Execution on login004

----------------------------------------------------------------------
ePolyScat Version E3
----------------------------------------------------------------------

Authors: R. R. Lucchese, N. Sanna, A. P. P. Natalense, and F. A. Gianturco
http://www.chem.tamu.edu/rgroup/lucchese/ePolyScat.E3.manual/manual.html
Please cite the following two papers when reporting results obtained with  this program
F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 100, 6464 (1994).
A. P. P. Natalense and R. R. Lucchese, J. Chem. Phys. 111, 5344 (1999).

----------------------------------------------------------------------

Starting at 2011-08-29  10:40:27.282 (GMT -0500)
Using    16 processors

----------------------------------------------------------------------


+ Start of Input Records
#
# input file for test13
#
# electron scattering from N2 molden SCF, DCS calculation
#
  LMax   15     # maximum l to be used for wave functions
  LMaxA  10     # set larger than default to accomodate LMaxK in second part of calculation
  EMax  50.0    # EMax, maximum asymptotic energy in eV
  EngForm      # Energy formulas
   0 0         # charge, formula type
  FegeEng 13.0   # Energy correction (in eV) used in the fege potential
  ScatContSym 'SG'  # Scattering symmetry
  LMaxK    4     # Maximum l in the K matirx
  ScatEng 3.0 4.0 5.0 6.0
Convert '/g/home/rrl581a/Applications/ePolyScat.E3/tests/test13.molden' 'molden'
GetBlms
ExpOrb
GetPot
FileName 'MatrixElements' 'test13se.dat' 'REWIND'
GrnType 1
  ScatContSym 'SG'  # Scattering symmetry
Scat
  ScatContSym 'SU'  # Scattering symmetry
Scat
  ScatContSym 'PG'  # Scattering symmetry
Scat
  ScatContSym 'PU'  # Scattering symmetry
Scat
  ScatContSym 'DG'  # Scattering symmetry
Scat
  ScatContSym 'DU'  # Scattering symmetry
Scat
  ScatContSym 'FG'  # Scattering symmetry
Scat
  ScatContSym 'FU'  # Scattering symmetry
Scat
  ScatContSym 'GG'  # Scattering symmetry
Scat
  ScatContSym 'GU'  # Scattering symmetry
Scat
  ScatContSym 'A2G' # Scattering symmetry
Scat
  ScatContSym 'A2U' # Scattering symmetry
Scat
  ScatContSym 'B1G' # Scattering symmetry
Scat
  ScatContSym 'B1U' # Scattering symmetry
Scat
  ScatContSym 'B2G' # Scattering symmetry
Scat
  ScatContSym 'B2U' # Scattering symmetry
Scat
FileName 'MatrixElements' 'test13loc.dat' 'REWIND'
  LMaxK 10           # do higher partial wave with just the local potential
  IterMax -1
  ScatContSym 'SG'  # Scattering symmetry
Scat
  ScatContSym 'SU'  # Scattering symmetry
Scat
  ScatContSym 'PG'  # Scattering symmetry
Scat
  ScatContSym 'PU'  # Scattering symmetry
Scat
  ScatContSym 'DG'  # Scattering symmetry
Scat
  ScatContSym 'DU'  # Scattering symmetry
Scat
  ScatContSym 'FG'  # Scattering symmetry
Scat
  ScatContSym 'FU'  # Scattering symmetry
Scat
  ScatContSym 'GG'  # Scattering symmetry
Scat
  ScatContSym 'GU'  # Scattering symmetry
Scat
  ScatContSym 'A2G' # Scattering symmetry
Scat
  ScatContSym 'A2U' # Scattering symmetry
Scat
  ScatContSym 'B1G' # Scattering symmetry
Scat
  ScatContSym 'B1U' # Scattering symmetry
Scat
  ScatContSym 'B2G' # Scattering symmetry
Scat
  ScatContSym 'B2U' # Scattering symmetry
Scat
MatrixElementsCollect 'test13loc.dat'
MatrixElementsCombine 'test13se.dat'
TotalCrossSection
EDCS
+ End of input reached
+ Data Record LMax - 15
+ Data Record LMaxA - 10
+ Data Record EMax - 50.0
+ Data Record EngForm - 0 0
+ Data Record FegeEng - 13.0
+ Data Record ScatContSym - 'SG'
+ Data Record LMaxK - 4
+ Data Record ScatEng - 3.0 4.0 5.0 6.0

+ Command Convert
+ '/g/home/rrl581a/Applications/ePolyScat.E3/tests/test13.molden' 'molden'

----------------------------------------------------------------------
MoldenCnv - Molden (from Molpro) conversion program
----------------------------------------------------------------------

Expansion center is (in Angstroms) -
     0.0000000000   0.0000000000   0.0000000000
Convert from Angstroms to Bohr radii
Found    110 basis functions
Selecting orbitals
Number of orbitals selected is     7
Selecting    1   1 Ene =     -15.6842 Spin =Alpha Occup =   2.000000
Selecting    2   2 Ene =     -15.6806 Spin =Alpha Occup =   2.000000
Selecting    3   3 Ene =      -1.4752 Spin =Alpha Occup =   2.000000
Selecting    4   4 Ene =      -0.7786 Spin =Alpha Occup =   2.000000
Selecting    5   5 Ene =      -0.6350 Spin =Alpha Occup =   2.000000
Selecting    6   6 Ene =      -0.6161 Spin =Alpha Occup =   2.000000
Selecting    7   7 Ene =      -0.6161 Spin =Alpha Occup =   2.000000

Atoms found    2  Coordinates in Angstroms
Z =  7 ZS =  7 r =   0.0000000000   0.0000000000  -0.5470000000
Z =  7 ZS =  7 r =   0.0000000000   0.0000000000   0.5470000000
Maximum distance from expansion center is    0.5470000000

+ Command GetBlms
+

----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------

Found point group  DAh
Reduce angular grid using nthd =  2  nphid =  4
Found point group for abelian subgroup D2h
Time Now =         0.0676  Delta time =         0.0676 End GetPGroup
List of unique axes
  N  Vector                      Z   R
  1  0.00000  0.00000  1.00000   7  0.54700   7  0.54700
List of corresponding x axes
  N  Vector
  1  1.00000  0.00000  0.00000
Computed default value of LMaxA =   11
Use input value of LMaxA =   10
Determining angular grid in GetAxMax  LMax =   15  LMaxA =   10  LMaxAb =   30
MMax =    3  MMaxAbFlag =    2
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10   3   3   3   3   3
On the double L grid used for products
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19
  20  13  13  13  13  13   6   6   6   6   6

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is DAh
LMax = =   15
 The dimension of each irreducable representation is
    SG    (  1)    A2G   (  1)    B1G   (  1)    B2G   (  1)    PG    (  2)
    DG    (  2)    FG    (  2)    GG    (  2)    SU    (  1)    A2U   (  1)
    B1U   (  1)    B2U   (  1)    PU    (  2)    DU    (  2)    FU    (  2)
    GU    (  2)
 Number of symmetry operations in the abelian subgroup (excluding E) =    7
 The operations are -
    12    22    32     2     3    21    31
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 SG        1         1          9       1  1  1  1  1  1  1
 A2G       1         2          1       1 -1 -1  1  1 -1 -1
 B1G       1         3          3      -1  1 -1  1 -1  1 -1
 B2G       1         4          3      -1 -1  1  1 -1 -1  1
 PG        1         5          8      -1 -1  1  1 -1 -1  1
 PG        2         6          8      -1  1 -1  1 -1  1 -1
 DG        1         7          9       1 -1 -1  1  1 -1 -1
 DG        2         8          9       1  1  1  1  1  1  1
 FG        1         9          8      -1 -1  1  1 -1 -1  1
 FG        2        10          8      -1  1 -1  1 -1  1 -1
 GG        1        11          7       1 -1 -1  1  1 -1 -1
 GG        2        12          7       1  1  1  1  1  1  1
 SU        1        13          8       1 -1 -1 -1 -1  1  1
 A2U       1        14          0       1  1  1 -1 -1 -1 -1
 B1U       1        15          3      -1 -1  1 -1  1  1 -1
 B2U       1        16          3      -1  1 -1 -1  1 -1  1
 PU        1        17          9      -1 -1  1 -1  1  1 -1
 PU        2        18          9      -1  1 -1 -1  1 -1  1
 DU        1        19          8       1 -1 -1 -1 -1  1  1
 DU        2        20          8       1  1  1 -1 -1 -1 -1
 FU        1        21          9      -1 -1  1 -1  1  1 -1
 FU        2        22          9      -1  1 -1 -1  1 -1  1
 GU        1        23          5       1 -1 -1 -1 -1  1  1
 GU        2        24          5       1  1  1 -1 -1 -1 -1
Time Now =         0.4877  Delta time =         0.4200 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
SG    1    0(   1)    1(   1)    2(   2)    3(   2)    4(   3)    5(   3)    6(   4)    7(   4)    8(   5)    9(   5)
          10(   7)
A2G   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   0)    7(   0)    8(   0)    9(   0)
          10(   1)
B1G   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   1)    7(   1)    8(   2)    9(   2)
          10(   3)
B2G   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   1)    7(   1)    8(   2)    9(   2)
          10(   3)
PG    1    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)    6(   3)    7(   3)    8(   4)    9(   4)
          10(   6)
PG    2    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)    6(   3)    7(   3)    8(   4)    9(   4)
          10(   6)
DG    1    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)    6(   3)    7(   3)    8(   5)    9(   5)
          10(   7)
DG    2    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)    6(   3)    7(   3)    8(   5)    9(   5)
          10(   7)
FG    1    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   1)    6(   2)    7(   2)    8(   4)    9(   4)
          10(   6)
FG    2    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   1)    6(   2)    7(   2)    8(   4)    9(   4)
          10(   6)
GG    1    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   1)    6(   3)    7(   3)    8(   5)    9(   5)
          10(   7)
GG    2    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   1)    6(   3)    7(   3)    8(   5)    9(   5)
          10(   7)
SU    1    0(   0)    1(   1)    2(   1)    3(   2)    4(   2)    5(   3)    6(   3)    7(   4)    8(   4)    9(   5)
          10(   5)
A2U   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   0)    7(   0)    8(   0)    9(   0)
          10(   0)
B1U   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   1)    6(   1)    7(   2)    8(   2)    9(   3)
          10(   3)
B2U   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   1)    6(   1)    7(   2)    8(   2)    9(   3)
          10(   3)
PU    1    0(   0)    1(   1)    2(   1)    3(   2)    4(   2)    5(   3)    6(   3)    7(   4)    8(   4)    9(   6)
          10(   6)
PU    2    0(   0)    1(   1)    2(   1)    3(   2)    4(   2)    5(   3)    6(   3)    7(   4)    8(   4)    9(   6)
          10(   6)
DU    1    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   2)    6(   2)    7(   3)    8(   3)    9(   5)
          10(   5)
DU    2    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   2)    6(   2)    7(   3)    8(   3)    9(   5)
          10(   5)
FU    1    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   2)    6(   2)    7(   4)    8(   4)    9(   6)
          10(   6)
FU    2    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   2)    6(   2)    7(   4)    8(   4)    9(   6)
          10(   6)
GU    1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   1)    6(   1)    7(   3)    8(   3)    9(   5)
          10(   5)
GU    2    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   1)    6(   1)    7(   3)    8(   3)    9(   5)
          10(   5)

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is D2h
LMax = =   30
 The dimension of each irreducable representation is
    AG    (  1)    B1G   (  1)    B2G   (  1)    B3G   (  1)    AU    (  1)
    B1U   (  1)    B2U   (  1)    B3U   (  1)
Abelian axes
    1       1.000000       0.000000       0.000000
    2       0.000000       1.000000       0.000000
    3       0.000000       0.000000       1.000000
Symmetry operation directions
  1       0.000000       0.000000       1.000000 ang =  0  1 type = 0 axis = 3
  2       0.000000       0.000000       1.000000 ang =  1  2 type = 2 axis = 3
  3       1.000000       0.000000       0.000000 ang =  1  2 type = 2 axis = 1
  4       0.000000       1.000000       0.000000 ang =  1  2 type = 2 axis = 2
  5       0.000000       0.000000       1.000000 ang =  1  2 type = 3 axis = 3
  6       0.000000       0.000000       1.000000 ang =  0  1 type = 1 axis = 3
  7       1.000000       0.000000       0.000000 ang =  0  1 type = 1 axis = 1
  8       0.000000       1.000000       0.000000 ang =  0  1 type = 1 axis = 2
irep =    1  sym =AG    1  eigs =   1   1   1   1   1   1   1   1
irep =    2  sym =B1G   1  eigs =   1   1  -1  -1   1   1  -1  -1
irep =    3  sym =B2G   1  eigs =   1  -1  -1   1   1  -1  -1   1
irep =    4  sym =B3G   1  eigs =   1  -1   1  -1   1  -1   1  -1
irep =    5  sym =AU    1  eigs =   1   1   1   1  -1  -1  -1  -1
irep =    6  sym =B1U   1  eigs =   1   1  -1  -1  -1  -1   1   1
irep =    7  sym =B2U   1  eigs =   1  -1  -1   1  -1   1   1  -1
irep =    8  sym =B3U   1  eigs =   1  -1   1  -1  -1   1  -1   1
 Number of symmetry operations in the abelian subgroup (excluding E) =    7
 The operations are -
     2     3     4     5     6     7     8
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 AG        1         1         92       1  1  1  1  1  1  1
 B1G       1         2         76       1 -1 -1  1  1 -1 -1
 B2G       1         3         78      -1 -1  1  1 -1 -1  1
 B3G       1         4         78      -1  1 -1  1 -1  1 -1
 AU        1         5         69       1  1  1 -1 -1 -1 -1
 B1U       1         6         84       1 -1 -1 -1 -1  1  1
 B2U       1         7         82      -1 -1  1 -1  1  1 -1
 B3U       1         8         82      -1  1 -1 -1  1 -1  1
Time Now =         0.4984  Delta time =         0.0107 End SymGen

+ Command ExpOrb
+
In GetRMax, RMaxEps =  0.10000000E-05  RMax =    9.6359862155 Angs

----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------

Maximum R in the grid (RMax) =     9.63599 Angs
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) =   10.0
In regions controlled by the wave length (HFacWave) =   10.0
Factor used to control the minimum exponent at each center (MinExpFac) =  300.0
Maximum asymptotic kinetic energy (EMAx) =  50.00000 eV
Maximum step size (MaxStep) =   9.63599 Angs
Factor to increase grid by (GridFac) =     1

    1  Center at =     0.00000 Angs  Alpha Max = 0.10000E+01
    2  Center at =     0.54700 Angs  Alpha Max = 0.14700E+05

Generated Grid

  irg  nin  ntot      step Angs     R end Angs
    1    8     8    0.18998E-02     0.01520
    2    8    16    0.26749E-02     0.03660
    3    8    24    0.43054E-02     0.07104
    4    8    32    0.57696E-02     0.11720
    5    8    40    0.67259E-02     0.17101
    6    8    48    0.68378E-02     0.22571
    7    8    56    0.62927E-02     0.27605
    8    8    64    0.61050E-02     0.32489
    9    8    72    0.67380E-02     0.37879
   10    8    80    0.77685E-02     0.44094
   11    8    88    0.48305E-02     0.47958
   12    8    96    0.30704E-02     0.50415
   13    8   104    0.19517E-02     0.51976
   14    8   112    0.12406E-02     0.52969
   15    8   120    0.78856E-03     0.53599
   16    8   128    0.54521E-03     0.54036
   17    8   136    0.45672E-03     0.54401
   18    8   144    0.37374E-03     0.54700
   19    8   152    0.43646E-03     0.55049
   20    8   160    0.46530E-03     0.55421
   21    8   168    0.57358E-03     0.55880
   22    8   176    0.87025E-03     0.56576
   23    8   184    0.13836E-02     0.57683
   24    8   192    0.21997E-02     0.59443
   25    8   200    0.34972E-02     0.62241
   26    8   208    0.55601E-02     0.66689
   27    8   216    0.88398E-02     0.73761
   28    8   224    0.14054E-01     0.85004
   29    8   232    0.17629E-01     0.99108
   30    8   240    0.20554E-01     1.15551
   31    8   248    0.29077E-01     1.38812
   32    8   256    0.41231E-01     1.71797
   33    8   264    0.46626E-01     2.09097
   34    8   272    0.51232E-01     2.50083
   35    8   280    0.55135E-01     2.94191
   36    8   288    0.58434E-01     3.40939
   37    8   296    0.61228E-01     3.89921
   38    8   304    0.63602E-01     4.40802
   39    8   312    0.65632E-01     4.93308
   40    8   320    0.67378E-01     5.47210
   41    8   328    0.68888E-01     6.02321
   42    8   336    0.70204E-01     6.58485
   43    8   344    0.71357E-01     7.15571
   44    8   352    0.72374E-01     7.73470
   45    8   360    0.73275E-01     8.32090
   46    8   368    0.74079E-01     8.91353
   47    8   376    0.74798E-01     9.51191
   48    8   384    0.15509E-01     9.63599
Time Now =         0.5110  Delta time =         0.0126 End GenGrid

----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------

Maximum scattering l (lmax) =   15
Maximum scattering m (mmaxs) =   15
Maximum numerical integration l (lmaxi) =   30
Maximum numerical integration m (mmaxi) =   30
Maximum l to include in the asymptotic region (lmasym) =   10
Parameter used to determine the cutoff points (PCutRd) =  0.10000000E-07 au
Maximum E used to determine grid (in eV) =       50.00000
Print flag (iprnfg) =    0
lmasymtyts =   10
 Actual value of lmasym found =     10
Number of regions of the same l expansion (NAngReg) =    8
Angular regions
    1 L =    2  from (    1)         0.00190  to (    7)         0.01330
    2 L =    4  from (    8)         0.01520  to (   15)         0.03392
    3 L =    6  from (   16)         0.03660  to (   23)         0.06674
    4 L =    7  from (   24)         0.07104  to (   31)         0.11143
    5 L =    9  from (   32)         0.11720  to (   39)         0.16428
    6 L =   10  from (   40)         0.17101  to (   47)         0.21887
    7 L =   15  from (   48)         0.22571  to (  248)         1.38812
    8 L =   10  from (  249)         1.42935  to (  384)         9.63599
There are     2 angular regions for computing spherical harmonics
    1 lval =   10
    2 lval =   15
Last grid points by processor WorkExp =     1.500
Proc id =   -1  Last grid point =       1
Proc id =    0  Last grid point =      56
Proc id =    1  Last grid point =      72
Proc id =    2  Last grid point =      88
Proc id =    3  Last grid point =     112
Proc id =    4  Last grid point =     128
Proc id =    5  Last grid point =     144
Proc id =    6  Last grid point =     168
Proc id =    7  Last grid point =     184
Proc id =    8  Last grid point =     200
Proc id =    9  Last grid point =     216
Proc id =   10  Last grid point =     240
Proc id =   11  Last grid point =     256
Proc id =   12  Last grid point =     288
Proc id =   13  Last grid point =     320
Proc id =   14  Last grid point =     352
Proc id =   15  Last grid point =     384
Time Now =         0.5140  Delta time =         0.0030 End AngGCt

----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------


 R of maximum density
     1  SG    1 at max irg =   19  r =   0.55049
     2  SU    1 at max irg =   19  r =   0.55049
     3  SG    1 at max irg =   18  r =   0.54700
     4  SU    1 at max irg =   29  r =   0.99108
     5  SG    1 at max irg =   29  r =   0.99108
     6  PU    1 at max irg =   26  r =   0.66689
     7  PU    2 at max irg =   26  r =   0.66689

Rotation coefficients for orbital     1  grp =    1 SG    1
     1  1.0000000000

Rotation coefficients for orbital     2  grp =    2 SU    1
     2  1.0000000000

Rotation coefficients for orbital     3  grp =    3 SG    1
     3  1.0000000000

Rotation coefficients for orbital     4  grp =    4 SU    1
     4  1.0000000000

Rotation coefficients for orbital     5  grp =    5 SG    1
     5  1.0000000000

Rotation coefficients for orbital     6  grp =    6 PU    1
     6  1.0000000000    7  0.0000000000

Rotation coefficients for orbital     7  grp =    6 PU    2
     6  0.0000000000    7  1.0000000000
Number of orbital groups and degeneracis are         6
  1  1  1  1  1  2
Number of orbital groups and number of electrons when fully occupied
         6
  2  2  2  2  2  4
Time Now =         0.9179  Delta time =         0.4039 End RotOrb

----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------

 First orbital group to expand (mofr) =    1
 Last orbital group to expand (moto) =    6
Orbital     1 of  SG    1 symmetry normalization integral =  0.98788414
Orbital     2 of  SU    1 symmetry normalization integral =  0.99051993
Orbital     3 of  SG    1 symmetry normalization integral =  0.99928697
Orbital     4 of  SU    1 symmetry normalization integral =  0.99958573
Orbital     5 of  SG    1 symmetry normalization integral =  0.99994441
Orbital     6 of  PU    1 symmetry normalization integral =  0.99999093
Time Now =         1.0455  Delta time =         0.1276 End ExpOrb

+ Command GetPot
+

----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------

Total density =     14.00000000
Time Now =         1.0486  Delta time =         0.0031 End Den

----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------

 vasymp =  0.14000000E+02 facnorm =  0.10000000E+01
Time Now =         1.0555  Delta time =         0.0069 Electronic part
Time Now =         1.0558  Delta time =         0.0003 End StPot

+ Command FileName
+ 'MatrixElements' 'test13se.dat' 'REWIND'
Opening file test13se.dat at position REWIND
+ Data Record GrnType - 1
+ Data Record ScatContSym - 'SG'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =         1.0620  Delta time =         0.0062 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = SG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     3
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     3
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    7
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =    4
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    7
Time Now =         1.0674  Delta time =         0.0054 Energy independent setup

Compute solution for E =    3.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491016E-15
For potential     3
Number of asymptotic regions =      62
Final point in integration =   0.18302855E+03 Angstroms
Time Now =         1.6247  Delta time =         0.5573 End SolveHomo
      Final k matrix
     ROW  1
  (-0.41623329E+00, 0.74261040E+00) (-0.64825353E-01, 0.11697947E+00)
  (-0.32366814E-03, 0.18430565E-02)
     ROW  2
  (-0.64825353E-01, 0.11697947E+00) (-0.14872108E-01, 0.18470112E-01)
  (-0.45987603E-02, 0.33810211E-03)
     ROW  3
  (-0.32366821E-03, 0.18430576E-02) (-0.45987603E-02, 0.33810201E-03)
  (-0.58278325E-02, 0.62304590E-04)
 eigenphases
 -0.1060046E+01 -0.9774043E-02 -0.7135788E-03
 eigenphase sum-0.107053E+01  scattering length=   3.89579
 eps+pi 0.207106E+01  eps+2*pi 0.521265E+01

MaxIter =   8 c.s. =     12.14718382 angs^2  rmsk=     0.00000004
Time Now =         5.9732  Delta time =         4.3485 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =         5.9790  Delta time =         0.0058 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = SG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     3
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     3
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    7
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =    4
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    7
Time Now =         5.9837  Delta time =         0.0047 Energy independent setup

Compute solution for E =    4.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619643E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619640E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619635E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619626E-16
For potential     3
Number of asymptotic regions =      64
Final point in integration =   0.16629189E+03 Angstroms
Time Now =         6.5419  Delta time =         0.5582 End SolveHomo
      Final k matrix
     ROW  1
  (-0.32852697E+00, 0.83028514E+00) (-0.66917987E-01, 0.16879795E+00)
  (-0.34606187E-03, 0.32973086E-02)
     ROW  2
  (-0.66917988E-01, 0.16879795E+00) (-0.12890346E-01, 0.34340309E-01)
  (-0.48614784E-02, 0.69912340E-03)
     ROW  3
  (-0.34606188E-03, 0.32973086E-02) (-0.48614784E-02, 0.69912341E-03)
  (-0.66970722E-02, 0.84833727E-04)
 eigenphases
 -0.1193998E+01 -0.8969791E-02  0.2988102E-02
 eigenphase sum-0.119998E+01  scattering length=   4.74352
 eps+pi 0.194161E+01  eps+2*pi 0.508321E+01

MaxIter =   8 c.s. =     10.35001410 angs^2  rmsk=     0.00000000
Time Now =        11.1161  Delta time =         4.5742 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =        11.1218  Delta time =         0.0057 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = SG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     3
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     3
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    7
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =    4
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    7
Time Now =        11.1265  Delta time =         0.0047 Energy independent setup

Compute solution for E =    5.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332267E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332264E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332259E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332251E-16
For potential     3
Number of asymptotic regions =      66
Final point in integration =   0.15437122E+03 Angstroms
Time Now =        11.7282  Delta time =         0.6017 End SolveHomo
      Final k matrix
     ROW  1
  (-0.23998873E+00, 0.87528341E+00) (-0.61140793E-01, 0.21863951E+00)
  (-0.27260867E-03, 0.51245787E-02)
     ROW  2
  (-0.61140793E-01, 0.21863951E+00) (-0.10399257E-01, 0.54661419E-01)
  (-0.47224043E-02, 0.12917697E-02)
     ROW  3
  (-0.27260868E-03, 0.51245787E-02) (-0.47224043E-02, 0.12917697E-02)
  (-0.73440643E-02, 0.11043511E-03)
 eigenphases
 -0.1302897E+01 -0.8825772E-02  0.6356972E-02
 eigenphase sum-0.130537E+01  scattering length=   6.06813
 eps+pi 0.183623E+01  eps+2*pi 0.497782E+01

MaxIter =   8 c.s. =      8.90571135 angs^2  rmsk=     0.00000000
Time Now =        16.3274  Delta time =         4.5992 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =        16.3332  Delta time =         0.0058 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = SG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     3
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     3
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    7
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =    4
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    7
Time Now =        16.3380  Delta time =         0.0047 Energy independent setup

Compute solution for E =    6.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405061E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405060E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405056E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405051E-16
For potential     3
Number of asymptotic regions =      68
Final point in integration =   0.14526845E+03 Angstroms
Time Now =        16.9403  Delta time =         0.6023 End SolveHomo
      Final k matrix
     ROW  1
  (-0.15871986E+00, 0.89061842E+00) (-0.48901383E-01, 0.26416146E+00)
  (-0.92351312E-04, 0.72539874E-02)
     ROW  2
  (-0.48901383E-01, 0.26416146E+00) (-0.82492089E-02, 0.78411635E-01)
  (-0.42332339E-02, 0.21581241E-02)
     ROW  3
  (-0.92351316E-04, 0.72539874E-02) (-0.42332339E-02, 0.21581241E-02)
  (-0.77484168E-02, 0.14277952E-03)
 eigenphases
 -0.1393903E+01 -0.8818244E-02  0.7326329E-02
 eigenphase sum-0.139540E+01  scattering length=   8.49702
 eps+pi 0.174620E+01  eps+2*pi 0.488779E+01

MaxIter =   8 c.s. =      7.73355829 angs^2  rmsk=     0.00000000
Time Now =        21.5240  Delta time =         4.5837 End ScatStab
+ Data Record ScatContSym - 'SU'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =        21.5298  Delta time =         0.0058 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = SU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     2
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    5
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    3
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    5
Time Now =        21.5345  Delta time =         0.0047 Energy independent setup

Compute solution for E =    3.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491016E-15
For potential     3
Number of asymptotic regions =      62
Final point in integration =   0.18302855E+03 Angstroms
Time Now =        21.9187  Delta time =         0.3842 End SolveHomo
      Final k matrix
     ROW  1
  (-0.33364453E+00, 0.12787902E+00) (-0.13401166E-01, 0.52632959E-02)
     ROW  2
  (-0.13401165E-01, 0.52632961E-02) (-0.87437192E-02, 0.29214013E-03)
 eigenphases
 -0.3660229E+00 -0.8192401E-02
 eigenphase sum-0.374215E+00  scattering length=   0.83634
 eps+pi 0.276738E+01  eps+2*pi 0.590897E+01

MaxIter =   7 c.s. =      2.04537817 angs^2  rmsk=     0.00000000
Time Now =        24.5483  Delta time =         2.6296 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =        24.5540  Delta time =         0.0057 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = SU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     2
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    5
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    3
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    5
Time Now =        24.5587  Delta time =         0.0047 Energy independent setup

Compute solution for E =    4.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619643E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619640E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619635E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619626E-16
For potential     3
Number of asymptotic regions =      64
Final point in integration =   0.16629189E+03 Angstroms
Time Now =        24.9425  Delta time =         0.3838 End SolveHomo
      Final k matrix
     ROW  1
  (-0.40534742E+00, 0.20786426E+00) (-0.16585975E-01, 0.86627208E-02)
     ROW  2
  (-0.16585975E-01, 0.86627210E-02) (-0.81259560E-02, 0.42745800E-03)
 eigenphases
 -0.4738519E+00 -0.7435050E-02
 eigenphase sum-0.481287E+00  scattering length=   0.96318
 eps+pi 0.266031E+01  eps+2*pi 0.580190E+01

MaxIter =   7 c.s. =      2.49299562 angs^2  rmsk=     0.00000000
Time Now =        27.5692  Delta time =         2.6266 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =        27.5749  Delta time =         0.0057 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = SU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     2
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    5
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    3
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    5
Time Now =        27.5796  Delta time =         0.0047 Energy independent setup

Compute solution for E =    5.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332267E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332264E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332259E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332251E-16
For potential     3
Number of asymptotic regions =      66
Final point in integration =   0.15437122E+03 Angstroms
Time Now =        27.9955  Delta time =         0.4159 End SolveHomo
      Final k matrix
     ROW  1
  (-0.45503157E+00, 0.29407822E+00) (-0.19496819E-01, 0.12738842E-01)
     ROW  2
  (-0.19496819E-01, 0.12738842E-01) (-0.57824686E-02, 0.58972995E-03)
 eigenphases
 -0.5737654E+00 -0.4938133E-02
 eigenphase sum-0.578704E+00  scattering length=   1.07770
 eps+pi 0.256289E+01  eps+2*pi 0.570448E+01

MaxIter =   7 c.s. =      2.82147085 angs^2  rmsk=     0.00000000
Time Now =        30.6257  Delta time =         2.6302 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =        30.6315  Delta time =         0.0058 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = SU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     2
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    5
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    3
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    5
Time Now =        30.6387  Delta time =         0.0072 Energy independent setup

Compute solution for E =    6.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405061E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405060E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405056E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405051E-16
For potential     3
Number of asymptotic regions =      68
Final point in integration =   0.14526845E+03 Angstroms
Time Now =        31.0529  Delta time =         0.4142 End SolveHomo
      Final k matrix
     ROW  1
  (-0.48493968E+00, 0.38149785E+00) (-0.22089487E-01, 0.17396551E-01)
     ROW  2
  (-0.22089487E-01, 0.17396550E-01) (-0.14825151E-02, 0.80872044E-03)
 eigenphases
 -0.6665740E+00 -0.4753441E-03
 eigenphase sum-0.667049E+00  scattering length=   1.18581
 eps+pi 0.247454E+01  eps+2*pi 0.561614E+01

MaxIter =   7 c.s. =      3.05053298 angs^2  rmsk=     0.00000001
Time Now =        33.6831  Delta time =         2.6302 End ScatStab
+ Data Record ScatContSym - 'PG'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =        33.6889  Delta time =         0.0058 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = PG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     2
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =    4
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    6
Time Now =        33.6936  Delta time =         0.0047 Energy independent setup

Compute solution for E =    3.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491016E-15
For potential     3
Number of asymptotic regions =      62
Final point in integration =   0.18302855E+03 Angstroms
Time Now =        34.1659  Delta time =         0.4722 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.31729506E+00, 0.11357594E+00) ( 0.51048984E-03, 0.17997943E-03)
     ROW  2
  ( 0.51048985E-03, 0.17997943E-03) (-0.48033501E-02, 0.26639137E-04)
 eigenphases
 -0.4804265E-02  0.3437401E+00
 eigenphase sum 0.338936E+00  scattering length=  -0.75077
 eps+pi 0.348053E+01  eps+2*pi 0.662212E+01

MaxIter =   7 c.s. =      1.81295562 angs^2  rmsk=     0.00000000
Time Now =        36.5320  Delta time =         2.3661 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =        36.5378  Delta time =         0.0058 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = PG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     2
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =    4
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    6
Time Now =        36.5425  Delta time =         0.0047 Energy independent setup

Compute solution for E =    4.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619643E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619640E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619635E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619626E-16
For potential     3
Number of asymptotic regions =      64
Final point in integration =   0.16629189E+03 Angstroms
Time Now =        37.0125  Delta time =         0.4700 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.76217067E-01, 0.99387587E+00) ( 0.13638211E-02, 0.16604471E-01)
     ROW  2
  ( 0.13638211E-02, 0.16604471E-01) (-0.53773465E-02, 0.31100225E-03)
 eigenphases
 -0.5400289E-02  0.1494258E+01
 eigenphase sum 0.148886E+01  scattering length= -22.45783
 eps+pi 0.463045E+01  eps+2*pi 0.777204E+01

MaxIter =   7 c.s. =     11.89977772 angs^2  rmsk=     0.00000000
Time Now =        39.6065  Delta time =         2.5940 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =        39.6123  Delta time =         0.0058 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = PG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     2
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =    4
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    6
Time Now =        39.6170  Delta time =         0.0047 Energy independent setup

Compute solution for E =    5.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332267E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332264E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332259E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332251E-16
For potential     3
Number of asymptotic regions =      66
Final point in integration =   0.15437122E+03 Angstroms
Time Now =        40.1260  Delta time =         0.5090 End SolveHomo
      Final k matrix
     ROW  1
  (-0.49244327E+00, 0.58445309E+00) (-0.12262529E-01, 0.14727726E-01)
     ROW  2
  (-0.12262529E-01, 0.14727726E-01) (-0.61364960E-02, 0.41070000E-03)
 eigenphases
 -0.8706347E+00 -0.5827682E-02
 eigenphase sum-0.876462E+00  scattering length=   1.98113
 eps+pi 0.226513E+01  eps+2*pi 0.540672E+01

MaxIter =   7 c.s. =      5.60032594 angs^2  rmsk=     0.00000000
Time Now =        42.4932  Delta time =         2.3672 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =        42.4990  Delta time =         0.0058 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = PG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     2
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =    4
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    6
Time Now =        42.5037  Delta time =         0.0047 Energy independent setup

Compute solution for E =    6.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405061E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405060E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405056E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405051E-16
For potential     3
Number of asymptotic regions =      68
Final point in integration =   0.14526845E+03 Angstroms
Time Now =        43.0106  Delta time =         0.5069 End SolveHomo
      Final k matrix
     ROW  1
  (-0.49119576E+00, 0.40867742E+00) (-0.15043197E-01, 0.12671936E-01)
     ROW  2
  (-0.15043197E-01, 0.12671936E-01) (-0.65283984E-02, 0.43646071E-03)
 eigenphases
 -0.6939597E+00 -0.6062164E-02
 eigenphase sum-0.700022E+00  scattering length=   1.26842
 eps+pi 0.244157E+01  eps+2*pi 0.558316E+01

MaxIter =   6 c.s. =      3.26451359 angs^2  rmsk=     0.00000000
Time Now =        45.1446  Delta time =         2.1340 End ScatStab
+ Data Record ScatContSym - 'PU'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =        45.1505  Delta time =         0.0058 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = PU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     2
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    3
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    6
Time Now =        45.1552  Delta time =         0.0047 Energy independent setup

Compute solution for E =    3.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491016E-15
For potential     3
Number of asymptotic regions =      62
Final point in integration =   0.18302855E+03 Angstroms
Time Now =        45.6269  Delta time =         0.4717 End SolveHomo
      Final k matrix
     ROW  1
  (-0.18369894E+00, 0.35041436E-01) (-0.81050675E-02, 0.15927132E-02)
     ROW  2
  (-0.81050675E-02, 0.15927132E-02) (-0.58798155E-02, 0.10995347E-03)
 eigenphases
 -0.1885013E+00 -0.5511338E-02
 eigenphase sum-0.194013E+00  scattering length=   0.41843
 eps+pi 0.294758E+01  eps+2*pi 0.608917E+01

MaxIter =   7 c.s. =      0.56087450 angs^2  rmsk=     0.00000000
Time Now =        48.0521  Delta time =         2.4252 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =        48.0579  Delta time =         0.0058 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = PU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     2
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    3
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    6
Time Now =        48.0626  Delta time =         0.0047 Energy independent setup

Compute solution for E =    4.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619643E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619640E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619635E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619626E-16
For potential     3
Number of asymptotic regions =      64
Final point in integration =   0.16629189E+03 Angstroms
Time Now =        48.5332  Delta time =         0.4706 End SolveHomo
      Final k matrix
     ROW  1
  (-0.24773627E+00, 0.65819580E-01) (-0.10310396E-01, 0.27901115E-02)
     ROW  2
  (-0.10310396E-01, 0.27901115E-02) (-0.49938639E-02, 0.14847049E-03)
 eigenphases
 -0.2596928E+00 -0.4556869E-02
 eigenphase sum-0.264250E+00  scattering length=   0.49902
 eps+pi 0.287734E+01  eps+2*pi 0.601894E+01

MaxIter =   7 c.s. =      0.78948575 angs^2  rmsk=     0.00000000
Time Now =        51.1967  Delta time =         2.6635 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =        51.2024  Delta time =         0.0058 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = PU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     2
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    3
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    6
Time Now =        51.2071  Delta time =         0.0047 Energy independent setup

Compute solution for E =    5.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332267E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332264E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332259E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332251E-16
For potential     3
Number of asymptotic regions =      66
Final point in integration =   0.15437122E+03 Angstroms
Time Now =        51.7154  Delta time =         0.5082 End SolveHomo
      Final k matrix
     ROW  1
  (-0.30286604E+00, 0.10239563E+00) (-0.12801815E-01, 0.43606064E-02)
     ROW  2
  (-0.12801815E-01, 0.43606064E-02) (-0.27745425E-02, 0.20200534E-03)
 eigenphases
 -0.3260284E+00 -0.2229469E-02
 eigenphase sum-0.328258E+00  scattering length=   0.56182
 eps+pi 0.281333E+01  eps+2*pi 0.595493E+01

MaxIter =   7 c.s. =      0.98231751 angs^2  rmsk=     0.00000000
Time Now =        54.3801  Delta time =         2.6647 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =        54.3858  Delta time =         0.0058 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = PU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     2
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    3
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    6
Time Now =        54.3905  Delta time =         0.0047 Energy independent setup

Compute solution for E =    6.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405061E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405060E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405056E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405051E-16
For potential     3
Number of asymptotic regions =      68
Final point in integration =   0.14526845E+03 Angstroms
Time Now =        54.8984  Delta time =         0.5078 End SolveHomo
      Final k matrix
     ROW  1
  (-0.34921802E+00, 0.14255992E+00) (-0.15592997E-01, 0.63376373E-02)
     ROW  2
  (-0.15592997E-01, 0.63376373E-02) ( 0.88167178E-03, 0.29691600E-03)
 eigenphases
 -0.3875745E+00  0.1574834E-02
 eigenphase sum-0.386000E+00  scattering length=   0.61196
 eps+pi 0.275559E+01  eps+2*pi 0.589719E+01

MaxIter =   7 c.s. =      1.13983927 angs^2  rmsk=     0.00000000
Time Now =        57.5627  Delta time =         2.6643 End ScatStab
+ Data Record ScatContSym - 'DG'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =        57.5685  Delta time =         0.0058 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = DG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     2
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    7
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =    4
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    7
Time Now =        57.5732  Delta time =         0.0047 Energy independent setup

Compute solution for E =    3.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491016E-15
For potential     3
Number of asymptotic regions =      62
Final point in integration =   0.18302855E+03 Angstroms
Time Now =        58.1255  Delta time =         0.5522 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.41726637E-01, 0.17481526E-02) (-0.19944315E-02,-0.79237480E-04)
     ROW  2
  (-0.19944315E-02,-0.79237480E-04) (-0.20556733E-02, 0.10689344E-04)
 eigenphases
 -0.2146356E-02  0.4186621E-01
 eigenphase sum 0.397199E-01  scattering length=  -0.08463
 eps+pi 0.318131E+01  eps+2*pi 0.632291E+01

MaxIter =   5 c.s. =      0.02803016 angs^2  rmsk=     0.00000000
Time Now =        59.5808  Delta time =         1.4553 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =        59.5866  Delta time =         0.0058 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = DG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     2
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    7
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =    4
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    7
Time Now =        59.5913  Delta time =         0.0047 Energy independent setup

Compute solution for E =    4.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619643E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619640E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619635E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619626E-16
For potential     3
Number of asymptotic regions =      64
Final point in integration =   0.16629189E+03 Angstroms
Time Now =        60.1438  Delta time =         0.5525 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.62633112E-01, 0.39410898E-02) (-0.16250695E-02,-0.98534844E-04)
     ROW  2
  (-0.16250695E-02,-0.98534845E-04) (-0.22186080E-02, 0.10866506E-04)
 eigenphases
 -0.2259326E-02  0.6283910E-01
 eigenphase sum 0.605798E-01  scattering length=  -0.11186
 eps+pi 0.320217E+01  eps+2*pi 0.634377E+01

MaxIter =   5 c.s. =      0.04726316 angs^2  rmsk=     0.00000000
Time Now =        61.5976  Delta time =         1.4539 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =        61.6034  Delta time =         0.0058 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = DG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     2
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    7
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =    4
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    7
Time Now =        61.6081  Delta time =         0.0047 Energy independent setup

Compute solution for E =    5.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332267E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332264E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332259E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332251E-16
For potential     3
Number of asymptotic regions =      66
Final point in integration =   0.15437122E+03 Angstroms
Time Now =        62.2038  Delta time =         0.5957 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.87514864E-01, 0.77191917E-02) (-0.86515976E-03,-0.74326304E-04)
     ROW  2
  (-0.86515976E-03,-0.74326306E-04) (-0.22291154E-02, 0.98133433E-05)
 eigenphases
 -0.2237481E-02  0.8797645E-01
 eigenphase sum 0.857390E-01  scattering length=  -0.14178
 eps+pi 0.322733E+01  eps+2*pi 0.636892E+01

MaxIter =   5 c.s. =      0.07397014 angs^2  rmsk=     0.00000000
Time Now =        63.6618  Delta time =         1.4580 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =        63.6676  Delta time =         0.0058 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = DG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     2
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    7
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =    4
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    7
Time Now =        63.6723  Delta time =         0.0047 Energy independent setup

Compute solution for E =    6.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405061E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405060E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405056E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405051E-16
For potential     3
Number of asymptotic regions =      68
Final point in integration =   0.14526845E+03 Angstroms
Time Now =        64.2703  Delta time =         0.5980 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.11547460E+00, 0.13517182E-01) ( 0.28843103E-03, 0.33180439E-04)
     ROW  2
  ( 0.28843102E-03, 0.33180435E-04) (-0.20651179E-02, 0.92053173E-05)
 eigenphases
 -0.2065852E-02  0.1165273E+00
 eigenphase sum 0.114461E+00  scattering length=  -0.17312
 eps+pi 0.325605E+01  eps+2*pi 0.639765E+01

MaxIter =   5 c.s. =      0.10789650 angs^2  rmsk=     0.00000000
Time Now =        65.7257  Delta time =         1.4554 End ScatStab
+ Data Record ScatContSym - 'DU'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =        65.7315  Delta time =         0.0058 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = DU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     1
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     1
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    5
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    3
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    5
Time Now =        65.7362  Delta time =         0.0047 Energy independent setup

Compute solution for E =    3.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491016E-15
For potential     3
Number of asymptotic regions =      62
Final point in integration =   0.18302855E+03 Angstroms
Time Now =        66.1146  Delta time =         0.3785 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.19542262E-02, 0.81654408E-05)
 eigenphases
  0.1954248E-02
 eigenphase sum 0.195425E-02  scattering length=  -0.00416
 eps+pi 0.314355E+01  eps+2*pi 0.628514E+01

MaxIter =   4 c.s. =      0.00006095 angs^2  rmsk=     0.00000000
Time Now =        66.6994  Delta time =         0.5847 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =        66.7052  Delta time =         0.0058 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = DU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     1
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     1
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    5
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    3
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    5
Time Now =        66.7099  Delta time =         0.0047 Energy independent setup

Compute solution for E =    4.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619643E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619640E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619635E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619626E-16
For potential     3
Number of asymptotic regions =      64
Final point in integration =   0.16629189E+03 Angstroms
Time Now =        67.0868  Delta time =         0.3769 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.38411282E-02, 0.20242777E-04)
 eigenphases
  0.3841208E-02
 eigenphase sum 0.384121E-02  scattering length=  -0.00708
 eps+pi 0.314543E+01  eps+2*pi 0.628703E+01

MaxIter =   4 c.s. =      0.00017660 angs^2  rmsk=     0.00000000
Time Now =        67.6708  Delta time =         0.5840 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =        67.6765  Delta time =         0.0058 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = DU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     1
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     1
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    5
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    3
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    5
Time Now =        67.6812  Delta time =         0.0047 Energy independent setup

Compute solution for E =    5.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332267E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332264E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332259E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332251E-16
For potential     3
Number of asymptotic regions =      66
Final point in integration =   0.15437122E+03 Angstroms
Time Now =        68.0932  Delta time =         0.4120 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.65841400E-02, 0.49699172E-04)
 eigenphases
  0.6584414E-02
 eigenphase sum 0.658441E-02  scattering length=  -0.01086
 eps+pi 0.314818E+01  eps+2*pi 0.628977E+01

MaxIter =   4 c.s. =      0.00041513 angs^2  rmsk=     0.00000000
Time Now =        68.6796  Delta time =         0.5864 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =        68.6853  Delta time =         0.0058 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = DU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     1
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     1
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    5
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    3
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    5
Time Now =        68.6901  Delta time =         0.0047 Energy independent setup

Compute solution for E =    6.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405061E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405060E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405056E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405051E-16
For potential     3
Number of asymptotic regions =      68
Final point in integration =   0.14526845E+03 Angstroms
Time Now =        69.1027  Delta time =         0.4126 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.10252517E-01, 0.11195534E-03)
 eigenphases
  0.1025338E-01
 eigenphase sum 0.102534E-01  scattering length=  -0.01544
 eps+pi 0.315185E+01  eps+2*pi 0.629344E+01

MaxIter =   4 c.s. =      0.00083887 angs^2  rmsk=     0.00000000
Time Now =        69.6870  Delta time =         0.5844 End ScatStab
+ Data Record ScatContSym - 'FG'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =        69.6928  Delta time =         0.0058 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = FG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     1
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     1
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =    4
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    6
Time Now =        69.6975  Delta time =         0.0047 Energy independent setup

Compute solution for E =    3.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491016E-15
For potential     3
Number of asymptotic regions =      62
Final point in integration =   0.18302855E+03 Angstroms
Time Now =        70.1524  Delta time =         0.4548 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.22820208E-02, 0.66614003E-05)
 eigenphases
  0.2282035E-02
 eigenphase sum 0.228204E-02  scattering length=  -0.00486
 eps+pi 0.314387E+01  eps+2*pi 0.628547E+01

MaxIter =   4 c.s. =      0.00008311 angs^2  rmsk=     0.00000000
Time Now =        70.7242  Delta time =         0.5718 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =        70.7300  Delta time =         0.0058 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = FG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     1
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     1
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =    4
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    6
Time Now =        70.7347  Delta time =         0.0047 Energy independent setup

Compute solution for E =    4.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619643E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619640E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619635E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619626E-16
For potential     3
Number of asymptotic regions =      64
Final point in integration =   0.16629189E+03 Angstroms
Time Now =        71.1931  Delta time =         0.4584 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.27976541E-02, 0.96998324E-05)
 eigenphases
  0.2797679E-02
 eigenphase sum 0.279768E-02  scattering length=  -0.00516
 eps+pi 0.314439E+01  eps+2*pi 0.628598E+01

MaxIter =   4 c.s. =      0.00009368 angs^2  rmsk=     0.00000000
Time Now =        71.7639  Delta time =         0.5708 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =        71.7697  Delta time =         0.0058 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = FG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     1
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     1
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =    4
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    6
Time Now =        71.7744  Delta time =         0.0047 Energy independent setup

Compute solution for E =    5.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332267E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332264E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332259E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332251E-16
For potential     3
Number of asymptotic regions =      66
Final point in integration =   0.15437122E+03 Angstroms
Time Now =        72.2669  Delta time =         0.4925 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.33559259E-02, 0.13518002E-04)
 eigenphases
  0.3355966E-02
 eigenphase sum 0.335597E-02  scattering length=  -0.00554
 eps+pi 0.314495E+01  eps+2*pi 0.628654E+01

MaxIter =   4 c.s. =      0.00010784 angs^2  rmsk=     0.00000000
Time Now =        72.8375  Delta time =         0.5706 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =        72.8433  Delta time =         0.0058 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = FG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     1
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     1
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =    4
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    6
Time Now =        72.8480  Delta time =         0.0047 Energy independent setup

Compute solution for E =    6.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405061E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405060E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405056E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405051E-16
For potential     3
Number of asymptotic regions =      68
Final point in integration =   0.14526845E+03 Angstroms
Time Now =        73.3418  Delta time =         0.4938 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.39863117E-02, 0.18488158E-04)
 eigenphases
  0.3986375E-02
 eigenphase sum 0.398637E-02  scattering length=  -0.00600
 eps+pi 0.314558E+01  eps+2*pi 0.628717E+01

MaxIter =   4 c.s. =      0.00012680 angs^2  rmsk=     0.00000000
Time Now =        73.9129  Delta time =         0.5711 End ScatStab
+ Data Record ScatContSym - 'FU'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =        73.9187  Delta time =         0.0058 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = FU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     1
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     1
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    3
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    6
Time Now =        73.9234  Delta time =         0.0047 Energy independent setup

Compute solution for E =    3.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491016E-15
For potential     3
Number of asymptotic regions =      62
Final point in integration =   0.18302855E+03 Angstroms
Time Now =        74.3815  Delta time =         0.4582 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.12314619E-01, 0.15320147E-03)
 eigenphases
  0.1231590E-01
 eigenphase sum 0.123159E-01  scattering length=  -0.02623
 eps+pi 0.315391E+01  eps+2*pi 0.629550E+01

MaxIter =   4 c.s. =      0.00242059 angs^2  rmsk=     0.00000000
Time Now =        74.9733  Delta time =         0.5918 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =        74.9791  Delta time =         0.0058 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = FU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     1
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     1
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    3
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    6
Time Now =        74.9838  Delta time =         0.0047 Energy independent setup

Compute solution for E =    4.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619643E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619640E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619635E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619626E-16
For potential     3
Number of asymptotic regions =      64
Final point in integration =   0.16629189E+03 Angstroms
Time Now =        75.4413  Delta time =         0.4575 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.14789089E-01, 0.22055226E-03)
 eigenphases
  0.1479130E-01
 eigenphase sum 0.147913E-01  scattering length=  -0.02728
 eps+pi 0.315638E+01  eps+2*pi 0.629798E+01

MaxIter =   4 c.s. =      0.00261850 angs^2  rmsk=     0.00000000
Time Now =        76.0289  Delta time =         0.5876 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =        76.0346  Delta time =         0.0058 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = FU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     1
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     1
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    3
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    6
Time Now =        76.0393  Delta time =         0.0047 Energy independent setup

Compute solution for E =    5.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332267E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332264E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332259E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332251E-16
For potential     3
Number of asymptotic regions =      66
Final point in integration =   0.15437122E+03 Angstroms
Time Now =        76.5331  Delta time =         0.4938 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.17450452E-01, 0.30652357E-03)
 eigenphases
  0.1745406E-01
 eigenphase sum 0.174541E-01  scattering length=  -0.02879
 eps+pi 0.315905E+01  eps+2*pi 0.630064E+01

MaxIter =   4 c.s. =      0.00291682 angs^2  rmsk=     0.00000000
Time Now =        77.1212  Delta time =         0.5881 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =        77.1270  Delta time =         0.0058 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = FU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     1
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     1
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    3
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    6
Time Now =        77.1317  Delta time =         0.0047 Energy independent setup

Compute solution for E =    6.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405061E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405060E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405056E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405051E-16
For potential     3
Number of asymptotic regions =      68
Final point in integration =   0.14526845E+03 Angstroms
Time Now =        77.6266  Delta time =         0.4949 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.20395396E-01, 0.41804616E-03)
 eigenphases
  0.2040113E-01
 eigenphase sum 0.204011E-01  scattering length=  -0.03073
 eps+pi 0.316199E+01  eps+2*pi 0.630359E+01

MaxIter =   4 c.s. =      0.00332069 angs^2  rmsk=     0.00000000
Time Now =        78.2130  Delta time =         0.5864 End ScatStab
+ Data Record ScatContSym - 'GG'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =        78.2188  Delta time =         0.0058 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = GG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     7
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     1
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     1
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    7
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   10
Higest l included in the K matrix (lna) =    4
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    7
Time Now =        78.2235  Delta time =         0.0047 Energy independent setup

Compute solution for E =    3.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491016E-15
For potential     3
Number of asymptotic regions =      62
Final point in integration =   0.18302855E+03 Angstroms
Time Now =        78.7548  Delta time =         0.5313 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.77450980E-02, 0.60521832E-04)
 eigenphases
  0.7745416E-02
 eigenphase sum 0.774542E-02  scattering length=  -0.01650
 eps+pi 0.314934E+01  eps+2*pi 0.629093E+01

MaxIter =   4 c.s. =      0.00095740 angs^2  rmsk=     0.00000000
Time Now =        79.3290  Delta time =         0.5742 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =        79.3348  Delta time =         0.0058 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = GG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     7
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     1
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     1
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    7
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   10
Higest l included in the K matrix (lna) =    4
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    7
Time Now =        79.3395  Delta time =         0.0047 Energy independent setup

Compute solution for E =    4.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619643E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619640E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619635E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619626E-16
For potential     3
Number of asymptotic regions =      64
Final point in integration =   0.16629189E+03 Angstroms
Time Now =        79.8728  Delta time =         0.5333 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.89179050E-02, 0.80190491E-04)
 eigenphases
  0.8918390E-02
 eigenphase sum 0.891839E-02  scattering length=  -0.01645
 eps+pi 0.315051E+01  eps+2*pi 0.629210E+01

MaxIter =   4 c.s. =      0.00095199 angs^2  rmsk=     0.00000000
Time Now =        80.4470  Delta time =         0.5742 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =        80.4527  Delta time =         0.0058 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = GG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     7
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     1
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     1
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    7
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   10
Higest l included in the K matrix (lna) =    4
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    7
Time Now =        80.4574  Delta time =         0.0047 Energy independent setup

Compute solution for E =    5.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332267E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332264E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332259E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332251E-16
For potential     3
Number of asymptotic regions =      66
Final point in integration =   0.15437122E+03 Angstroms
Time Now =        81.0341  Delta time =         0.5767 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.99729578E-02, 0.10022366E-03)
 eigenphases
  0.9973634E-02
 eigenphase sum 0.997363E-02  scattering length=  -0.01645
 eps+pi 0.315157E+01  eps+2*pi 0.629316E+01

MaxIter =   4 c.s. =      0.00095248 angs^2  rmsk=     0.00000000
Time Now =        81.6089  Delta time =         0.5747 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =        81.6146  Delta time =         0.0058 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = GG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     7
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     1
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     1
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    7
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   10
Higest l included in the K matrix (lna) =    4
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    7
Time Now =        81.6193  Delta time =         0.0047 Energy independent setup

Compute solution for E =    6.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405061E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405060E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405056E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405051E-16
For potential     3
Number of asymptotic regions =      68
Final point in integration =   0.14526845E+03 Angstroms
Time Now =        82.1955  Delta time =         0.5762 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.10967052E-01, 0.12111920E-03)
 eigenphases
  0.1096795E-01
 eigenphase sum 0.109679E-01  scattering length=  -0.01652
 eps+pi 0.315256E+01  eps+2*pi 0.629415E+01

MaxIter =   4 c.s. =      0.00095987 angs^2  rmsk=     0.00000000
Time Now =        82.7695  Delta time =         0.5740 End ScatStab
+ Data Record ScatContSym - 'GU'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =        82.7753  Delta time =         0.0058 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = GU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =        82.7821  Delta time =         0.0068 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = GU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =        82.7889  Delta time =         0.0068 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = GU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =        82.7957  Delta time =         0.0068 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = GU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK
+ Data Record ScatContSym - 'A2G'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =        82.8025  Delta time =         0.0068 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = A2G   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =        82.8093  Delta time =         0.0068 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = A2G   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =        82.8161  Delta time =         0.0068 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = A2G   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =        82.8229  Delta time =         0.0068 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = A2G   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK
+ Data Record ScatContSym - 'A2U'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =        82.8297  Delta time =         0.0068 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = A2U   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =        82.8365  Delta time =         0.0068 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = A2U   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =        82.8433  Delta time =         0.0068 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = A2U   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =        82.8501  Delta time =         0.0068 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = A2U   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK
+ Data Record ScatContSym - 'B1G'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =        82.8569  Delta time =         0.0068 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = B1G   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =        82.8638  Delta time =         0.0068 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = B1G   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =        82.8706  Delta time =         0.0068 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = B1G   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =        82.8773  Delta time =         0.0068 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = B1G   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK
+ Data Record ScatContSym - 'B1U'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =        82.8842  Delta time =         0.0068 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = B1U   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =        82.8910  Delta time =         0.0068 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = B1U   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =        82.8978  Delta time =         0.0068 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = B1U   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =        82.9045  Delta time =         0.0068 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = B1U   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK
+ Data Record ScatContSym - 'B2G'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =        82.9114  Delta time =         0.0068 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = B2G   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =        82.9182  Delta time =         0.0068 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = B2G   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =        82.9250  Delta time =         0.0068 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = B2G   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =        82.9317  Delta time =         0.0068 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = B2G   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK
+ Data Record ScatContSym - 'B2U'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =        82.9386  Delta time =         0.0068 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = B2U   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =        82.9454  Delta time =         0.0068 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = B2U   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =        82.9521  Delta time =         0.0068 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = B2U   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =        82.9589  Delta time =         0.0068 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = B2U   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

+ Command FileName
+ 'MatrixElements' 'test13loc.dat' 'REWIND'
Opening file test13loc.dat at position REWIND
+ Data Record LMaxK - 10
+ Data Record IterMax - -1
+ Data Record ScatContSym - 'SG'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =        82.9669  Delta time =         0.0080 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = SG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     7
Number of asymptotic solutions on the left (NAsymL) =     7
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     7
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    7
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    9
Time Now =        82.9716  Delta time =         0.0047 Energy independent setup

Compute solution for E =    3.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491016E-15
For potential     3
Number of asymptotic regions =      62
Final point in integration =   0.18302855E+03 Angstroms
Time Now =        83.5754  Delta time =         0.6039 End SolveHomo
      Final k matrix
     ROW  1
  (-0.31068381E+00, 0.86583027E+00) (-0.44816837E-01, 0.13278494E+00)
  ( 0.73137928E-04, 0.18400136E-02) ( 0.55014053E-05, 0.85638637E-05)
  ( 0.23265960E-07, 0.14552553E-07) ( 0.39973390E-20,-0.17440065E-19)
  ( 0.42096838E-10, 0.46617090E-11)
     ROW  2
  (-0.44816837E-01, 0.13278494E+00) (-0.25385866E-01, 0.20738464E-01)
  (-0.48361615E-02, 0.40045105E-03) (-0.33317621E-04, 0.11205637E-04)
  (-0.42088886E-07, 0.73391022E-07) ( 0.15873480E-19,-0.29643328E-20)
  ( 0.13003809E-10, 0.15234095E-09)
     ROW  3
  ( 0.73137928E-04, 0.18400136E-02) (-0.48361615E-02, 0.40045105E-03)
  (-0.58391039E-02, 0.64612048E-04) (-0.18901310E-02, 0.16286406E-04)
  (-0.74330701E-05, 0.19318111E-05) ( 0.65146162E-20,-0.15904680E-21)
  (-0.67747380E-08, 0.92422501E-08)
     ROW  4
  ( 0.55014053E-05, 0.85638637E-05) (-0.33317621E-04, 0.11205637E-04)
  (-0.18901310E-02, 0.16286406E-04) (-0.26767068E-02, 0.11724778E-04)
  (-0.99280259E-03, 0.41978381E-05) ( 0.11746994E-19,-0.40854640E-22)
  (-0.24449475E-05, 0.61820008E-06)
     ROW  5
  ( 0.23265960E-07, 0.14552553E-07) (-0.42088885E-07, 0.73391022E-07)
  (-0.74330701E-05, 0.19318111E-05) (-0.99280259E-03, 0.41978381E-05)
  (-0.15358010E-02, 0.37209446E-05) ( 0.16526372E-19,-0.39584464E-23)
  (-0.61360412E-03, 0.15572556E-05)
     ROW  6
  ( 0.36173640E-20,-0.16381743E-19) ( 0.15810019E-19,-0.28004929E-20)
  ( 0.62255817E-20,-0.15662609E-21) ( 0.12306272E-19,-0.42232276E-22)
  ( 0.17928516E-19,-0.35704737E-23) ( 0.17010452E-02, 0.28935632E-05)
  (-0.93422980E-20,-0.17598290E-22)
     ROW  7
  ( 0.42096838E-10, 0.46617092E-11) ( 0.13003809E-10, 0.15234095E-09)
  (-0.67747379E-08, 0.92422501E-08) (-0.24449475E-05, 0.61820008E-06)
  (-0.61360412E-03, 0.15572556E-05) (-0.81862423E-20,-0.15923922E-22)
  (-0.99810899E-03, 0.13727422E-05)
 eigenphases
 -0.1226715E+01 -0.2014759E-01 -0.5470051E-02 -0.2430860E-02 -0.1187580E-02
 -0.3291505E-03  0.1701048E-02
 eigenphase sum-0.125458E+01  scattering length=   6.50865
 eps+pi 0.188701E+01  eps+2*pi 0.502861E+01

MaxIter =   1 c.s. =     14.15028590 angs^2  rmsk=     0.00016738
Time Now =        83.5759  Delta time =         0.0005 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =        83.5817  Delta time =         0.0058 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = SG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     7
Number of asymptotic solutions on the left (NAsymL) =     7
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     7
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    7
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    9
Time Now =        83.5864  Delta time =         0.0047 Energy independent setup

Compute solution for E =    4.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619643E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619640E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619635E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619626E-16
For potential     3
Number of asymptotic regions =      64
Final point in integration =   0.16629189E+03 Angstroms
Time Now =        84.1865  Delta time =         0.6001 End SolveHomo
      Final k matrix
     ROW  1
  (-0.19319115E+00, 0.92216505E+00) (-0.33654033E-01, 0.18251380E+00)
  ( 0.41019217E-03, 0.31302278E-02) ( 0.12571146E-04, 0.18131777E-04)
  ( 0.64043422E-07, 0.40269717E-07) (-0.30322496E-20,-0.10005852E-20)
  ( 0.14645384E-09, 0.22510566E-10)
     ROW  2
  (-0.33654033E-01, 0.18251380E+00) (-0.29826144E-01, 0.36711124E-01)
  (-0.54146155E-02, 0.78443507E-03) (-0.47673027E-04, 0.17039112E-04)
  (-0.72175689E-07, 0.13164814E-06) ( 0.16246703E-19,-0.63967662E-21)
  ( 0.45118853E-10, 0.34676001E-09)
     ROW  3
  ( 0.41019217E-03, 0.31302278E-02) (-0.54146155E-02, 0.78443507E-03)
  (-0.67334665E-02, 0.90110601E-04) (-0.22050626E-02, 0.22053169E-04)
  (-0.11490875E-04, 0.26406156E-05) ( 0.15144742E-19,-0.19932626E-21)
  (-0.14294472E-07, 0.16630607E-07)
     ROW  4
  ( 0.12571146E-04, 0.18131777E-04) (-0.47673027E-04, 0.17039112E-04)
  (-0.22050626E-02, 0.22053169E-04) (-0.31094107E-02, 0.15863273E-04)
  (-0.11526932E-02, 0.56636939E-05) ( 0.15385170E-19,-0.77008278E-22)
  (-0.37756769E-05, 0.83538421E-06)
     ROW  5
  ( 0.64043422E-07, 0.40269717E-07) (-0.72175689E-07, 0.13164814E-06)
  (-0.11490875E-04, 0.26406156E-05) (-0.11526932E-02, 0.56636939E-05)
  (-0.17795631E-02, 0.50008465E-05) ( 0.21815934E-19,-0.35823427E-23)
  (-0.71070359E-03, 0.20902430E-05)
     ROW  6
  (-0.30011720E-20,-0.38226889E-21) ( 0.15407174E-19,-0.49774122E-21)
  ( 0.14870090E-19,-0.18998657E-21) ( 0.14747402E-19,-0.73989251E-22)
  ( 0.20395392E-19,-0.51676702E-23) ( 0.19606694E-02, 0.38442393E-05)
  (-0.11694182E-19,-0.23968434E-22)
     ROW  7
  ( 0.14645384E-09, 0.22510566E-10) ( 0.45118852E-10, 0.34676001E-09)
  (-0.14294472E-07, 0.16630607E-07) (-0.37756769E-05, 0.83538421E-06)
  (-0.71070359E-03, 0.20902430E-05) (-0.14601873E-19,-0.27321994E-22)
  (-0.11553758E-02, 0.18400156E-05)
 eigenphases
 -0.1365197E+01 -0.2480729E-01 -0.6521958E-02 -0.2848428E-02 -0.1387586E-02
 -0.3856061E-03  0.1960674E-02
 eigenphase sum-0.139919E+01  scattering length=  10.64133
 eps+pi 0.174241E+01  eps+2*pi 0.488400E+01

MaxIter =   1 c.s. =     11.47857887 angs^2  rmsk=     0.00019378
Time Now =        84.1869  Delta time =         0.0005 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =        84.1927  Delta time =         0.0057 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = SG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     7
Number of asymptotic solutions on the left (NAsymL) =     7
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     7
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    7
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    9
Time Now =        84.1973  Delta time =         0.0047 Energy independent setup

Compute solution for E =    5.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332267E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332264E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332259E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332251E-16
For potential     3
Number of asymptotic regions =      66
Final point in integration =   0.15437122E+03 Angstroms
Time Now =        84.8437  Delta time =         0.6464 End SolveHomo
      Final k matrix
     ROW  1
  (-0.91611123E-01, 0.93574551E+00) (-0.14938426E-01, 0.22690850E+00)
  ( 0.95066570E-03, 0.46605696E-02) ( 0.23517695E-04, 0.32297396E-04)
  ( 0.13899110E-06, 0.89131670E-07) (-0.74769404E-20, 0.75997760E-20)
  ( 0.38206189E-09, 0.74979546E-10)
     ROW  2
  (-0.14938426E-01, 0.22690850E+00) (-0.33570529E-01, 0.56009421E-01)
  (-0.57377771E-02, 0.13547727E-02) (-0.59953940E-04, 0.24905833E-04)
  (-0.92159524E-07, 0.20786042E-06) ( 0.26868848E-19, 0.82419723E-21)
  ( 0.15897126E-09, 0.63976138E-09)
     ROW  3
  ( 0.95066570E-03, 0.46605696E-02) (-0.57377771E-02, 0.13547727E-02)
  (-0.74314966E-02, 0.11881244E-03) (-0.24875638E-02, 0.27759638E-04)
  (-0.16094174E-04, 0.33772814E-05) ( 0.37397422E-19,-0.31687136E-21)
  (-0.25259042E-07, 0.26255978E-07)
     ROW  4
  ( 0.23517695E-04, 0.32297396E-04) (-0.59953940E-04, 0.24905833E-04)
  (-0.24875638E-02, 0.27759638E-04) (-0.34965749E-02, 0.20100341E-04)
  (-0.12958648E-02, 0.71628051E-05) (-0.17669474E-20,-0.12396122E-21)
  (-0.52923409E-05, 0.10583774E-05)
     ROW  5
  ( 0.13899110E-06, 0.89131670E-07) (-0.92159524E-07, 0.20786042E-06)
  (-0.16094174E-04, 0.33772814E-05) (-0.12958648E-02, 0.71628051E-05)
  (-0.19964741E-02, 0.63008860E-05) ( 0.24518565E-19, 0.15496015E-22)
  (-0.79708413E-03, 0.26303778E-05)
     ROW  6
  (-0.74957865E-20, 0.67917039E-20) ( 0.27276009E-19, 0.61118285E-21)
  ( 0.38293139E-19,-0.33085860E-21) (-0.60763895E-21,-0.12745052E-21)
  ( 0.24281481E-19, 0.14733210E-22) ( 0.21880807E-02, 0.47877202E-05)
  (-0.12438293E-19,-0.30462302E-22)
     ROW  7
  ( 0.38206189E-09, 0.74979548E-10) ( 0.15897126E-09, 0.63976138E-09)
  (-0.25259042E-07, 0.26255978E-07) (-0.52923409E-05, 0.10583774E-05)
  (-0.79708413E-03, 0.26303778E-05) (-0.11435157E-19,-0.29749110E-22)
  (-0.12948835E-02, 0.23121079E-05)
 eigenphases
 -0.1474979E+01 -0.3139321E-01 -0.7558822E-02 -0.3231951E-02 -0.1568873E-02
 -0.4367901E-03  0.2188088E-02
 eigenphase sum-0.151698E+01  scattering length=  30.62264
 eps+pi 0.162461E+01  eps+2*pi 0.476621E+01

MaxIter =   1 c.s. =      9.49803599 angs^2  rmsk=     0.00021722
Time Now =        84.8442  Delta time =         0.0005 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =        84.8499  Delta time =         0.0057 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = SG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     7
Number of asymptotic solutions on the left (NAsymL) =     7
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     7
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    7
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    9
Time Now =        84.8546  Delta time =         0.0047 Energy independent setup

Compute solution for E =    6.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405061E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405060E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405056E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405051E-16
For potential     3
Number of asymptotic regions =      68
Final point in integration =   0.14526845E+03 Angstroms
Time Now =        85.5008  Delta time =         0.6462 End SolveHomo
      Final k matrix
     ROW  1
  (-0.84402595E-02, 0.92384090E+00) ( 0.89190007E-02, 0.26488626E+00)
  ( 0.16897407E-02, 0.63655241E-02) ( 0.38725394E-04, 0.51415881E-04)
  ( 0.25888175E-06, 0.17043848E-06) ( 0.12065368E-19, 0.36669055E-19)
  ( 0.82838422E-09, 0.19637254E-09)
     ROW  2
  ( 0.89190007E-02, 0.26488626E+00) (-0.36778051E-01, 0.77667731E-01)
  (-0.58325829E-02, 0.21276968E-02) (-0.68587789E-04, 0.35594339E-04)
  (-0.83750472E-07, 0.30474053E-06) (-0.43178622E-19, 0.12254176E-19)
  ( 0.44972671E-09, 0.10346048E-08)
     ROW  3
  ( 0.16897407E-02, 0.63655241E-02) (-0.58325829E-02, 0.21276968E-02)
  (-0.79224591E-02, 0.15224287E-03) (-0.27443637E-02, 0.33215500E-04)
  (-0.21146905E-04, 0.41348837E-05) ( 0.39473959E-21, 0.45753167E-21)
  (-0.39821475E-07, 0.38107190E-07)
     ROW  4
  ( 0.38725394E-04, 0.51415881E-04) (-0.68587790E-04, 0.35594339E-04)
  (-0.27443637E-02, 0.33215500E-04) (-0.38510927E-02, 0.24411850E-04)
  (-0.14273973E-02, 0.86940595E-05) ( 0.25870496E-19,-0.10567109E-21)
  (-0.69768401E-05, 0.12873196E-05)
     ROW  5
  ( 0.25888175E-06, 0.17043848E-06) (-0.83750472E-07, 0.30474053E-06)
  (-0.21146905E-04, 0.41348837E-05) (-0.14273973E-02, 0.86940595E-05)
  (-0.21944965E-02, 0.76212105E-05) ( 0.50985120E-19,-0.64685042E-23)
  (-0.87597048E-03, 0.31778093E-05)
     ROW  6
  ( 0.12037263E-19, 0.36792995E-19) (-0.43049424E-19, 0.12293845E-19)
  (-0.10659857E-20, 0.46249467E-21) ( 0.27035020E-19,-0.10283186E-21)
  ( 0.50614073E-19,-0.79965797E-23) ( 0.23924392E-02, 0.57237983E-05)
  (-0.23441964E-19,-0.67278432E-22)
     ROW  7
  ( 0.82838423E-09, 0.19637254E-09) ( 0.44972671E-09, 0.10346048E-08)
  (-0.39821475E-07, 0.38107190E-07) (-0.69768401E-05, 0.12873196E-05)
  (-0.87597048E-03, 0.31778093E-05) (-0.23240268E-19,-0.67399626E-22)
  (-0.14218414E-02, 0.27890255E-05)
 eigenphases
 -0.1564929E+01 -0.4053756E-01 -0.8471702E-02 -0.3568802E-02 -0.1727335E-02
 -0.4808820E-03  0.2392448E-02
 eigenphase sum-0.161732E+01  scattering length= -32.34198
 eps+pi 0.152427E+01  eps+2*pi 0.466586E+01

MaxIter =   1 c.s. =      7.99318360 angs^2  rmsk=     0.00023858
Time Now =        85.5013  Delta time =         0.0005 End ScatStab
+ Data Record ScatContSym - 'SU'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =        85.5070  Delta time =         0.0057 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = SU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     5
Number of asymptotic solutions on the left (NAsymL) =     5
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     5
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    5
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    9
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    8
Time Now =        85.5117  Delta time =         0.0047 Energy independent setup

Compute solution for E =    3.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491016E-15
For potential     3
Number of asymptotic regions =      62
Final point in integration =   0.18302855E+03 Angstroms
Time Now =        85.9652  Delta time =         0.4535 End SolveHomo
      Final k matrix
     ROW  1
  (-0.38978271E+00, 0.18728673E+00) (-0.15014445E-01, 0.73756207E-02)
  (-0.10759090E-03, 0.10584494E-03) (-0.74955386E-07, 0.52698878E-06)
  ( 0.44344404E-09, 0.10621921E-08)
     ROW  2
  (-0.15014445E-01, 0.73756207E-02) (-0.92458635E-02, 0.37380698E-03)
  (-0.28889549E-02, 0.40143084E-04) (-0.14981751E-04, 0.40271063E-05)
  (-0.16799121E-07, 0.23592963E-07)
     ROW  3
  (-0.10759090E-03, 0.10584494E-03) (-0.28889549E-02, 0.40143084E-04)
  (-0.38076430E-02, 0.24647061E-04) (-0.13333336E-02, 0.77739362E-05)
  (-0.40965052E-05, 0.10459981E-05)
     ROW  4
  (-0.74955387E-07, 0.52698878E-06) (-0.14981751E-04, 0.40271063E-05)
  (-0.13333336E-02, 0.77739362E-05) (-0.19876324E-02, 0.63201167E-05)
  (-0.76896555E-03, 0.24754187E-05)
     ROW  5
  ( 0.44344404E-09, 0.10621921E-08) (-0.16799121E-07, 0.23592963E-07)
  (-0.40965052E-05, 0.10459981E-05) (-0.76896555E-03, 0.24754187E-05)
  (-0.12243807E-02, 0.20904444E-05)
 eigenphases
 -0.4479315E+00 -0.1004014E-01 -0.3539651E-02 -0.1633605E-02 -0.4612129E-03
 eigenphase sum-0.463606E+00  scattering length=   1.06469
 eps+pi 0.267799E+01  eps+2*pi 0.581958E+01

MaxIter =   1 c.s. =      2.99544231 angs^2  rmsk=     0.00028917
Time Now =        85.9655  Delta time =         0.0003 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =        85.9713  Delta time =         0.0057 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = SU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     5
Number of asymptotic solutions on the left (NAsymL) =     5
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     5
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    5
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    9
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    8
Time Now =        85.9760  Delta time =         0.0047 Energy independent setup

Compute solution for E =    4.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619643E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619640E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619635E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619626E-16
For potential     3
Number of asymptotic regions =      64
Final point in integration =   0.16629189E+03 Angstroms
Time Now =        86.4286  Delta time =         0.4527 End SolveHomo
      Final k matrix
     ROW  1
  (-0.45263455E+00, 0.28876456E+00) (-0.18774839E-01, 0.12206317E-01)
  (-0.15844870E-03, 0.19127395E-03) (-0.91139443E-07, 0.11065168E-05)
  ( 0.12668848E-08, 0.27400084E-08)
     ROW  2
  (-0.18774839E-01, 0.12206317E-01) (-0.93503939E-02, 0.60053619E-03)
  (-0.33546549E-02, 0.51605829E-04) (-0.22940045E-04, 0.54904498E-05)
  (-0.34579778E-07, 0.42189794E-07)
     ROW  3
  (-0.15844870E-03, 0.19127395E-03) (-0.33546549E-02, 0.51605829E-04)
  (-0.44298232E-02, 0.33349057E-04) (-0.15512555E-02, 0.10531761E-04)
  (-0.63316363E-05, 0.14201244E-05)
     ROW  4
  (-0.91139443E-07, 0.11065168E-05) (-0.22940045E-04, 0.54904498E-05)
  (-0.15512555E-02, 0.10531761E-04) (-0.23054990E-02, 0.85171847E-05)
  (-0.89146674E-03, 0.33293115E-05)
     ROW  5
  ( 0.12668848E-08, 0.27400085E-08) (-0.34579777E-07, 0.42189794E-07)
  (-0.63316363E-05, 0.14201244E-05) (-0.89146674E-03, 0.33293115E-05)
  (-0.14180676E-02, 0.28056898E-05)
 eigenphases
 -0.5678827E+00 -0.1050063E-01 -0.3893966E-02 -0.1811093E-02 -0.5049469E-03
 eigenphase sum-0.584593E+00  scattering length=   1.22047
 eps+pi 0.255700E+01  eps+2*pi 0.569859E+01

MaxIter =   1 c.s. =      3.46406434 angs^2  rmsk=     0.00033500
Time Now =        86.4290  Delta time =         0.0003 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =        86.4347  Delta time =         0.0057 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = SU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     5
Number of asymptotic solutions on the left (NAsymL) =     5
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     5
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    5
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    9
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    8
Time Now =        86.4394  Delta time =         0.0047 Energy independent setup

Compute solution for E =    5.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332267E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332264E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332259E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332251E-16
For potential     3
Number of asymptotic regions =      66
Final point in integration =   0.15437122E+03 Angstroms
Time Now =        86.9242  Delta time =         0.4848 End SolveHomo
      Final k matrix
     ROW  1
  (-0.48693861E+00, 0.39006930E+00) (-0.22027101E-01, 0.17908221E-01)
  (-0.20843126E-03, 0.30473787E-03) (-0.53242991E-07, 0.19890094E-05)
  ( 0.28954897E-08, 0.57609738E-08)
     ROW  2
  (-0.22027101E-01, 0.17908221E-01) (-0.81824594E-02, 0.88758977E-03)
  (-0.37345913E-02, 0.59320775E-04) (-0.31554866E-04, 0.69094605E-05)
  (-0.58607622E-07, 0.65552338E-07)
     ROW  3
  (-0.20843126E-03, 0.30473787E-03) (-0.37345913E-02, 0.59320775E-04)
  (-0.49814852E-02, 0.41957520E-04) (-0.17473706E-02, 0.13357061E-04)
  (-0.88804625E-05, 0.18075198E-05)
     ROW  4
  (-0.53242992E-07, 0.19890094E-05) (-0.31554866E-04, 0.69094605E-05)
  (-0.17473706E-02, 0.13357061E-04) (-0.25890839E-02, 0.10759654E-04)
  (-0.10008174E-02, 0.41981941E-05)
     ROW  5
  ( 0.28954897E-08, 0.57609738E-08) (-0.58607622E-07, 0.65552338E-07)
  (-0.88804625E-05, 0.18075198E-05) (-0.10008174E-02, 0.41981941E-05)
  (-0.15900902E-02, 0.35301344E-05)
 eigenphases
 -0.6754050E+00 -0.1011623E-01 -0.3930019E-02 -0.1811135E-02 -0.4748625E-03
 eigenphase sum-0.691737E+00  scattering length=   1.36629
 eps+pi 0.244986E+01  eps+2*pi 0.559145E+01

MaxIter =   1 c.s. =      3.74415742 angs^2  rmsk=     0.00037577
Time Now =        86.9245  Delta time =         0.0003 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =        86.9303  Delta time =         0.0058 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = SU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     5
Number of asymptotic solutions on the left (NAsymL) =     5
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     5
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    5
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    9
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    8
Time Now =        86.9350  Delta time =         0.0047 Energy independent setup

Compute solution for E =    6.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405061E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405060E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405056E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405051E-16
For potential     3
Number of asymptotic regions =      68
Final point in integration =   0.14526845E+03 Angstroms
Time Now =        87.4195  Delta time =         0.4845 End SolveHomo
      Final k matrix
     ROW  1
  (-0.49860634E+00, 0.48615316E+00) (-0.24692566E-01, 0.24289892E-01)
  (-0.25476935E-03, 0.44619255E-03) ( 0.65570439E-07, 0.32301807E-05)
  ( 0.56541947E-08, 0.10655416E-07)
     ROW  2
  (-0.24692566E-01, 0.24289892E-01) (-0.55899676E-02, 0.12487150E-02)
  (-0.40225374E-02, 0.61797009E-04) (-0.40312440E-04, 0.81841676E-05)
  (-0.86829647E-07, 0.92534458E-07)
     ROW  3
  (-0.25476935E-03, 0.44619255E-03) (-0.40225374E-02, 0.61797009E-04)
  (-0.54751892E-02, 0.50146679E-04) (-0.19280669E-02, 0.16226845E-04)
  (-0.11709662E-04, 0.22078194E-05)
     ROW  4
  ( 0.65570437E-07, 0.32301807E-05) (-0.40312440E-04, 0.81841676E-05)
  (-0.19280669E-02, 0.16226845E-04) (-0.28486027E-02, 0.13046215E-04)
  (-0.11009424E-02, 0.50820615E-05)
     ROW  5
  ( 0.56541947E-08, 0.10655416E-07) (-0.86829647E-07, 0.92534458E-07)
  (-0.11709662E-04, 0.22078194E-05) (-0.11009424E-02, 0.50820615E-05)
  (-0.17468752E-02, 0.42638332E-05)
 eigenphases
 -0.7727641E+00 -0.9318313E-02 -0.3633087E-02 -0.1426186E-02 -0.4957071E-04
 eigenphase sum-0.787191E+00  scattering length=   1.51127
 eps+pi 0.235440E+01  eps+2*pi 0.549599E+01

MaxIter =   1 c.s. =      3.88981368 angs^2  rmsk=     0.00041298
Time Now =        87.4198  Delta time =         0.0003 End ScatStab
+ Data Record ScatContSym - 'PG'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =        87.4256  Delta time =         0.0058 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = PG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     6
Number of asymptotic solutions on the left (NAsymL) =     6
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     6
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    8
Time Now =        87.4303  Delta time =         0.0047 Energy independent setup

Compute solution for E =    3.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491016E-15
For potential     3
Number of asymptotic regions =      62
Final point in integration =   0.18302855E+03 Angstroms
Time Now =        87.9445  Delta time =         0.5143 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.13912895E+00, 0.19752794E-01) (-0.23766633E-02,-0.32553571E-03)
  (-0.21397343E-04, 0.13997523E-05) (-0.26259190E-07, 0.33941268E-07)
  (-0.41459014E-20,-0.60838933E-21) ( 0.63037698E-11, 0.82205522E-10)
     ROW  2
  (-0.23766633E-02,-0.32553571E-03) (-0.48509522E-02, 0.32561522E-04)
  (-0.18094176E-02, 0.13318028E-04) (-0.70077925E-05, 0.18044203E-05)
  ( 0.62226271E-20, 0.43109638E-23) (-0.63054237E-08, 0.85843795E-08)
     ROW  3
  (-0.21397343E-04, 0.13997523E-05) (-0.18094176E-02, 0.13318028E-04)
  (-0.24775023E-02, 0.10358845E-04) (-0.97266134E-03, 0.38540923E-05)
  (-0.93438654E-20, 0.12499694E-22) (-0.23700614E-05, 0.59785579E-06)
     ROW  4
  (-0.26259190E-07, 0.33941268E-07) (-0.70077925E-05, 0.18044203E-05)
  (-0.97266134E-03, 0.38540923E-05) (-0.14703225E-02, 0.34755187E-05)
  (-0.12065373E-19, 0.66897504E-23) (-0.60623322E-03, 0.14820193E-05)
     ROW  5
  (-0.36822564E-20,-0.54503418E-21) ( 0.74576988E-20,-0.34705373E-23)
  (-0.81600987E-20, 0.80781063E-23) (-0.11383152E-19, 0.57572231E-23)
  ( 0.11977888E-02, 0.14347002E-05) ( 0.86269845E-20, 0.88810372E-23)
     ROW  6
  ( 0.63037698E-11, 0.82205522E-10) (-0.63054237E-08, 0.85843795E-08)
  (-0.23700614E-05, 0.59785579E-06) (-0.60623322E-03, 0.14820193E-05)
  ( 0.93090763E-20, 0.94524765E-23) (-0.97049486E-03, 0.13093889E-05)
 eigenphases
 -0.5910295E-02 -0.2441239E-02 -0.1164690E-02 -0.2924178E-03  0.1197790E-02
  0.1410308E+00
 eigenphase sum 0.132420E+00  scattering length=  -0.28366
 eps+pi 0.327401E+01  eps+2*pi 0.641561E+01

MaxIter =   1 c.s. =      0.31602330 angs^2  rmsk=     0.00019071
Time Now =        87.9449  Delta time =         0.0004 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =        87.9507  Delta time =         0.0058 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = PG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     6
Number of asymptotic solutions on the left (NAsymL) =     6
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     6
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    8
Time Now =        87.9554  Delta time =         0.0047 Energy independent setup

Compute solution for E =    4.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619643E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619640E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619635E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619626E-16
For potential     3
Number of asymptotic regions =      64
Final point in integration =   0.16629189E+03 Angstroms
Time Now =        88.4703  Delta time =         0.5149 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.42161411E+00, 0.23124445E+00) ( 0.30453015E-02, 0.16486441E-02)
  ( 0.10244685E-04,-0.27167385E-05) ( 0.79363076E-07,-0.92732036E-08)
  (-0.81406136E-20,-0.45271735E-20) ( 0.20234479E-09,-0.32975537E-10)
     ROW  2
  ( 0.30453015E-02, 0.16486441E-02) (-0.54484589E-02, 0.46106765E-04)
  (-0.21039521E-02, 0.17551866E-04) (-0.10810678E-04, 0.24519707E-05)
  (-0.12093906E-19, 0.23172650E-22) (-0.13271165E-07, 0.15392727E-07)
     ROW  3
  ( 0.10244685E-04,-0.27167385E-05) (-0.21039521E-02, 0.17551866E-04)
  (-0.28748674E-02, 0.13965535E-04) (-0.11284506E-02, 0.51914846E-05)
  (-0.29061129E-20, 0.45079784E-22) (-0.36580704E-05, 0.80681524E-06)
     ROW  4
  ( 0.79363077E-07,-0.92732034E-08) (-0.10810678E-04, 0.24519707E-05)
  (-0.11284506E-02, 0.51914846E-05) (-0.17031173E-02, 0.46669469E-05)
  (-0.13650855E-19, 0.12225154E-23) (-0.70197017E-03, 0.19881753E-05)
     ROW  5
  (-0.79781642E-20,-0.44373656E-20) (-0.11989104E-19, 0.21851631E-22)
  (-0.21739526E-20, 0.44056787E-22) (-0.13906036E-19, 0.51690785E-24)
  ( 0.13833298E-02, 0.19136051E-05) ( 0.92775948E-20, 0.12182668E-22)
     ROW  6
  ( 0.20234479E-09,-0.32975537E-10) (-0.13271165E-07, 0.15392727E-07)
  (-0.36580704E-05, 0.80681524E-06) (-0.70197017E-03, 0.19881753E-05)
  ( 0.93347613E-20, 0.12021087E-22) (-0.11232567E-02, 0.17544887E-05)
 eigenphases
 -0.6710933E-02 -0.2795741E-02 -0.1332431E-02 -0.3325266E-03  0.1383332E-02
  0.5016707E+00
 eigenphase sum 0.491882E+00  scattering length=  -0.98819
 eps+pi 0.363348E+01  eps+2*pi 0.677507E+01

MaxIter =   1 c.s. =      2.76867850 angs^2  rmsk=     0.00022076
Time Now =        88.4707  Delta time =         0.0004 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =        88.4765  Delta time =         0.0058 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = PG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     6
Number of asymptotic solutions on the left (NAsymL) =     6
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     6
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    8
Time Now =        88.4812  Delta time =         0.0047 Energy independent setup

Compute solution for E =    5.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332267E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332264E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332259E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332251E-16
For potential     3
Number of asymptotic regions =      66
Final point in integration =   0.15437122E+03 Angstroms
Time Now =        89.0347  Delta time =         0.5535 End SolveHomo
      Final k matrix
     ROW  1
  (-0.18253227E-01, 0.99929241E+00) (-0.23849620E-03, 0.19334585E-01)
  ( 0.43591421E-04, 0.14365181E-03) ( 0.46563954E-06, 0.50997455E-06)
  ( 0.12505121E-21, 0.43107793E-20) ( 0.16165183E-08, 0.81831455E-09)
     ROW  2
  (-0.23849620E-03, 0.19334585E-01) (-0.59142319E-02, 0.41462641E-03)
  (-0.23648403E-02, 0.24419617E-04) (-0.15102552E-04, 0.31271922E-05)
  (-0.10955539E-19, 0.10702316E-21) (-0.23368903E-07, 0.24231891E-07)
     ROW  3
  ( 0.43591421E-04, 0.14365181E-03) (-0.23648403E-02, 0.24419617E-04)
  (-0.32292371E-02, 0.17650885E-04) (-0.12676470E-02, 0.65548959E-05)
  ( 0.10415590E-19, 0.46237437E-22) (-0.51247548E-05, 0.10208185E-05)
     ROW  4
  ( 0.46563954E-06, 0.50997455E-06) (-0.15102552E-04, 0.31271922E-05)
  (-0.12676470E-02, 0.65548959E-05) (-0.19100646E-02, 0.58750759E-05)
  (-0.29423175E-19,-0.13668132E-22) (-0.78706939E-03, 0.25005716E-05)
     ROW  5
  ( 0.10167412E-21, 0.51344650E-20) (-0.10597570E-19, 0.11930032E-21)
  ( 0.11300949E-19, 0.43853302E-22) (-0.29293860E-19,-0.15099989E-22)
  ( 0.15468234E-02, 0.23926683E-05) ( 0.14710813E-19, 0.27237110E-22)
     ROW  6
  ( 0.16165183E-08, 0.81831456E-09) (-0.23368903E-07, 0.24231891E-07)
  (-0.51247548E-05, 0.10208185E-05) (-0.78706939E-03, 0.25005716E-05)
  ( 0.14383554E-19, 0.27249153E-22) (-0.12587131E-02, 0.22038752E-05)
 eigenphases
 -0.1552534E+01 -0.7370785E-02 -0.3097582E-02 -0.1474295E-02 -0.3652652E-03
  0.1546826E-02
 eigenphase sum-0.156330E+01  scattering length= 219.91758
 eps+pi 0.157830E+01  eps+2*pi 0.471989E+01

MaxIter =   1 c.s. =      9.57299241 angs^2  rmsk=     0.00024742
Time Now =        89.0351  Delta time =         0.0004 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =        89.0409  Delta time =         0.0058 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = PG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     6
Number of asymptotic solutions on the left (NAsymL) =     6
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     6
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    8
Time Now =        89.0456  Delta time =         0.0047 Energy independent setup

Compute solution for E =    6.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405061E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405060E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405056E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405051E-16
For potential     3
Number of asymptotic regions =      68
Final point in integration =   0.14526845E+03 Angstroms
Time Now =        89.5993  Delta time =         0.5537 End SolveHomo
      Final k matrix
     ROW  1
  (-0.48770576E+00, 0.60817228E+00) (-0.13047709E-01, 0.16479246E-01)
  (-0.80522205E-04, 0.18894946E-03) ( 0.80667907E-07, 0.10103015E-05)
  ( 0.35020732E-19,-0.43759345E-19) ( 0.14647839E-08, 0.26876196E-08)
     ROW  2
  (-0.13047709E-01, 0.16479246E-01) (-0.65350180E-02, 0.49153692E-03)
  (-0.26036999E-02, 0.30472952E-04) (-0.19815093E-04, 0.38216787E-05)
  ( 0.92795511E-20,-0.89312023E-21) (-0.36771784E-07, 0.35098534E-07)
     ROW  3
  (-0.80522205E-04, 0.18894946E-03) (-0.26036999E-02, 0.30472952E-04)
  (-0.35526533E-02, 0.21391015E-04) (-0.13952540E-02, 0.79431816E-05)
  (-0.12701272E-18, 0.17183994E-21) (-0.67523131E-05, 0.12399792E-05)
     ROW  4
  ( 0.80667905E-07, 0.10103015E-05) (-0.19815093E-04, 0.38216787E-05)
  (-0.13952540E-02, 0.79431816E-05) (-0.20988048E-02, 0.70999920E-05)
  ( 0.20645613E-19, 0.15887026E-21) (-0.86472310E-03, 0.30193367E-05)
     ROW  5
  ( 0.35204563E-19,-0.43967920E-19) ( 0.86994193E-20,-0.89406467E-21)
  (-0.12781671E-18, 0.17410413E-21) ( 0.21135486E-19, 0.15949036E-21)
  ( 0.16946240E-02, 0.28717588E-05) ( 0.11667793E-19,-0.13764681E-22)
     ROW  6
  ( 0.14647839E-08, 0.26876197E-08) (-0.36771784E-07, 0.35098534E-07)
  (-0.67523131E-05, 0.12399792E-05) (-0.86472310E-03, 0.30193367E-05)
  ( 0.11303523E-19,-0.13460433E-22) (-0.13819342E-02, 0.26575515E-05)
 eigenphases
 -0.8948901E+00 -0.7884251E-02 -0.3349951E-02 -0.1591153E-02 -0.3898131E-03
  0.1694627E-02
 eigenphase sum-0.906411E+00  scattering length=   1.92281
 eps+pi 0.223518E+01  eps+2*pi 0.537677E+01

MaxIter =   1 c.s. =      4.85716948 angs^2  rmsk=     0.00027170
Time Now =        89.5997  Delta time =         0.0004 End ScatStab
+ Data Record ScatContSym - 'PU'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =        89.6055  Delta time =         0.0058 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = PU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     6
Number of asymptotic solutions on the left (NAsymL) =     6
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     6
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    9
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    9
Time Now =        89.6102  Delta time =         0.0047 Energy independent setup

Compute solution for E =    3.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491016E-15
For potential     3
Number of asymptotic regions =      62
Final point in integration =   0.18302855E+03 Angstroms
Time Now =        90.1541  Delta time =         0.5439 End SolveHomo
      Final k matrix
     ROW  1
  (-0.21755376E+00, 0.49933988E-01) (-0.10251813E-01, 0.24163110E-02)
  (-0.81279852E-04, 0.47866586E-04) (-0.97212606E-07, 0.29018576E-06)
  (-0.17105998E-19, 0.41546965E-20) ( 0.16648698E-09, 0.64236148E-09)
     ROW  2
  (-0.10251813E-01, 0.24163110E-02) (-0.63143769E-02, 0.15800528E-03)
  (-0.26776476E-02, 0.26991661E-04) (-0.13662688E-04, 0.35835893E-05)
  (-0.25568123E-19, 0.23154378E-21) (-0.15059786E-07, 0.21019269E-07)
     ROW  3
  (-0.81279852E-04, 0.47866586E-04) (-0.26776476E-02, 0.26991661E-04)
  (-0.34031796E-02, 0.20440133E-04) (-0.12956069E-02, 0.68820757E-05)
  ( 0.23374724E-19, 0.88931095E-24) (-0.39298336E-05, 0.99911297E-06)
     ROW  4
  (-0.97212606E-07, 0.29018576E-06) (-0.13662688E-04, 0.35835893E-05)
  (-0.12956069E-02, 0.68820757E-05) (-0.18779090E-02, 0.57787511E-05)
  ( 0.28988263E-19,-0.12048827E-22) (-0.75718289E-03, 0.23226643E-05)
     ROW  5
  (-0.17414075E-19, 0.42101315E-20) (-0.24221402E-19, 0.23174752E-21)
  ( 0.22387902E-19, 0.46953469E-25) ( 0.27905181E-19,-0.11863645E-22)
  ( 0.20479402E-02, 0.41940768E-05) (-0.15931485E-19,-0.34999492E-22)
     ROW  6
  ( 0.16648698E-09, 0.64236148E-09) (-0.15059786E-07, 0.21019269E-07)
  (-0.39298336E-05, 0.99911297E-06) (-0.75718289E-03, 0.23226643E-05)
  (-0.17108004E-19,-0.36841257E-22) (-0.11828412E-02, 0.19724649E-05)
 eigenphases
 -0.2256305E+00 -0.7634906E-02 -0.2983283E-02 -0.1357281E-02 -0.3065739E-03
  0.2047946E-02
 eigenphase sum-0.235865E+00  scattering length=   0.51183
 eps+pi 0.290573E+01  eps+2*pi 0.604732E+01

MaxIter =   1 c.s. =      0.79994568 angs^2  rmsk=     0.00023407
Time Now =        90.1545  Delta time =         0.0004 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =        90.1602  Delta time =         0.0057 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = PU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     6
Number of asymptotic solutions on the left (NAsymL) =     6
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     6
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    9
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    9
Time Now =        90.1649  Delta time =         0.0047 Energy independent setup

Compute solution for E =    4.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619643E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619640E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619635E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619626E-16
For potential     3
Number of asymptotic regions =      64
Final point in integration =   0.16629189E+03 Angstroms
Time Now =        90.7088  Delta time =         0.5438 End SolveHomo
      Final k matrix
     ROW  1
  (-0.28263295E+00, 0.87796401E-01) (-0.13709529E-01, 0.43399778E-02)
  (-0.13028000E-03, 0.87491672E-04) (-0.19781932E-06, 0.61364914E-06)
  ( 0.12917410E-19,-0.41697412E-20) ( 0.42286884E-09, 0.16981429E-08)
     ROW  2
  (-0.13709529E-01, 0.43399778E-02) (-0.60306099E-02, 0.25275295E-03)
  (-0.30875043E-02, 0.33020495E-04) (-0.20830158E-04, 0.48253311E-05)
  ( 0.12973080E-19,-0.33587660E-21) (-0.30838367E-07, 0.37311217E-07)
     ROW  3
  (-0.13028000E-03, 0.87491672E-04) (-0.30875043E-02, 0.33020495E-04)
  (-0.39496369E-02, 0.27424622E-04) (-0.15052285E-02, 0.92921530E-05)
  ( 0.29886168E-19,-0.14012677E-21) (-0.60681549E-05, 0.13531557E-05)
     ROW  4
  (-0.19781932E-06, 0.61364914E-06) (-0.20830158E-04, 0.48253311E-05)
  (-0.15052285E-02, 0.92921530E-05) (-0.21769713E-02, 0.77753893E-05)
  ( 0.33627483E-19,-0.20832949E-22) (-0.87741563E-03, 0.31210600E-05)
     ROW  5
  ( 0.12411723E-19,-0.39880403E-20) ( 0.11239614E-19,-0.31771456E-21)
  ( 0.28560269E-19,-0.13412698E-21) ( 0.34650877E-19,-0.18987195E-22)
  ( 0.23596676E-02, 0.55680621E-05) (-0.20416968E-19,-0.50790257E-22)
     ROW  6
  ( 0.42286884E-09, 0.16981429E-08) (-0.30838367E-07, 0.37311217E-07)
  (-0.60681549E-05, 0.13531557E-05) (-0.87741563E-03, 0.31210600E-05)
  (-0.20842631E-19,-0.50321831E-22) (-0.13696719E-02, 0.26459146E-05)
 eigenphases
 -0.3012003E+00 -0.7974516E-02 -0.3197879E-02 -0.1411459E-02 -0.2652735E-03
  0.2359676E-02
 eigenphase sum-0.311690E+00  scattering length=   0.59422
 eps+pi 0.282990E+01  eps+2*pi 0.597150E+01

MaxIter =   1 c.s. =      1.05441611 angs^2  rmsk=     0.00027110
Time Now =        90.7092  Delta time =         0.0004 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =        90.7149  Delta time =         0.0057 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = PU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     6
Number of asymptotic solutions on the left (NAsymL) =     6
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     6
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    9
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    9
Time Now =        90.7196  Delta time =         0.0047 Energy independent setup

Compute solution for E =    5.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332267E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332264E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332259E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332251E-16
For potential     3
Number of asymptotic regions =      66
Final point in integration =   0.15437122E+03 Angstroms
Time Now =        91.3018  Delta time =         0.5822 End SolveHomo
      Final k matrix
     ROW  1
  (-0.33587482E+00, 0.13008732E+00) (-0.17485020E-01, 0.68506077E-02)
  (-0.19082546E-03, 0.14359209E-03) (-0.35467277E-06, 0.11322993E-05)
  ( 0.54124257E-19,-0.21441422E-19) ( 0.84783979E-09, 0.37254823E-08)
     ROW  2
  (-0.17485020E-01, 0.68506077E-02) (-0.47665374E-02, 0.38719545E-03)
  (-0.34156660E-02, 0.35796382E-04) (-0.28543199E-04, 0.60057525E-05)
  ( 0.35216035E-19,-0.10380980E-20) (-0.52013451E-07, 0.57592322E-07)
     ROW  3
  (-0.19082546E-03, 0.14359209E-03) (-0.34156660E-02, 0.35796382E-04)
  (-0.44300933E-02, 0.34218868E-04) (-0.16931238E-02, 0.11744390E-04)
  (-0.38756839E-19,-0.16205976E-21) (-0.85027308E-05, 0.17180705E-05)
     ROW  4
  (-0.35467278E-06, 0.11322993E-05) (-0.28543199E-04, 0.60057525E-05)
  (-0.16931238E-02, 0.11744390E-04) (-0.24433292E-02, 0.98070719E-05)
  ( 0.58035947E-19, 0.10590258E-21) (-0.98460368E-03, 0.39320426E-05)
     ROW  5
  ( 0.56788236E-19,-0.22473874E-19) ( 0.35771381E-19,-0.10977491E-20)
  (-0.37364766E-19,-0.16916480E-21) ( 0.59246283E-19, 0.10407766E-21)
  ( 0.26323183E-02, 0.69291476E-05) (-0.31171329E-19,-0.92208383E-22)
     ROW  6
  ( 0.84783977E-09, 0.37254824E-08) (-0.52013451E-07, 0.57592322E-07)
  (-0.85027308E-05, 0.17180705E-05) (-0.98460368E-03, 0.39320426E-05)
  (-0.30844567E-19,-0.90646378E-22) (-0.15355030E-02, 0.33273156E-05)
 eigenphases
 -0.3695290E+00 -0.7866957E-02 -0.3180695E-02 -0.1242554E-02  0.3558841E-04
  0.2632330E-02
 eigenphase sum-0.379151E+00  scattering length=   0.65724
 eps+pi 0.276244E+01  eps+2*pi 0.590403E+01

MaxIter =   1 c.s. =      1.24988224 angs^2  rmsk=     0.00030402
Time Now =        91.3022  Delta time =         0.0004 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =        91.3080  Delta time =         0.0057 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = PU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     6
Number of asymptotic solutions on the left (NAsymL) =     6
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     6
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    9
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    9
Time Now =        91.3127  Delta time =         0.0047 Energy independent setup

Compute solution for E =    6.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405061E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405060E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405056E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405051E-16
For potential     3
Number of asymptotic regions =      68
Final point in integration =   0.14526845E+03 Angstroms
Time Now =        91.8947  Delta time =         0.5820 End SolveHomo
      Final k matrix
     ROW  1
  (-0.37866637E+00, 0.17434698E+00) (-0.21516429E-01, 0.99403141E-02)
  (-0.26431733E-03, 0.21859044E-03) (-0.59646313E-06, 0.19087467E-05)
  ( 0.24549804E-19,-0.14424782E-19) ( 0.13925951E-08, 0.72645856E-08)
     ROW  2
  (-0.21516429E-01, 0.99403141E-02) (-0.24607328E-02, 0.58155918E-03)
  (-0.36601377E-02, 0.34728793E-04) (-0.36352239E-04, 0.70519218E-05)
  ( 0.12330801E-18,-0.92342504E-21) (-0.76724106E-07, 0.80866524E-07)
     ROW  3
  (-0.26431733E-03, 0.21859044E-03) (-0.36601377E-02, 0.34728793E-04)
  (-0.48557255E-02, 0.40575849E-04) (-0.18655672E-02, 0.14217601E-04)
  ( 0.81912800E-19,-0.76468153E-21) (-0.11200860E-04, 0.20934322E-05)
     ROW  4
  (-0.59646313E-06, 0.19087467E-05) (-0.36352239E-04, 0.70519218E-05)
  (-0.18655672E-02, 0.14217601E-04) (-0.26866697E-02, 0.11872350E-04)
  ( 0.76206368E-19,-0.84645017E-22) (-0.10826237E-02, 0.47555587E-05)
     ROW  5
  ( 0.26011629E-19,-0.15085704E-19) ( 0.12311354E-18,-0.96340425E-21)
  ( 0.82430444E-19,-0.76331136E-21) ( 0.75027661E-19,-0.84301894E-22)
  ( 0.28770567E-02, 0.82775237E-05) (-0.55174444E-19,-0.14784883E-21)
     ROW  6
  ( 0.13925950E-08, 0.72645856E-08) (-0.76724106E-07, 0.80866524E-07)
  (-0.11200860E-04, 0.20934322E-05) (-0.10826237E-02, 0.47555587E-05)
  (-0.53762546E-19,-0.14743827E-21) (-0.16865525E-02, 0.40167021E-05)
 eigenphases
 -0.4314928E+00 -0.7661934E-02 -0.3094083E-02 -0.1001401E-02  0.1294608E-02
  0.2877073E-02
 eigenphase sum-0.439079E+00  scattering length=   0.70724
 eps+pi 0.270251E+01  eps+2*pi 0.584411E+01

MaxIter =   1 c.s. =      1.39637757 angs^2  rmsk=     0.00033403
Time Now =        91.8951  Delta time =         0.0004 End ScatStab
+ Data Record ScatContSym - 'DG'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =        91.9008  Delta time =         0.0058 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = DG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     7
Number of asymptotic solutions on the left (NAsymL) =     7
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     7
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    7
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    9
Time Now =        91.9055  Delta time =         0.0047 Energy independent setup

Compute solution for E =    3.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491016E-15
For potential     3
Number of asymptotic regions =      62
Final point in integration =   0.18302855E+03 Angstroms
Time Now =        92.5009  Delta time =         0.5954 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.33196870E-01, 0.11077746E-02) (-0.21238247E-02,-0.66175860E-04)
  (-0.15164037E-04, 0.28722234E-05) ( 0.53665925E-19, 0.21057204E-20)
  (-0.17602262E-07, 0.25564531E-07) ( 0.22354443E-21, 0.83752696E-23)
  ( 0.40261666E-11, 0.54922285E-10)
     ROW  2
  (-0.21238247E-02,-0.66175860E-04) (-0.20616706E-02, 0.11245173E-04)
  (-0.15746350E-02, 0.62504487E-05) (-0.87870756E-19,-0.11208910E-21)
  (-0.58129464E-05, 0.14566636E-05) (-0.43495253E-20, 0.31019448E-22)
  (-0.50263791E-08, 0.68055579E-08)
     ROW  3
  (-0.15164037E-04, 0.28722234E-05) (-0.15746350E-02, 0.62504487E-05)
  (-0.18840120E-02, 0.68623647E-05) (-0.26082903E-19, 0.10539029E-21)
  (-0.91271594E-03, 0.28931072E-05) (-0.73603542E-20, 0.41819045E-22)
  (-0.21526280E-05, 0.53917878E-06)
     ROW  4
  ( 0.51751364E-19, 0.20349956E-20) (-0.86795674E-19,-0.10893456E-21)
  (-0.25140381E-19, 0.10502768E-21) ( 0.25126628E-02, 0.63390035E-05)
  ( 0.17809937E-19, 0.49380718E-22) (-0.15965238E-03,-0.51989383E-06)
  ( 0.41545004E-22,-0.14507644E-22)
     ROW  5
  (-0.17602262E-07, 0.25564531E-07) (-0.58129464E-05, 0.14566636E-05)
  (-0.91271594E-03, 0.28931072E-05) ( 0.18567458E-19, 0.51678055E-22)
  (-0.12743182E-02, 0.27982648E-05) (-0.24625065E-19, 0.62806298E-24)
  (-0.58418650E-03, 0.12650100E-05)
     ROW  6
  ( 0.99230253E-22, 0.55045306E-23) (-0.48412229E-20, 0.31948219E-22)
  (-0.74805718E-20, 0.42404006E-22) (-0.15965238E-03,-0.51989383E-06)
  (-0.24427235E-19, 0.15122581E-23) ( 0.74372620E-03, 0.57861815E-06)
  ( 0.26466167E-19, 0.10468408E-22)
     ROW  7
  ( 0.40261665E-11, 0.54922285E-10) (-0.50263791E-08, 0.68055579E-08)
  (-0.21526280E-05, 0.53917878E-06) (-0.74791781E-21,-0.16437486E-22)
  (-0.58418650E-03, 0.12650100E-05) ( 0.27759642E-19, 0.10523492E-22)
  (-0.88772884E-03, 0.11293442E-05)
 eigenphases
 -0.3785948E-02 -0.1785888E-02 -0.7237986E-03  0.6021626E-04  0.7294328E-03
  0.2526967E-02  0.3334924E-01
 eigenphase sum 0.303702E-01  scattering length=  -0.06470
 eps+pi 0.317196E+01  eps+2*pi 0.631356E+01

MaxIter =   1 c.s. =      0.01814127 angs^2  rmsk=     0.00015182
Time Now =        92.5014  Delta time =         0.0005 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =        92.5071  Delta time =         0.0057 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = DG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     7
Number of asymptotic solutions on the left (NAsymL) =     7
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     7
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    7
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    9
Time Now =        92.5118  Delta time =         0.0047 Energy independent setup

Compute solution for E =    4.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619643E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619640E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619635E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619626E-16
For potential     3
Number of asymptotic regions =      64
Final point in integration =   0.16629189E+03 Angstroms
Time Now =        93.1056  Delta time =         0.5937 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.47020893E-01, 0.22196625E-02) (-0.19398938E-02,-0.87032803E-04)
  (-0.19877607E-04, 0.26347359E-05) (-0.70710367E-19,-0.33384104E-20)
  (-0.26763895E-07, 0.37001087E-07) ( 0.17509299E-20, 0.12227962E-21)
  ( 0.16392613E-10, 0.10631331E-09)
     ROW  2
  (-0.19398938E-02,-0.87032803E-04) (-0.22376857E-02, 0.12072528E-04)
  (-0.18150025E-02, 0.80618744E-05) (-0.10232176E-18, 0.10289967E-21)
  (-0.89164749E-05, 0.19507386E-05) (-0.13071553E-19, 0.31091944E-22)
  (-0.10504572E-07, 0.12090579E-07)
     ROW  3
  (-0.19877607E-04, 0.26347359E-05) (-0.18150025E-02, 0.80618744E-05)
  (-0.21777046E-02, 0.91533677E-05) (-0.16780915E-19, 0.14148897E-21)
  (-0.10564842E-02, 0.38769360E-05) ( 0.12814703E-20, 0.54778328E-22)
  (-0.33171290E-05, 0.72471447E-06)
     ROW  4
  (-0.71113987E-19,-0.33607592E-20) (-0.10129291E-18, 0.10569424E-21)
  (-0.17508884E-19, 0.14183586E-21) ( 0.28935939E-02, 0.84059194E-05)
  ( 0.28902461E-19, 0.67683944E-22) (-0.18155599E-03,-0.68167068E-06)
  (-0.31363132E-20,-0.31079382E-22)
     ROW  5
  (-0.26763895E-07, 0.37001087E-07) (-0.89164749E-05, 0.19507386E-05)
  (-0.10564842E-02, 0.38769360E-05) ( 0.31608990E-19, 0.71640714E-22)
  (-0.14744493E-02, 0.37470809E-05) (-0.28237679E-19,-0.10994922E-22)
  (-0.67587429E-03, 0.16941932E-05)
     ROW  6
  ( 0.26927650E-20, 0.16742278E-21) (-0.13013038E-19, 0.27718626E-22)
  ( 0.19843487E-20, 0.53954983E-22) (-0.18155599E-03,-0.68167068E-06)
  (-0.28327733E-19,-0.11254092E-22) ( 0.86097482E-03, 0.77424128E-06)
  ( 0.31669706E-19, 0.14450517E-22)
     ROW  7
  ( 0.16392613E-10, 0.10631331E-09) (-0.10504572E-07, 0.12090579E-07)
  (-0.33171290E-05, 0.72471447E-06) (-0.44561671E-20,-0.35357869E-22)
  (-0.67587429E-03, 0.16941932E-05) ( 0.31576984E-19, 0.14647012E-22)
  (-0.10270172E-02, 0.15115872E-05)
 eigenphases
 -0.4279109E-02 -0.2023004E-02 -0.8006570E-03  0.1095225E-03  0.8448858E-03
  0.2909700E-02  0.4716715E-01
 eigenphase sum 0.439285E-01  scattering length=  -0.08107
 eps+pi 0.318552E+01  eps+2*pi 0.632711E+01

MaxIter =   1 c.s. =      0.02699494 angs^2  rmsk=     0.00017564
Time Now =        93.1061  Delta time =         0.0005 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =        93.1118  Delta time =         0.0057 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = DG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     7
Number of asymptotic solutions on the left (NAsymL) =     7
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     7
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    7
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    9
Time Now =        93.1166  Delta time =         0.0047 Energy independent setup

Compute solution for E =    5.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332267E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332264E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332259E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332251E-16
For potential     3
Number of asymptotic regions =      66
Final point in integration =   0.15437122E+03 Angstroms
Time Now =        93.7592  Delta time =         0.6426 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.63185340E-01, 0.40106578E-02) (-0.14753460E-02,-0.90182434E-04)
  (-0.21880945E-04, 0.16613179E-05) ( 0.98277289E-19, 0.63792029E-20)
  (-0.25307693E-07, 0.42593851E-07) (-0.90821770E-20,-0.61016393E-21)
  ( 0.67944264E-10, 0.15255014E-09)
     ROW  2
  (-0.14753460E-02,-0.90182434E-04) (-0.22748858E-02, 0.11453034E-04)
  (-0.20230589E-02, 0.95784357E-05) ( 0.12005808E-18, 0.16327489E-21)
  (-0.12392702E-04, 0.24442752E-05) ( 0.36335159E-20,-0.22545848E-22)
  (-0.18390460E-07, 0.18846830E-07)
     ROW  3
  (-0.21880945E-04, 0.16613179E-05) (-0.20230589E-02, 0.95784357E-05)
  (-0.24364937E-02, 0.11432083E-04) (-0.96703026E-19,-0.35085522E-21)
  (-0.11840879E-02, 0.48695634E-05) ( 0.37975759E-20, 0.48620165E-22)
  (-0.46396677E-05, 0.91326240E-06)
     ROW  4
  ( 0.96454741E-19, 0.62585012E-20) ( 0.11963919E-18, 0.16510615E-21)
  (-0.96467422E-19,-0.35157574E-21) ( 0.32263683E-02, 0.10449521E-04)
  ( 0.25606460E-19, 0.16053326E-21) (-0.19989515E-03,-0.83784744E-06)
  (-0.65087760E-21,-0.27000201E-22)
     ROW  5
  (-0.25307693E-07, 0.42593851E-07) (-0.12392702E-04, 0.24442752E-05)
  (-0.11840879E-02, 0.48695634E-05) ( 0.24223988E-19, 0.15832552E-21)
  (-0.16517793E-02, 0.47039615E-05) (-0.35629857E-19,-0.10811678E-22)
  (-0.75717404E-03, 0.21272253E-05)
     ROW  6
  (-0.10129920E-19,-0.67712318E-21) ( 0.35145214E-20,-0.22377919E-22)
  ( 0.45956663E-20, 0.46814574E-22) (-0.19989515E-03,-0.83784744E-06)
  (-0.34911417E-19,-0.12027224E-22) ( 0.96501843E-03, 0.97122028E-06)
  ( 0.33545030E-19, 0.20325298E-22)
     ROW  7
  ( 0.67944264E-10, 0.15255014E-09) (-0.18390460E-07, 0.18846830E-07)
  (-0.46396677E-05, 0.91326240E-06) (-0.58885401E-22,-0.24854746E-22)
  (-0.75717404E-03, 0.21272253E-05) ( 0.34202380E-19, 0.20632811E-22)
  (-0.11503674E-02, 0.18966882E-05)
 eigenphases
 -0.4670090E-02 -0.2211182E-02 -0.8486658E-03  0.1830931E-03  0.9474849E-03
  0.3243925E-02  0.6338825E-01
 eigenphase sum 0.600328E-01  scattering length=  -0.09915
 eps+pi 0.320163E+01  eps+2*pi 0.634322E+01

MaxIter =   1 c.s. =      0.03879587 angs^2  rmsk=     0.00019674
Time Now =        93.7597  Delta time =         0.0005 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =        93.7655  Delta time =         0.0058 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = DG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     7
Number of asymptotic solutions on the left (NAsymL) =     7
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     7
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    7
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    9
Time Now =        93.7702  Delta time =         0.0047 Energy independent setup

Compute solution for E =    6.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405061E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405060E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405056E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405051E-16
For potential     3
Number of asymptotic regions =      68
Final point in integration =   0.14526845E+03 Angstroms
Time Now =        94.4119  Delta time =         0.6417 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.81314886E-01, 0.66569666E-02) (-0.73279803E-03,-0.58352207E-04)
  (-0.19790227E-04, 0.59420973E-07) (-0.39252210E-18,-0.33416209E-19)
  ( 0.85573280E-11, 0.37656039E-07) (-0.22831772E-19,-0.18087812E-20)
  ( 0.21212280E-09, 0.15845575E-09)
     ROW  2
  (-0.73279803E-03,-0.58352207E-04) (-0.21569000E-02, 0.10056540E-04)
  (-0.22053207E-02, 0.10679869E-04) (-0.13959171E-18, 0.18928268E-21)
  (-0.16160265E-04, 0.29318561E-05) ( 0.31142345E-20, 0.22653042E-21)
  (-0.28729774E-07, 0.27009742E-07)
     ROW  3
  (-0.19790227E-04, 0.59420972E-07) (-0.22053207E-02, 0.10679869E-04)
  (-0.26696477E-02, 0.13681996E-04) (-0.42362642E-19, 0.12519448E-21)
  (-0.13002967E-02, 0.58696063E-05) (-0.83102205E-19, 0.11549011E-21)
  (-0.61033893E-05, 0.11048759E-05)
     ROW  4
  (-0.39167531E-18,-0.33344376E-19) (-0.13894530E-18, 0.19074889E-21)
  (-0.42783712E-19, 0.12354958E-21) ( 0.35246324E-02, 0.12469685E-04)
  ( 0.13235368E-18, 0.30559073E-21) (-0.21562621E-03,-0.98852277E-06)
  (-0.29490125E-19,-0.18334444E-21)
     ROW  5
  ( 0.85573790E-11, 0.37656039E-07) (-0.16160265E-04, 0.29318561E-05)
  (-0.13002967E-02, 0.58696063E-05) ( 0.13250652E-18, 0.30456889E-21)
  (-0.18129806E-02, 0.56688732E-05) ( 0.16014736E-19, 0.40675509E-22)
  (-0.83117993E-03, 0.25641844E-05)
     ROW  6
  (-0.22725977E-19,-0.17992529E-20) ( 0.18356331E-20, 0.22725338E-21)
  (-0.82888871E-19, 0.11870120E-21) (-0.21562621E-03,-0.98852277E-06)
  ( 0.15518772E-19, 0.40982026E-22) ( 0.10597328E-02, 0.11695305E-05)
  ( 0.31932045E-19,-0.12506405E-22)
     ROW  7
  ( 0.21212280E-09, 0.15845575E-09) (-0.28729774E-07, 0.27009742E-07)
  (-0.61033893E-05, 0.11048759E-05) (-0.28720815E-19,-0.18177432E-21)
  (-0.83117993E-03, 0.25641844E-05) ( 0.32120556E-19,-0.13121478E-22)
  (-0.12624314E-02, 0.22846435E-05)
 eigenphases
 -0.4977846E-02 -0.2357678E-02 -0.8688468E-03  0.2958871E-03  0.1041013E-02
  0.3543383E-02  0.8168418E-01
 eigenphase sum 0.783601E-01  scattering length=  -0.11824
 eps+pi 0.321995E+01  eps+2*pi 0.636155E+01

MaxIter =   1 c.s. =      0.05348170 angs^2  rmsk=     0.00021593
Time Now =        94.4124  Delta time =         0.0005 End ScatStab
+ Data Record ScatContSym - 'DU'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =        94.4182  Delta time =         0.0058 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = DU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     5
Number of asymptotic solutions on the left (NAsymL) =     5
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     5
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    5
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    9
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    8
Time Now =        94.4230  Delta time =         0.0048 Energy independent setup

Compute solution for E =    3.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491016E-15
For potential     3
Number of asymptotic regions =      62
Final point in integration =   0.18302855E+03 Angstroms
Time Now =        94.8746  Delta time =         0.4516 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.17544674E-02, 0.74363465E-05) (-0.20875886E-02, 0.95761994E-06)
  (-0.10112880E-04, 0.24698036E-05) (-0.37557168E-19,-0.22987068E-21)
  (-0.10555294E-07, 0.14505333E-07)
     ROW  2
  (-0.20875886E-02, 0.95761994E-06) (-0.22074385E-02, 0.10632956E-04)
  (-0.11840603E-02, 0.44726657E-05) ( 0.53486062E-19,-0.38749720E-22)
  (-0.34516105E-05, 0.86620691E-06)
     ROW  3
  (-0.10112880E-04, 0.24698036E-05) (-0.11840603E-02, 0.44726657E-05)
  (-0.15499641E-02, 0.43258244E-05) ( 0.61563736E-19,-0.34480863E-22)
  (-0.72200158E-03, 0.18873426E-05)
     ROW  4
  (-0.37755711E-19,-0.23161321E-21) ( 0.54031557E-19,-0.36695848E-22)
  ( 0.59794776E-19,-0.35215031E-22) ( 0.13764797E-02, 0.18947000E-05)
  (-0.53676199E-19,-0.60431837E-22)
     ROW  5
  (-0.10555294E-07, 0.14505333E-07) (-0.34516105E-05, 0.86620691E-06)
  (-0.72200158E-03, 0.18873426E-05) (-0.54226291E-19,-0.61882129E-22)
  (-0.10583964E-02, 0.16415082E-05)
 eigenphases
 -0.3719672E-02 -0.1651532E-02 -0.3951574E-03  0.1376481E-02  0.2705006E-02
 eigenphase sum-0.168487E-02  scattering length=   0.00359
 eps+pi 0.313991E+01  eps+2*pi 0.628150E+01

MaxIter =   1 c.s. =      0.00041384 angs^2  rmsk=     0.00025624
Time Now =        94.8749  Delta time =         0.0004 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =        94.8806  Delta time =         0.0057 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = DU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     5
Number of asymptotic solutions on the left (NAsymL) =     5
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     5
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    5
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    9
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    8
Time Now =        94.8853  Delta time =         0.0047 Energy independent setup

Compute solution for E =    4.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619643E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619640E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619635E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619626E-16
For potential     3
Number of asymptotic regions =      64
Final point in integration =   0.16629189E+03 Angstroms
Time Now =        95.3374  Delta time =         0.4520 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.33633287E-02, 0.16843229E-04) (-0.23517483E-02,-0.19228149E-05)
  (-0.15206721E-04, 0.31975517E-05) ( 0.33709578E-19, 0.22419955E-21)
  (-0.21244922E-07, 0.25164343E-07)
     ROW  2
  (-0.23517483E-02,-0.19228149E-05) (-0.25368777E-02, 0.13842992E-04)
  (-0.13697674E-02, 0.59716480E-05) (-0.24865136E-19,-0.16969671E-21)
  (-0.53142719E-05, 0.11645512E-05)
     ROW  3
  (-0.15206721E-04, 0.31975517E-05) (-0.13697674E-02, 0.59716480E-05)
  (-0.17932966E-02, 0.57905971E-05) ( 0.83434293E-19, 0.68816414E-22)
  (-0.83552665E-03, 0.25289681E-05)
     ROW  4
  ( 0.34234178E-19, 0.22442094E-21) (-0.23855851E-19,-0.17222078E-21)
  ( 0.83678974E-19, 0.67408342E-22) ( 0.15903246E-02, 0.25291386E-05)
  (-0.62519181E-19,-0.92645636E-22)
     ROW  5
  (-0.21244922E-07, 0.25164343E-07) (-0.53142719E-05, 0.11645512E-05)
  (-0.83552665E-03, 0.25289681E-05) (-0.62480784E-19,-0.92421780E-22)
  (-0.12247534E-02, 0.21981665E-05)
 eigenphases
 -0.4160996E-02 -0.1839947E-02 -0.4105349E-03  0.1590327E-02  0.4219877E-02
 eigenphase sum-0.601274E-03  scattering length=   0.00111
 eps+pi 0.314099E+01  eps+2*pi 0.628258E+01

MaxIter =   1 c.s. =      0.00049319 angs^2  rmsk=     0.00029652
Time Now =        95.3377  Delta time =         0.0004 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =        95.3434  Delta time =         0.0057 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = DU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     5
Number of asymptotic solutions on the left (NAsymL) =     5
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     5
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    5
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    9
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    8
Time Now =        95.3481  Delta time =         0.0047 Energy independent setup

Compute solution for E =    5.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332267E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332264E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332259E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332251E-16
For potential     3
Number of asymptotic regions =      66
Final point in integration =   0.15437122E+03 Angstroms
Time Now =        95.8333  Delta time =         0.4851 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.56660308E-02, 0.38563284E-04) (-0.25411421E-02,-0.72124367E-05)
  (-0.20556411E-04, 0.38235188E-05) ( 0.79577566E-20, 0.78703294E-23)
  (-0.35201257E-07, 0.37967529E-07)
     ROW  2
  (-0.25411421E-02,-0.72124367E-05) (-0.28155000E-02, 0.16738567E-04)
  (-0.15341703E-02, 0.74605873E-05) ( 0.19462187E-19,-0.18338000E-21)
  (-0.74249097E-05, 0.14677399E-05)
     ROW  3
  (-0.20556411E-04, 0.38235188E-05) (-0.15341703E-02, 0.74605873E-05)
  (-0.20087639E-02, 0.72660998E-05) ( 0.93529371E-19, 0.12775456E-22)
  (-0.93634045E-03, 0.31770925E-05)
     ROW  4
  ( 0.85026973E-20, 0.89073684E-23) ( 0.20643616E-19,-0.18732381E-21)
  ( 0.94400754E-19, 0.11075937E-22) ( 0.17789101E-02, 0.31645313E-05)
  (-0.69014988E-19,-0.11662041E-21)
     ROW  5
  (-0.35201257E-07, 0.37967529E-07) (-0.74249097E-05, 0.14677399E-05)
  (-0.93634045E-03, 0.31770925E-05) (-0.68668391E-19,-0.11565470E-21)
  (-0.13721194E-02, 0.27595202E-05)
 eigenphases
 -0.4516128E-02 -0.1988607E-02 -0.4135597E-03  0.1778914E-02  0.6388049E-02
 eigenphase sum 0.124867E-02  scattering length=  -0.00206
 eps+pi 0.314284E+01  eps+2*pi 0.628443E+01

MaxIter =   1 c.s. =      0.00065585 angs^2  rmsk=     0.00033224
Time Now =        95.8336  Delta time =         0.0004 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =        95.8393  Delta time =         0.0057 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = DU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     5
Number of asymptotic solutions on the left (NAsymL) =     5
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     5
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    5
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    9
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    8
Time Now =        95.8440  Delta time =         0.0047 Energy independent setup

Compute solution for E =    6.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405061E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405060E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405056E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405051E-16
For potential     3
Number of asymptotic regions =      68
Final point in integration =   0.14526845E+03 Angstroms
Time Now =        96.3286  Delta time =         0.4846 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.87150221E-02, 0.83023058E-04) (-0.26577516E-02,-0.15014190E-04)
  (-0.25827866E-04, 0.43056738E-05) ( 0.12175435E-18, 0.86063713E-21)
  (-0.50920904E-07, 0.52103693E-07)
     ROW  2
  (-0.26577516E-02,-0.15014190E-04) (-0.30500202E-02, 0.19200184E-04)
  (-0.16831949E-02, 0.89231786E-05) ( 0.16582574E-18,-0.32212236E-21)
  (-0.97529387E-05, 0.17752619E-05)
     ROW  3
  (-0.25827866E-04, 0.43056738E-05) (-0.16831949E-02, 0.89231786E-05)
  (-0.22044605E-02, 0.87507902E-05) (-0.10909483E-18,-0.21811187E-21)
  (-0.10281743E-02, 0.38315667E-05)
     ROW  4
  ( 0.12163306E-18, 0.85993940E-21) ( 0.16560124E-18,-0.32160869E-21)
  (-0.10906287E-18,-0.21794520E-21) ( 0.19495875E-02, 0.38009060E-05)
  (-0.35149526E-19, 0.94924735E-22)
     ROW  5
  (-0.50920904E-07, 0.52103693E-07) (-0.97529387E-05, 0.17752619E-05)
  (-0.10281743E-02, 0.38315667E-05) (-0.35350089E-19, 0.94866448E-22)
  (-0.15060844E-02, 0.33255567E-05)
 eigenphases
 -0.4818556E-02 -0.2113438E-02 -0.4108545E-03  0.1949592E-02  0.9297761E-02
 eigenphase sum 0.390450E-02  scattering length=  -0.00588
 eps+pi 0.314550E+01  eps+2*pi 0.628709E+01

MaxIter =   1 c.s. =      0.00094240 angs^2  rmsk=     0.00036472
Time Now =        96.3290  Delta time =         0.0004 End ScatStab
+ Data Record ScatContSym - 'FG'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =        96.3348  Delta time =         0.0058 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = FG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     6
Number of asymptotic solutions on the left (NAsymL) =     6
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     6
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    8
Time Now =        96.3395  Delta time =         0.0047 Energy independent setup

Compute solution for E =    3.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491016E-15
For potential     3
Number of asymptotic regions =      62
Final point in integration =   0.18302855E+03 Angstroms
Time Now =        96.8415  Delta time =         0.5020 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.22792079E-02, 0.66486123E-05) (-0.12057193E-02,-0.16494302E-05)
  (-0.16036814E-18,-0.74194240E-21) (-0.40781379E-05, 0.97648294E-06)
  ( 0.15119900E-19, 0.81837646E-22) (-0.32884396E-08, 0.44157612E-08)
     ROW  2
  (-0.12057193E-02,-0.16494302E-05) (-0.90846023E-03, 0.29422722E-05)
  ( 0.97622528E-19, 0.29072710E-21) (-0.81436845E-03, 0.15186364E-05)
  ( 0.55784180E-22,-0.55139406E-22) (-0.18139842E-05, 0.44901226E-06)
     ROW  3
  (-0.16200441E-18,-0.74478134E-21) ( 0.94781630E-19, 0.29052234E-21)
  ( 0.15893345E-02, 0.25957487E-05) (-0.37958020E-19,-0.10470811E-21)
  (-0.26411686E-03,-0.50959728E-06) ( 0.38488515E-21, 0.28436427E-22)
     ROW  4
  (-0.40781379E-05, 0.97648294E-06) (-0.81436845E-03, 0.15186364E-05)
  (-0.37961805E-19,-0.10779481E-21) (-0.94907707E-03, 0.18638985E-05)
  ( 0.13687579E-19, 0.17757070E-22) (-0.54765958E-03, 0.93201809E-06)
     ROW  5
  ( 0.14870999E-19, 0.80507847E-22) ( 0.97573327E-21,-0.54774478E-22)
  (-0.26411686E-03,-0.50959728E-06) ( 0.13884738E-19, 0.16259250E-22)
  ( 0.34009878E-03, 0.18542520E-06) (-0.28383631E-19, 0.39280101E-23)
     ROW  6
  (-0.32884395E-08, 0.44157612E-08) (-0.18139842E-05, 0.44901226E-06)
  ( 0.18750989E-20, 0.29987217E-22) (-0.54765958E-03, 0.93201809E-06)
  (-0.29531399E-19, 0.41145812E-23) (-0.75003974E-03, 0.86249574E-06)
 eigenphases
 -0.2031333E-02 -0.9387423E-03 -0.6124864E-04  0.2865536E-03  0.1642883E-02
  0.2702962E-02
 eigenphase sum 0.160107E-02  scattering length=  -0.00341
 eps+pi 0.314319E+01  eps+2*pi 0.628479E+01

MaxIter =   1 c.s. =      0.00024096 angs^2  rmsk=     0.00015478
Time Now =        96.8419  Delta time =         0.0004 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =        96.8477  Delta time =         0.0058 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = FG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     6
Number of asymptotic solutions on the left (NAsymL) =     6
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     6
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    8
Time Now =        96.8524  Delta time =         0.0047 Energy independent setup

Compute solution for E =    4.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619643E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619640E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619635E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619626E-16
For potential     3
Number of asymptotic regions =      64
Final point in integration =   0.16629189E+03 Angstroms
Time Now =        97.3527  Delta time =         0.5003 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.27890609E-02, 0.96520542E-05) (-0.13685959E-02,-0.23921118E-05)
  ( 0.18438665E-18, 0.85108090E-21) (-0.61950537E-05, 0.12746785E-05)
  ( 0.15278150E-19,-0.21799713E-22) (-0.67884339E-08, 0.77223134E-08)
     ROW  2
  (-0.13685959E-02,-0.23921118E-05) (-0.10369737E-02, 0.38301822E-05)
  (-0.17272454E-20,-0.22167895E-21) (-0.93903163E-03, 0.20127678E-05)
  ( 0.10784077E-19,-0.37807492E-22) (-0.27877870E-05, 0.59947238E-06)
     ROW  3
  ( 0.18340638E-18, 0.84693665E-21) (-0.18873249E-20,-0.22068446E-21)
  ( 0.18375288E-02, 0.34675312E-05) (-0.37319985E-19,-0.32816156E-22)
  (-0.30167289E-03,-0.67364550E-06) ( 0.28926102E-20, 0.37126378E-22)
     ROW  4
  (-0.61950537E-05, 0.12746785E-05) (-0.93903163E-03, 0.20127678E-05)
  (-0.37610819E-19,-0.32234866E-22) (-0.10955583E-02, 0.24824223E-05)
  ( 0.11283389E-19, 0.14601837E-22) (-0.63272598E-03, 0.12443923E-05)
     ROW  5
  ( 0.14702007E-19,-0.23095481E-22) ( 0.10598399E-19,-0.38491108E-22)
  (-0.30167289E-03,-0.67364550E-06) ( 0.13034378E-19, 0.14535867E-22)
  ( 0.39549581E-03, 0.24742399E-06) (-0.35474544E-19, 0.75773138E-23)
     ROW  6
  (-0.67884338E-08, 0.77223134E-08) (-0.27877870E-05, 0.59947238E-06)
  ( 0.22205318E-20, 0.36147686E-22) (-0.63272598E-03, 0.12443923E-05)
  (-0.33784008E-19, 0.80903253E-23) (-0.86701114E-03, 0.11520615E-05)
 eigenphases
 -0.2328317E-02 -0.1070201E-02 -0.5953921E-04  0.3349298E-03  0.1898099E-02
  0.3247589E-02
 eigenphase sum 0.202256E-02  scattering length=  -0.00373
 eps+pi 0.314362E+01  eps+2*pi 0.628521E+01

MaxIter =   1 c.s. =      0.00024934 angs^2  rmsk=     0.00017889
Time Now =        97.3531  Delta time =         0.0004 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =        97.3588  Delta time =         0.0057 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = FG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     6
Number of asymptotic solutions on the left (NAsymL) =     6
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     6
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    8
Time Now =        97.3635  Delta time =         0.0047 Energy independent setup

Compute solution for E =    5.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332267E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332264E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332259E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332251E-16
For potential     3
Number of asymptotic regions =      66
Final point in integration =   0.15437122E+03 Angstroms
Time Now =        97.9023  Delta time =         0.5387 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.33358721E-02, 0.13384642E-04) (-0.15021100E-02,-0.32816760E-05)
  ( 0.25223394E-19, 0.25004045E-21) (-0.85283003E-05, 0.15568312E-05)
  (-0.20848922E-19,-0.10337245E-21) (-0.11742571E-07, 0.11850509E-07)
     ROW  2
  (-0.15021100E-02,-0.32816760E-05) (-0.11452457E-02, 0.46671197E-05)
  (-0.71190228E-19,-0.91673644E-22) (-0.10484002E-02, 0.24999509E-05)
  ( 0.10663679E-19, 0.34845705E-22) (-0.38888446E-05, 0.75035334E-06)
     ROW  3
  ( 0.25939529E-19, 0.25637385E-21) (-0.72661381E-19,-0.94019318E-22)
  ( 0.20569320E-02, 0.43422945E-05) (-0.14434046E-19, 0.58377470E-22)
  (-0.33362527E-03,-0.83480608E-06) ( 0.11293322E-20, 0.23973593E-22)
     ROW  4
  (-0.85283003E-05, 0.15568312E-05) (-0.10484002E-02, 0.24999509E-05)
  (-0.14007881E-19, 0.57040807E-22) (-0.12244337E-02, 0.30995123E-05)
  ( 0.12309316E-19, 0.10675910E-22) (-0.70784045E-03, 0.15576377E-05)
     ROW  5
  (-0.21621700E-19,-0.10826094E-21) ( 0.11802530E-19, 0.33629892E-22)
  (-0.33362527E-03,-0.83480608E-06) ( 0.14280812E-19, 0.74833060E-23)
  ( 0.44528312E-03, 0.30958367E-06) (-0.36709004E-19, 0.87434931E-23)
     ROW  6
  (-0.11742571E-07, 0.11850509E-07) (-0.38888446E-05, 0.75035334E-06)
  ( 0.22777848E-20, 0.25202241E-22) (-0.70784045E-03, 0.15576377E-05)
  (-0.37572596E-19, 0.10213710E-22) (-0.97034276E-03, 0.14426234E-05)
 eigenphases
 -0.2583085E-02 -0.1179873E-02 -0.5257093E-04  0.3789500E-03  0.2123272E-02
  0.3811403E-02
 eigenphase sum 0.249810E-02  scattering length=  -0.00412
 eps+pi 0.314409E+01  eps+2*pi 0.628568E+01

MaxIter =   1 c.s. =      0.00026089 angs^2  rmsk=     0.00020018
Time Now =        97.9027  Delta time =         0.0004 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =        97.9085  Delta time =         0.0057 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = FG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     6
Number of asymptotic solutions on the left (NAsymL) =     6
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     6
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    8
Time Now =        97.9132  Delta time =         0.0047 Energy independent setup

Compute solution for E =    6.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405061E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405060E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405056E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405051E-16
For potential     3
Number of asymptotic regions =      68
Final point in integration =   0.14526845E+03 Angstroms
Time Now =        98.4523  Delta time =         0.5392 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.39467625E-02, 0.18176755E-04) (-0.16122489E-02,-0.43547869E-05)
  ( 0.10223428E-19,-0.46147509E-21) (-0.11016663E-04, 0.18203340E-05)
  ( 0.16631995E-19, 0.68023429E-22) (-0.18128009E-07, 0.16721480E-07)
     ROW  2
  (-0.16122489E-02,-0.43547869E-05) (-0.12379228E-02, 0.54471415E-05)
  ( 0.32293213E-18, 0.49770707E-21) (-0.11468468E-02, 0.29790882E-05)
  ( 0.12777017E-20,-0.14801463E-21) (-0.51020280E-05, 0.90166118E-06)
     ROW  3
  ( 0.11026043E-19,-0.45555591E-21) ( 0.32232731E-18, 0.49561691E-21)
  ( 0.22559207E-02, 0.52198936E-05) (-0.16198485E-18,-0.51966071E-21)
  (-0.36150688E-03,-0.99309887E-06) ( 0.11631428E-21, 0.14025603E-21)
     ROW  4
  (-0.11016663E-04, 0.18203340E-05) (-0.11468468E-02, 0.29790882E-05)
  (-0.16209628E-18,-0.51971544E-21) (-0.13407535E-02, 0.37150994E-05)
  ( 0.32506050E-20, 0.88546144E-22) (-0.77593237E-03, 0.18717814E-05)
     ROW  5
  ( 0.16723885E-19, 0.67906044E-22) ( 0.14165496E-20,-0.14921050E-21)
  (-0.36150688E-03,-0.99309887E-06) ( 0.42652064E-20, 0.87624348E-22)
  ( 0.49117310E-03, 0.37193937E-06) (-0.44459491E-19, 0.22107922E-22)
     ROW  6
  (-0.18128009E-07, 0.16721480E-07) (-0.51020280E-05, 0.90166118E-06)
  (-0.35443208E-21, 0.13971276E-21) (-0.77593237E-03, 0.18717814E-05)
  (-0.44278119E-19, 0.22962185E-22) (-0.10639883E-02, 0.17341756E-05)
 eigenphases
 -0.2806738E-02 -0.1272810E-02 -0.4054646E-04  0.4199901E-03  0.2327112E-02
  0.4424235E-02
 eigenphase sum 0.305124E-02  scattering length=  -0.00459
 eps+pi 0.314464E+01  eps+2*pi 0.628624E+01

MaxIter =   1 c.s. =      0.00027661 angs^2  rmsk=     0.00021948
Time Now =        98.4527  Delta time =         0.0004 End ScatStab
+ Data Record ScatContSym - 'FU'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =        98.4585  Delta time =         0.0058 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = FU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     6
Number of asymptotic solutions on the left (NAsymL) =     6
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     6
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    9
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    9
Time Now =        98.4632  Delta time =         0.0047 Energy independent setup

Compute solution for E =    3.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491016E-15
For potential     3
Number of asymptotic regions =      62
Final point in integration =   0.18302855E+03 Angstroms
Time Now =        98.9906  Delta time =         0.5274 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.12197163E-01, 0.15032428E-03) (-0.12371894E-02,-0.14750713E-04)
  ( 0.58103691E-18, 0.86845148E-20) (-0.54208246E-05, 0.11809254E-05)
  ( 0.18915913E-19, 0.63553702E-22) (-0.51176819E-08, 0.69053661E-08)
     ROW  2
  (-0.12371894E-02,-0.14750713E-04) (-0.27182880E-03, 0.26116100E-05)
  ( 0.18893160E-18, 0.10217923E-22) (-0.10034179E-02, 0.12921604E-05)
  ( 0.43617570E-19,-0.19051967E-21) (-0.27253995E-05, 0.66925482E-06)
     ROW  3
  ( 0.58075969E-18, 0.86808033E-20) ( 0.18840553E-18, 0.10831599E-22)
  ( 0.31546274E-02, 0.99996335E-05) (-0.19526135E-18,-0.64742901E-21)
  (-0.21876645E-03,-0.86018690E-06) ( 0.50034750E-20, 0.19378804E-21)
     ROW  4
  (-0.54208245E-05, 0.11809254E-05) (-0.10034179E-02, 0.12921604E-05)
  (-0.19344870E-18,-0.64544238E-21) (-0.10074531E-02, 0.24626306E-05)
  ( 0.14798664E-18, 0.12529039E-21) (-0.66391357E-03, 0.12369683E-05)
     ROW  5
  ( 0.19445064E-19, 0.70256650E-22) ( 0.43793230E-19,-0.19224009E-21)
  (-0.21876645E-03,-0.86018690E-06) ( 0.14925342E-18, 0.12559926E-21)
  ( 0.77731800E-03, 0.65208320E-06) (-0.24292127E-18,-0.82269240E-22)
     ROW  6
  (-0.51176819E-08, 0.69053661E-08) (-0.27253995E-05, 0.66925482E-06)
  ( 0.74936094E-20, 0.19819195E-21) (-0.66391357E-03, 0.12369683E-05)
  (-0.24234442E-18,-0.82015317E-22) (-0.85156619E-03, 0.11659570E-05)
 eigenphases
 -0.2008836E-02 -0.7175050E-03  0.4732661E-03  0.7573545E-03  0.3174613E-02
  0.1232063E-01
 eigenphase sum 0.139995E-01  scattering length=  -0.02982
 eps+pi 0.315559E+01  eps+2*pi 0.629718E+01

MaxIter =   1 c.s. =      0.00266864 angs^2  rmsk=     0.00017997
Time Now =        98.9910  Delta time =         0.0004 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =        98.9968  Delta time =         0.0058 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = FU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     6
Number of asymptotic solutions on the left (NAsymL) =     6
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     6
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    9
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    9
Time Now =        99.0015  Delta time =         0.0047 Energy independent setup

Compute solution for E =    4.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619643E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619640E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619635E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619626E-16
For potential     3
Number of asymptotic regions =      64
Final point in integration =   0.16629189E+03 Angstroms
Time Now =        99.5307  Delta time =         0.5292 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.14514883E-01, 0.21252298E-03) (-0.13399878E-02,-0.19080358E-04)
  ( 0.37017600E-18, 0.64856080E-20) (-0.79753478E-05, 0.14380566E-05)
  ( 0.11369158E-19, 0.10436122E-21) (-0.10000876E-07, 0.11561963E-07)
     ROW  2
  (-0.13399878E-02,-0.19080358E-04) (-0.27189143E-03, 0.31980459E-05)
  ( 0.17298631E-18, 0.34124448E-21) (-0.11524575E-02, 0.16642477E-05)
  (-0.16661171E-19,-0.27888306E-21) (-0.41758872E-05, 0.88871779E-06)
     ROW  3
  ( 0.36925620E-18, 0.64679530E-20) ( 0.17351398E-18, 0.34530057E-21)
  ( 0.36306058E-02, 0.13242965E-04) (-0.21990448E-18,-0.80486898E-21)
  (-0.24797191E-03,-0.11237881E-05) ( 0.17530949E-19, 0.28316245E-21)
     ROW  4
  (-0.79753478E-05, 0.14380566E-05) (-0.11524575E-02, 0.16642477E-05)
  (-0.21894310E-18,-0.80172567E-21) (-0.11601570E-02, 0.32618515E-05)
  ( 0.18345893E-18, 0.23974113E-21) (-0.76658162E-03, 0.16485826E-05)
     ROW  5
  ( 0.12422778E-19, 0.12054689E-21) (-0.16439985E-19,-0.27917117E-21)
  (-0.24797191E-03,-0.11237881E-05) ( 0.18248712E-18, 0.23918193E-21)
  ( 0.90124715E-03, 0.87373852E-06) (-0.27792316E-18,-0.12113910E-21)
     ROW  6
  (-0.10000876E-07, 0.11561963E-07) (-0.41758872E-05, 0.88871779E-06)
  ( 0.16998173E-19, 0.28127189E-21) (-0.76658162E-03, 0.16485826E-05)
  (-0.27894839E-18,-0.12166606E-21) (-0.98411644E-03, 0.15561559E-05)
 eigenphases
 -0.2301008E-02 -0.8111798E-03  0.5749861E-03  0.8789014E-03  0.3652984E-02
  0.1463800E-01
 eigenphase sum 0.166327E-01  scattering length=  -0.03068
 eps+pi 0.315823E+01  eps+2*pi 0.629982E+01

MaxIter =   1 c.s. =      0.00280869 angs^2  rmsk=     0.00020791
Time Now =        99.5317  Delta time =         0.0010 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =        99.5374  Delta time =         0.0058 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = FU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     6
Number of asymptotic solutions on the left (NAsymL) =     6
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     6
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    9
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    9
Time Now =        99.5421  Delta time =         0.0047 Energy independent setup

Compute solution for E =    5.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332267E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332264E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332259E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332251E-16
For potential     3
Number of asymptotic regions =      66
Final point in integration =   0.15437122E+03 Angstroms
Time Now =       100.1088  Delta time =         0.5667 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.16934195E-01, 0.28878557E-03) (-0.13908830E-02,-0.23196928E-04)
  (-0.34503121E-19,-0.16069267E-20) (-0.10556406E-04, 0.16176907E-05)
  ( 0.27733537E-19, 0.46212622E-21) (-0.16075749E-07, 0.16852361E-07)
     ROW  2
  (-0.13908830E-02,-0.23196928E-04) (-0.25150101E-03, 0.36405366E-05)
  ( 0.63161121E-18, 0.28661224E-20) (-0.12814593E-02, 0.19993766E-05)
  ( 0.30837258E-19,-0.45554150E-21) (-0.58063382E-05, 0.11062839E-05)
     ROW  3
  (-0.35741729E-19,-0.16329614E-20) ( 0.63160907E-18, 0.28679749E-20)
  ( 0.40455081E-02, 0.16440468E-04) (-0.33600420E-18,-0.18087209E-20)
  (-0.27213903E-03,-0.13762786E-05) ( 0.20358809E-19, 0.42888893E-21)
     ROW  4
  (-0.10556406E-04, 0.16176907E-05) (-0.12814593E-02, 0.19993766E-05)
  (-0.33572676E-18,-0.18089065E-20) (-0.12934071E-02, 0.40498784E-05)
  ( 0.21093936E-18, 0.25843212E-21) (-0.85714628E-03, 0.20598721E-05)
     ROW  5
  ( 0.27906050E-19, 0.46440354E-21) ( 0.31665552E-19,-0.45567094E-21)
  (-0.27213903E-03,-0.13762786E-05) ( 0.21134568E-18, 0.25748139E-21)
  ( 0.10116659E-02, 0.10975307E-05) (-0.31086372E-18,-0.15908761E-21)
     ROW  6
  (-0.16075749E-07, 0.16852361E-07) (-0.58063382E-05, 0.11062839E-05)
  ( 0.21576778E-19, 0.43218929E-21) (-0.85714628E-03, 0.20598721E-05)
  (-0.31068698E-18,-0.15908178E-21) (-0.11010695E-02, 0.19470968E-05)
 eigenphases
 -0.2551231E-02 -0.8862110E-03  0.6791463E-03  0.9874487E-03  0.4069771E-02
  0.1704981E-01
 eigenphase sum 0.193487E-01  scattering length=  -0.03192
 eps+pi 0.316094E+01  eps+2*pi 0.630253E+01

MaxIter =   1 c.s. =      0.00302549 angs^2  rmsk=     0.00023256
Time Now =       100.1092  Delta time =         0.0004 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =       100.1150  Delta time =         0.0058 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = FU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     6
Number of asymptotic solutions on the left (NAsymL) =     6
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     6
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    9
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    9
Time Now =       100.1197  Delta time =         0.0047 Energy independent setup

Compute solution for E =    6.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405061E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405060E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405056E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405051E-16
For potential     3
Number of asymptotic regions =      68
Final point in integration =   0.14526845E+03 Angstroms
Time Now =       100.6875  Delta time =         0.5678 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.19545947E-01, 0.38413876E-03) (-0.13950767E-02,-0.26968357E-04)
  (-0.67169570E-18,-0.15829782E-19) (-0.12993949E-04, 0.17121629E-05)
  (-0.35260446E-19,-0.59555735E-21) (-0.22493721E-07, 0.22356354E-07)
     ROW  2
  (-0.13950767E-02,-0.26968357E-04) (-0.20935347E-03, 0.39389586E-05)
  (-0.18462066E-18, 0.61243212E-21) (-0.13957375E-02, 0.22890835E-05)
  ( 0.44860206E-19, 0.52427323E-22) (-0.75903380E-05, 0.13215229E-05)
     ROW  3
  (-0.67100585E-18,-0.15812962E-19) (-0.18495459E-18, 0.61241744E-21)
  ( 0.44166658E-02, 0.19592927E-04) (-0.33551276E-18,-0.89510534E-21)
  (-0.29258067E-03,-0.16177953E-05) ( 0.14361426E-18, 0.86125568E-21)
     ROW  4
  (-0.12993949E-04, 0.17121629E-05) (-0.13957375E-02, 0.22890835E-05)
  (-0.33379967E-18,-0.89083616E-21) (-0.14126210E-02, 0.48256842E-05)
  ( 0.66992385E-19, 0.28601028E-21) (-0.93909337E-03, 0.24706510E-05)
     ROW  5
  (-0.34555522E-19,-0.58135179E-21) ( 0.44989301E-19, 0.53727337E-22)
  (-0.29258067E-03,-0.16177953E-05) ( 0.65499919E-19, 0.28508916E-21)
  ( 0.11126174E-02, 0.13235254E-05) (-0.28635804E-18,-0.76853756E-22)
     ROW  6
  (-0.22493721E-07, 0.22356354E-07) (-0.75903380E-05, 0.13215229E-05)
  ( 0.14359648E-18, 0.86011099E-21) (-0.93909337E-03, 0.24706510E-05)
  (-0.28814781E-18,-0.78080266E-22) (-0.12069649E-02, 0.23387316E-05)
 eigenphases
 -0.2770334E-02 -0.9464376E-03  0.7894430E-03  0.1086910E-02  0.4442433E-02
  0.1964938E-01
 eigenphase sum 0.222514E-01  scattering length=  -0.03351
 eps+pi 0.316384E+01  eps+2*pi 0.630544E+01

MaxIter =   1 c.s. =      0.00332078 angs^2  rmsk=     0.00025488
Time Now =       100.6879  Delta time =         0.0004 End ScatStab
+ Data Record ScatContSym - 'GG'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =       100.6936  Delta time =         0.0057 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = GG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     7
Number of asymptotic solutions on the right (NAsymR) =     7
Number of asymptotic solutions on the left (NAsymL) =     7
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     7
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    7
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   10
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    7
Time Now =       100.6983  Delta time =         0.0047 Energy independent setup

Compute solution for E =    3.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491016E-15
For potential     3
Number of asymptotic regions =      62
Final point in integration =   0.18302855E+03 Angstroms
Time Now =       101.2364  Delta time =         0.5381 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.77428245E-02, 0.60486621E-04) (-0.56046125E-17,-0.68247065E-19)
  (-0.72910308E-03,-0.59572005E-05) (-0.38806251E-19, 0.32047568E-20)
  (-0.21384979E-05, 0.48019017E-06) (-0.46524470E-21, 0.26183498E-22)
  (-0.15508272E-08, 0.20623834E-08)
     ROW  2
  (-0.56072745E-17,-0.68279323E-19) ( 0.40773469E-02, 0.16721672E-04)
  ( 0.27531786E-17, 0.17317382E-19) (-0.31085696E-03,-0.15087482E-05)
  (-0.78918527E-19,-0.30016956E-20) (-0.46726720E-06, 0.10839712E-06)
  ( 0.12313384E-20, 0.76252334E-22)
     ROW  3
  (-0.72910308E-03,-0.59572005E-05) ( 0.27519218E-17, 0.17308399E-19)
  ( 0.42925313E-03, 0.11780382E-05) (-0.24667822E-17,-0.56742456E-20)
  (-0.67981599E-03, 0.48121372E-07) (-0.14681323E-19, 0.17264912E-20)
  (-0.13885479E-05, 0.33802775E-06)
     ROW  4
  (-0.39200207E-19, 0.32036435E-20) (-0.31085696E-03,-0.15087482E-05)
  (-0.24681623E-17,-0.56773696E-20) ( 0.77661373E-03, 0.82565260E-06)
  ( 0.27644427E-17, 0.29861369E-20) (-0.35480787E-03,-0.27115073E-06)
  (-0.12063747E-18,-0.21541655E-20)
     ROW  5
  (-0.21384979E-05, 0.48019017E-06) (-0.77519913E-19,-0.29946145E-20)
  (-0.67981599E-03, 0.48121372E-07) ( 0.27622083E-17, 0.29837143E-20)
  (-0.49673418E-03, 0.95587887E-06) (-0.12669451E-17,-0.13865867E-20)
  (-0.49696906E-03, 0.52501960E-06)
     ROW  6
  (-0.16319912E-20, 0.17640858E-22) (-0.46726720E-06, 0.10839712E-06)
  (-0.15139714E-19, 0.17284621E-20) (-0.35480787E-03,-0.27115073E-06)
  (-0.12681515E-17,-0.13856437E-20) (-0.11987062E-04, 0.12603264E-06)
  ( 0.21334589E-17,-0.54257858E-21)
     ROW  7
  (-0.15508272E-08, 0.20623834E-08) ( 0.16403520E-21, 0.71804626E-22)
  (-0.13885479E-05, 0.33802775E-06) (-0.12064671E-18,-0.21533036E-20)
  (-0.49696906E-03, 0.52501960E-06) ( 0.21350833E-17,-0.54410055E-21)
  (-0.55780798E-03, 0.55813062E-06)
 eigenphases
 -0.1187140E-02 -0.2876831E-03 -0.1511337E-03  0.7770477E-03  0.8864810E-03
  0.4106673E-02  0.7815628E-02
 eigenphase sum 0.119599E-01  scattering length=  -0.02547
 eps+pi 0.315355E+01  eps+2*pi 0.629515E+01

MaxIter =   1 c.s. =      0.00129033 angs^2  rmsk=     0.00010673
Time Now =       101.2373  Delta time =         0.0008 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =       101.2430  Delta time =         0.0057 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = GG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     7
Number of asymptotic solutions on the right (NAsymR) =     7
Number of asymptotic solutions on the left (NAsymL) =     7
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     7
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    7
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   10
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    7
Time Now =       101.2477  Delta time =         0.0047 Energy independent setup

Compute solution for E =    4.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619643E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619640E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619635E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619626E-16
For potential     3
Number of asymptotic regions =      64
Final point in integration =   0.16629189E+03 Angstroms
Time Now =       101.7919  Delta time =         0.5442 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.89113301E-02, 0.80073287E-04) (-0.71280099E-17,-0.99517111E-19)
  (-0.80932216E-03,-0.76283016E-05) (-0.59623830E-19, 0.42255747E-20)
  (-0.32048482E-05, 0.60428870E-06) ( 0.41857847E-20, 0.84069118E-22)
  (-0.31445210E-08, 0.35283305E-08)
     ROW  2
  (-0.71289677E-17,-0.99528146E-19) ( 0.46883872E-02, 0.22104562E-04)
  ( 0.31964630E-17, 0.23469690E-19) (-0.35084771E-03,-0.19615329E-05)
  (-0.70453530E-19,-0.38760433E-20) (-0.70768002E-06, 0.13941359E-06)
  (-0.23515291E-20, 0.70325899E-22)
     ROW  3
  (-0.80932216E-03,-0.76283016E-05) ( 0.31989484E-17, 0.23482880E-19)
  ( 0.51653198E-03, 0.15296954E-05) (-0.28681171E-17,-0.76259035E-20)
  (-0.77962970E-03, 0.45297190E-07) (-0.15884549E-19, 0.22903844E-20)
  (-0.21259254E-05, 0.44702509E-06)
     ROW  4
  (-0.59582718E-19, 0.42262565E-20) (-0.35084771E-03,-0.19615329E-05)
  (-0.28686352E-17,-0.76254999E-20) ( 0.90314214E-03, 0.11042390E-05)
  ( 0.31890967E-17, 0.39990768E-20) (-0.40678496E-03,-0.36249312E-06)
  (-0.13671749E-18,-0.28582880E-20)
     ROW  5
  (-0.32048482E-05, 0.60428870E-06) (-0.72009092E-19,-0.38853074E-20)
  (-0.77962970E-03, 0.45297190E-07) ( 0.31895618E-17, 0.39999864E-20)
  (-0.56974877E-03, 0.12608118E-05) (-0.14655445E-17,-0.18452881E-20)
  (-0.57302962E-03, 0.69707297E-06)
     ROW  6
  ( 0.53622960E-20, 0.94404695E-22) (-0.70768002E-06, 0.13941359E-06)
  (-0.15736709E-19, 0.22896196E-20) (-0.40678496E-03,-0.36249312E-06)
  (-0.14654165E-17,-0.18452591E-20) (-0.11416274E-04, 0.16560501E-06)
  ( 0.24639700E-17,-0.71911962E-21)
     ROW  7
  (-0.31445210E-08, 0.35283305E-08) (-0.10368501E-20, 0.76872541E-22)
  (-0.21259254E-05, 0.44702509E-06) (-0.13769551E-18,-0.28592949E-20)
  (-0.57302962E-03, 0.69707297E-06) ( 0.24640300E-17,-0.71868833E-21)
  (-0.64382567E-03, 0.74288020E-06)
 eigenphases
 -0.1362866E-02 -0.3243213E-03 -0.1694620E-03  0.9122984E-03  0.1028659E-02
  0.4720987E-02  0.8989659E-02
 eigenphase sum 0.137950E-01  scattering length=  -0.02544
 eps+pi 0.315539E+01  eps+2*pi 0.629698E+01

MaxIter =   1 c.s. =      0.00128050 angs^2  rmsk=     0.00012313
Time Now =       101.7934  Delta time =         0.0016 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =       101.7992  Delta time =         0.0058 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = GG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     7
Number of asymptotic solutions on the right (NAsymR) =     7
Number of asymptotic solutions on the left (NAsymL) =     7
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     7
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    7
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   10
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    7
Time Now =       101.8039  Delta time =         0.0047 Energy independent setup

Compute solution for E =    5.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332267E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332264E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332259E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332251E-16
For potential     3
Number of asymptotic regions =      66
Final point in integration =   0.15437122E+03 Angstroms
Time Now =       102.3888  Delta time =         0.5849 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.99583049E-02, 0.99931719E-04) (-0.80066838E-17,-0.12476777E-18)
  (-0.86821190E-03,-0.91650876E-05) ( 0.90288458E-20, 0.59109945E-20)
  (-0.43531520E-05, 0.71107123E-06) (-0.62583063E-21, 0.12623237E-22)
  (-0.53438367E-08, 0.52968789E-08)
     ROW  2
  (-0.80015752E-17,-0.12468938E-18) ( 0.52198674E-02, 0.27394689E-04)
  ( 0.37113833E-17, 0.29868208E-19) (-0.38329709E-03,-0.23901424E-05)
  (-0.11246693E-18,-0.50607295E-20) (-0.97286134E-06, 0.16802674E-06)
  ( 0.26971574E-20, 0.12919804E-21)
     ROW  3
  (-0.86821190E-03,-0.91650876E-05) ( 0.37108383E-17, 0.29869389E-19)
  ( 0.60124057E-03, 0.18647768E-05) (-0.31757299E-17,-0.96498568E-20)
  (-0.86567788E-03, 0.32872588E-07) (-0.92982853E-20, 0.28350806E-20)
  (-0.29544341E-05, 0.55420749E-06)
     ROW  4
  ( 0.56121664E-20, 0.58719310E-20) (-0.38329709E-03,-0.23901424E-05)
  (-0.31760726E-17,-0.96475466E-20) ( 0.10168428E-02, 0.13848187E-05)
  ( 0.35648901E-17, 0.49993896E-20) (-0.45158043E-03,-0.45428282E-06)
  (-0.15309028E-18,-0.35600039E-20)
     ROW  5
  (-0.43531520E-05, 0.71107123E-06) (-0.11252901E-18,-0.50610401E-20)
  (-0.86567789E-03, 0.32872588E-07) ( 0.35643252E-17, 0.49985930E-20)
  (-0.63267124E-03, 0.15590250E-05) (-0.16376333E-17,-0.23095608E-20)
  (-0.63978999E-03, 0.86764154E-06)
     ROW  6
  (-0.85247567E-21, 0.13046096E-22) (-0.97286134E-06, 0.16802674E-06)
  (-0.10612786E-19, 0.28343197E-20) (-0.45158043E-03,-0.45428282E-06)
  (-0.16372415E-17,-0.23079697E-20) (-0.10035264E-04, 0.20402681E-06)
  ( 0.27504235E-17,-0.88977606E-21)
     ROW  7
  (-0.53438367E-08, 0.52968789E-08) ( 0.38486304E-20, 0.13413930E-21)
  (-0.29544341E-05, 0.55420749E-06) (-0.15235750E-18,-0.35605439E-20)
  (-0.63978999E-03, 0.86764154E-06) ( 0.27519225E-17,-0.89095489E-21)
  (-0.71946269E-03, 0.92696844E-06)
 eigenphases
 -0.1514981E-02 -0.3537478E-03 -0.1838611E-03  0.1037425E-02  0.1155698E-02
  0.5254935E-02  0.1003939E-01
 eigenphase sum 0.154349E-01  scattering length=  -0.02546
 eps+pi 0.315703E+01  eps+2*pi 0.629862E+01

MaxIter =   1 c.s. =      0.00127609 angs^2  rmsk=     0.00013754
Time Now =       102.3893  Delta time =         0.0005 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =       102.3951  Delta time =         0.0057 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = GG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     7
Number of asymptotic solutions on the right (NAsymR) =     7
Number of asymptotic solutions on the left (NAsymL) =     7
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     7
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    7
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   10
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    7
Time Now =       102.3998  Delta time =         0.0047 Energy independent setup

Compute solution for E =    6.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405061E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405060E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405056E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405051E-16
For potential     3
Number of asymptotic regions =      68
Final point in integration =   0.14526845E+03 Angstroms
Time Now =       102.9852  Delta time =         0.5855 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.10939202E-01, 0.12050943E-03) (-0.79603152E-17,-0.13567152E-18)
  (-0.91029527E-03,-0.10577900E-04) (-0.94626153E-19, 0.51932937E-20)
  (-0.55491160E-05, 0.80049608E-06) ( 0.11213586E-20, 0.15554358E-21)
  (-0.81047813E-08, 0.73117058E-08)
     ROW  2
  (-0.79602470E-17,-0.13567119E-18) ( 0.56944618E-02, 0.32596194E-04)
  ( 0.36044583E-17, 0.31769906E-19) (-0.41015453E-03,-0.27951306E-05)
  (-0.14126553E-18,-0.55919598E-20) (-0.12578223E-05, 0.19432267E-06)
  ( 0.76213730E-20, 0.17330799E-21)
     ROW  3
  (-0.91029527E-03,-0.10577900E-04) ( 0.36040982E-17, 0.31769363E-19)
  ( 0.68540864E-03, 0.21854593E-05) (-0.33942314E-17,-0.11002337E-19)
  (-0.94175621E-03, 0.10433399E-07) (-0.84674862E-19, 0.32533810E-20)
  (-0.38615598E-05, 0.65958264E-06)
     ROW  4
  (-0.93492543E-19, 0.52076080E-20) (-0.41015453E-03,-0.27951306E-05)
  (-0.33940093E-17,-0.10999930E-19) ( 0.11216340E-02, 0.16675765E-05)
  ( 0.37326723E-17, 0.58314179E-20) (-0.49119862E-03,-0.54650650E-06)
  (-0.13322294E-18,-0.41254972E-20)
     ROW  5
  (-0.55491160E-05, 0.80049608E-06) (-0.14297152E-18,-0.56027230E-20)
  (-0.94175621E-03, 0.10433399E-07) ( 0.37362484E-17, 0.58347075E-20)
  (-0.68826174E-03, 0.18505689E-05) (-0.17633584E-17,-0.26334157E-20)
  (-0.69994568E-03, 0.10367269E-05)
     ROW  6
  (-0.61034886E-21, 0.13571637E-21) (-0.12578223E-05, 0.19432267E-06)
  (-0.84308937E-19, 0.32542238E-20) (-0.49119862E-03,-0.54650650E-06)
  (-0.17624367E-17,-0.26333699E-20) (-0.79891067E-05, 0.24134188E-06)
  ( 0.30095954E-17,-0.10953117E-20)
     ROW  7
  (-0.81047813E-08, 0.73117058E-08) ( 0.91874984E-20, 0.18240758E-21)
  (-0.38615598E-05, 0.65958264E-06) (-0.13375410E-18,-0.41283056E-20)
  (-0.69994568E-03, 0.10367269E-05) ( 0.30085498E-17,-0.10935742E-20)
  (-0.78769152E-03, 0.11103995E-05)
 eigenphases
 -0.1650079E-02 -0.3776747E-03 -0.1953247E-03  0.1156508E-02  0.1272160E-02
  0.5731399E-02  0.1102079E-01
 eigenphase sum 0.169578E-01  scattering length=  -0.02554
 eps+pi 0.315855E+01  eps+2*pi 0.630014E+01

MaxIter =   1 c.s. =      0.00127802 angs^2  rmsk=     0.00015054
Time Now =       102.9857  Delta time =         0.0005 End ScatStab
+ Data Record ScatContSym - 'GU'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =       102.9915  Delta time =         0.0058 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = GU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     5
Number of asymptotic solutions on the right (NAsymR) =     5
Number of asymptotic solutions on the left (NAsymL) =     5
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     5
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    5
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =    9
Higest l included in the K matrix (lna) =    9
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    5
Time Now =       102.9962  Delta time =         0.0047 Energy independent setup

Compute solution for E =    3.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491016E-15
For potential     3
Number of asymptotic regions =      62
Final point in integration =   0.18302855E+03 Angstroms
Time Now =       103.3679  Delta time =         0.3717 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.23228427E-02, 0.59743964E-05) (-0.41686217E-17,-0.19415806E-19)
  (-0.76076026E-03,-0.15709984E-05) ( 0.23871761E-19, 0.28798692E-20)
  (-0.18509502E-05, 0.44080548E-06)
     ROW  2
  (-0.41696520E-17,-0.19420545E-19) ( 0.18360458E-02, 0.35013157E-05)
  ( 0.27220606E-17, 0.81480132E-20) (-0.36088582E-03,-0.75388180E-06)
  (-0.86738869E-19,-0.24897081E-20)
     ROW  3
  (-0.76076026E-03,-0.15709984E-05) ( 0.27213818E-17, 0.81461840E-20)
  (-0.25639924E-03, 0.98521306E-06) (-0.17325307E-17,-0.22846737E-20)
  (-0.58370596E-03, 0.47982111E-06)
     ROW  4
  ( 0.23695950E-19, 0.28799353E-20) (-0.36088582E-03,-0.75388180E-06)
  (-0.17327261E-17,-0.22852743E-20) ( 0.25292240E-03, 0.19420892E-06)
  ( 0.22115682E-17, 0.35643379E-21)
     ROW  5
  (-0.18509502E-05, 0.44080548E-06) (-0.86905835E-19,-0.24892233E-20)
  (-0.58370596E-03, 0.47982111E-06) ( 0.22107285E-17, 0.35664017E-21)
  (-0.56321358E-03, 0.65792646E-06)
 eigenphases
 -0.1082891E-02  0.4790259E-04  0.1745367E-03  0.1914436E-02  0.2538228E-02
 eigenphase sum 0.359221E-02  scattering length=  -0.00765
 eps+pi 0.314518E+01  eps+2*pi 0.628678E+01

MaxIter =   1 c.s. =      0.00018055 angs^2  rmsk=     0.00016223
Time Now =       103.3682  Delta time =         0.0003 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =       103.3740  Delta time =         0.0058 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = GU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     5
Number of asymptotic solutions on the right (NAsymR) =     5
Number of asymptotic solutions on the left (NAsymL) =     5
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     5
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    5
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =    9
Higest l included in the K matrix (lna) =    9
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    5
Time Now =       103.3787  Delta time =         0.0047 Energy independent setup

Compute solution for E =    4.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619643E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619640E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619635E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619626E-16
For potential     3
Number of asymptotic regions =      64
Final point in integration =   0.16629189E+03 Angstroms
Time Now =       103.7493  Delta time =         0.3706 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.27213574E-02, 0.81537733E-05) (-0.39685708E-17,-0.21996293E-19)
  (-0.86481685E-03,-0.21035043E-05) ( 0.79391222E-19, 0.35682132E-20)
  (-0.28168373E-05, 0.57518494E-06)
     ROW  2
  (-0.39655287E-17,-0.21982528E-19) ( 0.21258545E-02, 0.46886714E-05)
  ( 0.31540149E-17, 0.10118337E-19) (-0.41157145E-03,-0.99684867E-06)
  (-0.11672842E-18,-0.33293376E-20)
     ROW  3
  (-0.86481685E-03,-0.21035043E-05) ( 0.31534203E-17, 0.10119217E-19)
  (-0.28687976E-03, 0.12815833E-05) (-0.19685338E-17,-0.30982656E-20)
  (-0.67183971E-03, 0.63126092E-06)
     ROW  4
  ( 0.80533977E-19, 0.35704229E-20) (-0.41157145E-03,-0.99684867E-06)
  (-0.19685452E-17,-0.30986397E-20) ( 0.29618848E-03, 0.25711973E-06)
  ( 0.25490357E-17, 0.47079583E-21)
     ROW  5
  (-0.28168373E-05, 0.57518494E-06) (-0.11575626E-18,-0.33280202E-20)
  (-0.67183971E-03, 0.63126092E-06) ( 0.25503143E-17, 0.46994003E-21)
  (-0.64909456E-03, 0.87270178E-06)
 eigenphases
 -0.1240403E-02  0.6518844E-04  0.2078712E-03  0.2214179E-02  0.2960614E-02
 eigenphase sum 0.420745E-02  scattering length=  -0.00776
 eps+pi 0.314580E+01  eps+2*pi 0.628739E+01

MaxIter =   1 c.s. =      0.00018258 angs^2  rmsk=     0.00018684
Time Now =       103.7497  Delta time =         0.0004 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =       103.7555  Delta time =         0.0058 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = GU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     5
Number of asymptotic solutions on the right (NAsymR) =     5
Number of asymptotic solutions on the left (NAsymL) =     5
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     5
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    5
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =    9
Higest l included in the K matrix (lna) =    9
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    5
Time Now =       103.7602  Delta time =         0.0047 Energy independent setup

Compute solution for E =    5.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332267E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332264E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332259E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332251E-16
For potential     3
Number of asymptotic regions =      66
Final point in integration =   0.15437122E+03 Angstroms
Time Now =       104.1619  Delta time =         0.4017 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.30895362E-02, 0.10451033E-04) (-0.46288636E-17,-0.28340735E-19)
  (-0.95166534E-03,-0.26419513E-05) (-0.99049193E-19, 0.38359867E-20)
  (-0.38902236E-05, 0.70343750E-06)
     ROW  2
  (-0.46280752E-17,-0.28335354E-19) ( 0.23830589E-02, 0.58855717E-05)
  ( 0.32071240E-17, 0.12104194E-19) (-0.45449525E-03,-0.12357030E-05)
  (-0.77593962E-19,-0.37992380E-20)
     ROW  3
  (-0.95166534E-03,-0.26419513E-05) ( 0.32087479E-17, 0.12108349E-19)
  (-0.31037310E-03, 0.15627508E-05) (-0.21881604E-17,-0.35406517E-20)
  (-0.74882734E-03, 0.77843751E-06)
     ROW  4
  (-0.97990855E-19, 0.38385780E-20) (-0.45449525E-03,-0.12357030E-05)
  (-0.21874472E-17,-0.35402669E-20) ( 0.33577114E-03, 0.31930982E-06)
  ( 0.28315080E-17, 0.57376367E-21)
     ROW  5
  (-0.38902236E-05, 0.70343750E-06) (-0.77212631E-19,-0.38002043E-20)
  (-0.74882734E-03, 0.77843751E-06) ( 0.28323571E-17, 0.57379873E-21)
  (-0.72422469E-03, 0.10852612E-05)
 eigenphases
 -0.1375760E-02  0.8418834E-04  0.2394093E-03  0.2479431E-02  0.3346533E-02
 eigenphase sum 0.477380E-02  scattering length=  -0.00787
 eps+pi 0.314637E+01  eps+2*pi 0.628796E+01

MaxIter =   1 c.s. =      0.00018485 angs^2  rmsk=     0.00020835
Time Now =       104.1622  Delta time =         0.0003 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =       104.1680  Delta time =         0.0058 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = GU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     5
Number of asymptotic solutions on the right (NAsymR) =     5
Number of asymptotic solutions on the left (NAsymL) =     5
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     5
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    5
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =    9
Higest l included in the K matrix (lna) =    9
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    5
Time Now =       104.1727  Delta time =         0.0047 Energy independent setup

Compute solution for E =    6.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405061E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405060E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405056E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405051E-16
For potential     3
Number of asymptotic regions =      68
Final point in integration =   0.14526845E+03 Angstroms
Time Now =       104.5754  Delta time =         0.4027 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.34412902E-02, 0.12894690E-04) (-0.53984613E-17,-0.37660447E-19)
  (-0.10256749E-02,-0.31886312E-05) ( 0.30427986E-18, 0.63843937E-20)
  (-0.50512644E-05, 0.82542536E-06)
     ROW  2
  (-0.54012217E-17,-0.37677414E-19) ( 0.26173074E-02, 0.70921475E-05)
  ( 0.46840700E-17, 0.17764104E-19) (-0.49172875E-03,-0.14703757E-05)
  (-0.32248902E-18,-0.59449291E-20)
     ROW  3
  (-0.10256749E-02,-0.31886312E-05) ( 0.46842618E-17, 0.17762660E-19)
  (-0.32849516E-03, 0.18287351E-05) (-0.25203231E-17,-0.53101300E-20)
  (-0.81780348E-03, 0.92125202E-06)
     ROW  4
  ( 0.30516305E-18, 0.63889568E-20) (-0.49172875E-03,-0.14703757E-05)
  (-0.25201623E-17,-0.53106275E-20) ( 0.37288740E-03, 0.38084448E-06)
  ( 0.31577323E-17, 0.89565652E-21)
     ROW  5
  (-0.50512644E-05, 0.82542536E-06) (-0.32355153E-18,-0.59472242E-20)
  (-0.81780348E-03, 0.92125202E-06) ( 0.31581076E-17, 0.89615779E-21)
  (-0.79166492E-03, 0.12955646E-05)
 eigenphases
 -0.1494987E-02  0.1049423E-03  0.2698821E-03  0.2720326E-02  0.3711207E-02
 eigenphase sum 0.531137E-02  scattering length=  -0.00800
 eps+pi 0.314690E+01  eps+2*pi 0.628850E+01

MaxIter =   1 c.s. =      0.00018746 angs^2  rmsk=     0.00022765
Time Now =       104.5758  Delta time =         0.0004 End ScatStab
+ Data Record ScatContSym - 'A2G'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =       104.5815  Delta time =         0.0058 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = A2G   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     1
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     1
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     1
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    1
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   10
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    1
Time Now =       104.5862  Delta time =         0.0047 Energy independent setup

Compute solution for E =    3.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491016E-15
For potential     3
Number of asymptotic regions =      62
Final point in integration =   0.18302855E+03 Angstroms
Time Now =       104.6561  Delta time =         0.0699 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.17010452E-02, 0.28935632E-05)
 eigenphases
  0.1701048E-02
 eigenphase sum 0.170105E-02  scattering length=  -0.00362
 eps+pi 0.314329E+01  eps+2*pi 0.628489E+01

MaxIter =   1 c.s. =      0.00004618 angs^2  rmsk=     0.00170105
Time Now =       104.6562  Delta time =         0.0001 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =       104.6678  Delta time =         0.0116 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = A2G   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     1
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     1
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     1
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    1
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   10
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    1
Time Now =       104.6725  Delta time =         0.0047 Energy independent setup

Compute solution for E =    4.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619643E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619640E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619635E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619626E-16
For potential     3
Number of asymptotic regions =      64
Final point in integration =   0.16629189E+03 Angstroms
Time Now =       104.7428  Delta time =         0.0703 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.19606694E-02, 0.38442393E-05)
 eigenphases
  0.1960674E-02
 eigenphase sum 0.196067E-02  scattering length=  -0.00362
 eps+pi 0.314355E+01  eps+2*pi 0.628515E+01

MaxIter =   1 c.s. =      0.00004601 angs^2  rmsk=     0.00196067
Time Now =       104.7430  Delta time =         0.0001 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =       104.7546  Delta time =         0.0116 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = A2G   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     1
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     1
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     1
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    1
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   10
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    1
Time Now =       104.7592  Delta time =         0.0047 Energy independent setup

Compute solution for E =    5.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332267E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332264E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332259E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332251E-16
For potential     3
Number of asymptotic regions =      66
Final point in integration =   0.15437122E+03 Angstroms
Time Now =       104.8351  Delta time =         0.0759 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.21880807E-02, 0.47877202E-05)
 eigenphases
  0.2188088E-02
 eigenphase sum 0.218809E-02  scattering length=  -0.00361
 eps+pi 0.314378E+01  eps+2*pi 0.628537E+01

MaxIter =   1 c.s. =      0.00004584 angs^2  rmsk=     0.00218809
Time Now =       104.8352  Delta time =         0.0001 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =       104.8469  Delta time =         0.0116 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = A2G   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     1
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     1
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     1
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    1
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   10
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    1
Time Now =       104.8515  Delta time =         0.0047 Energy independent setup

Compute solution for E =    6.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405061E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405060E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405056E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405051E-16
For potential     3
Number of asymptotic regions =      68
Final point in integration =   0.14526845E+03 Angstroms
Time Now =       104.9277  Delta time =         0.0761 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.23924392E-02, 0.57237983E-05)
 eigenphases
  0.2392448E-02
 eigenphase sum 0.239245E-02  scattering length=  -0.00360
 eps+pi 0.314399E+01  eps+2*pi 0.628558E+01

MaxIter =   1 c.s. =      0.00004567 angs^2  rmsk=     0.00239245
Time Now =       104.9278  Delta time =         0.0001 End ScatStab
+ Data Record ScatContSym - 'A2U'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =       104.9394  Delta time =         0.0116 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = A2U   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =       104.9463  Delta time =         0.0068 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = A2U   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =       104.9531  Delta time =         0.0068 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = A2U   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =       104.9599  Delta time =         0.0068 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = A2U   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK
+ Data Record ScatContSym - 'B1G'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =       104.9667  Delta time =         0.0068 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = B1G   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     3
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     3
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     3
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    3
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   10
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    3
Time Now =       104.9714  Delta time =         0.0047 Energy independent setup

Compute solution for E =    3.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491016E-15
For potential     3
Number of asymptotic regions =      62
Final point in integration =   0.18302855E+03 Angstroms
Time Now =       105.1888  Delta time =         0.2174 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.21022158E-02, 0.46811153E-05) (-0.51164441E-03,-0.11159972E-05)
  (-0.92196543E-06, 0.21965238E-06)
     ROW  2
  (-0.51164441E-03,-0.11159972E-05) ( 0.79749362E-04, 0.45522492E-06)
  (-0.43253150E-03, 0.10073875E-06)
     ROW  3
  (-0.92196543E-06, 0.21965238E-06) (-0.43253150E-03, 0.10073875E-06)
  (-0.31156415E-03, 0.28415671E-06)
 eigenphases
 -0.6211540E-03  0.2632508E-03  0.2228311E-02
 eigenphase sum 0.187041E-02  scattering length=  -0.00398
 eps+pi 0.314346E+01  eps+2*pi 0.628506E+01

MaxIter =   1 c.s. =      0.00008651 angs^2  rmsk=     0.00017769
Time Now =       105.1890  Delta time =         0.0002 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =       105.1948  Delta time =         0.0057 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = B1G   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     3
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     3
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     3
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    3
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   10
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    3
Time Now =       105.1995  Delta time =         0.0047 Energy independent setup

Compute solution for E =    4.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619643E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619640E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619635E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619626E-16
For potential     3
Number of asymptotic regions =      64
Final point in integration =   0.16629189E+03 Angstroms
Time Now =       105.4158  Delta time =         0.2163 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.24416277E-02, 0.63010260E-05) (-0.58261143E-03,-0.14791667E-05)
  (-0.14047081E-05, 0.28689980E-06)
     ROW  2
  (-0.58261143E-03,-0.14791667E-05) ( 0.98410526E-04, 0.59658749E-06)
  (-0.49745776E-03, 0.13009171E-06)
     ROW  3
  (-0.14047081E-05, 0.28689980E-06) (-0.49745776E-03, 0.13009171E-06)
  (-0.35827903E-03, 0.37583030E-06)
 eigenphases
 -0.7111911E-03  0.3100274E-03  0.2582934E-02
 eigenphase sum 0.218177E-02  scattering length=  -0.00402
 eps+pi 0.314377E+01  eps+2*pi 0.628537E+01

MaxIter =   1 c.s. =      0.00008706 angs^2  rmsk=     0.00020435
Time Now =       105.4160  Delta time =         0.0002 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =       105.4217  Delta time =         0.0057 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = B1G   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     3
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     3
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     3
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    3
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   10
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    3
Time Now =       105.4264  Delta time =         0.0047 Energy independent setup

Compute solution for E =    5.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332267E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332264E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332259E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332251E-16
For potential     3
Number of asymptotic regions =      66
Final point in integration =   0.15437122E+03 Angstroms
Time Now =       105.6596  Delta time =         0.2332 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.27457520E-02, 0.79517459E-05) (-0.64227822E-03,-0.18376921E-05)
  (-0.19426739E-05, 0.35125964E-06)
     ROW  2
  (-0.64227822E-03,-0.18376921E-05) ( 0.11710775E-03, 0.73314523E-06)
  (-0.55399076E-03, 0.15734269E-06)
     ROW  3
  (-0.19426739E-05, 0.35125964E-06) (-0.55399076E-03, 0.15734269E-06)
  (-0.39887311E-03, 0.46600965E-06)
 eigenphases
 -0.7884385E-03  0.3534082E-03  0.2899033E-02
 eigenphase sum 0.246400E-02  scattering length=  -0.00406
 eps+pi 0.314406E+01  eps+2*pi 0.628565E+01

MaxIter =   1 c.s. =      0.00008762 angs^2  rmsk=     0.00022755
Time Now =       105.6598  Delta time =         0.0002 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =       105.6655  Delta time =         0.0057 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = B1G   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     3
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     3
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     3
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    3
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   10
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    3
Time Now =       105.6702  Delta time =         0.0047 Energy independent setup

Compute solution for E =    6.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405061E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405060E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405056E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405051E-16
For potential     3
Number of asymptotic regions =      68
Final point in integration =   0.14526845E+03 Angstroms
Time Now =       105.9037  Delta time =         0.2335 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.30256046E-02, 0.96355420E-05) (-0.69365292E-03,-0.21915935E-05)
  (-0.25268212E-05, 0.41278465E-06)
     ROW  2
  (-0.69365292E-03,-0.21915935E-05) ( 0.13606029E-03, 0.86511618E-06)
  (-0.60451949E-03, 0.18249778E-06)
     ROW  3
  (-0.25268212E-05, 0.41278465E-06) (-0.60451949E-03, 0.18249778E-06)
  (-0.43505096E-03, 0.55472005E-06)
 eigenphases
 -0.8564335E-03  0.3946193E-03  0.3188449E-02
 eigenphase sum 0.272664E-02  scattering length=  -0.00411
 eps+pi 0.314432E+01  eps+2*pi 0.628591E+01

MaxIter =   1 c.s. =      0.00008822 angs^2  rmsk=     0.00024827
Time Now =       105.9039  Delta time =         0.0002 End ScatStab
+ Data Record ScatContSym - 'B1U'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =       105.9097  Delta time =         0.0058 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = B1U   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     3
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     3
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     3
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    3
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =    9
Higest l included in the K matrix (lna) =    9
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    3
Time Now =       105.9144  Delta time =         0.0047 Energy independent setup

Compute solution for E =    3.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491016E-15
For potential     3
Number of asymptotic regions =      62
Final point in integration =   0.18302855E+03 Angstroms
Time Now =       106.1309  Delta time =         0.2165 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.54722698E-02, 0.30160447E-04) (-0.46237542E-03,-0.28511804E-05)
  (-0.95269386E-06, 0.21801982E-06)
     ROW  2
  (-0.46237542E-03,-0.28511804E-05) ( 0.69490759E-03, 0.92938689E-06)
  (-0.48237979E-03,-0.24092769E-06)
     ROW  3
  (-0.95269386E-06, 0.21801982E-06) (-0.48237979E-03,-0.24092769E-06)
  (-0.19453985E-03, 0.27053710E-06)
 eigenphases
 -0.4119654E-03  0.8676351E-03  0.5517080E-02
 eigenphase sum 0.597275E-02  scattering length=  -0.01272
 eps+pi 0.314757E+01  eps+2*pi 0.628916E+01

MaxIter =   1 c.s. =      0.00050049 angs^2  rmsk=     0.00017338
Time Now =       106.1311  Delta time =         0.0002 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =       106.1369  Delta time =         0.0057 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = B1U   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     3
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     3
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     3
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    3
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =    9
Higest l included in the K matrix (lna) =    9
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    3
Time Now =       106.1415  Delta time =         0.0047 Energy independent setup

Compute solution for E =    4.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619643E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619640E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619635E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619626E-16
For potential     3
Number of asymptotic regions =      64
Final point in integration =   0.16629189E+03 Angstroms
Time Now =       106.3585  Delta time =         0.2169 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.62865228E-02, 0.39790827E-04) (-0.51851572E-03,-0.36809690E-05)
  (-0.14371769E-05, 0.27800194E-06)
     ROW  2
  (-0.51851572E-03,-0.36809690E-05) ( 0.81376837E-03, 0.12368310E-05)
  (-0.55293605E-03,-0.32672055E-06)
     ROW  3
  (-0.14371769E-05, 0.27800194E-06) (-0.55293605E-03,-0.32672055E-06)
  (-0.22154039E-03, 0.35482080E-06)
 eigenphases
 -0.4678434E-03  0.1010990E-02  0.6335774E-02
 eigenphase sum 0.687892E-02  scattering length=  -0.01269
 eps+pi 0.314847E+01  eps+2*pi 0.629006E+01

MaxIter =   1 c.s. =      0.00049532 angs^2  rmsk=     0.00019856
Time Now =       106.3587  Delta time =         0.0002 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =       106.3644  Delta time =         0.0058 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = B1U   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     3
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     3
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     3
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    3
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =    9
Higest l included in the K matrix (lna) =    9
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    3
Time Now =       106.3691  Delta time =         0.0047 Energy independent setup

Compute solution for E =    5.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332267E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332264E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332259E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332251E-16
For potential     3
Number of asymptotic regions =      66
Final point in integration =   0.15437122E+03 Angstroms
Time Now =       106.6026  Delta time =         0.2335 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.69948964E-02, 0.49247661E-04) (-0.56270444E-03,-0.44541661E-05)
  (-0.19675232E-05, 0.33209728E-06)
     ROW  2
  (-0.56270444E-03,-0.44541661E-05) ( 0.92248785E-03, 0.15443344E-05)
  (-0.61375227E-03,-0.41520825E-06)
     ROW  3
  (-0.19675232E-05, 0.33209728E-06) (-0.61375227E-03,-0.41520825E-06)
  (-0.24417983E-03, 0.43631998E-06)
 eigenphases
 -0.5143950E-03  0.1140594E-02  0.7047239E-02
 eigenphase sum 0.767344E-02  scattering length=  -0.01266
 eps+pi 0.314927E+01  eps+2*pi 0.629086E+01

MaxIter =   1 c.s. =      0.00049054 angs^2  rmsk=     0.00022018
Time Now =       106.6028  Delta time =         0.0002 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =       106.6086  Delta time =         0.0057 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = B1U   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     3
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     3
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     3
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    3
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =    9
Higest l included in the K matrix (lna) =    9
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    3
Time Now =       106.6133  Delta time =         0.0047 Energy independent setup

Compute solution for E =    6.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405061E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405060E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405056E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405051E-16
For potential     3
Number of asymptotic regions =      68
Final point in integration =   0.14526845E+03 Angstroms
Time Now =       106.8468  Delta time =         0.2336 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.76298211E-02, 0.58575108E-04) (-0.59789091E-03,-0.51729268E-05)
  (-0.25324570E-05, 0.38046077E-06)
     ROW  2
  (-0.59789091E-03,-0.51729268E-05) ( 0.10244407E-02, 0.18525349E-05)
  (-0.66749685E-03,-0.50634505E-06)
     ROW  3
  (-0.25324570E-05, 0.38046077E-06) (-0.66749685E-03,-0.50634505E-06)
  (-0.26360416E-03, 0.51504627E-06)
 eigenphases
 -0.5540616E-03  0.1260802E-02  0.7684221E-02
 eigenphase sum 0.839096E-02  scattering length=  -0.01264
 eps+pi 0.314998E+01  eps+2*pi 0.629158E+01

MaxIter =   1 c.s. =      0.00048630 angs^2  rmsk=     0.00023922
Time Now =       106.8470  Delta time =         0.0002 End ScatStab
+ Data Record ScatContSym - 'B2G'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =       106.8528  Delta time =         0.0058 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = B2G   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     3
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     3
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     3
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    3
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   10
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    3
Time Now =       106.8575  Delta time =         0.0047 Energy independent setup

Compute solution for E =    3.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491016E-15
For potential     3
Number of asymptotic regions =      62
Final point in integration =   0.18302855E+03 Angstroms
Time Now =       107.0744  Delta time =         0.2169 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.21022158E-02, 0.46811153E-05) (-0.51164441E-03,-0.11159972E-05)
  (-0.92196543E-06, 0.21965238E-06)
     ROW  2
  (-0.51164441E-03,-0.11159972E-05) ( 0.79749362E-04, 0.45522492E-06)
  (-0.43253150E-03, 0.10073875E-06)
     ROW  3
  (-0.92196543E-06, 0.21965238E-06) (-0.43253150E-03, 0.10073875E-06)
  (-0.31156415E-03, 0.28415671E-06)
 eigenphases
 -0.6211540E-03  0.2632508E-03  0.2228311E-02
 eigenphase sum 0.187041E-02  scattering length=  -0.00398
 eps+pi 0.314346E+01  eps+2*pi 0.628506E+01

MaxIter =   1 c.s. =      0.00008651 angs^2  rmsk=     0.00017769
Time Now =       107.0746  Delta time =         0.0002 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =       107.0804  Delta time =         0.0057 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = B2G   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     3
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     3
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     3
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    3
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   10
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    3
Time Now =       107.0851  Delta time =         0.0047 Energy independent setup

Compute solution for E =    4.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619643E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619640E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619635E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619626E-16
For potential     3
Number of asymptotic regions =      64
Final point in integration =   0.16629189E+03 Angstroms
Time Now =       107.3017  Delta time =         0.2166 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.24416277E-02, 0.63010260E-05) (-0.58261143E-03,-0.14791667E-05)
  (-0.14047081E-05, 0.28689980E-06)
     ROW  2
  (-0.58261143E-03,-0.14791667E-05) ( 0.98410526E-04, 0.59658749E-06)
  (-0.49745776E-03, 0.13009171E-06)
     ROW  3
  (-0.14047081E-05, 0.28689980E-06) (-0.49745776E-03, 0.13009171E-06)
  (-0.35827903E-03, 0.37583030E-06)
 eigenphases
 -0.7111911E-03  0.3100274E-03  0.2582934E-02
 eigenphase sum 0.218177E-02  scattering length=  -0.00402
 eps+pi 0.314377E+01  eps+2*pi 0.628537E+01

MaxIter =   1 c.s. =      0.00008706 angs^2  rmsk=     0.00020435
Time Now =       107.3019  Delta time =         0.0002 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =       107.3077  Delta time =         0.0057 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = B2G   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     3
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     3
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     3
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    3
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   10
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    3
Time Now =       107.3124  Delta time =         0.0047 Energy independent setup

Compute solution for E =    5.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332267E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332264E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332259E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332251E-16
For potential     3
Number of asymptotic regions =      66
Final point in integration =   0.15437122E+03 Angstroms
Time Now =       107.5460  Delta time =         0.2336 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.27457520E-02, 0.79517459E-05) (-0.64227822E-03,-0.18376921E-05)
  (-0.19426739E-05, 0.35125964E-06)
     ROW  2
  (-0.64227822E-03,-0.18376921E-05) ( 0.11710775E-03, 0.73314523E-06)
  (-0.55399076E-03, 0.15734269E-06)
     ROW  3
  (-0.19426739E-05, 0.35125964E-06) (-0.55399076E-03, 0.15734269E-06)
  (-0.39887311E-03, 0.46600965E-06)
 eigenphases
 -0.7884385E-03  0.3534082E-03  0.2899033E-02
 eigenphase sum 0.246400E-02  scattering length=  -0.00406
 eps+pi 0.314406E+01  eps+2*pi 0.628565E+01

MaxIter =   1 c.s. =      0.00008762 angs^2  rmsk=     0.00022755
Time Now =       107.5462  Delta time =         0.0002 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =       107.5519  Delta time =         0.0058 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = B2G   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     3
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     3
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     3
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    3
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   10
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    3
Time Now =       107.5566  Delta time =         0.0047 Energy independent setup

Compute solution for E =    6.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405061E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405060E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405056E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405051E-16
For potential     3
Number of asymptotic regions =      68
Final point in integration =   0.14526845E+03 Angstroms
Time Now =       107.7904  Delta time =         0.2338 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.30256046E-02, 0.96355420E-05) (-0.69365292E-03,-0.21915935E-05)
  (-0.25268212E-05, 0.41278465E-06)
     ROW  2
  (-0.69365292E-03,-0.21915935E-05) ( 0.13606029E-03, 0.86511618E-06)
  (-0.60451949E-03, 0.18249778E-06)
     ROW  3
  (-0.25268212E-05, 0.41278465E-06) (-0.60451949E-03, 0.18249778E-06)
  (-0.43505096E-03, 0.55472005E-06)
 eigenphases
 -0.8564335E-03  0.3946193E-03  0.3188449E-02
 eigenphase sum 0.272664E-02  scattering length=  -0.00411
 eps+pi 0.314432E+01  eps+2*pi 0.628591E+01

MaxIter =   1 c.s. =      0.00008822 angs^2  rmsk=     0.00024827
Time Now =       107.7906  Delta time =         0.0002 End ScatStab
+ Data Record ScatContSym - 'B2U'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =       107.7964  Delta time =         0.0058 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = B2U   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     3
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     3
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     3
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    3
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =    9
Higest l included in the K matrix (lna) =    9
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    3
Time Now =       107.8011  Delta time =         0.0047 Energy independent setup

Compute solution for E =    3.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491017E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491016E-15
For potential     3
Number of asymptotic regions =      62
Final point in integration =   0.18302855E+03 Angstroms
Time Now =       108.0179  Delta time =         0.2168 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.54722698E-02, 0.30160447E-04) (-0.46237542E-03,-0.28511804E-05)
  (-0.95269386E-06, 0.21801982E-06)
     ROW  2
  (-0.46237542E-03,-0.28511804E-05) ( 0.69490759E-03, 0.92938689E-06)
  (-0.48237979E-03,-0.24092769E-06)
     ROW  3
  (-0.95269386E-06, 0.21801982E-06) (-0.48237979E-03,-0.24092769E-06)
  (-0.19453985E-03, 0.27053710E-06)
 eigenphases
 -0.4119654E-03  0.8676351E-03  0.5517080E-02
 eigenphase sum 0.597275E-02  scattering length=  -0.01272
 eps+pi 0.314757E+01  eps+2*pi 0.628916E+01

MaxIter =   1 c.s. =      0.00050049 angs^2  rmsk=     0.00017338
Time Now =       108.0181  Delta time =         0.0002 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =       108.0238  Delta time =         0.0058 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = B2U   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     3
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     3
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     3
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    3
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =    9
Higest l included in the K matrix (lna) =    9
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    3
Time Now =       108.0285  Delta time =         0.0047 Energy independent setup

Compute solution for E =    4.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619643E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619640E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619635E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83619626E-16
For potential     3
Number of asymptotic regions =      64
Final point in integration =   0.16629189E+03 Angstroms
Time Now =       108.2457  Delta time =         0.2172 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.62865228E-02, 0.39790827E-04) (-0.51851572E-03,-0.36809690E-05)
  (-0.14371769E-05, 0.27800194E-06)
     ROW  2
  (-0.51851572E-03,-0.36809690E-05) ( 0.81376837E-03, 0.12368310E-05)
  (-0.55293605E-03,-0.32672055E-06)
     ROW  3
  (-0.14371769E-05, 0.27800194E-06) (-0.55293605E-03,-0.32672055E-06)
  (-0.22154039E-03, 0.35482080E-06)
 eigenphases
 -0.4678434E-03  0.1010990E-02  0.6335774E-02
 eigenphase sum 0.687892E-02  scattering length=  -0.01269
 eps+pi 0.314847E+01  eps+2*pi 0.629006E+01

MaxIter =   1 c.s. =      0.00049532 angs^2  rmsk=     0.00019856
Time Now =       108.2459  Delta time =         0.0002 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =       108.2517  Delta time =         0.0058 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = B2U   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     3
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     3
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     3
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    3
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =    9
Higest l included in the K matrix (lna) =    9
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    3
Time Now =       108.2564  Delta time =         0.0047 Energy independent setup

Compute solution for E =    5.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332267E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332264E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332259E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86332251E-16
For potential     3
Number of asymptotic regions =      66
Final point in integration =   0.15437122E+03 Angstroms
Time Now =       108.4904  Delta time =         0.2341 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.69948964E-02, 0.49247661E-04) (-0.56270444E-03,-0.44541661E-05)
  (-0.19675232E-05, 0.33209728E-06)
     ROW  2
  (-0.56270444E-03,-0.44541661E-05) ( 0.92248785E-03, 0.15443344E-05)
  (-0.61375227E-03,-0.41520825E-06)
     ROW  3
  (-0.19675232E-05, 0.33209728E-06) (-0.61375227E-03,-0.41520825E-06)
  (-0.24417983E-03, 0.43631998E-06)
 eigenphases
 -0.5143950E-03  0.1140594E-02  0.7047239E-02
 eigenphase sum 0.767344E-02  scattering length=  -0.01266
 eps+pi 0.314927E+01  eps+2*pi 0.629086E+01

MaxIter =   1 c.s. =      0.00049054 angs^2  rmsk=     0.00022018
Time Now =       108.4906  Delta time =         0.0002 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =       108.4964  Delta time =         0.0058 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = B2U   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     3
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     3
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     3
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    3
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =    9
Higest l included in the K matrix (lna) =    9
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    3
Time Now =       108.5011  Delta time =         0.0047 Energy independent setup

Compute solution for E =    6.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.75501218E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.13412241E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405061E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405060E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405056E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75405051E-16
For potential     3
Number of asymptotic regions =      68
Final point in integration =   0.14526845E+03 Angstroms
Time Now =       108.7352  Delta time =         0.2341 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.76298211E-02, 0.58575108E-04) (-0.59789091E-03,-0.51729268E-05)
  (-0.25324570E-05, 0.38046077E-06)
     ROW  2
  (-0.59789091E-03,-0.51729268E-05) ( 0.10244407E-02, 0.18525349E-05)
  (-0.66749685E-03,-0.50634505E-06)
     ROW  3
  (-0.25324570E-05, 0.38046077E-06) (-0.66749685E-03,-0.50634505E-06)
  (-0.26360416E-03, 0.51504627E-06)
 eigenphases
 -0.5540616E-03  0.1260802E-02  0.7684221E-02
 eigenphase sum 0.839096E-02  scattering length=  -0.01264
 eps+pi 0.314998E+01  eps+2*pi 0.629158E+01

MaxIter =   1 c.s. =      0.00048630 angs^2  rmsk=     0.00023922
Time Now =       108.7354  Delta time =         0.0002 End ScatStab

+ Command MatrixElementsCollect
+ 'test13loc.dat'

+ Command MatrixElementsCombine
+ 'test13se.dat'

+ Command TotalCrossSection
+
Symmetry SG -
        E (eV)      XS(angs^2)    EPS(radians)
       3.000000      12.147555      -1.074043
       4.000000      10.350390      -1.204063
       5.000000       8.906091      -1.309966
       6.000000       7.733942      -1.400470
Symmetry A2G -
        E (eV)      XS(angs^2)    EPS(radians)
       3.000000       0.000046       0.001701
       4.000000       0.000046       0.001961
       5.000000       0.000046       0.002188
       6.000000       0.000046       0.002392
Symmetry B1G -
        E (eV)      XS(angs^2)    EPS(radians)
       3.000000       0.000087       0.001870
       4.000000       0.000087       0.002182
       5.000000       0.000088       0.002464
       6.000000       0.000088       0.002727
Symmetry B2G -
        E (eV)      XS(angs^2)    EPS(radians)
       3.000000       0.000087       0.001870
       4.000000       0.000087       0.002182
       5.000000       0.000088       0.002464
       6.000000       0.000088       0.002727
Symmetry PG -
        E (eV)      XS(angs^2)    EPS(radians)
       3.000000       1.813272       0.335215
       4.000000      11.900098       1.484540
       5.000000       5.600649       2.260279
       6.000000       3.264839       2.436232
Symmetry DG -
        E (eV)      XS(angs^2)    EPS(radians)
       3.000000       0.028352       0.038930
       4.000000       0.047585       0.059655
       5.000000       0.074291       0.084692
       6.000000       0.108217       0.113301
Symmetry FG -
        E (eV)      XS(angs^2)    EPS(radians)
       3.000000       0.000241       0.001604
       4.000000       0.000250       0.002031
       5.000000       0.000262       0.002518
       6.000000       0.000279       0.003091
Symmetry GG -
        E (eV)      XS(angs^2)    EPS(radians)
       3.000000       0.001291       0.011962
       4.000000       0.001282       0.013802
       5.000000       0.001279       0.015450
       6.000000       0.001283       0.016986
Symmetry SU -
        E (eV)      XS(angs^2)    EPS(radians)
       3.000000       2.046039      -0.381235
       4.000000       2.493666      -0.489441
       5.000000       2.822144      -0.587865
       6.000000       3.051203      -0.677121
Symmetry A2U -
        E (eV)      XS(angs^2)    EPS(radians)
       3.000000       0.000000       0.000000
       4.000000       0.000000       0.000000
       5.000000       0.000000       0.000000
       6.000000       0.000000       0.000000
Symmetry B1U -
        E (eV)      XS(angs^2)    EPS(radians)
       3.000000       0.000500       0.005973
       4.000000       0.000495       0.006879
       5.000000       0.000491       0.007673
       6.000000       0.000486       0.008391
Symmetry B2U -
        E (eV)      XS(angs^2)    EPS(radians)
       3.000000       0.000500       0.005973
       4.000000       0.000495       0.006879
       5.000000       0.000491       0.007673
       6.000000       0.000486       0.008391
Symmetry PU -
        E (eV)      XS(angs^2)    EPS(radians)
       3.000000       0.561506      -0.198429
       4.000000       0.790120      -0.269387
       5.000000       0.982950      -0.334035
       6.000000       1.140464      -0.392352
Symmetry DU -
        E (eV)      XS(angs^2)    EPS(radians)
       3.000000       0.000426      -0.001485
       4.000000       0.000534      -0.000123
       5.000000       0.000764       0.002167
       6.000000       0.001175       0.005442
Symmetry FU -
        E (eV)      XS(angs^2)    EPS(radians)
       3.000000       0.002715       0.014117
       4.000000       0.002905       0.016907
       5.000000       0.003196       0.019865
       6.000000       0.003592       0.023102
Symmetry GU -
        E (eV)      XS(angs^2)    EPS(radians)
       3.000000       0.000181       0.003592
       4.000000       0.000183       0.004207
       5.000000       0.000185       0.004774
       6.000000       0.000187       0.005311

 Total Cross Sections

 Energy      Total Cross Section
   3.00000    19.01078
   4.00000    38.33118
   5.00000    25.05659
   6.00000    19.82641

+ Command EDCS
+
All symmetries found for E =       3.000000

----------------------------------------------------------------------
EDCS - differential cross section program
----------------------------------------------------------------------

 Title -
 Maximum l to use from k matrices (lmax) =   10
Minimum l to compute in the expansion of the DCS (lbigl) =    0
Maximum l to use in the expansion of the DCS (lbig) =   20
Unit to write DCS in plot format (iuplt) =    0
Number of angles at which to compute the DCS (nang) =  181
Print flag (iprint) =    0
Energy to compute the EDCS at (eV) =      3.00000000


  Energy (eV)= 3.0000      Energy (ryd)=0.2204960  xk=0.4695700


 AL coefficients
        -1     0.30000000000000E+01
         0     0.54024139702667E+01
         1     0.20001650397665E+01
         2     0.16217303863024E+01
         3    -0.23809592325904E+01
         4     0.13484180228410E+01
         5     0.18365857450846E-01
         6    -0.54365471220466E-02
         7    -0.93590163465037E-02
         8    -0.11746922377274E-01
         9    -0.12283287440674E-01
        10    -0.23835235245823E-02
        11    -0.76078219515168E-02
        12    -0.75374221031352E-02
        13     0.33432420523092E-02
        14     0.30033210973883E-02
        15     0.26056309951692E-02
        16     0.20828132795231E-02
        17     0.16250251678011E-02
        18     0.10940533236128E-02
        19     0.64990710983458E-03
        20     0.29032054309118E-03

For comparison
        -1        3.00000     alcoef
         0        5.40241     alcoef
         1        2.00017     alcoef
         2        1.62173     alcoef
         3       -2.38096     alcoef
         4        1.34842     alcoef
         5        0.01837     alcoef
         6       -0.00544     alcoef
         7       -0.00936     alcoef
         8       -0.01175     alcoef
         9       -0.01228     alcoef
        10       -0.00238     alcoef
        11       -0.00761     alcoef
        12       -0.00754     alcoef
        13        0.00334     alcoef
        14        0.00300     alcoef
        15        0.00261     alcoef
        16        0.00208     alcoef
        17        0.00163     alcoef
        18        0.00109     alcoef
        19        0.00065     alcoef
        20        0.00029     alcoef
 Total Cross Section (Angstrom^2) =  0.1901078216E+02
 Momentum Transfer Cross Section (Angstrom^2) =  0.1666462715E+02
 Differential Cross Section
   Ang   Cross Section (Angstrom^2)
     0.0    0.2231399912E+01
     1.0    0.2231161267E+01
     2.0    0.2230448701E+01
     3.0    0.2229272059E+01
     4.0    0.2227646904E+01
     5.0    0.2225593337E+01
     6.0    0.2223134480E+01
     7.0    0.2220294785E+01
     8.0    0.2217098289E+01
     9.0    0.2213566999E+01
    10.0    0.2209719526E+01
    11.0    0.2205570102E+01
    12.0    0.2201128070E+01
    13.0    0.2196397884E+01
    14.0    0.2191379628E+01
    15.0    0.2186070008E+01
    16.0    0.2180463739E+01
    17.0    0.2174555207E+01
    18.0    0.2168340271E+01
    19.0    0.2161818054E+01
    20.0    0.2154992580E+01
    21.0    0.2147874123E+01
    22.0    0.2140480157E+01
    23.0    0.2132835839E+01
    24.0    0.2124973983E+01
    25.0    0.2116934525E+01
    26.0    0.2108763531E+01
    27.0    0.2100511802E+01
    28.0    0.2092233193E+01
    29.0    0.2083982757E+01
    30.0    0.2075814825E+01
    31.0    0.2067781155E+01
    32.0    0.2059929256E+01
    33.0    0.2052300959E+01
    34.0    0.2044931317E+01
    35.0    0.2037847862E+01
    36.0    0.2031070210E+01
    37.0    0.2024610033E+01
    38.0    0.2018471314E+01
    39.0    0.2012650862E+01
    40.0    0.2007139010E+01
    41.0    0.2001920423E+01
    42.0    0.1996974958E+01
    43.0    0.1992278511E+01
    44.0    0.1987803808E+01
    45.0    0.1983521101E+01
    46.0    0.1979398758E+01
    47.0    0.1975403726E+01
    48.0    0.1971501885E+01
    49.0    0.1967658294E+01
    50.0    0.1963837354E+01
    51.0    0.1960002908E+01
    52.0    0.1956118290E+01
    53.0    0.1952146349E+01
    54.0    0.1948049463E+01
    55.0    0.1943789537E+01
    56.0    0.1939328011E+01
    57.0    0.1934625872E+01
    58.0    0.1929643662E+01
    59.0    0.1924341505E+01
    60.0    0.1918679131E+01
    61.0    0.1912615920E+01
    62.0    0.1906110960E+01
    63.0    0.1899123136E+01
    64.0    0.1891611254E+01
    65.0    0.1883534212E+01
    66.0    0.1874851234E+01
    67.0    0.1865522168E+01
    68.0    0.1855507848E+01
    69.0    0.1844770534E+01
    70.0    0.1833274408E+01
    71.0    0.1820986122E+01
    72.0    0.1807875382E+01
    73.0    0.1793915537E+01
    74.0    0.1779084163E+01
    75.0    0.1763363609E+01
    76.0    0.1746741483E+01
    77.0    0.1729211056E+01
    78.0    0.1710771570E+01
    79.0    0.1691428440E+01
    80.0    0.1671193339E+01
    81.0    0.1650084181E+01
    82.0    0.1628124987E+01
    83.0    0.1605345675E+01
    84.0    0.1581781762E+01
    85.0    0.1557474020E+01
    86.0    0.1532468089E+01
    87.0    0.1506814073E+01
    88.0    0.1480566138E+01
    89.0    0.1453782124E+01
    90.0    0.1426523177E+01
    91.0    0.1398853426E+01
    92.0    0.1370839690E+01
    93.0    0.1342551233E+01
    94.0    0.1314059559E+01
    95.0    0.1285438246E+01
    96.0    0.1256762821E+01
    97.0    0.1228110658E+01
    98.0    0.1199560913E+01
    99.0    0.1171194468E+01
   100.0    0.1143093899E+01
   101.0    0.1115343434E+01
   102.0    0.1088028925E+01
   103.0    0.1061237787E+01
   104.0    0.1035058925E+01
   105.0    0.1009582622E+01
   106.0    0.9849003793E+00
   107.0    0.9611047016E+00
   108.0    0.9382888154E+00
   109.0    0.9165463176E+00
   110.0    0.8959707480E+00
   111.0    0.8766550862E+00
   112.0    0.8586911788E+00
   113.0    0.8421691032E+00
   114.0    0.8271764821E+00
   115.0    0.8137977627E+00
   116.0    0.8021134817E+00
   117.0    0.7921995331E+00
   118.0    0.7841264631E+00
   119.0    0.7779588080E+00
   120.0    0.7737544974E+00
   121.0    0.7715643332E+00
   122.0    0.7714315594E+00
   123.0    0.7733915269E+00
   124.0    0.7774714578E+00
   125.0    0.7836903058E+00
   126.0    0.7920587092E+00
   127.0    0.8025790262E+00
   128.0    0.8152454435E+00
   129.0    0.8300441450E+00
   130.0    0.8469535295E+00
   131.0    0.8659444632E+00
   132.0    0.8869805584E+00
   133.0    0.9100184654E+00
   134.0    0.9350081706E+00
   135.0    0.9618932935E+00
   136.0    0.9906113749E+00
   137.0    0.1021094154E+01
   138.0    0.1053267827E+01
   139.0    0.1087053289E+01
   140.0    0.1122366354E+01
   141.0    0.1159117950E+01
   142.0    0.1197214296E+01
   143.0    0.1236557054E+01
   144.0    0.1277043465E+01
   145.0    0.1318566473E+01
   146.0    0.1361014837E+01
   147.0    0.1404273253E+01
   148.0    0.1448222477E+01
   149.0    0.1492739477E+01
   150.0    0.1537697623E+01
   151.0    0.1582966907E+01
   152.0    0.1628414240E+01
   153.0    0.1673903793E+01
   154.0    0.1719297420E+01
   155.0    0.1764455149E+01
   156.0    0.1809235736E+01
   157.0    0.1853497295E+01
   158.0    0.1897097971E+01
   159.0    0.1939896657E+01
   160.0    0.1981753739E+01
   161.0    0.2022531848E+01
   162.0    0.2062096600E+01
   163.0    0.2100317316E+01
   164.0    0.2137067696E+01
   165.0    0.2172226439E+01
   166.0    0.2205677806E+01
   167.0    0.2237312108E+01
   168.0    0.2267026126E+01
   169.0    0.2294723463E+01
   170.0    0.2320314823E+01
   171.0    0.2343718241E+01
   172.0    0.2364859253E+01
   173.0    0.2383671025E+01
   174.0    0.2400094450E+01
   175.0    0.2414078213E+01
   176.0    0.2425578838E+01
   177.0    0.2434560723E+01
   178.0    0.2440996157E+01
   179.0    0.2444865341E+01
   180.0    0.2446156390E+01
Time Now =       109.0043  Delta time =         0.2689 End EDCS
All symmetries found for E =       4.000000

----------------------------------------------------------------------
EDCS - differential cross section program
----------------------------------------------------------------------

 Title -
 Maximum l to use from k matrices (lmax) =   10
Minimum l to compute in the expansion of the DCS (lbigl) =    0
Maximum l to use in the expansion of the DCS (lbig) =   20
Unit to write DCS in plot format (iuplt) =    0
Number of angles at which to compute the DCS (nang) =  181
Print flag (iprint) =    0
Energy to compute the EDCS at (eV) =      4.00000000


  Energy (eV)= 4.0000      Energy (ryd)=0.2939946  xk=0.5422127


 AL coefficients
        -1     0.40000000000000E+01
         0     0.10892813079327E+02
         1     0.52795230100494E+01
         2     0.16583636917687E+02
         3     0.19107799767760E+01
         4     0.79778067755518E+01
         5     0.17750560462867E-01
         6     0.55645034602008E-02
         7    -0.76793346824676E-02
         8    -0.10831048026846E-01
         9    -0.15362170103778E-01
        10    -0.58042003834891E-02
        11     0.35215688465760E-02
        12     0.28595446342310E-02
        13     0.32174981289763E-02
        14     0.29899866433588E-02
        15     0.26059931995759E-02
        16     0.20834461719151E-02
        17     0.16255698697022E-02
        18     0.10945024937490E-02
        19     0.65028466520962E-03
        20     0.29047949823049E-03

For comparison
        -1        4.00000     alcoef
         0       10.89281     alcoef
         1        5.27952     alcoef
         2       16.58364     alcoef
         3        1.91078     alcoef
         4        7.97781     alcoef
         5        0.01775     alcoef
         6        0.00556     alcoef
         7       -0.00768     alcoef
         8       -0.01083     alcoef
         9       -0.01536     alcoef
        10       -0.00580     alcoef
        11        0.00352     alcoef
        12        0.00286     alcoef
        13        0.00322     alcoef
        14        0.00299     alcoef
        15        0.00261     alcoef
        16        0.00208     alcoef
        17        0.00163     alcoef
        18        0.00109     alcoef
        19        0.00065     alcoef
        20        0.00029     alcoef
 Total Cross Section (Angstrom^2) =  0.3833117894E+02
 Momentum Transfer Cross Section (Angstrom^2) =  0.3213840027E+02
 Differential Cross Section
   Ang   Cross Section (Angstrom^2)
     0.0    0.1194297460E+02
     1.0    0.1193669323E+02
     2.0    0.1191787214E+02
     3.0    0.1188657996E+02
     4.0    0.1184292980E+02
     5.0    0.1178707735E+02
     6.0    0.1171921840E+02
     7.0    0.1163958601E+02
     8.0    0.1154844734E+02
     9.0    0.1144610051E+02
    10.0    0.1133287145E+02
    11.0    0.1120911112E+02
    12.0    0.1107519306E+02
    13.0    0.1093151139E+02
    14.0    0.1077847934E+02
    15.0    0.1061652822E+02
    16.0    0.1044610683E+02
    17.0    0.1026768120E+02
    18.0    0.1008173446E+02
    19.0    0.9888766886E+01
    20.0    0.9689295745E+01
    21.0    0.9483855003E+01
    22.0    0.9272994665E+01
    23.0    0.9057279713E+01
    24.0    0.8837288578E+01
    25.0    0.8613611134E+01
    26.0    0.8386846248E+01
    27.0    0.8157598916E+01
    28.0    0.7926477109E+01
    29.0    0.7694088380E+01
    30.0    0.7461036390E+01
    31.0    0.7227917426E+01
    32.0    0.6995317033E+01
    33.0    0.6763806837E+01
    34.0    0.6533941632E+01
    35.0    0.6306256769E+01
    36.0    0.6081265869E+01
    37.0    0.5859458862E+01
    38.0    0.5641300327E+01
    39.0    0.5427228113E+01
    40.0    0.5217652191E+01
    41.0    0.5012953703E+01
    42.0    0.4813484169E+01
    43.0    0.4619564819E+01
    44.0    0.4431486040E+01
    45.0    0.4249506907E+01
    46.0    0.4073854823E+01
    47.0    0.3904725255E+01
    48.0    0.3742281598E+01
    49.0    0.3586655176E+01
    50.0    0.3437945399E+01
    51.0    0.3296220100E+01
    52.0    0.3161516051E+01
    53.0    0.3033839667E+01
    54.0    0.2913167890E+01
    55.0    0.2799449245E+01
    56.0    0.2692605045E+01
    57.0    0.2592530719E+01
    58.0    0.2499097238E+01
    59.0    0.2412152627E+01
    60.0    0.2331523508E+01
    61.0    0.2257016687E+01
    62.0    0.2188420746E+01
    63.0    0.2125507647E+01
    64.0    0.2068034333E+01
    65.0    0.2015744330E+01
    66.0    0.1968369358E+01
    67.0    0.1925630956E+01
    68.0    0.1887242119E+01
    69.0    0.1852908969E+01
    70.0    0.1822332439E+01
    71.0    0.1795209999E+01
    72.0    0.1771237384E+01
    73.0    0.1750110352E+01
    74.0    0.1731526430E+01
    75.0    0.1715186657E+01
    76.0    0.1700797299E+01
    77.0    0.1688071523E+01
    78.0    0.1676731026E+01
    79.0    0.1666507594E+01
    80.0    0.1657144603E+01
    81.0    0.1648398434E+01
    82.0    0.1640039818E+01
    83.0    0.1631855097E+01
    84.0    0.1623647406E+01
    85.0    0.1615237771E+01
    86.0    0.1606466122E+01
    87.0    0.1597192217E+01
    88.0    0.1587296476E+01
    89.0    0.1576680705E+01
    90.0    0.1565268714E+01
    91.0    0.1553006812E+01
    92.0    0.1539864168E+01
    93.0    0.1525833030E+01
    94.0    0.1510928793E+01
    95.0    0.1495189903E+01
    96.0    0.1478677609E+01
    97.0    0.1461475542E+01
    98.0    0.1443689140E+01
    99.0    0.1425444917E+01
   100.0    0.1406889583E+01
   101.0    0.1388189031E+01
   102.0    0.1369527196E+01
   103.0    0.1351104803E+01
   104.0    0.1333138008E+01
   105.0    0.1315856947E+01
   106.0    0.1299504212E+01
   107.0    0.1284333240E+01
   108.0    0.1270606648E+01
   109.0    0.1258594501E+01
   110.0    0.1248572543E+01
   111.0    0.1240820374E+01
   112.0    0.1235619604E+01
   113.0    0.1233251982E+01
   114.0    0.1233997519E+01
   115.0    0.1238132609E+01
   116.0    0.1245928172E+01
   117.0    0.1257647828E+01
   118.0    0.1273546110E+01
   119.0    0.1293866741E+01
   120.0    0.1318840973E+01
   121.0    0.1348686005E+01
   122.0    0.1383603489E+01
   123.0    0.1423778116E+01
   124.0    0.1469376297E+01
   125.0    0.1520544934E+01
   126.0    0.1577410285E+01
   127.0    0.1640076911E+01
   128.0    0.1708626720E+01
   129.0    0.1783118089E+01
   130.0    0.1863585091E+01
   131.0    0.1950036799E+01
   132.0    0.2042456695E+01
   133.0    0.2140802183E+01
   134.0    0.2245004203E+01
   135.0    0.2354966974E+01
   136.0    0.2470567846E+01
   137.0    0.2591657292E+01
   138.0    0.2718059029E+01
   139.0    0.2849570278E+01
   140.0    0.2985962162E+01
   141.0    0.3126980239E+01
   142.0    0.3272345172E+01
   143.0    0.3421753525E+01
   144.0    0.3574878687E+01
   145.0    0.3731371907E+01
   146.0    0.3890863453E+01
   147.0    0.4052963865E+01
   148.0    0.4217265315E+01
   149.0    0.4383343067E+01
   150.0    0.4550757029E+01
   151.0    0.4719053396E+01
   152.0    0.4887766381E+01
   153.0    0.5056420029E+01
   154.0    0.5224530118E+01
   155.0    0.5391606122E+01
   156.0    0.5557153245E+01
   157.0    0.5720674503E+01
   158.0    0.5881672853E+01
   159.0    0.6039653338E+01
   160.0    0.6194125249E+01
   161.0    0.6344604272E+01
   162.0    0.6490614615E+01
   163.0    0.6631691092E+01
   164.0    0.6767381148E+01
   165.0    0.6897246823E+01
   166.0    0.7020866628E+01
   167.0    0.7137837339E+01
   168.0    0.7247775702E+01
   169.0    0.7350320030E+01
   170.0    0.7445131711E+01
   171.0    0.7531896611E+01
   172.0    0.7610326373E+01
   173.0    0.7680159616E+01
   174.0    0.7741163024E+01
   175.0    0.7793132325E+01
   176.0    0.7835893158E+01
   177.0    0.7869301820E+01
   178.0    0.7893245881E+01
   179.0    0.7907644682E+01
   180.0    0.7912449683E+01
Time Now =       109.2866  Delta time =         0.2823 End EDCS
All symmetries found for E =       5.000000

----------------------------------------------------------------------
EDCS - differential cross section program
----------------------------------------------------------------------

 Title -
 Maximum l to use from k matrices (lmax) =   10
Minimum l to compute in the expansion of the DCS (lbigl) =    0
Maximum l to use in the expansion of the DCS (lbig) =   20
Unit to write DCS in plot format (iuplt) =    0
Number of angles at which to compute the DCS (nang) =  181
Print flag (iprint) =    0
Energy to compute the EDCS at (eV) =      5.00000000


  Energy (eV)= 5.0000      Energy (ryd)=0.3674933  xk=0.6062122


 AL coefficients
        -1     0.50000000000000E+01
         0     0.71204887668488E+01
         1     0.70970747687813E+01
         2     0.10550454590076E+02
         3     0.47815027520531E+01
         4     0.33962270903380E+01
         5    -0.86176693463937E-01
         6    -0.48170343325032E-02
         7    -0.93174184908767E-02
         8    -0.11913632902861E-01
         9    -0.22448149995036E-01
        10    -0.12922849927510E-01
        11     0.22713614794865E-01
        12     0.20746506738728E-01
        13     0.30569962643668E-02
        14     0.29898522086692E-02
        15     0.26055497353313E-02
        16     0.20838958703590E-02
        17     0.16260073070769E-02
        18     0.10948637820201E-02
        19     0.65058680263711E-03
        20     0.29061573450022E-03

For comparison
        -1        5.00000     alcoef
         0        7.12049     alcoef
         1        7.09707     alcoef
         2       10.55045     alcoef
         3        4.78150     alcoef
         4        3.39623     alcoef
         5       -0.08618     alcoef
         6       -0.00482     alcoef
         7       -0.00932     alcoef
         8       -0.01191     alcoef
         9       -0.02245     alcoef
        10       -0.01292     alcoef
        11        0.02271     alcoef
        12        0.02075     alcoef
        13        0.00306     alcoef
        14        0.00299     alcoef
        15        0.00261     alcoef
        16        0.00208     alcoef
        17        0.00163     alcoef
        18        0.00109     alcoef
        19        0.00065     alcoef
        20        0.00029     alcoef
 Total Cross Section (Angstrom^2) =  0.2505658796E+02
 Momentum Transfer Cross Section (Angstrom^2) =  0.1673185614E+02
 Differential Cross Section
   Ang   Cross Section (Angstrom^2)
     0.0    0.9200619971E+01
     1.0    0.9196248841E+01
     2.0    0.9183153237E+01
     3.0    0.9161386037E+01
     4.0    0.9131033820E+01
     5.0    0.9092214633E+01
     6.0    0.9045075080E+01
     7.0    0.8989786897E+01
     8.0    0.8926543230E+01
     9.0    0.8855554847E+01
    10.0    0.8777046479E+01
    11.0    0.8691253509E+01
    12.0    0.8598419151E+01
    13.0    0.8498792257E+01
    14.0    0.8392625802E+01
    15.0    0.8280176070E+01
    16.0    0.8161702500E+01
    17.0    0.8037468120E+01
    18.0    0.7907740429E+01
    19.0    0.7772792606E+01
    20.0    0.7632904877E+01
    21.0    0.7488365888E+01
    22.0    0.7339473937E+01
    23.0    0.7186537950E+01
    24.0    0.7029878097E+01
    25.0    0.6869825999E+01
    26.0    0.6706724491E+01
    27.0    0.6540926949E+01
    28.0    0.6372796222E+01
    29.0    0.6202703204E+01
    30.0    0.6031025139E+01
    31.0    0.5858143717E+01
    32.0    0.5684443037E+01
    33.0    0.5510307516E+01
    34.0    0.5336119777E+01
    35.0    0.5162258589E+01
    36.0    0.4989096857E+01
    37.0    0.4816999696E+01
    38.0    0.4646322595E+01
    39.0    0.4477409658E+01
    40.0    0.4310591931E+01
    41.0    0.4146185805E+01
    42.0    0.3984491503E+01
    43.0    0.3825791666E+01
    44.0    0.3670350038E+01
    45.0    0.3518410302E+01
    46.0    0.3370195074E+01
    47.0    0.3225905105E+01
    48.0    0.3085718715E+01
    49.0    0.2949791491E+01
    50.0    0.2818256278E+01
    51.0    0.2691223456E+01
    52.0    0.2568781513E+01
    53.0    0.2450997895E+01
    54.0    0.2337920093E+01
    55.0    0.2229576941E+01
    56.0    0.2125980050E+01
    57.0    0.2027125335E+01
    58.0    0.1932994569E+01
    59.0    0.1843556896E+01
    60.0    0.1758770262E+01
    61.0    0.1678582702E+01
    62.0    0.1602933461E+01
    63.0    0.1531753916E+01
    64.0    0.1464968289E+01
    65.0    0.1402494165E+01
    66.0    0.1344242812E+01
    67.0    0.1290119337E+01
    68.0    0.1240022707E+01
    69.0    0.1193845664E+01
    70.0    0.1151474587E+01
    71.0    0.1112789313E+01
    72.0    0.1077662987E+01
    73.0    0.1045961943E+01
    74.0    0.1017545672E+01
    75.0    0.9922668884E+00
    76.0    0.9699717214E+00
    77.0    0.9505000457E+00
    78.0    0.9336859684E+00
    79.0    0.9193584747E+00
    80.0    0.9073422367E+00
    81.0    0.8974585814E+00
    82.0    0.8895266114E+00
    83.0    0.8833644625E+00
    84.0    0.8787906799E+00
    85.0    0.8756256882E+00
    86.0    0.8736933240E+00
    87.0    0.8728223972E+00
    88.0    0.8728482420E+00
    89.0    0.8736142179E+00
    90.0    0.8749731184E+00
    91.0    0.8767884497E+00
    92.0    0.8789355407E+00
    93.0    0.8813024559E+00
    94.0    0.8837906842E+00
    95.0    0.8863155907E+00
    96.0    0.8888066205E+00
    97.0    0.8912072614E+00
    98.0    0.8934747722E+00
    99.0    0.8955796995E+00
   100.0    0.8975052084E+00
   101.0    0.8992462588E+00
   102.0    0.9008086627E+00
   103.0    0.9022080608E+00
   104.0    0.9034688539E+00
   105.0    0.9046231249E+00
   106.0    0.9057095819E+00
   107.0    0.9067725510E+00
   108.0    0.9078610391E+00
   109.0    0.9090278838E+00
   110.0    0.9103290021E+00
   111.0    0.9118227412E+00
   112.0    0.9135693348E+00
   113.0    0.9156304582E+00
   114.0    0.9180688775E+00
   115.0    0.9209481796E+00
   116.0    0.9243325707E+00
   117.0    0.9282867278E+00
   118.0    0.9328756839E+00
   119.0    0.9381647310E+00
   120.0    0.9442193197E+00
   121.0    0.9511049363E+00
   122.0    0.9588869406E+00
   123.0    0.9676303460E+00
   124.0    0.9773995279E+00
   125.0    0.9882578499E+00
   126.0    0.1000267200E+01
   127.0    0.1013487435E+01
   128.0    0.1027975737E+01
   129.0    0.1043785886E+01
   130.0    0.1060967475E+01
   131.0    0.1079565064E+01
   132.0    0.1099617323E+01
   133.0    0.1121156163E+01
   134.0    0.1144205911E+01
   135.0    0.1168782523E+01
   136.0    0.1194892896E+01
   137.0    0.1222534273E+01
   138.0    0.1251693776E+01
   139.0    0.1282348082E+01
   140.0    0.1314463241E+01
   141.0    0.1347994640E+01
   142.0    0.1382887122E+01
   143.0    0.1419075233E+01
   144.0    0.1456483604E+01
   145.0    0.1495027430E+01
   146.0    0.1534613052E+01
   147.0    0.1575138607E+01
   148.0    0.1616494728E+01
   149.0    0.1658565294E+01
   150.0    0.1701228186E+01
   151.0    0.1744356063E+01
   152.0    0.1787817127E+01
   153.0    0.1831475886E+01
   154.0    0.1875193886E+01
   155.0    0.1918830435E+01
   156.0    0.1962243283E+01
   157.0    0.2005289295E+01
   158.0    0.2047825077E+01
   159.0    0.2089707582E+01
   160.0    0.2130794691E+01
   161.0    0.2170945764E+01
   162.0    0.2210022167E+01
   163.0    0.2247887788E+01
   164.0    0.2284409531E+01
   165.0    0.2319457806E+01
   166.0    0.2352907016E+01
   167.0    0.2384636045E+01
   168.0    0.2414528753E+01
   169.0    0.2442474488E+01
   170.0    0.2468368608E+01
   171.0    0.2492113017E+01
   172.0    0.2513616713E+01
   173.0    0.2532796341E+01
   174.0    0.2549576743E+01
   175.0    0.2563891491E+01
   176.0    0.2575683395E+01
   177.0    0.2584904963E+01
   178.0    0.2591518803E+01
   179.0    0.2595497960E+01
   180.0    0.2596826160E+01
Time Now =       109.4608  Delta time =         0.1741 End EDCS
All symmetries found for E =       6.000000

----------------------------------------------------------------------
EDCS - differential cross section program
----------------------------------------------------------------------

 Title -
 Maximum l to use from k matrices (lmax) =   10
Minimum l to compute in the expansion of the DCS (lbigl) =    0
Maximum l to use in the expansion of the DCS (lbig) =   20
Unit to write DCS in plot format (iuplt) =    0
Number of angles at which to compute the DCS (nang) =  181
Print flag (iprint) =    0
Energy to compute the EDCS at (eV) =      6.00000000


  Energy (eV)= 6.0000      Energy (ryd)=0.4409919  xk=0.6640722


 AL coefficients
        -1     0.60000000000000E+01
         0     0.56341966549555E+01
         1     0.61875262529865E+01
         2     0.74894920451316E+01
         3     0.40119884249425E+01
         4     0.17903380148818E+01
         5    -0.11853318491737E+00
         6    -0.80395750647790E-02
         7    -0.94318767440224E-02
         8    -0.11920914242446E-01
         9    -0.21262336705742E-01
        10    -0.12740278689119E-01
        11     0.21525987823402E-01
        12     0.20151262346125E-01
        13     0.28250100370778E-02
        14     0.29712623721891E-02
        15     0.26040053560033E-02
        16     0.20841618437221E-02
        17     0.16263681850103E-02
        18     0.10951699525349E-02
        19     0.65084139558024E-03
        20     0.29072821810147E-03

For comparison
        -1        6.00000     alcoef
         0        5.63420     alcoef
         1        6.18753     alcoef
         2        7.48949     alcoef
         3        4.01199     alcoef
         4        1.79034     alcoef
         5       -0.11853     alcoef
         6       -0.00804     alcoef
         7       -0.00943     alcoef
         8       -0.01192     alcoef
         9       -0.02126     alcoef
        10       -0.01274     alcoef
        11        0.02153     alcoef
        12        0.02015     alcoef
        13        0.00283     alcoef
        14        0.00297     alcoef
        15        0.00260     alcoef
        16        0.00208     alcoef
        17        0.00163     alcoef
        18        0.00110     alcoef
        19        0.00065     alcoef
        20        0.00029     alcoef
 Total Cross Section (Angstrom^2) =  0.1982641202E+02
 Momentum Transfer Cross Section (Angstrom^2) =  0.1256856307E+02
 Differential Cross Section
   Ang   Cross Section (Angstrom^2)
     0.0    0.6997195233E+01
     1.0    0.6994163374E+01
     2.0    0.6985081240E+01
     3.0    0.6969988707E+01
     4.0    0.6948950760E+01
     5.0    0.6922055387E+01
     6.0    0.6889410824E+01
     7.0    0.6851142342E+01
     8.0    0.6807388775E+01
     9.0    0.6758299006E+01
    10.0    0.6704028632E+01
    11.0    0.6644736996E+01
    12.0    0.6580584735E+01
    13.0    0.6511731978E+01
    14.0    0.6438337239E+01
    15.0    0.6360557023E+01
    16.0    0.6278546107E+01
    17.0    0.6192458406E+01
    18.0    0.6102448302E+01
    19.0    0.6008672304E+01
    20.0    0.5911290853E+01
    21.0    0.5810470152E+01
    22.0    0.5706383842E+01
    23.0    0.5599214430E+01
    24.0    0.5489154351E+01
    25.0    0.5376406624E+01
    26.0    0.5261185066E+01
    27.0    0.5143714069E+01
    28.0    0.5024227976E+01
    29.0    0.4902970116E+01
    30.0    0.4780191551E+01
    31.0    0.4656149628E+01
    32.0    0.4531106394E+01
    33.0    0.4405326943E+01
    34.0    0.4279077759E+01
    35.0    0.4152625073E+01
    36.0    0.4026233290E+01
    37.0    0.3900163462E+01
    38.0    0.3774671850E+01
    39.0    0.3650008528E+01
    40.0    0.3526416060E+01
    41.0    0.3404128219E+01
    42.0    0.3283368762E+01
    43.0    0.3164350260E+01
    44.0    0.3047273003E+01
    45.0    0.2932324008E+01
    46.0    0.2819676142E+01
    47.0    0.2709487416E+01
    48.0    0.2601900467E+01
    49.0    0.2497042257E+01
    50.0    0.2395024026E+01
    51.0    0.2295941491E+01
    52.0    0.2199875296E+01
    53.0    0.2106891710E+01
    54.0    0.2017043526E+01
    55.0    0.1930371127E+01
    56.0    0.1846903684E+01
    57.0    0.1766660399E+01
    58.0    0.1689651768E+01
    59.0    0.1615880780E+01
    60.0    0.1545344016E+01
    61.0    0.1478032600E+01
    62.0    0.1413932967E+01
    63.0    0.1353027425E+01
    64.0    0.1295294516E+01
    65.0    0.1240709160E+01
    66.0    0.1189242610E+01
    67.0    0.1140862250E+01
    68.0    0.1095531236E+01
    69.0    0.1053208064E+01
    70.0    0.1013846048E+01
    71.0    0.9773927995E+00
    72.0    0.9437897065E+00
    73.0    0.9129714653E+00
    74.0    0.8848656932E+00
    75.0    0.8593926459E+00
    76.0    0.8364650642E+00
    77.0    0.8159881664E+00
    78.0    0.7978597998E+00
    79.0    0.7819707608E+00
    80.0    0.7682052850E+00
    81.0    0.7564417078E+00
    82.0    0.7465532892E+00
    83.0    0.7384091893E+00
    84.0    0.7318755783E+00
    85.0    0.7268168581E+00
    86.0    0.7230969671E+00
    87.0    0.7205807343E+00
    88.0    0.7191352486E+00
    89.0    0.7186312026E+00
    90.0    0.7189441718E+00
    91.0    0.7199557922E+00
    92.0    0.7215547995E+00
    93.0    0.7236379007E+00
    94.0    0.7261104538E+00
    95.0    0.7288869406E+00
    96.0    0.7318912237E+00
    97.0    0.7350565919E+00
    98.0    0.7383256026E+00
    99.0    0.7416497404E+00
   100.0    0.7449889179E+00
   101.0    0.7483108481E+00
   102.0    0.7515903225E+00
   103.0    0.7548084312E+00
   104.0    0.7579517579E+00
   105.0    0.7610115844E+00
   106.0    0.7639831332E+00
   107.0    0.7668648723E+00
   108.0    0.7696579035E+00
   109.0    0.7723654471E+00
   110.0    0.7749924314E+00
   111.0    0.7775451921E+00
   112.0    0.7800312782E+00
   113.0    0.7824593595E+00
   114.0    0.7848392263E+00
   115.0    0.7871818683E+00
   116.0    0.7894996173E+00
   117.0    0.7918063370E+00
   118.0    0.7941176397E+00
   119.0    0.7964511113E+00
   120.0    0.7988265227E+00
   121.0    0.8012660086E+00
   122.0    0.8037941930E+00
   123.0    0.8064382441E+00
   124.0    0.8092278430E+00
   125.0    0.8121950548E+00
   126.0    0.8153740933E+00
   127.0    0.8188009767E+00
   128.0    0.8225130773E+00
   129.0    0.8265485720E+00
   130.0    0.8309458073E+00
   131.0    0.8357425976E+00
   132.0    0.8409754774E+00
   133.0    0.8466789354E+00
   134.0    0.8528846541E+00
   135.0    0.8596207855E+00
   136.0    0.8669112853E+00
   137.0    0.8747753308E+00
   138.0    0.8832268404E+00
   139.0    0.8922741076E+00
   140.0    0.9019195596E+00
   141.0    0.9121596408E+00
   142.0    0.9229848188E+00
   143.0    0.9343797046E+00
   144.0    0.9463232752E+00
   145.0    0.9587891810E+00
   146.0    0.9717461240E+00
   147.0    0.9851582848E+00
   148.0    0.9989857844E+00
   149.0    0.1013185162E+01
   150.0    0.1027709855E+01
   151.0    0.1042510669E+01
   152.0    0.1057536227E+01
   153.0    0.1072733395E+01
   154.0    0.1088047674E+01
   155.0    0.1103423554E+01
   156.0    0.1118804841E+01
   157.0    0.1134134938E+01
   158.0    0.1149357106E+01
   159.0    0.1164414676E+01
   160.0    0.1179251252E+01
   161.0    0.1193810875E+01
   162.0    0.1208038177E+01
   163.0    0.1221878525E+01
   164.0    0.1235278147E+01
   165.0    0.1248184276E+01
   166.0    0.1260545292E+01
   167.0    0.1272310886E+01
   168.0    0.1283432246E+01
   169.0    0.1293862275E+01
   170.0    0.1303555835E+01
   171.0    0.1312470033E+01
   172.0    0.1320564530E+01
   173.0    0.1327801883E+01
   174.0    0.1334147900E+01
   175.0    0.1339572003E+01
   176.0    0.1344047588E+01
   177.0    0.1347552358E+01
   178.0    0.1350068629E+01
   179.0    0.1351583576E+01
   180.0    0.1352089426E+01
Time Now =       109.6891  Delta time =         0.2283 End EDCS
Time Now =       109.6893  Delta time =         0.0002 Finalize