of the target state is T2
Spin degeneracy of the target state is =    2
Symmetry of the initial state is A1
Spin degeneracy of the initial state is =    1
Orbital occupations of initial state by degenerate group
    1  A1       occ = 2
    2  A1       occ = 2
    3  T2       occ = 6
Open shell symmetry types
    1  T2     iele =    5
Use only configuration of type T2
MS2 =    1  SDGN =    2
NumAlpha =    3
List of determinants found
    1:   1.00000   0.00000    1    2    3    4    5
    2:   1.00000   0.00000    1    2    3    4    6
    3:   1.00000   0.00000    1    2    3    5    6
Spin adapted configurations
Configuration    1
    1:   1.00000   0.00000    1    2    3    4    5
Configuration    2
    1:   1.00000   0.00000    1    2    3    4    6
Configuration    3
    1:   1.00000   0.00000    1    2    3    5    6
 Each irreducable representation is present the number of times indicated
    T2    (  1)

 representation T2     component     1  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1    2    3    5    6

 representation T2     component     2  fun    1
Symmeterized Function
    1:  -1.00000   0.00000    1    2    3    4    6

 representation T2     component     3  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1    2    3    4    5
Open shell symmetry types
    1  T2     iele =    5
    2  T2     iele =    1
Use only configuration of type T2
 Each irreducable representation is present the number of times indicated
    A1    (  1)
    E     (  1)
    T1    (  1)
    T2    (  1)

 representation T2     component     1  fun    1
Symmeterized Function from AddNewShell
    1:  -0.50000   0.00000    1    2    3    4    5   11
    2:   0.50000   0.00000    1    2    3    4    6   12
    3:   0.50000   0.00000    1    2    4    5    6    8
    4:  -0.50000   0.00000    1    3    4    5    6    9

 representation T2     component     2  fun    1
Symmeterized Function from AddNewShell
    1:  -0.50000   0.00000    1    2    3    4    5   10
    2:  -0.50000   0.00000    1    2    3    5    6   12
    3:   0.50000   0.00000    1    2    4    5    6    7
    4:   0.50000   0.00000    2    3    4    5    6    9

 representation T2     component     3  fun    1
Symmeterized Function from AddNewShell
    1:   0.50000   0.00000    1    2    3    4    6   10
    2:  -0.50000   0.00000    1    2    3    5    6   11
    3:  -0.50000   0.00000    1    3    4    5    6    7
    4:   0.50000   0.00000    2    3    4    5    6    8
Open shell symmetry types
    1  T2     iele =    5
Use only configuration of type T2
MS2 =    1  SDGN =    2
NumAlpha =    3
List of determinants found
    1:   1.00000   0.00000    1    2    3    4    5
    2:   1.00000   0.00000    1    2    3    4    6
    3:   1.00000   0.00000    1    2    3    5    6
Spin adapted configurations
Configuration    1
    1:   1.00000   0.00000    1    2    3    4    5
Configuration    2
    1:   1.00000   0.00000    1    2    3    4    6
Configuration    3
    1:   1.00000   0.00000    1    2    3    5    6
 Each irreducable representation is present the number of times indicated
    T2    (  1)

 representation T2     component     1  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1    2    3    5    6

 representation T2     component     2  fun    1
Symmeterized Function
    1:  -1.00000   0.00000    1    2    3    4    6

 representation T2     component     3  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1    2    3    4    5
Direct product basis set
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    9   10   14
    2:   0.70711   0.00000    1    2    3    4    6    7    8    9   10   11
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    9   10   15
    2:   0.70711   0.00000    1    2    3    4    6    7    8    9   10   12
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    9   10   16
    2:   0.70711   0.00000    1    2    3    4    6    7    8    9   10   13
Direct product basis function
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   14
    2:  -0.70711   0.00000    1    2    3    4    5    7    8    9   10   11
Direct product basis function
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   15
    2:  -0.70711   0.00000    1    2    3    4    5    7    8    9   10   12
Direct product basis function
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   16
    2:  -0.70711   0.00000    1    2    3    4    5    7    8    9   10   13
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   14
    2:   0.70711   0.00000    1    2    3    4    5    6    8    9   10   11
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   15
    2:   0.70711   0.00000    1    2    3    4    5    6    8    9   10   12
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   16
    2:   0.70711   0.00000    1    2    3    4    5    6    8    9   10   13
Closed shell target
Time Now =       223.6510  Delta time =         0.0048 End SymProd

----------------------------------------------------------------------
MatEle - Program to compute Matrix Elements over Determinants
----------------------------------------------------------------------

Configuration     1
    1:  -0.50000   0.00000    1    2    3    4    5    6    7    8    9   15
    2:   0.50000   0.00000    1    2    3    4    5    6    7    8   10   16
    3:   0.50000   0.00000    1    2    3    4    5    6    8    9   10   12
    4:  -0.50000   0.00000    1    2    3    4    5    7    8    9   10   13
Configuration     2
    1:  -0.50000   0.00000    1    2    3    4    5    6    7    8    9   14
    2:  -0.50000   0.00000    1    2    3    4    5    6    7    9   10   16
    3:   0.50000   0.00000    1    2    3    4    5    6    8    9   10   11
    4:   0.50000   0.00000    1    2    3    4    6    7    8    9   10   13
Configuration     3
    1:   0.50000   0.00000    1    2    3    4    5    6    7    8   10   14
    2:  -0.50000   0.00000    1    2    3    4    5    6    7    9   10   15
    3:  -0.50000   0.00000    1    2    3    4    5    7    8    9   10   11
    4:   0.50000   0.00000    1    2    3    4    6    7    8    9   10   12
Direct product Configuration Cont sym =    1  Targ sym =    1
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    9   10   14
    2:   0.70711   0.00000    1    2    3    4    6    7    8    9   10   11
Direct product Configuration Cont sym =    2  Targ sym =    1
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    9   10   15
    2:   0.70711   0.00000    1    2    3    4    6    7    8    9   10   12
Direct product Configuration Cont sym =    3  Targ sym =    1
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    9   10   16
    2:   0.70711   0.00000    1    2    3    4    6    7    8    9   10   13
Direct product Configuration Cont sym =    1  Targ sym =    2
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   14
    2:  -0.70711   0.00000    1    2    3    4    5    7    8    9   10   11
Direct product Configuration Cont sym =    2  Targ sym =    2
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   15
    2:  -0.70711   0.00000    1    2    3    4    5    7    8    9   10   12
Direct product Configuration Cont sym =    3  Targ sym =    2
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   16
    2:  -0.70711   0.00000    1    2    3    4    5    7    8    9   10   13
Direct product Configuration Cont sym =    1  Targ sym =    3
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   14
    2:   0.70711   0.00000    1    2    3    4    5    6    8    9   10   11
Direct product Configuration Cont sym =    2  Targ sym =    3
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   15
    2:   0.70711   0.00000    1    2    3    4    5    6    8    9   10   12
Direct product Configuration Cont sym =    3  Targ sym =    3
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   16
    2:   0.70711   0.00000    1    2    3    4    5    6    8    9   10   13
Overlap of Direct Product expansion and Symmeterized states
Symmetry of Continuum =    5
Symmetry of target =    5
Symmetry of total states =    5

Total symmetry component =    1

Cont      Target Component
Comp        1               2               3
   1   0.00000000E+00  0.00000000E+00  0.00000000E+00
   2   0.00000000E+00  0.00000000E+00  0.70710678E+00
   3   0.00000000E+00  0.70710678E+00  0.00000000E+00

Total symmetry component =    2

Cont      Target Component
Comp        1               2               3
   1   0.00000000E+00  0.00000000E+00  0.70710678E+00
   2   0.00000000E+00  0.00000000E+00  0.00000000E+00
   3   0.70710678E+00  0.00000000E+00  0.00000000E+00

Total symmetry component =    3

Cont      Target Component
Comp        1               2               3
   1   0.00000000E+00  0.70710678E+00  0.00000000E+00
   2   0.70710678E+00  0.00000000E+00  0.00000000E+00
   3   0.00000000E+00  0.00000000E+00  0.00000000E+00
Initial State Configuration
    1:   1.00000   0.00000    1    2    3    4    5    6    7    8    9   10
One electron matrix elements between initial and final states
    1:   -1.000000000    0.000000000  <    6|   13>
    2:   -1.000000000    0.000000000  <    7|   12>

Reduced formula list
    3    3    2 -0.1000000000E+01
    2    3    3 -0.1000000000E+01
Time Now =       223.6515  Delta time =         0.0004 End MatEle

+ Command DipoleOp
+

----------------------------------------------------------------------
DipoleOp - Dipole Operator Program
----------------------------------------------------------------------

Number of orbitals in formula for the dipole operator (NOrbSel) =    2
Symmetry of the continuum orbital (iContSym) =     5 or T2
Symmetry of total final state (iTotalSym) =     5 or T2
Symmetry of the initial state (iInitSym) =     1 or A1
Symmetry of the ionized target state (iTargSym) =     5 or T2
List of unique symmetry types
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
Unique dipole matrix type     1 Dipole symmetry type =T2
     Final state symmetry type = T2     Target sym =T2
     Continuum type =A1
In the product of the symmetry types T2    A2
 Each irreducable representation is present the number of times indicated
    T1    (  1)
In the product of the symmetry types T2    E
 Each irreducable representation is present the number of times indicated
    T1    (  1)
    T2    (  1)
Unique dipole matrix type     2 Dipole symmetry type =T2
     Final state symmetry type = T2     Target sym =T2
     Continuum type =E
In the product of the symmetry types T2    T1
 Each irreducable representation is present the number of times indicated
    A2    (  1)
    E     (  1)
    T1    (  1)
    T2    (  1)
Unique dipole matrix type     3 Dipole symmetry type =T2
     Final state symmetry type = T2     Target sym =T2
     Continuum type =T1
In the product of the symmetry types T2    T2
 Each irreducable representation is present the number of times indicated
    A1    (  1)
    E     (  1)
    T1    (  1)
    T2    (  1)
Unique dipole matrix type     4 Dipole symmetry type =T2
     Final state symmetry type = T2     Target sym =T2
     Continuum type =T2
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
Irreducible representation containing the dipole operator is T2
Number of different dipole operators in this representation is     1
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
Vector of the total symmetry
ie =    1  ij =    1
    1 (  0.10000000E+01,  0.00000000E+00)
    2 (  0.00000000E+00,  0.00000000E+00)
    3 (  0.00000000E+00,  0.00000000E+00)
Vector of the total symmetry
ie =    2  ij =    1
    1 (  0.00000000E+00,  0.00000000E+00)
    2 (  0.10000000E+01,  0.00000000E+00)
    3 (  0.00000000E+00,  0.00000000E+00)
Vector of the total symmetry
ie =    3  ij =    1
    1 (  0.00000000E+00,  0.00000000E+00)
    2 (  0.00000000E+00,  0.00000000E+00)
    3 (  0.10000000E+01,  0.00000000E+00)
Component Dipole Op Sym =  1 goes to Total Sym component   1 phase = 1.0
Component Dipole Op Sym =  2 goes to Total Sym component   2 phase = 1.0
Component Dipole Op Sym =  3 goes to Total Sym component   3 phase = 1.0

Dipole operator types by symmetry components (x=1, y=2, z=3)
sym comp =  1
  coefficients =  0.00000000  1.00000000  0.00000000
sym comp =  2
  coefficients =  1.00000000  0.00000000  0.00000000
sym comp =  3
  coefficients =  0.00000000  0.00000000  1.00000000

Formula for dipole operator

Dipole operator sym comp 1  index =    1
  1  Cont comp  3  Orb  4  Coef =  -1.0000000000
  2  Cont comp  2  Orb  5  Coef =  -1.0000000000
Symmetry type to write out (SymTyp) =T2
Time Now =       253.9822  Delta time =        30.3308 End DipoleOp

+ Command GetPot
+

----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------

Total density =      9.00000000
Time Now =       253.9876  Delta time =         0.0054 End Den

----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------

 vasymp =  0.90000000E+01 facnorm =  0.10000000E+01
Time Now =       254.0060  Delta time =         0.0185 Electronic part
Time Now =       254.0075  Delta time =         0.0014 End StPot

+ Command PhIon
+ 0.1

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.10000000E+00 eV (  0.36749326E-02 AU)
Time Now =       254.0247  Delta time =         0.0173 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = T2    1
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =      T
Maximum l for computed scattering solutions (LMaxK) =   11
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    50
Number of partial waves (np) =    36
Number of asymptotic solutions on the right (NAsymR) =    21
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   13
Number of partial waves in the asymptotic region (npasym) =   28
Number of orthogonality constraints (NOrthUse) =    1
Number of different asymptotic potentials =   10
Maximum number of asymptotic partial waves =  183
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =   11
Highest l used at large r (lpasym) =   13
Higest l used in the asymptotic potential (lpzb) =   26
Maximum L used in the homogeneous solution (LMaxHomo) =   13
Number of partial waves in the homogeneous solution (npHomo) =   28
Time Now =       254.0310  Delta time =         0.0063 Energy independent setup

Compute solution for E =    0.1000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.83266727E-16
 i =  2  lval =   3  stpote =  0.67637547E-19
 i =  3  lval =   3  stpote =  0.15768643E-18
 i =  4  lval =   4  stpote = -0.29206878E-04
For potential     2
 i =  1  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.18436994E-16
 i =  2  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.18267832E-16
 i =  3  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.18107865E-16
 i =  4  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.17963371E-16
For potential     3
For potential     4
 i =  1  lval =   4  stpote =  0.49824728E-01
 i =  2  lval =   3  stpote = -0.40034376E-04
 i =  3  lval =   3  stpote = -0.23113857E-04
 i =  4  lval =   4  stpote =  0.44848819E-05
For potential     5
 i =  1  lval =   4  stpote =  0.49824728E-01
 i =  2  lval =   3  stpote =  0.40034376E-04
 i =  3  lval =   3  stpote = -0.23113857E-04
 i =  4  lval =   4  stpote =  0.44848819E-05
For potential     6
 i =  1  lval =   2  stpote = -0.10455010E-02
 i =  2  lval =   3  stpote = -0.11169353E-03
 i =  3  lval =   4  stpote = -0.25000191E-05
 i =  4  lval =   4  stpote = -0.32275107E-05
For potential     7
 i =  1  lval =   4  stpote = -0.74737092E-01
 i =  2  lval =   3  stpote = -0.60051563E-04
 i =  3  lval =   3  stpote =  0.34670786E-04
 i =  4  lval =   4  stpote = -0.67273229E-05
For potential     8
 i =  1  lval =   4  stpote =  0.49824728E-01
 i =  2  lval =   3  stpote =  0.17979165E-20
 i =  3  lval =   3  stpote =  0.46227715E-04
 i =  4  lval =   4  stpote =  0.44848819E-05
For potential     9
 i =  1  lval =   4  stpote = -0.74737092E-01
 i =  2  lval =   3  stpote = -0.26968748E-20
 i =  3  lval =   3  stpote = -0.69341572E-04
 i =  4  lval =   4  stpote = -0.67273229E-05
For potential    10
 i =  1  lval =   2  stpote = -0.10455010E-02
 i =  2  lval =   3  stpote = -0.11169353E-03
 i =  3  lval =   4  stpote = -0.25000191E-05
 i =  4  lval =   4  stpote = -0.32275107E-05
Number of asymptotic regions =      75
Final point in integration =   0.11284440E+04 Angstroms
Last asymptotic region is special region for dipole potential
Time Now =       279.1394  Delta time =        25.1083 End SolveHomo
      Final k matrix
     ROW  1
  (-0.12874055E+01,-0.41234724E+00) (-0.33816414E+01, 0.15290901E+01)
  (-0.24365224E-01, 0.11137111E+00) (-0.60800899E-02,-0.31893724E-02)
  (-0.52425792E-03, 0.12902519E-03) (-0.74985173E-03, 0.35572472E-04)
  (-0.13987125E-04,-0.12446125E-04) ( 0.17506766E-04,-0.67388765E-06)
  (-0.85256251E-06,-0.12287013E-06) (-0.37397793E-06, 0.35507145E-06)
  ( 0.52388981E-08,-0.23769135E-08) (-0.96832439E-08, 0.12338876E-07)
  (-0.17233723E-09, 0.62525371E-10) (-0.28703146E-09, 0.14157772E-09)
  (-0.16886179E-09, 0.13766032E-09) ( 0.31765052E-11,-0.35198614E-11)
  (-0.42318400E-11,-0.98870204E-12) ( 0.16616326E-11,-0.44027310E-12)
  (-0.27627323E-13,-0.33754346E-13) (-0.80825480E-13,-0.13402173E-13)
  (-0.72732990E-14, 0.19326385E-13)
     ROW  2
  (-0.59811831E+00,-0.23013285E+00) (-0.15110914E+01, 0.69790304E+00)
  (-0.93310171E-02, 0.50089615E-01) (-0.21404477E-02,-0.15110838E-02)
  (-0.21393863E-03, 0.55778824E-04) (-0.37998442E-03, 0.25365027E-04)
  ( 0.13570637E-06,-0.61240143E-05) ( 0.95044148E-05,-0.70947536E-06)
  (-0.23819049E-06,-0.97604899E-07) (-0.12480041E-06, 0.12774192E-06)
  ( 0.31655536E-08,-0.87058755E-09) (-0.18009472E-09, 0.34929309E-08)
  (-0.39108813E-10, 0.86012854E-12) (-0.75680261E-10, 0.11872634E-10)
  ( 0.34889231E-11, 0.46636898E-10) ( 0.14384252E-11,-0.35262500E-12)
  (-0.93990849E-12,-0.50526274E-12) ( 0.13918818E-12,-0.22839473E-12)
  (-0.74592772E-15,-0.35154023E-14) (-0.18295959E-13,-0.24419046E-14)
  ( 0.11267636E-14, 0.12112542E-13)
MaxIter =   7 c.s. =     18.79787932 rmsk=     0.00000000
Time Now =       289.4915  Delta time =        10.3521 End ScatStab

+ Command PhIonN
+ 5.8 10.0 3

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.58000000E+01 eV (  0.21314609E+00 AU)
Time Now =       289.5088  Delta time =         0.0173 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = T2    1
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =      T
Maximum l for computed scattering solutions (LMaxK) =   11
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    50
Number of partial waves (np) =    36
Number of asymptotic solutions on the right (NAsymR) =    21
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   13
Number of partial waves in the asymptotic region (npasym) =   28
Number of orthogonality constraints (NOrthUse) =    1
Number of different asymptotic potentials =   10
Maximum number of asymptotic partial waves =  183
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =   11
Highest l used at large r (lpasym) =   13
Higest l used in the asymptotic potential (lpzb) =   26
Maximum L used in the homogeneous solution (LMaxHomo) =   13
Number of partial waves in the homogeneous solution (npHomo) =   28
Time Now =       289.5151  Delta time =         0.0063 Energy independent setup

Compute solution for E =    5.8000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.83266727E-16
 i =  2  lval =   3  stpote =  0.67637547E-19
 i =  3  lval =   3  stpote =  0.15768643E-18
 i =  4  lval =   4  stpote = -0.29206878E-04
For potential     2
 i =  1  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.12172836E-16
 i =  2  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.12045935E-16
 i =  3  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.11925986E-16
 i =  4  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.11817746E-16
For potential     3
For potential     4
 i =  1  lval =   4  stpote =  0.49824728E-01
 i =  2  lval =   3  stpote = -0.40034376E-04
 i =  3  lval =   3  stpote = -0.23113857E-04
 i =  4  lval =   4  stpote =  0.44848819E-05
For potential     5
 i =  1  lval =   4  stpote =  0.49824728E-01
 i =  2  lval =   3  stpote =  0.40034376E-04
 i =  3  lval =   3  stpote = -0.23113857E-04
 i =  4  lval =   4  stpote =  0.44848819E-05
For potential     6
 i =  1  lval =   2  stpote = -0.10455010E-02
 i =  2  lval =   3  stpote = -0.11169353E-03
 i =  3  lval =   4  stpote = -0.25000191E-05
 i =  4  lval =   4  stpote = -0.32275107E-05
For potential     7
 i =  1  lval =   4  stpote = -0.74737092E-01
 i =  2  lval =   3  stpote = -0.60051563E-04
 i =  3  lval =   3  stpote =  0.34670786E-04
 i =  4  lval =   4  stpote = -0.67273229E-05
For potential     8
 i =  1  lval =   4  stpote =  0.49824728E-01
 i =  2  lval =   3  stpote =  0.17979165E-20
 i =  3  lval =   3  stpote =  0.46227715E-04
 i =  4  lval =   4  stpote =  0.44848819E-05
For potential     9
 i =  1  lval =   4  stpote = -0.74737092E-01
 i =  2  lval =   3  stpote = -0.26968748E-20
 i =  3  lval =   3  stpote = -0.69341572E-04
 i =  4  lval =   4  stpote = -0.67273229E-05
For potential    10
 i =  1  lval =   2  stpote = -0.10455010E-02
 i =  2  lval =   3  stpote = -0.11169353E-03
 i =  3  lval =   4  stpote = -0.25000191E-05
 i =  4  lval =   4  stpote = -0.32275107E-05
Number of asymptotic regions =     193
Final point in integration =   0.40135444E+03 Angstroms
Last asymptotic region is special region for dipole potential
Time Now =       345.7445  Delta time =        56.2295 End SolveHomo
      Final k matrix
     ROW  1
  (-0.59124940E+00, 0.12159136E+00) (-0.17518403E+01, 0.17535884E+01)
  (-0.53727927E-01, 0.36950954E+00) (-0.36331621E-01,-0.51401690E-01)
  (-0.47734478E-02, 0.92090205E-03) (-0.37361830E-02, 0.92600766E-02)
  (-0.43803606E-03,-0.92824623E-03) ( 0.29308334E-03,-0.30049936E-03)
  (-0.13313931E-03,-0.44022360E-04) (-0.75746430E-04,-0.16512168E-04)
  ( 0.55894561E-05,-0.92592753E-06) (-0.14669882E-04,-0.17458319E-05)
  (-0.12501025E-05, 0.45880310E-07) (-0.25856924E-05, 0.16410976E-06)
  (-0.79080504E-06, 0.11950329E-06) ( 0.27573520E-06,-0.46087501E-07)
  ( 0.26038708E-08,-0.20550552E-07) ( 0.15223114E-07,-0.63936801E-08)
  ( 0.85355006E-08,-0.19592121E-08) (-0.53733972E-09,-0.50017624E-09)
  (-0.13079160E-07, 0.68414951E-08)
     ROW  2
  (-0.35593869E+00, 0.41172911E-01) (-0.10366644E+01, 0.10468829E+01)
  (-0.24085314E-01, 0.22009719E+00) (-0.20494116E-01,-0.30964418E-01)
  (-0.27503162E-02, 0.47936322E-03) (-0.29681802E-02, 0.55607438E-02)
  ( 0.17813741E-03,-0.56716470E-03) ( 0.32215784E-03,-0.19170507E-03)
  (-0.23976421E-04,-0.33857409E-04) (-0.26257384E-04,-0.15408090E-04)
  ( 0.30956535E-05,-0.21288263E-06) ( 0.19749159E-06,-0.32346969E-05)
  (-0.24188860E-06,-0.10746119E-06) (-0.55171735E-06,-0.19315110E-06)
  ( 0.15109946E-06,-0.94354369E-07) ( 0.80562337E-07, 0.56435424E-08)
  ( 0.62706221E-08,-0.45915141E-08) (-0.80497601E-08, 0.77437645E-09)
  ( 0.29781731E-08, 0.29480808E-10) ( 0.26217239E-09,-0.26387402E-10)
  (-0.27354822E-08, 0.10982662E-08)
MaxIter =   7 c.s. =      9.00136200 rmsk=     0.00000000
Time Now =       356.4390  Delta time =        10.6944 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.15800000E+02 eV (  0.58063935E+00 AU)
Time Now =       356.4565  Delta time =         0.0175 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = T2    1
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =      T
Maximum l for computed scattering solutions (LMaxK) =   11
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    50
Number of partial waves (np) =    36
Number of asymptotic solutions on the right (NAsymR) =    21
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   13
Number of partial waves in the asymptotic region (npasym) =   28
Number of orthogonality constraints (NOrthUse) =    1
Number of different asymptotic potentials =   10
Maximum number of asymptotic partial waves =  183
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =   11
Highest l used at large r (lpasym) =   13
Higest l used in the asymptotic potential (lpzb) =   26
Maximum L used in the homogeneous solution (LMaxHomo) =   13
Number of partial waves in the homogeneous solution (npHomo) =   28
Time Now =       356.4628  Delta time =         0.0063 Energy independent setup

Compute solution for E =   15.8000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.83266727E-16
 i =  2  lval =   3  stpote =  0.67637547E-19
 i =  3  lval =   3  stpote =  0.15768643E-18
 i =  4  lval =   4  stpote = -0.29206878E-04
For potential     2
 i =  1  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.10841077E-16
 i =  2  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.10672925E-16
 i =  3  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.10514985E-16
 i =  4  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.10373231E-16
For potential     3
For potential     4
 i =  1  lval =   4  stpote =  0.49824728E-01
 i =  2  lval =   3  stpote = -0.40034376E-04
 i =  3  lval =   3  stpote = -0.23113857E-04
 i =  4  lval =   4  stpote =  0.44848819E-05
For potential     5
 i =  1  lval =   4  stpote =  0.49824728E-01
 i =  2  lval =   3  stpote =  0.40034376E-04
 i =  3  lval =   3  stpote = -0.23113857E-04
 i =  4  lval =   4  stpote =  0.44848819E-05
For potential     6
 i =  1  lval =   2  stpote = -0.10455010E-02
 i =  2  lval =   3  stpote = -0.11169353E-03
 i =  3  lval =   4  stpote = -0.25000191E-05
 i =  4  lval =   4  stpote = -0.32275107E-05
For potential     7
 i =  1  lval =   4  stpote = -0.74737092E-01
 i =  2  lval =   3  stpote = -0.60051563E-04
 i =  3  lval =   3  stpote =  0.34670786E-04
 i =  4  lval =   4  stpote = -0.67273229E-05
For potential     8
 i =  1  lval =   4  stpote =  0.49824728E-01
 i =  2  lval =   3  stpote =  0.17979165E-20
 i =  3  lval =   3  stpote =  0.46227715E-04
 i =  4  lval =   4  stpote =  0.44848819E-05
For potential     9
 i =  1  lval =   4  stpote = -0.74737092E-01
 i =  2  lval =   3  stpote = -0.26968748E-20
 i =  3  lval =   3  stpote = -0.69341572E-04
 i =  4  lval =   4  stpote = -0.67273229E-05
For potential    10
 i =  1  lval =   2  stpote = -0.10455010E-02
 i =  2  lval =   3  stpote = -0.11169353E-03
 i =  3  lval =   4  stpote = -0.25000191E-05
 i =  4  lval =   4  stpote = -0.32275107E-05
Number of asymptotic regions =     244
Final point in integration =   0.31112956E+03 Angstroms
Last asymptotic region is special region for dipole potential
Time Now =       428.6361  Delta time =        72.1733 End SolveHomo
      Final k matrix
     ROW  1
  (-0.22470023E+00, 0.16324004E+00) (-0.56043704E+00, 0.65761037E+00)
  ( 0.23934804E-01, 0.18270811E+00) (-0.73740709E-01,-0.41187597E-01)
  (-0.15716319E-01,-0.31938511E-03) (-0.13991980E-01, 0.93217497E-02)
  ( 0.24152943E-02,-0.15118859E-02) ( 0.23733018E-02,-0.50644018E-03)
  (-0.30844253E-03,-0.14892535E-03) (-0.47561145E-03,-0.97116030E-04)
  ( 0.12066824E-03,-0.57840589E-05) ( 0.98786055E-05,-0.27559211E-04)
  (-0.29403844E-05,-0.17470804E-05) (-0.17300254E-04,-0.22622792E-05)
  ( 0.63687132E-05,-0.11765667E-05) ( 0.51786515E-05,-0.12532005E-06)
  ( 0.15515650E-05,-0.28961312E-06) (-0.53898132E-06, 0.68060251E-08)
  ( 0.41506497E-06,-0.33903092E-07) ( 0.19868038E-06,-0.34648701E-07)
  (-0.38877143E-06, 0.88162832E-07)
     ROW  2
  (-0.18633964E+00, 0.13630982E+00) (-0.46847203E+00, 0.54558276E+00)
  ( 0.30113977E-01, 0.15098172E+00) (-0.65588880E-01,-0.33551142E-01)
  (-0.13770205E-01,-0.27086579E-03) (-0.13042860E-01, 0.74672389E-02)
  ( 0.32165196E-02,-0.12347257E-02) ( 0.26220012E-02,-0.43957725E-03)
  ( 0.39753631E-04,-0.14230049E-03) (-0.28380045E-03,-0.84935238E-04)
  ( 0.81562179E-04,-0.44183387E-05) ( 0.93965733E-04,-0.35041276E-04)
  ( 0.42146759E-05,-0.28230973E-05) ( 0.23212085E-05,-0.46774705E-05)
  ( 0.14319741E-04,-0.30971511E-05) ( 0.14754133E-05, 0.43859463E-06)
  ( 0.87216833E-06,-0.14453543E-06) (-0.79088649E-06, 0.12281430E-06)
  ( 0.16148739E-06, 0.40417080E-08) ( 0.10113188E-06,-0.24544723E-07)
  (-0.30498383E-07,-0.23419270E-07)
MaxIter =   6 c.s. =      1.46530594 rmsk=     0.00000000
Time Now =       437.5226  Delta time =         8.8866 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.25800000E+02 eV (  0.94813261E+00 AU)
Time Now =       437.5399  Delta time =         0.0172 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = T2    1
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =      T
Maximum l for computed scattering solutions (LMaxK) =   11
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    50
Number of partial waves (np) =    36
Number of asymptotic solutions on the right (NAsymR) =    21
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   13
Number of partial waves in the asymptotic region (npasym) =   28
Number of orthogonality constraints (NOrthUse) =    1
Number of different asymptotic potentials =   10
Maximum number of asymptotic partial waves =  183
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =   11
Highest l used at large r (lpasym) =   13
Higest l used in the asymptotic potential (lpzb) =   26
Maximum L used in the homogeneous solution (LMaxHomo) =   13
Number of partial waves in the homogeneous solution (npHomo) =   28
Time Now =       437.5462  Delta time =         0.0063 Energy independent setup

Compute solution for E =   25.8000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.83266727E-16
 i =  2  lval =   3  stpote =  0.67637547E-19
 i =  3  lval =   3  stpote =  0.15768643E-18
 i =  4  lval =   4  stpote = -0.29206878E-04
For potential     2
 i =  1  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.53720238E-17
 i =  2  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.53801648E-17
 i =  3  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.53884798E-17
 i =  4  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.53964813E-17
For potential     3
For potential     4
 i =  1  lval =   4  stpote =  0.49824728E-01
 i =  2  lval =   3  stpote = -0.40034376E-04
 i =  3  lval =   3  stpote = -0.23113857E-04
 i =  4  lval =   4  stpote =  0.44848819E-05
For potential     5
 i =  1  lval =   4  stpote =  0.49824728E-01
 i =  2  lval =   3  stpote =  0.40034376E-04
 i =  3  lval =   3  stpote = -0.23113857E-04
 i =  4  lval =   4  stpote =  0.44848819E-05
For potential     6
 i =  1  lval =   2  stpote = -0.10455010E-02
 i =  2  lval =   3  stpote = -0.11169353E-03
 i =  3  lval =   4  stpote = -0.25000191E-05
 i =  4  lval =   4  stpote = -0.32275107E-05
For potential     7
 i =  1  lval =   4  stpote = -0.74737092E-01
 i =  2  lval =   3  stpote = -0.60051563E-04
 i =  3  lval =   3  stpote =  0.34670786E-04
 i =  4  lval =   4  stpote = -0.67273229E-05
For potential     8
 i =  1  lval =   4  stpote =  0.49824728E-01
 i =  2  lval =   3  stpote =  0.17979165E-20
 i =  3  lval =   3  stpote =  0.46227715E-04
 i =  4  lval =   4  stpote =  0.44848819E-05
For potential     9
 i =  1  lval =   4  stpote = -0.74737092E-01
 i =  2  lval =   3  stpote = -0.26968748E-20
 i =  3  lval =   3  stpote = -0.69341572E-04
 i =  4  lval =   4  stpote = -0.67273229E-05
For potential    10
 i =  1  lval =   2  stpote = -0.10455010E-02
 i =  2  lval =   3  stpote = -0.11169353E-03
 i =  3  lval =   4  stpote = -0.25000191E-05
 i =  4  lval =   4  stpote = -0.32275107E-05
Number of asymptotic regions =     274
Final point in integration =   0.27519774E+03 Angstroms
Last asymptotic region is special region for dipole potential
Time Now =       516.4553  Delta time =        78.9091 End SolveHomo
      Final k matrix
     ROW  1
  (-0.10838748E+00, 0.14454059E+00) (-0.30257651E+00, 0.25417427E+00)
  ( 0.25227376E-01, 0.72131089E-01) (-0.75855147E-01,-0.78483368E-02)
  (-0.22105358E-01, 0.21212353E-02) (-0.22859076E-01, 0.30201414E-02)
  ( 0.71356558E-02,-0.11969320E-02) ( 0.48463827E-02,-0.40975067E-03)
  (-0.33884930E-04,-0.97162281E-04) (-0.99880639E-03, 0.10235138E-03)
  ( 0.34882855E-03,-0.55594193E-04) ( 0.15524481E-03,-0.42688935E-04)
  ( 0.11877847E-04,-0.98629133E-05) (-0.22713159E-04,-0.98834760E-05)
  ( 0.40469942E-04,-0.57899500E-05) ( 0.17251800E-04, 0.22290303E-06)
  ( 0.10084164E-04,-0.18650025E-05) (-0.36022228E-05, 0.27132098E-06)
  ( 0.21548243E-05,-0.15436634E-06) ( 0.14640196E-05,-0.27457455E-06)
  (-0.22413745E-05, 0.31172043E-06)
     ROW  2
  (-0.11649864E+00, 0.17623802E+00) (-0.33359462E+00, 0.26761542E+00)
  ( 0.41709200E-01, 0.73079319E-01) (-0.91050463E-01,-0.39142961E-02)
  (-0.25694156E-01, 0.28392220E-02) (-0.26866382E-01, 0.20743176E-02)
  ( 0.93249236E-02,-0.11782099E-02) ( 0.66004533E-02,-0.43531188E-03)
  ( 0.54754931E-03,-0.10840063E-03) (-0.74204540E-03, 0.15982243E-03)
  ( 0.30817203E-03,-0.67523673E-04) ( 0.47745775E-03,-0.70305176E-04)
  ( 0.39380661E-04,-0.15677730E-04) ( 0.47026867E-04,-0.19672114E-04)
  ( 0.82947538E-04,-0.13534725E-04) ( 0.19313014E-05, 0.24976101E-05)
  ( 0.58145984E-05,-0.16396881E-05) (-0.54090520E-05, 0.83193568E-06)
  ( 0.83589270E-06,-0.13280139E-07) ( 0.86874216E-06,-0.29825090E-06)
  ( 0.39595979E-06,-0.27710860E-06)
MaxIter =   6 c.s. =      0.44600242 rmsk=     0.00000000
Time Now =       525.4253  Delta time =         8.9700 End ScatStab

+ Command GetCro
+ 'test15T2T2.idy'
Taking dipole matrix from file test15T2T2.idy

----------------------------------------------------------------------
CnvIdy - read in and convert dynamical matrix elements and convert to raw form
----------------------------------------------------------------------

Time Now =       525.4293  Delta time =         0.0040 End CnvIdy
Found     4 energies :
     0.10000     5.80000    15.80000    25.80000
List of matrix element types found   Number =    1
    1  Cont Sym T2     Targ Sym T2     Total Sym T2
Keeping     4 energies :
     0.10000     5.80000    15.80000    25.80000
Time Now =       525.4294  Delta time =         0.0000 End SelIdy

----------------------------------------------------------------------
CrossSection - compute photoionization cross section
----------------------------------------------------------------------

Ionization potential (IPot) =     14.2000 eV
Label -
Cross section by partial wave      F
Cross Sections for

     Sigma LENGTH   at all energies
      Eng
    14.3000  0.42141494E+02
    20.0000  0.25109135E+02
    30.0000  0.48994890E+01
    40.0000  0.15216258E+01

     Sigma MIXED    at all energies
      Eng
    14.3000  0.36196373E+02
    20.0000  0.20298510E+02
    30.0000  0.37001402E+01
    40.0000  0.11381723E+01

     Sigma VELOCITY at all energies
      Eng
    14.3000  0.31114618E+02
    20.0000  0.16417186E+02
    30.0000  0.27950122E+01
    40.0000  0.85405457E+00

     Beta LENGTH   at all energies
      Eng
    14.3000  0.64477839E+00
    20.0000  0.60008761E+00
    30.0000  0.52026361E+00
    40.0000  0.51378684E+00

     Beta MIXED    at all energies
      Eng
    14.3000  0.64118523E+00
    20.0000  0.60075111E+00
    30.0000  0.52184564E+00
    40.0000  0.51287075E+00

     Beta VELOCITY at all energies
      Eng
    14.3000  0.63729783E+00
    20.0000  0.60138574E+00
    30.0000  0.52326974E+00
    40.0000  0.51022937E+00

          COMPOSITE CROSS SECTIONS AT ALL ENERGIES
         Energy  SIGMA LEN  SIGMA MIX  SIGMA VEL   BETA LEN   BETA MIX   BETA VEL
EPhi     14.3000    42.1415    36.1964    31.1146     0.6448     0.6412     0.6373
EPhi     20.0000    25.1091    20.2985    16.4172     0.6001     0.6008     0.6014
EPhi     30.0000     4.8995     3.7001     2.7950     0.5203     0.5218     0.5233
EPhi     40.0000     1.5216     1.1382     0.8541     0.5138     0.5129     0.5102
Time Now =       525.4839  Delta time =         0.0545 End CrossSection

+ Command FileName
+ 'MatrixElements' 'test15T2E.idy' 'REWIND'
Opening file test15T2E.idy at position REWIND
+ Data Record ScatSym - 'T2'
+ Data Record ScatContSym - 'E'

+ Command GenFormPhIon
+

----------------------------------------------------------------------
SymProd - Construct products of symmetry types
----------------------------------------------------------------------

Number of sets of degenerate orbitals =    3
Set    1  has degeneracy     1
Orbital     1  is num     1  type =   1  name - A1    1
Set    2  has degeneracy     1
Orbital     1  is num     2  type =   1  name - A1    1
Set    3  has degeneracy     3
Orbital     1  is num     3  type =   8  name - T2    1
Orbital     2  is num     4  type =   9  name - T2    2
Orbital     3  is num     5  type =  10  name - T2    3
Orbital occupations by degenerate group
    1  A1       occ = 2
    2  A1       occ = 2
    3  T2       occ = 5
The dimension of each irreducable representation is
    A1    (  1)    A2    (  1)    E     (  2)    T1    (  3)    T2    (  3)
Symmetry of the continuum orbital is E
Symmetry of the total state is T2
Spin degeneracy of the total state is =    1
Symmetry of the target state is T2
Spin degeneracy of the target state is =    2
Symmetry of the initial state is A1
Spin degeneracy of the initial state is =    1
Orbital occupations of initial state by degenerate group
    1  A1       occ = 2
    2  A1       occ = 2
    3  T2       occ = 6
Open shell symmetry types
    1  T2     iele =    5
Use only configuration of type T2
MS2 =    1  SDGN =    2
NumAlpha =    3
List of determinants found
    1:   1.00000   0.00000    1    2    3    4    5
    2:   1.00000   0.00000    1    2    3    4    6
    3:   1.00000   0.00000    1    2    3    5    6
Spin adapted configurations
Configuration    1
    1:   1.00000   0.00000    1    2    3    4    5
Configuration    2
    1:   1.00000   0.00000    1    2    3    4    6
Configuration    3
    1:   1.00000   0.00000    1    2    3    5    6
 Each irreducable representation is present the number of times indicated
    T2    (  1)

 representation T2     component     1  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1    2    3    5    6

 representation T2     component     2  fun    1
Symmeterized Function
    1:  -1.00000   0.00000    1    2    3    4    6

 representation T2     component     3  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1    2    3    4    5
Open shell symmetry types
    1  T2     iele =    5
    2  E      iele =    1
Use only configuration of type T2
 Each irreducable representation is present the number of times indicated
    T1    (  1)
    T2    (  1)

 representation T2     component     1  fun    1
Symmeterized Function from AddNewShell
    1:  -0.35355   0.00000    1    2    3    5    6    9
    2:  -0.61237   0.00000    1    2    3    5    6   10
    3:   0.35355   0.00000    2    3    4    5    6    7
    4:   0.61237   0.00000    2    3    4    5    6    8

 representation T2     component     2  fun    1
Symmeterized Function from AddNewShell
    1:   0.35355   0.00000    1    2    3    4    6    9
    2:  -0.61237   0.00000    1    2    3    4    6   10
    3:  -0.35355   0.00000    1    3    4    5    6    7
    4:   0.61237   0.00000    1    3    4    5    6    8

 representation T2     component     3  fun    1
Symmeterized Function from AddNewShell
    1:   0.70711   0.00000    1    2    3    4    5    9
    2:  -0.70711   0.00000    1    2    4    5    6    7
Open shell symmetry types
    1  T2     iele =    5
Use only configuration of type T2
MS2 =    1  SDGN =    2
NumAlpha =    3
List of determinants found
    1:   1.00000   0.00000    1    2    3    4    5
    2:   1.00000   0.00000    1    2    3    4    6
    3:   1.00000   0.00000    1    2    3    5    6
Spin adapted configurations
Configuration    1
    1:   1.00000   0.00000    1    2    3    4    5
Configuration    2
    1:   1.00000   0.00000    1    2    3    4    6
Configuration    3
    1:   1.00000   0.00000    1    2    3    5    6
 Each irreducable representation is present the number of times indicated
    T2    (  1)

 representation T2     component     1  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1    2    3    5    6

 representation T2     component     2  fun    1
Symmeterized Function
    1:  -1.00000   0.00000    1    2    3    4    6

 representation T2     component     3  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1    2    3    4    5
Direct product basis set
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    9   10   13
    2:   0.70711   0.00000    1    2    3    4    6    7    8    9   10   11
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    9   10   14
    2:   0.70711   0.00000    1    2    3    4    6    7    8    9   10   12
Direct product basis function
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   13
    2:  -0.70711   0.00000    1    2    3    4    5    7    8    9   10   11
Direct product basis function
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   14
    2:  -0.70711   0.00000    1    2    3    4    5    7    8    9   10   12
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   13
    2:   0.70711   0.00000    1    2    3    4    5    6    8    9   10   11
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   14
    2:   0.70711   0.00000    1    2    3    4    5    6    8    9   10   12
Closed shell target
Time Now =       525.4883  Delta time =         0.0044 End SymProd

----------------------------------------------------------------------
MatEle - Program to compute Matrix Elements over Determinants
----------------------------------------------------------------------

Configuration     1
    1:  -0.35355   0.00000    1    2    3    4    5    6    7    9   10   13
    2:  -0.61237   0.00000    1    2    3    4    5    6    7    9   10   14
    3:   0.35355   0.00000    1    2    3    4    6    7    8    9   10   11
    4:   0.61237   0.00000    1    2    3    4    6    7    8    9   10   12
Configuration     2
    1:   0.35355   0.00000    1    2    3    4    5    6    7    8   10   13
    2:  -0.61237   0.00000    1    2    3    4    5    6    7    8   10   14
    3:  -0.35355   0.00000    1    2    3    4    5    7    8    9   10   11
    4:   0.61237   0.00000    1    2    3    4    5    7    8    9   10   12
Configuration     3
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8    9   13
    2:  -0.70711   0.00000    1    2    3    4    5    6    8    9   10   11
Direct product Configuration Cont sym =    1  Targ sym =    1
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    9   10   13
    2:   0.70711   0.00000    1    2    3    4    6    7    8    9   10   11
Direct product Configuration Cont sym =    2  Targ sym =    1
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    9   10   14
    2:   0.70711   0.00000    1    2    3    4    6    7    8    9   10   12
Direct product Configuration Cont sym =    1  Targ sym =    2
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   13
    2:  -0.70711   0.00000    1    2    3    4    5    7    8    9   10   11
Direct product Configuration Cont sym =    2  Targ sym =    2
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   14
    2:  -0.70711   0.00000    1    2    3    4    5    7    8    9   10   12
Direct product Configuration Cont sym =    1  Targ sym =    3
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   13
    2:   0.70711   0.00000    1    2    3    4    5    6    8    9   10   11
Direct product Configuration Cont sym =    2  Targ sym =    3
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   14
    2:   0.70711   0.00000    1    2    3    4    5    6    8    9   10   12
Overlap of Direct Product expansion and Symmeterized states
Symmetry of Continuum =    3
Symmetry of target =    5
Symmetry of total states =    5

Total symmetry component =    1

Cont      Target Component
Comp        1               2               3
   1   0.50000000E+00  0.00000000E+00  0.00000000E+00
   2   0.86602540E+00  0.00000000E+00  0.00000000E+00

Total symmetry component =    2

Cont      Target Component
Comp        1               2               3
   1   0.00000000E+00  0.50000000E+00  0.00000000E+00
   2   0.00000000E+00 -0.86602540E+00  0.00000000E+00

Total symmetry component =    3

Cont      Target Component
Comp        1               2               3
   1   0.00000000E+00  0.00000000E+00 -0.10000000E+01
   2   0.00000000E+00  0.00000000E+00  0.00000000E+00
Initial State Configuration
    1:   1.00000   0.00000    1    2    3    4    5    6    7    8    9   10
One electron matrix elements between initial and final states
    1:   -0.707106781    0.000000000  <    5|   11>
    2:   -1.224744871    0.000000000  <    5|   12>

Reduced formula list
    1    3    1 -0.7071067812E+00
    2    3    1 -0.1224744871E+01
Time Now =       525.4886  Delta time =         0.0003 End MatEle

+ Command DipoleOp
+

----------------------------------------------------------------------
DipoleOp - Dipole Operator Program
----------------------------------------------------------------------

Number of orbitals in formula for the dipole operator (NOrbSel) =    2
Symmetry of the continuum orbital (iContSym) =     3 or E
Symmetry of total final state (iTotalSym) =     5 or T2
Symmetry of the initial state (iInitSym) =     1 or A1
Symmetry of the ionized target state (iTargSym) =     5 or T2
List of unique symmetry types
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
Unique dipole matrix type     1 Dipole symmetry type =T2
     Final state symmetry type = T2     Target sym =T2
     Continuum type =A1
In the product of the symmetry types T2    A2
 Each irreducable representation is present the number of times indicated
    T1    (  1)
In the product of the symmetry types T2    E
 Each irreducable representation is present the number of times indicated
    T1    (  1)
    T2    (  1)
Unique dipole matrix type     2 Dipole symmetry type =T2
     Final state symmetry type = T2     Target sym =T2
     Continuum type =E
In the product of the symmetry types T2    T1
 Each irreducable representation is present the number of times indicated
    A2    (  1)
    E     (  1)
    T1    (  1)
    T2    (  1)
Unique dipole matrix type     3 Dipole symmetry type =T2
     Final state symmetry type = T2     Target sym =T2
     Continuum type =T1
In the product of the symmetry types T2    T2
 Each irreducable representation is present the number of times indicated
    A1    (  1)
    E     (  1)
    T1    (  1)
    T2    (  1)
Unique dipole matrix type     4 Dipole symmetry type =T2
     Final state symmetry type = T2     Target sym =T2
     Continuum type =T2
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
Irreducible representation containing the dipole operator is T2
Number of different dipole operators in this representation is     1
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
Vector of the total symmetry
ie =    1  ij =    1
    1 (  0.10000000E+01,  0.00000000E+00)
    2 (  0.00000000E+00,  0.00000000E+00)
    3 (  0.00000000E+00,  0.00000000E+00)
Vector of the total symmetry
ie =    2  ij =    1
    1 (  0.00000000E+00,  0.00000000E+00)
    2 (  0.10000000E+01,  0.00000000E+00)
    3 (  0.00000000E+00,  0.00000000E+00)
Vector of the total symmetry
ie =    3  ij =    1
    1 (  0.00000000E+00,  0.00000000E+00)
    2 (  0.00000000E+00,  0.00000000E+00)
    3 (  0.10000000E+01,  0.00000000E+00)
Component Dipole Op Sym =  1 goes to Total Sym component   1 phase = 1.0
Component Dipole Op Sym =  2 goes to Total Sym component   2 phase = 1.0
Component Dipole Op Sym =  3 goes to Total Sym component   3 phase = 1.0

Dipole operator types by symmetry components (x=1, y=2, z=3)
sym comp =  1
  coefficients =  0.00000000  1.00000000  0.00000000
sym comp =  2
  coefficients =  1.00000000  0.00000000  0.00000000
sym comp =  3
  coefficients =  0.00000000  0.00000000  1.00000000

Formula for dipole operator

Dipole operator sym comp 1  index =    1
  1  Cont comp  1  Orb  3  Coef =  -0.7071067812
  2  Cont comp  2  Orb  3  Coef =  -1.2247448710
Symmetry type to write out (SymTyp) =E
Time Now =       555.7792  Delta time =        30.2905 End DipoleOp

+ Command GetPot
+

----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------

Total density =      9.00000000
Time Now =       555.7847  Delta time =         0.0055 End Den

----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------

 vasymp =  0.90000000E+01 facnorm =  0.10000000E+01
Time Now =       555.8031  Delta time =         0.0185 Electronic part
Time Now =       555.8046  Delta time =         0.0014 End StPot

+ Command PhIon
+ 0.1 5.8 15.8 25.8

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.10000000E+00 eV (  0.36749326E-02 AU)
Time Now =       555.8219  Delta time =         0.0174 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = E     1
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =      T
Maximum l for computed scattering solutions (LMaxK) =   11
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    50
Number of partial waves (np) =    20
Number of asymptotic solutions on the right (NAsymR) =    12
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   13
Number of partial waves in the asymptotic region (npasym) =   16
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    9
Maximum number of asymptotic partial waves =  183
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =   11
Highest l used at large r (lpasym) =   13
Higest l used in the asymptotic potential (lpzb) =   26
Maximum L used in the homogeneous solution (LMaxHomo) =   13
Number of partial waves in the homogeneous solution (npHomo) =   16
Time Now =       555.8282  Delta time =         0.0062 Energy independent setup

Compute solution for E =    0.1000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.83266727E-16
 i =  2  lval =   3  stpote =  0.67637547E-19
 i =  3  lval =   3  stpote =  0.15768643E-18
 i =  4  lval =   4  stpote = -0.29206878E-04
For potential     2
 i =  1  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.18436994E-16
 i =  2  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.18267832E-16
 i =  3  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.18107865E-16
 i =  4  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.17963371E-16
For potential     3
For potential     4
 i =  1  lval =   4  stpote =  0.12456182E-01
 i =  2  lval =   3  stpote = -0.10008594E-04
 i =  3  lval =   3  stpote = -0.57784644E-05
 i =  4  lval =   4  stpote =  0.11212205E-05
For potential     5
 i =  1  lval =   4  stpote = -0.64724220E-01
 i =  2  lval =   3  stpote =  0.52006179E-04
 i =  3  lval =   3  stpote =  0.30025782E-04
 i =  4  lval =   4  stpote = -0.58260325E-05
For potential     6
 i =  1  lval =   4  stpote = -0.64724220E-01
 i =  2  lval =   3  stpote =  0.52006179E-04
 i =  3  lval =   3  stpote =  0.30025782E-04
 i =  4  lval =   4  stpote = -0.58260325E-05
For potential     7
 i =  1  lval =   4  stpote = -0.11210564E+00
 i =  2  lval =   3  stpote =  0.90077345E-04
 i =  3  lval =   3  stpote =  0.52006179E-04
 i =  4  lval =   4  stpote = -0.10090984E-04
For potential     8
 i =  1  lval =   4  stpote =  0.49824728E-01
 i =  2  lval =   3  stpote =  0.40034376E-04
 i =  3  lval =   3  stpote = -0.23113857E-04
 i =  4  lval =   4  stpote =  0.44848819E-05
For potential     9
 i =  1  lval =   4  stpote =  0.49824728E-01
 i =  2  lval =   3  stpote =  0.17979165E-20
 i =  3  lval =   3  stpote =  0.46227715E-04
 i =  4  lval =   4  stpote =  0.44848819E-05
Number of asymptotic regions =      83
Final point in integration =   0.12635146E+04 Angstroms
Time Now =       568.8999  Delta time =        13.0717 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.23547357E+01,-0.32587058E+00) ( 0.18502468E-01,-0.67500933E-02)
  ( 0.90691195E-03,-0.18455066E-03) (-0.39308392E-05, 0.70227098E-06)
  ( 0.17492868E-06,-0.10252904E-06) ( 0.12855651E-08,-0.10676419E-09)
  ( 0.17237998E-07, 0.17059625E-08) ( 0.37304231E-09,-0.20947831E-12)
  ( 0.61784846E-11, 0.60241855E-12) (-0.11123764E-11, 0.22688245E-12)
  ( 0.55271740E-13, 0.82773564E-14) ( 0.14970967E-12,-0.63614707E-14)
     ROW  2
  ( 0.11223889E+01,-0.15532476E+00) ( 0.81198058E-02,-0.32204616E-02)
  ( 0.43303964E-03,-0.87207467E-04) (-0.44108518E-05, 0.33505722E-06)
  ( 0.17823038E-06,-0.47770900E-07) (-0.63693857E-09,-0.11214415E-09)
  ( 0.57589670E-09, 0.78977455E-09) ( 0.51607754E-10, 0.42511986E-11)
  ( 0.15455640E-11, 0.11465180E-12) (-0.66444503E-13, 0.19635492E-13)
  ( 0.15471401E-13, 0.12964834E-14) ( 0.37810210E-13,-0.13941325E-14)
MaxIter =   6 c.s. =      6.93531960 rmsk=     0.00000000
Time Now =       575.0440  Delta time =         6.1440 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.58000000E+01 eV (  0.21314609E+00 AU)
Time Now =       575.0610  Delta time =         0.0170 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = E     1
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =      T
Maximum l for computed scattering solutions (LMaxK) =   11
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    50
Number of partial waves (np) =    20
Number of asymptotic solutions on the right (NAsymR) =    12
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   13
Number of partial waves in the asymptotic region (npasym) =   16
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    9
Maximum number of asymptotic partial waves =  183
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =   11
Highest l used at large r (lpasym) =   13
Higest l used in the asymptotic potential (lpzb) =   26
Maximum L used in the homogeneous solution (LMaxHomo) =   13
Number of partial waves in the homogeneous solution (npHomo) =   16
Time Now =       575.0672  Delta time =         0.0062 Energy independent setup

Compute solution for E =    5.8000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.83266727E-16
 i =  2  lval =   3  stpote =  0.67637547E-19
 i =  3  lval =   3  stpote =  0.15768643E-18
 i =  4  lval =   4  stpote = -0.29206878E-04
For potential     2
 i =  1  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.12172836E-16
 i =  2  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.12045935E-16
 i =  3  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.11925986E-16
 i =  4  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.11817746E-16
For potential     3
For potential     4
 i =  1  lval =   4  stpote =  0.12456182E-01
 i =  2  lval =   3  stpote = -0.10008594E-04
 i =  3  lval =   3  stpote = -0.57784644E-05
 i =  4  lval =   4  stpote =  0.11212205E-05
For potential     5
 i =  1  lval =   4  stpote = -0.64724220E-01
 i =  2  lval =   3  stpote =  0.52006179E-04
 i =  3  lval =   3  stpote =  0.30025782E-04
 i =  4  lval =   4  stpote = -0.58260325E-05
For potential     6
 i =  1  lval =   4  stpote = -0.64724220E-01
 i =  2  lval =   3  stpote =  0.52006179E-04
 i =  3  lval =   3  stpote =  0.30025782E-04
 i =  4  lval =   4  stpote = -0.58260325E-05
For potential     7
 i =  1  lval =   4  stpote = -0.11210564E+00
 i =  2  lval =   3  stpote =  0.90077345E-04
 i =  3  lval =   3  stpote =  0.52006179E-04
 i =  4  lval =   4  stpote = -0.10090984E-04
For potential     8
 i =  1  lval =   4  stpote =  0.49824728E-01
 i =  2  lval =   3  stpote =  0.40034376E-04
 i =  3  lval =   3  stpote = -0.23113857E-04
 i =  4  lval =   4  stpote =  0.44848819E-05
For potential     9
 i =  1  lval =   4  stpote =  0.49824728E-01
 i =  2  lval =   3  stpote =  0.17979165E-20
 i =  3  lval =   3  stpote =  0.46227715E-04
 i =  4  lval =   4  stpote =  0.44848819E-05
Number of asymptotic regions =     213
Final point in integration =   0.44400679E+03 Angstroms
Time Now =       604.0063  Delta time =        28.9391 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.18705966E+01,-0.49648028E+00) ( 0.60707510E-01,-0.28011929E-01)
  ( 0.12863268E-01,-0.64415915E-02) (-0.50188712E-03, 0.44179317E-03)
  ( 0.71500006E-04,-0.43703798E-04) (-0.96906229E-06, 0.80569708E-06)
  ( 0.37446707E-06, 0.86160601E-05) ( 0.44075362E-06, 0.48901979E-06)
  ( 0.59839070E-07, 0.23701477E-07) (-0.63938636E-08,-0.59901171E-08)
  ( 0.30241767E-08, 0.76485987E-09) ( 0.10874541E-07, 0.20882150E-08)
     ROW  2
  ( 0.12073258E+01,-0.32040040E+00) ( 0.36610418E-01,-0.18083426E-01)
  ( 0.80656007E-02,-0.41434355E-02) (-0.44687871E-03, 0.28210000E-03)
  ( 0.49305177E-04,-0.27257139E-04) (-0.75704545E-06, 0.37963465E-06)
  (-0.50324632E-05, 0.54259771E-05) (-0.23850691E-06, 0.33759720E-06)
  ( 0.24569684E-07, 0.12142546E-07) ( 0.10064276E-07,-0.58085968E-08)
  ( 0.16508371E-08, 0.25180277E-09) ( 0.30874391E-08, 0.17112437E-08)
MaxIter =   6 c.s. =      5.31234343 rmsk=     0.00000000
Time Now =       610.2965  Delta time =         6.2902 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.15800000E+02 eV (  0.58063935E+00 AU)
Time Now =       610.3136  Delta time =         0.0171 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = E     1
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =      T
Maximum l for computed scattering solutions (LMaxK) =   11
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    50
Number of partial waves (np) =    20
Number of asymptotic solutions on the right (NAsymR) =    12
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   13
Number of partial waves in the asymptotic region (npasym) =   16
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    9
Maximum number of asymptotic partial waves =  183
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =   11
Highest l used at large r (lpasym) =   13
Higest l used in the asymptotic potential (lpzb) =   26
Maximum L used in the homogeneous solution (LMaxHomo) =   13
Number of partial waves in the homogeneous solution (npHomo) =   16
Time Now =       610.3198  Delta time =         0.0062 Energy independent setup

Compute solution for E =   15.8000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.83266727E-16
 i =  2  lval =   3  stpote =  0.67637547E-19
 i =  3  lval =   3  stpote =  0.15768643E-18
 i =  4  lval =   4  stpote = -0.29206878E-04
For potential     2
 i =  1  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.10841077E-16
 i =  2  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.10672925E-16
 i =  3  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.10514985E-16
 i =  4  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.10373231E-16
For potential     3
For potential     4
 i =  1  lval =   4  stpote =  0.12456182E-01
 i =  2  lval =   3  stpote = -0.10008594E-04
 i =  3  lval =   3  stpote = -0.57784644E-05
 i =  4  lval =   4  stpote =  0.11212205E-05
For potential     5
 i =  1  lval =   4  stpote = -0.64724220E-01
 i =  2  lval =   3  stpote =  0.52006179E-04
 i =  3  lval =   3  stpote =  0.30025782E-04
 i =  4  lval =   4  stpote = -0.58260325E-05
For potential     6
 i =  1  lval =   4  stpote = -0.64724220E-01
 i =  2  lval =   3  stpote =  0.52006179E-04
 i =  3  lval =   3  stpote =  0.30025782E-04
 i =  4  lval =   4  stpote = -0.58260325E-05
For potential     7
 i =  1  lval =   4  stpote = -0.11210564E+00
 i =  2  lval =   3  stpote =  0.90077345E-04
 i =  3  lval =   3  stpote =  0.52006179E-04
 i =  4  lval =   4  stpote = -0.10090984E-04
For potential     8
 i =  1  lval =   4  stpote =  0.49824728E-01
 i =  2  lval =   3  stpote =  0.40034376E-04
 i =  3  lval =   3  stpote = -0.23113857E-04
 i =  4  lval =   4  stpote =  0.44848819E-05
For potential     9
 i =  1  lval =   4  stpote =  0.49824728E-01
 i =  2  lval =   3  stpote =  0.17979165E-20
 i =  3  lval =   3  stpote =  0.46227715E-04
 i =  4  lval =   4  stpote =  0.44848819E-05
Number of asymptotic regions =     271
Final point in integration =   0.34564308E+03 Angstroms
Time Now =       645.8227  Delta time =        35.5028 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.97032681E+00,-0.36823076E+00) ( 0.58258831E-01,-0.32387770E-01)
  ( 0.30299508E-01,-0.10207064E-01) (-0.30861840E-02, 0.96481348E-03)
  ( 0.68262294E-03,-0.17253396E-03) (-0.23975318E-04, 0.43922704E-05)
  (-0.14354312E-03, 0.54716502E-04) (-0.14740208E-04, 0.59029697E-05)
  ( 0.87991644E-06, 0.40130633E-06) ( 0.88937443E-06,-0.18954925E-06)
  ( 0.13458607E-06, 0.12534400E-07) ( 0.10476779E-06, 0.10243930E-06)
     ROW  2
  ( 0.92188300E+00,-0.34973763E+00) ( 0.52689046E-01,-0.30675716E-01)
  ( 0.26039027E-01,-0.96107084E-02) (-0.30785309E-02, 0.88840213E-03)
  ( 0.43388592E-03,-0.16223105E-03) (-0.98048892E-05, 0.35120546E-05)
  (-0.12932564E-03, 0.48584195E-04) (-0.14917659E-04, 0.52442056E-05)
  ( 0.81283698E-06, 0.28818835E-06) ( 0.84184931E-06,-0.17753750E-06)
  ( 0.11478538E-06, 0.46389425E-08) ( 0.58432650E-07, 0.88159601E-07)
MaxIter =   5 c.s. =      2.05928699 rmsk=     0.00000000
Time Now =       651.4483  Delta time =         5.6256 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.25800000E+02 eV (  0.94813261E+00 AU)
Time Now =       651.4655  Delta time =         0.0173 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = E     1
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =      T
Maximum l for computed scattering solutions (LMaxK) =   11
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    50
Number of partial waves (np) =    20
Number of asymptotic solutions on the right (NAsymR) =    12
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   13
Number of partial waves in the asymptotic region (npasym) =   16
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    9
Maximum number of asymptotic partial waves =  183
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =   11
Highest l used at large r (lpasym) =   13
Higest l used in the asymptotic potential (lpzb) =   26
Maximum L used in the homogeneous solution (LMaxHomo) =   13
Number of partial waves in the homogeneous solution (npHomo) =   16
Time Now =       651.4718  Delta time =         0.0062 Energy independent setup

Compute solution for E =   25.8000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.83266727E-16
 i =  2  lval =   3  stpote =  0.67637547E-19
 i =  3  lval =   3  stpote =  0.15768643E-18
 i =  4  lval =   4  stpote = -0.29206878E-04
For potential     2
 i =  1  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.53720238E-17
 i =  2  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.53801648E-17
 i =  3  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.53884798E-17
 i =  4  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.53964813E-17
For potential     3
For potential     4
 i =  1  lval =   4  stpote =  0.12456182E-01
 i =  2  lval =   3  stpote = -0.10008594E-04
 i =  3  lval =   3  stpote = -0.57784644E-05
 i =  4  lval =   4  stpote =  0.11212205E-05
For potential     5
 i =  1  lval =   4  stpote = -0.64724220E-01
 i =  2  lval =   3  stpote =  0.52006179E-04
 i =  3  lval =   3  stpote =  0.30025782E-04
 i =  4  lval =   4  stpote = -0.58260325E-05
For potential     6
 i =  1  lval =   4  stpote = -0.64724220E-01
 i =  2  lval =   3  stpote =  0.52006179E-04
 i =  3  lval =   3  stpote =  0.30025782E-04
 i =  4  lval =   4  stpote = -0.58260325E-05
For potential     7
 i =  1  lval =   4  stpote = -0.11210564E+00
 i =  2  lval =   3  stpote =  0.90077345E-04
 i =  3  lval =   3  stpote =  0.52006179E-04
 i =  4  lval =   4  stpote = -0.10090984E-04
For potential     8
 i =  1  lval =   4  stpote =  0.49824728E-01
 i =  2  lval =   3  stpote =  0.40034376E-04
 i =  3  lval =   3  stpote = -0.23113857E-04
 i =  4  lval =   4  stpote =  0.44848819E-05
For potential     9
 i =  1  lval =   4  stpote =  0.49824728E-01
 i =  2  lval =   3  stpote =  0.17979165E-20
 i =  3  lval =   3  stpote =  0.46227715E-04
 i =  4  lval =   4  stpote =  0.44848819E-05
Number of asymptotic regions =     304
Final point in integration =   0.30511210E+03 Angstroms
Time Now =       690.8285  Delta time =        39.3567 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.54483842E+00,-0.22877164E+00) ( 0.50392023E-01,-0.22900085E-01)
  ( 0.40090214E-01,-0.76551747E-02) (-0.62436030E-02, 0.87402948E-03)
  ( 0.13749865E-02,-0.24840913E-03) (-0.48971384E-04, 0.68089724E-05)
  (-0.49821390E-03, 0.10623234E-03) (-0.77488163E-04, 0.16814225E-04)
  ( 0.56767029E-05, 0.11610019E-05) ( 0.60805125E-05,-0.84712195E-06)
  ( 0.10560543E-05, 0.11797468E-07) ( 0.38273623E-06, 0.50569790E-06)
     ROW  2
  ( 0.68567420E+00,-0.28770975E+00) ( 0.59228240E-01,-0.28442836E-01)
  ( 0.44658767E-01,-0.92977955E-02) (-0.76573588E-02, 0.99610915E-03)
  ( 0.11728790E-02,-0.29762298E-03) (-0.28177737E-04, 0.67740752E-05)
  (-0.56305162E-03, 0.11787382E-03) (-0.87550883E-04, 0.18662204E-04)
  ( 0.36991290E-05, 0.10592819E-05) ( 0.58482907E-05,-0.96768414E-06)
  ( 0.78970126E-06,-0.85842624E-08) (-0.16323320E-06, 0.55603499E-06)
MaxIter =   5 c.s. =      0.91334220 rmsk=     0.00000000
Time Now =       696.4776  Delta time =         5.6491 End ScatStab

+ Command GetCro
+ 'test15T2E.idy'
Taking dipole matrix from file test15T2E.idy

----------------------------------------------------------------------
CnvIdy - read in and convert dynamical matrix elements and convert to raw form
----------------------------------------------------------------------

Time Now =       696.4798  Delta time =         0.0021 End CnvIdy
Found     4 energies :
     0.10000     5.80000    15.80000    25.80000
List of matrix element types found   Number =    1
    1  Cont Sym E      Targ Sym T2     Total Sym T2
Keeping     4 energies :
     0.10000     5.80000    15.80000    25.80000
Time Now =       696.4798  Delta time =         0.0000 End SelIdy

----------------------------------------------------------------------
CrossSection - compute photoionization cross section
----------------------------------------------------------------------

Ionization potential (IPot) =     14.2000 eV
Label -
Cross section by partial wave      F
Cross Sections for

     Sigma LENGTH   at all energies
      Eng
    14.3000  0.15252670E+02
    20.0000  0.14156406E+02
    30.0000  0.61298214E+01
    40.0000  0.26721894E+01

     Sigma MIXED    at all energies
      Eng
    14.3000  0.13834373E+02
    20.0000  0.12430424E+02
    30.0000  0.52809956E+01
    40.0000  0.22851691E+01

     Sigma VELOCITY at all energies
      Eng
    14.3000  0.12547963E+02
    20.0000  0.10914924E+02
    30.0000  0.45497791E+01
    40.0000  0.19543804E+01

     Beta LENGTH   at all energies
      Eng
    14.3000  0.56562946E+00
    20.0000  0.59735280E+00
    30.0000  0.62653016E+00
    40.0000  0.64761739E+00

     Beta MIXED    at all energies
      Eng
    14.3000  0.56590951E+00
    20.0000  0.59694228E+00
    30.0000  0.62581174E+00
    40.0000  0.64616006E+00

     Beta VELOCITY at all energies
      Eng
    14.3000  0.56618926E+00
    20.0000  0.59652836E+00
    30.0000  0.62508503E+00
    40.0000  0.64465522E+00

          COMPOSITE CROSS SECTIONS AT ALL ENERGIES
         Energy  SIGMA LEN  SIGMA MIX  SIGMA VEL   BETA LEN   BETA MIX   BETA VEL
EPhi     14.3000    15.2527    13.8344    12.5480     0.5656     0.5659     0.5662
EPhi     20.0000    14.1564    12.4304    10.9149     0.5974     0.5969     0.5965
EPhi     30.0000     6.1298     5.2810     4.5498     0.6265     0.6258     0.6251
EPhi     40.0000     2.6722     2.2852     1.9544     0.6476     0.6462     0.6447
Time Now =       696.5343  Delta time =         0.0545 End CrossSection

+ Command FileName
+ 'MatrixElements' 'test15T2A1.idy' 'REWIND'
Opening file test15T2A1.idy at position REWIND
+ Data Record ScatSym - 'T2'
+ Data Record ScatContSym - 'A1'

+ Command GenFormPhIon
+

----------------------------------------------------------------------
SymProd - Construct products of symmetry types
----------------------------------------------------------------------

Number of sets of degenerate orbitals =    3
Set    1  has degeneracy     1
Orbital     1  is num     1  type =   1  name - A1    1
Set    2  has degeneracy     1
Orbital     1  is num     2  type =   1  name - A1    1
Set    3  has degeneracy     3
Orbital     1  is num     3  type =   8  name - T2    1
Orbital     2  is num     4  type =   9  name - T2    2
Orbital     3  is num     5  type =  10  name - T2    3
Orbital occupations by degenerate group
    1  A1       occ = 2
    2  A1       occ = 2
    3  T2       occ = 5
The dimension of each irreducable representation is
    A1    (  1)    A2    (  1)    E     (  2)    T1    (  3)    T2    (  3)
Symmetry of the continuum orbital is A1
Symmetry of the total state is T2
Spin degeneracy of the total state is =    1
Symmetry of the target state is T2
Spin degeneracy of the target state is =    2
Symmetry of the initial state is A1
Spin degeneracy of the initial state is =    1
Orbital occupations of initial state by degenerate group
    1  A1       occ = 2
    2  A1       occ = 2
    3  T2       occ = 6
Open shell symmetry types
    1  T2     iele =    5
Use only configuration of type T2
MS2 =    1  SDGN =    2
NumAlpha =    3
List of determinants found
    1:   1.00000   0.00000    1    2    3    4    5
    2:   1.00000   0.00000    1    2    3    4    6
    3:   1.00000   0.00000    1    2    3    5    6
Spin adapted configurations
Configuration    1
    1:   1.00000   0.00000    1    2    3    4    5
Configuration    2
    1:   1.00000   0.00000    1    2    3    4    6
Configuration    3
    1:   1.00000   0.00000    1    2    3    5    6
 Each irreducable representation is present the number of times indicated
    T2    (  1)

 representation T2     component     1  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1    2    3    5    6

 representation T2     component     2  fun    1
Symmeterized Function
    1:  -1.00000   0.00000    1    2    3    4    6

 representation T2     component     3  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1    2    3    4    5
Open shell symmetry types
    1  T2     iele =    5
    2  A1     iele =    1
Use only configuration of type T2
 Each irreducable representation is present the number of times indicated
    T2    (  1)

 representation T2     component     1  fun    1
Symmeterized Function from AddNewShell
    1:  -0.70711   0.00000    1    2    3    5    6    8
    2:   0.70711   0.00000    2    3    4    5    6    7

 representation T2     component     2  fun    1
Symmeterized Function from AddNewShell
    1:   0.70711   0.00000    1    2    3    4    6    8
    2:  -0.70711   0.00000    1    3    4    5    6    7

 representation T2     component     3  fun    1
Symmeterized Function from AddNewShell
    1:  -0.70711   0.00000    1    2    3    4    5    8
    2:   0.70711   0.00000    1    2    4    5    6    7
Open shell symmetry types
    1  T2     iele =    5
Use only configuration of type T2
MS2 =    1  SDGN =    2
NumAlpha =    3
List of determinants found
    1:   1.00000   0.00000    1    2    3    4    5
    2:   1.00000   0.00000    1    2    3    4    6
    3:   1.00000   0.00000    1    2    3    5    6
Spin adapted configurations
Configuration    1
    1:   1.00000   0.00000    1    2    3    4    5
Configuration    2
    1:   1.00000   0.00000    1    2    3    4    6
Configuration    3
    1:   1.00000   0.00000    1    2    3    5    6
 Each irreducable representation is present the number of times indicated
    T2    (  1)

 representation T2     component     1  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1    2    3    5    6

 representation T2     component     2  fun    1
Symmeterized Function
    1:  -1.00000   0.00000    1    2    3    4    6

 representation T2     component     3  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1    2    3    4    5
Direct product basis set
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    9   10   12
    2:   0.70711   0.00000    1    2    3    4    6    7    8    9   10   11
Direct product basis function
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   12
    2:  -0.70711   0.00000    1    2    3    4    5    7    8    9   10   11
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   12
    2:   0.70711   0.00000    1    2    3    4    5    6    8    9   10   11
Closed shell target
Time Now =       696.5373  Delta time =         0.0030 End SymProd

----------------------------------------------------------------------
MatEle - Program to compute Matrix Elements over Determinants
----------------------------------------------------------------------

Configuration     1
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    9   10   12
    2:   0.70711   0.00000    1    2    3    4    6    7    8    9   10   11
Configuration     2
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   12
    2:  -0.70711   0.00000    1    2    3    4    5    7    8    9   10   11
Configuration     3
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   12
    2:   0.70711   0.00000    1    2    3    4    5    6    8    9   10   11
Direct product Configuration Cont sym =    1  Targ sym =    1
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    9   10   12
    2:   0.70711   0.00000    1    2    3    4    6    7    8    9   10   11
Direct product Configuration Cont sym =    1  Targ sym =    2
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   12
    2:  -0.70711   0.00000    1    2    3    4    5    7    8    9   10   11
Direct product Configuration Cont sym =    1  Targ sym =    3
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   12
    2:   0.70711   0.00000    1    2    3    4    5    6    8    9   10   11
Overlap of Direct Product expansion and Symmeterized states
Symmetry of Continuum =    1
Symmetry of target =    5
Symmetry of total states =    5

Total symmetry component =    1

Cont      Target Component
Comp        1               2               3
   1   0.10000000E+01  0.00000000E+00  0.00000000E+00

Total symmetry component =    2

Cont      Target Component
Comp        1               2               3
   1   0.00000000E+00  0.10000000E+01  0.00000000E+00

Total symmetry component =    3

Cont      Target Component
Comp        1               2               3
   1   0.00000000E+00  0.00000000E+00  0.10000000E+01
Initial State Configuration
    1:   1.00000   0.00000    1    2    3    4    5    6    7    8    9   10
One electron matrix elements between initial and final states
    1:   -1.414213562    0.000000000  <    5|   11>

Reduced formula list
    1    3    1 -0.1414213562E+01
Time Now =       696.5376  Delta time =         0.0002 End MatEle

+ Command DipoleOp
+

----------------------------------------------------------------------
DipoleOp - Dipole Operator Program
----------------------------------------------------------------------

Number of orbitals in formula for the dipole operator (NOrbSel) =    1
Symmetry of the continuum orbital (iContSym) =     1 or A1
Symmetry of total final state (iTotalSym) =     5 or T2
Symmetry of the initial state (iInitSym) =     1 or A1
Symmetry of the ionized target state (iTargSym) =     5 or T2
List of unique symmetry types
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
Unique dipole matrix type     1 Dipole symmetry type =T2
     Final state symmetry type = T2     Target sym =T2
     Continuum type =A1
In the product of the symmetry types T2    A2
 Each irreducable representation is present the number of times indicated
    T1    (  1)
In the product of the symmetry types T2    E
 Each irreducable representation is present the number of times indicated
    T1    (  1)
    T2    (  1)
Unique dipole matrix type     2 Dipole symmetry type =T2
     Final state symmetry type = T2     Target sym =T2
     Continuum type =E
In the product of the symmetry types T2    T1
 Each irreducable representation is present the number of times indicated
    A2    (  1)
    E     (  1)
    T1    (  1)
    T2    (  1)
Unique dipole matrix type     3 Dipole symmetry type =T2
     Final state symmetry type = T2     Target sym =T2
     Continuum type =T1
In the product of the symmetry types T2    T2
 Each irreducable representation is present the number of times indicated
    A1    (  1)
    E     (  1)
    T1    (  1)
    T2    (  1)
Unique dipole matrix type     4 Dipole symmetry type =T2
     Final state symmetry type = T2     Target sym =T2
     Continuum type =T2
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
Irreducible representation containing the dipole operator is T2
Number of different dipole operators in this representation is     1
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
Vector of the total symmetry
ie =    1  ij =    1
    1 (  0.10000000E+01,  0.00000000E+00)
    2 (  0.00000000E+00,  0.00000000E+00)
    3 (  0.00000000E+00,  0.00000000E+00)
Vector of the total symmetry
ie =    2  ij =    1
    1 (  0.00000000E+00,  0.00000000E+00)
    2 (  0.10000000E+01,  0.00000000E+00)
    3 (  0.00000000E+00,  0.00000000E+00)
Vector of the total symmetry
ie =    3  ij =    1
    1 (  0.00000000E+00,  0.00000000E+00)
    2 (  0.00000000E+00,  0.00000000E+00)
    3 (  0.10000000E+01,  0.00000000E+00)
Component Dipole Op Sym =  1 goes to Total Sym component   1 phase = 1.0
Component Dipole Op Sym =  2 goes to Total Sym component   2 phase = 1.0
Component Dipole Op Sym =  3 goes to Total Sym component   3 phase = 1.0

Dipole operator types by symmetry components (x=1, y=2, z=3)
sym comp =  1
  coefficients =  0.00000000  1.00000000  0.00000000
sym comp =  2
  coefficients =  1.00000000  0.00000000  0.00000000
sym comp =  3
  coefficients =  0.00000000  0.00000000  1.00000000

Formula for dipole operator

Dipole operator sym comp 1  index =    1
  1  Cont comp  1  Orb  3  Coef =  -1.4142135620
Symmetry type to write out (SymTyp) =A1
Time Now =       711.6961  Delta time =        15.1585 End DipoleOp

+ Command GetPot
+

----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------

Total density =      9.00000000
Time Now =       711.7015  Delta time =         0.0054 End Den

----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------

 vasymp =  0.90000000E+01 facnorm =  0.10000000E+01
Time Now =       711.7200  Delta time =         0.0185 Electronic part
Time Now =       711.7214  Delta time =         0.0014 End StPot

+ Command PhIon
+ 0.1 5.8 15.8 25.8

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.10000000E+00 eV (  0.36749326E-02 AU)
Time Now =       711.7388  Delta time =         0.0174 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = A1    1
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =      T
Maximum l for computed scattering solutions (LMaxK) =   11
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    50
Number of partial waves (np) =    15
Number of asymptotic solutions on the right (NAsymR) =     9
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   13
Number of partial waves in the asymptotic region (npasym) =   12
Number of orthogonality constraints (NOrthUse) =    2
Number of different asymptotic potentials =    6
Maximum number of asymptotic partial waves =  183
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =   11
Highest l used at large r (lpasym) =   13
Higest l used in the asymptotic potential (lpzb) =   26
Maximum L used in the homogeneous solution (LMaxHomo) =   13
Number of partial waves in the homogeneous solution (npHomo) =   12
Time Now =       711.7450  Delta time =         0.0062 Energy independent setup

Compute solution for E =    0.1000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.83266727E-16
 i =  2  lval =   3  stpote =  0.67637547E-19
 i =  3  lval =   3  stpote =  0.15768643E-18
 i =  4  lval =   4  stpote = -0.29206878E-04
For potential     2
 i =  1  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.18436994E-16
 i =  2  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.18267832E-16
 i =  3  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.18107865E-16
 i =  4  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.17963371E-16
For potential     3
For potential     4
 i =  1  lval =   4  stpote = -0.99649456E-01
 i =  2  lval =   3  stpote =  0.80068751E-04
 i =  3  lval =   3  stpote =  0.46227715E-04
 i =  4  lval =   4  stpote = -0.89697638E-05
For potential     5
 i =  1  lval =   4  stpote =  0.49824728E-01
 i =  2  lval =   3  stpote =  0.40034376E-04
 i =  3  lval =   3  stpote = -0.23113857E-04
 i =  4  lval =   4  stpote =  0.44848819E-05
For potential     6
 i =  1  lval =   4  stpote =  0.49824728E-01
 i =  2  lval =   3  stpote =  0.17979165E-20
 i =  3  lval =   3  stpote =  0.46227715E-04
 i =  4  lval =   4  stpote =  0.44848819E-05
Number of asymptotic regions =      80
Final point in integration =   0.12184304E+04 Angstroms
Time Now =       717.3999  Delta time =         5.6549 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.14207751E+01,-0.17497577E+00) (-0.23793421E+00, 0.83963811E-01)
  ( 0.14365549E-01,-0.66194385E-02) (-0.14569190E-05,-0.59765348E-05)
  (-0.60192764E-06,-0.11482297E-06) ( 0.81662990E-08, 0.15458245E-09)
  (-0.78637127E-09, 0.25311529E-11) ( 0.17588837E-10,-0.57172755E-12)
  ( 0.13372643E-12,-0.70612910E-14)
     ROW  2
  ( 0.70083138E+00,-0.86047960E-01) (-0.11259935E+00, 0.41298639E-01)
  ( 0.67515453E-02,-0.32240737E-02) ( 0.70052827E-05,-0.29048363E-05)
  ( 0.57577558E-07,-0.58213849E-07) ( 0.52444911E-09, 0.10093961E-09)
  (-0.16158421E-09,-0.44954436E-11) ( 0.41658770E-11,-0.62650198E-13)
  ( 0.36538546E-13,-0.13789345E-14)
MaxIter =   6 c.s. =      2.62614031 rmsk=     0.00000000
Time Now =       722.8276  Delta time =         5.4277 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.58000000E+01 eV (  0.21314609E+00 AU)
Time Now =       722.8447  Delta time =         0.0171 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = A1    1
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =      T
Maximum l for computed scattering solutions (LMaxK) =   11
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    50
Number of partial waves (np) =    15
Number of asymptotic solutions on the right (NAsymR) =     9
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   13
Number of partial waves in the asymptotic region (npasym) =   12
Number of orthogonality constraints (NOrthUse) =    2
Number of different asymptotic potentials =    6
Maximum number of asymptotic partial waves =  183
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =   11
Highest l used at large r (lpasym) =   13
Higest l used in the asymptotic potential (lpzb) =   26
Maximum L used in the homogeneous solution (LMaxHomo) =   13
Number of partial waves in the homogeneous solution (npHomo) =   12
Time Now =       722.8509  Delta time =         0.0062 Energy independent setup

Compute solution for E =    5.8000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.83266727E-16
 i =  2  lval =   3  stpote =  0.67637547E-19
 i =  3  lval =   3  stpote =  0.15768643E-18
 i =  4  lval =   4  stpote = -0.29206878E-04
For potential     2
 i =  1  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.12172836E-16
 i =  2  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.12045935E-16
 i =  3  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.11925986E-16
 i =  4  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.11817746E-16
For potential     3
For potential     4
 i =  1  lval =   4  stpote = -0.99649456E-01
 i =  2  lval =   3  stpote =  0.80068751E-04
 i =  3  lval =   3  stpote =  0.46227715E-04
 i =  4  lval =   4  stpote = -0.89697638E-05
For potential     5
 i =  1  lval =   4  stpote =  0.49824728E-01
 i =  2  lval =   3  stpote =  0.40034376E-04
 i =  3  lval =   3  stpote = -0.23113857E-04
 i =  4  lval =   4  stpote =  0.44848819E-05
For potential     6
 i =  1  lval =   4  stpote =  0.49824728E-01
 i =  2  lval =   3  stpote =  0.17979165E-20
 i =  3  lval =   3  stpote =  0.46227715E-04
 i =  4  lval =   4  stpote =  0.44848819E-05
Number of asymptotic regions =     207
Final point in integration =   0.43182643E+03 Angstroms
Time Now =       735.4378  Delta time =        12.5870 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.84116333E+00,-0.13256610E+00) (-0.38627600E+00, 0.27555711E+00)
  ( 0.55906020E-01,-0.47989261E-01) ( 0.47068178E-03,-0.11105991E-02)
  (-0.23308966E-04,-0.11598475E-03) ( 0.20310502E-05, 0.34017829E-05)
  (-0.29900579E-05,-0.58578977E-06) ( 0.36306767E-06, 0.40326795E-07)
  ( 0.15511937E-07, 0.90744885E-09)
     ROW  2
  ( 0.57507989E+00,-0.86373620E-01) (-0.24512852E+00, 0.18399512E+00)
  ( 0.35863441E-01,-0.31790022E-01) ( 0.66974492E-03,-0.72699525E-03)
  ( 0.49277266E-04,-0.76470656E-04) (-0.84840485E-06, 0.22593860E-05)
  (-0.53302237E-06,-0.45815206E-06) ( 0.88051181E-07, 0.38047493E-07)
  ( 0.48328264E-08, 0.11435813E-08)
MaxIter =   6 c.s. =      1.39011756 rmsk=     0.00000000
Time Now =       740.9698  Delta time =         5.5319 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.15800000E+02 eV (  0.58063935E+00 AU)
Time Now =       740.9877  Delta time =         0.0179 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = A1    1
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =      T
Maximum l for computed scattering solutions (LMaxK) =   11
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    50
Number of partial waves (np) =    15
Number of asymptotic solutions on the right (NAsymR) =     9
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   13
Number of partial waves in the asymptotic region (npasym) =   12
Number of orthogonality constraints (NOrthUse) =    2
Number of different asymptotic potentials =    6
Maximum number of asymptotic partial waves =  183
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =   11
Highest l used at large r (lpasym) =   13
Higest l used in the asymptotic potential (lpzb) =   26
Maximum L used in the homogeneous solution (LMaxHomo) =   13
Number of partial waves in the homogeneous solution (npHomo) =   12
Time Now =       740.9939  Delta time =         0.0062 Energy independent setup

Compute solution for E =   15.8000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.83266727E-16
 i =  2  lval =   3  stpote =  0.67637547E-19
 i =  3  lval =   3  stpote =  0.15768643E-18
 i =  4  lval =   4  stpote = -0.29206878E-04
For potential     2
 i =  1  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.10841077E-16
 i =  2  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.10672925E-16
 i =  3  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.10514985E-16
 i =  4  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.10373231E-16
For potential     3
For potential     4
 i =  1  lval =   4  stpote = -0.99649456E-01
 i =  2  lval =   3  stpote =  0.80068751E-04
 i =  3  lval =   3  stpote =  0.46227715E-04
 i =  4  lval =   4  stpote = -0.89697638E-05
For potential     5
 i =  1  lval =   4  stpote =  0.49824728E-01
 i =  2  lval =   3  stpote =  0.40034376E-04
 i =  3  lval =   3  stpote = -0.23113857E-04
 i =  4  lval =   4  stpote =  0.44848819E-05
For potential     6
 i =  1  lval =   4  stpote =  0.49824728E-01
 i =  2  lval =   3  stpote =  0.17979165E-20
 i =  3  lval =   3  stpote =  0.46227715E-04
 i =  4  lval =   4  stpote =  0.44848819E-05
Number of asymptotic regions =     262
Final point in integration =   0.33455005E+03 Angstroms
Time Now =       756.9548  Delta time =        15.9609 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.30832864E+00,-0.60913475E-01) (-0.95865939E-01, 0.25431770E+00)
  ( 0.23818213E-01,-0.59098868E-01) ( 0.19840820E-02,-0.30118118E-02)
  ( 0.21675241E-03,-0.47045042E-03) (-0.17621524E-04, 0.21250172E-04)
  (-0.37882326E-04,-0.67305098E-05) ( 0.79989763E-05, 0.84877632E-06)
  ( 0.60194367E-06, 0.41857761E-07)
     ROW  2
  ( 0.31737192E+00,-0.55300516E-01) (-0.85793326E-01, 0.25032148E+00)
  ( 0.21571184E-01,-0.57889791E-01) ( 0.22504409E-02,-0.29208017E-02)
  ( 0.34848773E-03,-0.45582597E-03) (-0.12913094E-04, 0.20695200E-04)
  (-0.58474101E-05,-0.67587963E-05) ( 0.22383919E-05, 0.92526446E-06)
  ( 0.24923189E-06, 0.46788999E-07)
MaxIter =   6 c.s. =      0.35435292 rmsk=     0.00000000
Time Now =       761.9850  Delta time =         5.0302 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.25800000E+02 eV (  0.94813261E+00 AU)
Time Now =       762.0021  Delta time =         0.0170 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = A1    1
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =      T
Maximum l for computed scattering solutions (LMaxK) =   11
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    50
Number of partial waves (np) =    15
Number of asymptotic solutions on the right (NAsymR) =     9
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   13
Number of partial waves in the asymptotic region (npasym) =   12
Number of orthogonality constraints (NOrthUse) =    2
Number of different asymptotic potentials =    6
Maximum number of asymptotic partial waves =  183
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =   11
Highest l used at large r (lpasym) =   13
Higest l used in the asymptotic potential (lpzb) =   26
Maximum L used in the homogeneous solution (LMaxHomo) =   13
Number of partial waves in the homogeneous solution (npHomo) =   12
Time Now =       762.0083  Delta time =         0.0063 Energy independent setup

Compute solution for E =   25.8000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.83266727E-16
 i =  2  lval =   3  stpote =  0.67637547E-19
 i =  3  lval =   3  stpote =  0.15768643E-18
 i =  4  lval =   4  stpote = -0.29206878E-04
For potential     2
 i =  1  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.53720238E-17
 i =  2  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.53801648E-17
 i =  3  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.53884798E-17
 i =  4  exps = -0.94863410E+02 -0.20000000E+01  stpote = -0.53964813E-17
For potential     3
For potential     4
 i =  1  lval =   4  stpote = -0.99649456E-01
 i =  2  lval =   3  stpote =  0.80068751E-04
 i =  3  lval =   3  stpote =  0.46227715E-04
 i =  4  lval =   4  stpote = -0.89697638E-05
For potential     5
 i =  1  lval =   4  stpote =  0.49824728E-01
 i =  2  lval =   3  stpote =  0.40034376E-04
 i =  3  lval =   3  stpote = -0.23113857E-04
 i =  4  lval =   4  stpote =  0.44848819E-05
For potential     6
 i =  1  lval =   4  stpote =  0.49824728E-01
 i =  2  lval =   3  stpote =  0.17979165E-20
 i =  3  lval =   3  stpote =  0.46227715E-04
 i =  4  lval =   4  stpote =  0.44848819E-05
Number of asymptotic regions =     294
Final point in integration =   0.29546264E+03 Angstroms
Time Now =       779.6676  Delta time =        17.6593 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.13479880E+00, 0.59524754E-02) (-0.44453383E-02, 0.10195292E+00)
  ( 0.12458626E-01,-0.28084523E-01) ( 0.45283874E-02,-0.20865110E-02)
  ( 0.87964104E-03,-0.43019600E-03) (-0.67297353E-04, 0.24927154E-04)
  (-0.10482143E-03,-0.12581710E-04) ( 0.32134082E-04, 0.20952604E-05)
  ( 0.34944098E-05, 0.13031872E-06)
     ROW  2
  ( 0.19086530E+00, 0.13415014E-01) (-0.48171539E-03, 0.13548093E+00)
  ( 0.12209972E-01,-0.36997075E-01) ( 0.52821262E-02,-0.26781244E-02)
  ( 0.12565607E-02,-0.53959847E-03) (-0.68448272E-04, 0.31469960E-04)
  ( 0.74904113E-05,-0.15734389E-04) ( 0.54760659E-05, 0.29843469E-05)
  ( 0.12741746E-05, 0.20294904E-06)
MaxIter =   6 c.s. =      0.08610976 rmsk=     0.00000000
Time Now =       785.2898  Delta time =         5.6221 End ScatStab

+ Command GetCro
+ 'test15T2A1.idy'
Taking dipole matrix from file test15T2A1.idy

----------------------------------------------------------------------
CnvIdy - read in and convert dynamical matrix elements and convert to raw form
----------------------------------------------------------------------

Time Now =       785.2913  Delta time =         0.0015 End CnvIdy
Found     4 energies :
     0.10000     5.80000    15.80000    25.80000
List of matrix element types found   Number =    1
    1  Cont Sym A1     Targ Sym T2     Total Sym T2
Keeping     4 energies :
     0.10000     5.80000    15.80000    25.80000
Time Now =       785.2913  Delta time =         0.0000 End SelIdy

----------------------------------------------------------------------
CrossSection - compute photoionization cross section
----------------------------------------------------------------------

Ionization potential (IPot) =     14.2000 eV
Label -
Cross section by partial wave      F
Cross Sections for

     Sigma LENGTH   at all energies
      Eng
    14.3000  0.57032097E+01
    20.0000  0.36075183E+01
    30.0000  0.10005964E+01
    40.0000  0.22338977E+00

     Sigma MIXED    at all energies
      Eng
    14.3000  0.53471674E+01
    20.0000  0.33079969E+01
    30.0000  0.90933208E+00
    40.0000  0.20977194E+00

     Sigma VELOCITY at all energies
      Eng
    14.3000  0.50135696E+01
    20.0000  0.30355343E+01
    30.0000  0.82749444E+00
    40.0000  0.19746839E+00

     Beta LENGTH   at all energies
      Eng
    14.3000 -0.83340119E-21
    20.0000 -0.32928977E-19
    30.0000 -0.24163763E-18
    40.0000  0.17979989E-18

     Beta MIXED    at all energies
      Eng
    14.3000 -0.59985486E-20
    20.0000 -0.16628145E-18
    30.0000 -0.61419629E-18
    40.0000  0.79640611E-18

     Beta VELOCITY at all energies
      Eng
    14.3000 -0.73153150E-20
    20.0000  0.67877553E-19
    30.0000 -0.97177068E-18
    40.0000  0.62129990E-18

          COMPOSITE CROSS SECTIONS AT ALL ENERGIES
         Energy  SIGMA LEN  SIGMA MIX  SIGMA VEL   BETA LEN   BETA MIX   BETA VEL
EPhi     14.3000     5.7032     5.3472     5.0136     0.0000     0.0000     0.0000
EPhi     20.0000     3.6075     3.3080     3.0355     0.0000     0.0000     0.0000
EPhi     30.0000     1.0006     0.9093     0.8275     0.0000     0.0000     0.0000
EPhi     40.0000     0.2234     0.2098     0.1975     0.0000     0.0000     0.0000
Time Now =       785.3458  Delta time =         0.0544 End CrossSection

+ Command GetCro
+ 'test15T2A1.idy' 'test15T2E.idy' 'test15T2T2.idy'  'test15T2T1.idy'
Taking dipole matrix from file test15T2A1.idy

----------------------------------------------------------------------
CnvIdy - read in and convert dynamical matrix elements and convert to raw form
----------------------------------------------------------------------

Time Now =       785.3469  Delta time =         0.0011 End CnvIdy
Taking dipole matrix from file test15T2E.idy

----------------------------------------------------------------------
CnvIdy - read in and convert dynamical matrix elements and convert to raw form
----------------------------------------------------------------------

Time Now =       785.3486  Delta time =         0.0017 End CnvIdy
Taking dipole matrix from file test15T2T2.idy

----------------------------------------------------------------------
CnvIdy - read in and convert dynamical matrix elements and convert to raw form
----------------------------------------------------------------------

Time Now =       785.3514  Delta time =         0.0028 End CnvIdy
Taking dipole matrix from file test15T2T1.idy

----------------------------------------------------------------------
CnvIdy - read in and convert dynamical matrix elements and convert to raw form
----------------------------------------------------------------------

Time Now =       785.3538  Delta time =         0.0024 End CnvIdy
Found     4 energies :
     0.10000     5.80000    15.80000    25.80000
List of matrix element types found   Number =    4
    1  Cont Sym A1     Targ Sym T2     Total Sym T2
    2  Cont Sym E      Targ Sym T2     Total Sym T2
    3  Cont Sym T2     Targ Sym T2     Total Sym T2
    4  Cont Sym T1     Targ Sym T2     Total Sym T2
Keeping     4 energies :
     0.10000     5.80000    15.80000    25.80000
Time Now =       785.3538  Delta time =         0.0000 End SelIdy

----------------------------------------------------------------------
CrossSection - compute photoionization cross section
----------------------------------------------------------------------

Ionization potential (IPot) =     14.2000 eV
Label -
Cross section by partial wave      F
Cross Sections for

     Sigma LENGTH   at all energies
      Eng
    14.3000  0.63341990E+02
    20.0000  0.43996153E+02
    30.0000  0.13361119E+02
    40.0000  0.53802704E+01

     Sigma MIXED    at all energies
      Eng
    14.3000  0.55593191E+02
    20.0000  0.36997816E+02
    30.0000  0.11026877E+02
    40.0000  0.44427667E+01

     Sigma VELOCITY at all energies
      Eng
    14.3000  0.48865610E+02
    20.0000  0.31189758E+02
    30.0000  0.91424967E+01
    40.0000  0.36867318E+01

     Beta LENGTH   at all energies
      Eng
    14.3000  0.18856790E+00
    20.0000  0.99641288E+00
    30.0000  0.10956076E+01
    40.0000  0.11164777E+01

     Beta MIXED    at all energies
      Eng
    14.3000  0.16063476E+00
    20.0000  0.10008454E+01
    30.0000  0.11151810E+01
    40.0000  0.11403698E+01

     Beta VELOCITY at all energies
      Eng
    14.3000  0.13316363E+00
    20.0000  0.10026700E+01
    30.0000  0.11295080E+01
    40.0000  0.11579946E+01

          COMPOSITE CROSS SECTIONS AT ALL ENERGIES
         Energy  SIGMA LEN  SIGMA MIX  SIGMA VEL   BETA LEN   BETA MIX   BETA VEL
EPhi     14.3000    63.3420    55.5932    48.8656     0.1886     0.1606     0.1332
EPhi     20.0000    43.9962    36.9978    31.1898     0.9964     1.0008     1.0027
EPhi     30.0000    13.3611    11.0269     9.1425     1.0956     1.1152     1.1295
EPhi     40.0000     5.3803     4.4428     3.6867     1.1165     1.1404     1.1580
Time Now =       785.4085  Delta time =         0.0547 End CrossSection
Time Now =       785.4087  Delta time =         0.0002 Finalize