Execution on login001

----------------------------------------------------------------------
ePolyScat Version E3
----------------------------------------------------------------------

Authors: R. R. Lucchese, N. Sanna, A. P. P. Natalense, and F. A. Gianturco
http://www.chem.tamu.edu/rgroup/lucchese/ePolyScat.E3.manual/manual.html
Please cite the following two papers when reporting results obtained with  this program
F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 100, 6464 (1994).
A. P. P. Natalense and R. R. Lucchese, J. Chem. Phys. 111, 5344 (1999).

----------------------------------------------------------------------

Starting at 2012-08-03  09:43:18.997 (GMT -0500)
Using     4 processors

----------------------------------------------------------------------


+ Start of Input Records
#
# input file for testxx
#
# N2 molden SCF, (3-sigma-g)^-1 photoionization
#
  LMax   22     # maximum l to be used for wave functions
  LMaxI  120
  EMax  50.0    # EMax, maximum asymptotic energy in eV
  FegeEng 13.0   # Energy correction (in eV) used in the fege potential

  ScatEng  10.0   # list of scattering energies

 InitSym 'SG'      # Initial state symmetry
 InitSpinDeg 1     # Initial state spin degeneracy
 OrbOccInit 2 2 2 2 2 4  # Orbital occupation of initial state
 OrbOcc     2 2 2 2 1 4  # occupation of the orbital groups of target
 SpinDeg 1         # Spin degeneracy of the total scattering state (=1 singlet)
 TargSym 'SG'      # Symmetry of the target state
 TargSpinDeg 2     # Target spin degeneracy
 IPot 15.581    # ionization potentail

EpsAsym 3 52.91772083
Convert '/g/home/rrl581a/Applications/ePolyScat.E3/tests/testxx.g03' 'g03'
GetBlms
ExpOrb

 ScatSym     'SU'  # Scattering symmetry of total final state
 ScatContSym 'SU'  # Scattering symmetry of continuum electron

FileName 'MatrixElements' 'testxxSU.idy' 'REWIND'
GenFormPhIon
DipoleOp
GetPot
PhIon
GetCro
#
 ScatSym     'PU'  # Scattering symmetry of total final state
 ScatContSym 'PU'  # Scattering symmetry of continuum electron

FileName 'MatrixElements' 'testxxPU.idy' 'REWIND'
GenFormPhIon
DipoleOp
GetPot
PhIon
GetCro
#
GetCro 'testxxPU.idy' 'testxxSU.idy'
#
#
+ End of input reached
+ Data Record LMax - 22
+ Data Record LMaxI - 120
+ Data Record EMax - 50.0
+ Data Record FegeEng - 13.0
+ Data Record ScatEng - 10.0
+ Data Record InitSym - 'SG'
+ Data Record InitSpinDeg - 1
+ Data Record OrbOccInit - 2 2 2 2 2 4
+ Data Record OrbOcc - 2 2 2 2 1 4
+ Data Record SpinDeg - 1
+ Data Record TargSym - 'SG'
+ Data Record TargSpinDeg - 2
+ Data Record IPot - 15.581
+ Data Record EpsAsym - 3 52.91772083

+ Command Convert
+ '/g/home/rrl581a/Applications/ePolyScat.E3/tests/testxx.g03' 'g03'

----------------------------------------------------------------------
g03cnv - read input from G03 output
----------------------------------------------------------------------

Expansion center is (in Angstroms) -
     0.0000000000   0.0000000000   0.0000000000
Command line = #HF/AUG-CC-PVTZ SCF=TIGHT 6D 10F GFINPUT PUNCH=MO
CardFlag =    T
Normal Mode flag =    F
Selecting orbitals
from     1  to     7  number already selected     0
Number of orbitals selected is     7
Highest orbital read in is =    7
Time Now =         0.3200  Delta time =         0.3200 End g03cnv

Atoms found    2  Coordinates in Angstroms
Z =  7 ZS =  7 r =   0.0000000000   0.0000000000   0.5488400000
Z =  7 ZS =  7 r =   0.0000000000   0.0000000000  -0.5488400000
Maximum distance from expansion center is    0.5488400000

+ Command GetBlms
+

----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------

Found point group  DAh
Reduce angular grid using nthd =  2  nphid =  4
Found point group for abelian subgroup D2h
Time Now =         1.4800  Delta time =         1.1600 End GetPGroup
List of unique axes
  N  Vector                      Z   R
  1  0.00000  0.00000  1.00000   7  0.54884   7  0.54884
List of corresponding x axes
  N  Vector
  1  1.00000  0.00000  0.00000
Computed default value of LMaxA =   11
Determining angular grid in GetAxMax  LMax =   22  LMaxA =   11  LMaxAb =   44
MMax =    3  MMaxAbFlag =    2
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11   3   3   3   3   3   3   3   3
   3   3   3
On the double L grid used for products
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19
  20  21  22  14  14  14  14  14  14  14  14  14  14  14   6   6   6   6   6   6
   6   6   6   6   6

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is DAh
LMax = =   22
 The dimension of each irreducable representation is
    SG    (  1)    A2G   (  1)    B1G   (  1)    B2G   (  1)    PG    (  2)
    DG    (  2)    FG    (  2)    GG    (  2)    SU    (  1)    A2U   (  1)
    B1U   (  1)    B2U   (  1)    PU    (  2)    DU    (  2)    FU    (  2)
    GU    (  2)
 Number of symmetry operations in the abelian subgroup (excluding E) =    7
 The operations are -
    12    22    32     2     3    21    31
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 SG        1         1         13       1  1  1  1  1  1  1
 A2G       1         2          1       1 -1 -1  1  1 -1 -1
 B1G       1         3          3      -1  1 -1  1 -1  1 -1
 B2G       1         4          3      -1 -1  1  1 -1 -1  1
 PG        1         5         12      -1 -1  1  1 -1 -1  1
 PG        2         6         12      -1  1 -1  1 -1  1 -1
 DG        1         7         13       1 -1 -1  1  1 -1 -1
 DG        2         8         13       1  1  1  1  1  1  1
 FG        1         9         12      -1 -1  1  1 -1 -1  1
 FG        2        10         12      -1  1 -1  1 -1  1 -1
 GG        1        11          7       1 -1 -1  1  1 -1 -1
 GG        2        12          7       1  1  1  1  1  1  1
 SU        1        13         12       1 -1 -1 -1 -1  1  1
 A2U       1        14          1       1  1  1 -1 -1 -1 -1
 B1U       1        15          4      -1 -1  1 -1  1  1 -1
 B2U       1        16          4      -1  1 -1 -1  1 -1  1
 PU        1        17         14      -1 -1  1 -1  1  1 -1
 PU        2        18         14      -1  1 -1 -1  1 -1  1
 DU        1        19         12       1 -1 -1 -1 -1  1  1
 DU        2        20         12       1  1  1 -1 -1 -1 -1
 FU        1        21         13      -1 -1  1 -1  1  1 -1
 FU        2        22         13      -1  1 -1 -1  1 -1  1
 GU        1        23          7       1 -1 -1 -1 -1  1  1
 GU        2        24          7       1  1  1 -1 -1 -1 -1
Time Now =         4.0519  Delta time =         2.5720 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
SG    1    0(   1)    1(   1)    2(   2)    3(   2)    4(   3)    5(   3)    6(   4)    7(   4)    8(   5)    9(   5)
          10(   7)   11(   7)
A2G   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   0)    7(   0)    8(   0)    9(   0)
          10(   1)   11(   1)
B1G   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   1)    7(   1)    8(   2)    9(   2)
          10(   3)   11(   3)
B2G   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   1)    7(   1)    8(   2)    9(   2)
          10(   3)   11(   3)
PG    1    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)    6(   3)    7(   3)    8(   4)    9(   4)
          10(   6)   11(   6)
PG    2    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)    6(   3)    7(   3)    8(   4)    9(   4)
          10(   6)   11(   6)
DG    1    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)    6(   3)    7(   3)    8(   5)    9(   5)
          10(   7)   11(   7)
DG    2    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)    6(   3)    7(   3)    8(   5)    9(   5)
          10(   7)   11(   7)
FG    1    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   1)    6(   2)    7(   2)    8(   4)    9(   4)
          10(   6)   11(   6)
FG    2    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   1)    6(   2)    7(   2)    8(   4)    9(   4)
          10(   6)   11(   6)
GG    1    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   1)    6(   3)    7(   3)    8(   5)    9(   5)
          10(   7)   11(   7)
GG    2    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   1)    6(   3)    7(   3)    8(   5)    9(   5)
          10(   7)   11(   7)
SU    1    0(   0)    1(   1)    2(   1)    3(   2)    4(   2)    5(   3)    6(   3)    7(   4)    8(   4)    9(   5)
          10(   5)   11(   7)
A2U   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   0)    7(   0)    8(   0)    9(   0)
          10(   0)   11(   1)
B1U   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   1)    6(   1)    7(   2)    8(   2)    9(   3)
          10(   3)   11(   4)
B2U   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   1)    6(   1)    7(   2)    8(   2)    9(   3)
          10(   3)   11(   4)
PU    1    0(   0)    1(   1)    2(   1)    3(   2)    4(   2)    5(   3)    6(   3)    7(   4)    8(   4)    9(   6)
          10(   6)   11(   9)
PU    2    0(   0)    1(   1)    2(   1)    3(   2)    4(   2)    5(   3)    6(   3)    7(   4)    8(   4)    9(   6)
          10(   6)   11(   9)
DU    1    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   2)    6(   2)    7(   3)    8(   3)    9(   5)
          10(   5)   11(   7)
DU    2    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   2)    6(   2)    7(   3)    8(   3)    9(   5)
          10(   5)   11(   7)
FU    1    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   2)    6(   2)    7(   4)    8(   4)    9(   6)
          10(   6)   11(   8)
FU    2    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   2)    6(   2)    7(   4)    8(   4)    9(   6)
          10(   6)   11(   8)
GU    1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   1)    6(   1)    7(   3)    8(   3)    9(   5)
          10(   5)   11(   7)
GU    2    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   1)    6(   1)    7(   3)    8(   3)    9(   5)
          10(   5)   11(   7)

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is D2h
LMax = =   44
 The dimension of each irreducable representation is
    AG    (  1)    B1G   (  1)    B2G   (  1)    B3G   (  1)    AU    (  1)
    B1U   (  1)    B2U   (  1)    B3U   (  1)
Abelian axes
    1       1.000000       0.000000       0.000000
    2       0.000000       1.000000       0.000000
    3       0.000000       0.000000       1.000000
Symmetry operation directions
  1       0.000000       0.000000       1.000000 ang =  0  1 type = 0 axis = 3
  2       0.000000       0.000000       1.000000 ang =  1  2 type = 2 axis = 3
  3       1.000000       0.000000       0.000000 ang =  1  2 type = 2 axis = 1
  4       0.000000       1.000000       0.000000 ang =  1  2 type = 2 axis = 2
  5       0.000000       0.000000       1.000000 ang =  1  2 type = 3 axis = 3
  6       0.000000       0.000000       1.000000 ang =  0  1 type = 1 axis = 3
  7       1.000000       0.000000       0.000000 ang =  0  1 type = 1 axis = 1
  8       0.000000       1.000000       0.000000 ang =  0  1 type = 1 axis = 2
irep =    1  sym =AG    1  eigs =   1   1   1   1   1   1   1   1
irep =    2  sym =B1G   1  eigs =   1   1  -1  -1   1   1  -1  -1
irep =    3  sym =B2G   1  eigs =   1  -1  -1   1   1  -1  -1   1
irep =    4  sym =B3G   1  eigs =   1  -1   1  -1   1  -1   1  -1
irep =    5  sym =AU    1  eigs =   1   1   1   1  -1  -1  -1  -1
irep =    6  sym =B1U   1  eigs =   1   1  -1  -1  -1  -1   1   1
irep =    7  sym =B2U   1  eigs =   1  -1  -1   1  -1   1   1  -1
irep =    8  sym =B3U   1  eigs =   1  -1   1  -1  -1   1  -1   1
 Number of symmetry operations in the abelian subgroup (excluding E) =    7
 The operations are -
     2     3     4     5     6     7     8
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 AG        1         1        142       1  1  1  1  1  1  1
 B1G       1         2        119       1 -1 -1  1  1 -1 -1
 B2G       1         3        119      -1 -1  1  1 -1 -1  1
 B3G       1         4        119      -1  1 -1  1 -1  1 -1
 AU        1         5        112       1  1  1 -1 -1 -1 -1
 B1U       1         6        134       1 -1 -1 -1 -1  1  1
 B2U       1         7        123      -1 -1  1 -1  1  1 -1
 B3U       1         8        123      -1  1 -1 -1  1 -1  1
Time Now =         4.0599  Delta time =         0.0080 End SymGen

+ Command ExpOrb
+
In GetRMax, RMaxEps =  0.10000000E-05  RMax =    9.7429727232 Angs

----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------

Maximum R in the grid (RMax) =     9.74297 Angs
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) =   10.0
In regions controlled by the wave length (HFacWave) =   10.0
Factor used to control the minimum exponent at each center (MinExpFac) =  300.0
Maximum asymptotic kinetic energy (EMAx) =  50.00000 eV
Maximum step size (MaxStep) =   9.74297 Angs
Factor to increase grid by (GridFac) =     1

    1  Center at =     0.00000 Angs  Alpha Max = 0.10000E+01
    2  Center at =     0.54884 Angs  Alpha Max = 0.14700E+05

Generated Grid

  irg  nin  ntot      step Angs     R end Angs
    1    8     8    0.19062E-02     0.01525
    2    8    16    0.26839E-02     0.03672
    3    8    24    0.43199E-02     0.07128
    4    8    32    0.57890E-02     0.11759
    5    8    40    0.67485E-02     0.17158
    6    8    48    0.68608E-02     0.22647
    7    8    56    0.63139E-02     0.27698
    8    8    64    0.56134E-02     0.32188
    9    8    72    0.49594E-02     0.36156
   10    8    80    0.49866E-02     0.40145
   11    8    88    0.55369E-02     0.44575
   12    8    96    0.46954E-02     0.48331
   13    8   104    0.29845E-02     0.50719
   14    8   112    0.18971E-02     0.52236
   15    8   120    0.12059E-02     0.53201
   16    8   128    0.76649E-03     0.53814
   17    8   136    0.53675E-03     0.54244
   18    8   144    0.45383E-03     0.54607
   19    8   152    0.34660E-03     0.54884
   20    8   160    0.43646E-03     0.55233
   21    8   168    0.46530E-03     0.55605
   22    8   176    0.57358E-03     0.56064
   23    8   184    0.87025E-03     0.56760
   24    8   192    0.13836E-02     0.57867
   25    8   200    0.21997E-02     0.59627
   26    8   208    0.34972E-02     0.62425
   27    8   216    0.55601E-02     0.66873
   28    8   224    0.88398E-02     0.73945
   29    8   232    0.10199E-01     0.82104
   30    8   240    0.11324E-01     0.91163
   31    8   248    0.15101E-01     1.03244
   32    8   256    0.21632E-01     1.20549
   33    8   264    0.32074E-01     1.46208
   34    8   272    0.42552E-01     1.80250
   35    8   280    0.47759E-01     2.18457
   36    8   288    0.52194E-01     2.60212
   37    8   296    0.55948E-01     3.04970
   38    8   304    0.59122E-01     3.52268
   39    8   312    0.61811E-01     4.01717
   40    8   320    0.64100E-01     4.52997
   41    8   328    0.66059E-01     5.05844
   42    8   336    0.67747E-01     5.60042
   43    8   344    0.69209E-01     6.15409
   44    8   352    0.70484E-01     6.71796
   45    8   360    0.71604E-01     7.29079
   46    8   368    0.72592E-01     7.87153
   47    8   376    0.73469E-01     8.45928
   48    8   384    0.74252E-01     9.05330
   49    8   392    0.74954E-01     9.65293
   50    8   400    0.11255E-01     9.74297
Time Now =         4.0893  Delta time =         0.0293 End GenGrid

----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------

Maximum scattering l (lmax) =   22
Maximum scattering m (mmaxs) =   22
Maximum numerical integration l (lmaxi) =  120
Maximum numerical integration m (mmaxi) =  120
Maximum l to include in the asymptotic region (lmasym) =   11
Parameter used to determine the cutoff points (PCutRd) =  0.10000000E-07 au
Maximum E used to determine grid (in eV) =       50.00000
Print flag (iprnfg) =    0
lmasymtyts =   10
 Actual value of lmasym found =     11
Number of regions of the same l expansion (NAngReg) =   10
Angular regions
    1 L =    2  from (    1)         0.00191  to (    7)         0.01334
    2 L =    4  from (    8)         0.01525  to (   15)         0.03404
    3 L =    6  from (   16)         0.03672  to (   23)         0.06696
    4 L =    7  from (   24)         0.07128  to (   31)         0.11180
    5 L =    9  from (   32)         0.11759  to (   39)         0.16483
    6 L =   11  from (   40)         0.17158  to (   47)         0.21961
    7 L =   19  from (   48)         0.22647  to (   71)         0.35660
    8 L =   22  from (   72)         0.36156  to (  240)         0.91163
    9 L =   19  from (  241)         0.92673  to (  256)         1.20549
   10 L =   11  from (  257)         1.23757  to (  400)         9.74297
There are     2 angular regions for computing spherical harmonics
    1 lval =   11
    2 lval =   22
Last grid points by processor WorkExp =     1.500
Proc id =   -1  Last grid point =       1
Proc id =    0  Last grid point =     112
Proc id =    1  Last grid point =     176
Proc id =    2  Last grid point =     240
Proc id =    3  Last grid point =     400
Time Now =         4.0941  Delta time =         0.0049 End AngGCt

----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------


 R of maximum density
     1  Orig    1  Eng =  -15.684112  SG    1 at max irg =  160  r =   0.55233
     2  Orig    2  Eng =  -15.680571  SU    1 at max irg =  160  r =   0.55233
     3  Orig    3  Eng =   -1.471973  SG    1 at max irg =  152  r =   0.54884
     4  Orig    4  Eng =   -0.779348  SU    1 at max irg =  240  r =   0.91163
     5  Orig    5  Eng =   -0.634301  SG    1 at max irg =  240  r =   0.91163
     6  Orig    6  Eng =   -0.614214  PU    1 at max irg =  216  r =   0.66873
     7  Orig    7  Eng =   -0.614214  PU    2 at max irg =  216  r =   0.66873

Rotation coefficients for orbital     1  grp =    1 SG    1
     1  1.0000000000

Rotation coefficients for orbital     2  grp =    2 SU    1
     1  1.0000000000

Rotation coefficients for orbital     3  grp =    3 SG    1
     1  1.0000000000

Rotation coefficients for orbital     4  grp =    4 SU    1
     1  1.0000000000

Rotation coefficients for orbital     5  grp =    5 SG    1
     1  1.0000000000

Rotation coefficients for orbital     6  grp =    6 PU    1
     1  1.0000000000    2  0.0000000000

Rotation coefficients for orbital     7  grp =    6 PU    2
     1  0.0000000000    2  1.0000000000
Number of orbital groups and degeneracis are         6
  1  1  1  1  1  2
Number of orbital groups and number of electrons when fully occupied
         6
  2  2  2  2  2  4
Time Now =         5.2589  Delta time =         1.1648 End RotOrb

----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------

 First orbital group to expand (mofr) =    1
 Last orbital group to expand (moto) =    6
Orbital     1 of  SG    1 symmetry normalization integral =  0.99803017
Orbital     2 of  SU    1 symmetry normalization integral =  0.99760077
Orbital     3 of  SG    1 symmetry normalization integral =  0.99989448
Orbital     4 of  SU    1 symmetry normalization integral =  0.99989717
Orbital     5 of  SG    1 symmetry normalization integral =  0.99999058
Orbital     6 of  PU    1 symmetry normalization integral =  0.99999964
Time Now =         7.9504  Delta time =         2.6915 End ExpOrb
+ Data Record ScatSym - 'SU'
+ Data Record ScatContSym - 'SU'

+ Command FileName
+ 'MatrixElements' 'testxxSU.idy' 'REWIND'
Opening file testxxSU.idy at position REWIND

+ Command GenFormPhIon
+

----------------------------------------------------------------------
SymProd - Construct products of symmetry types
----------------------------------------------------------------------

Number of sets of degenerate orbitals =    6
Set    1  has degeneracy     1
Orbital     1  is num     1  type =   1  name - SG    1
Set    2  has degeneracy     1
Orbital     1  is num     2  type =  13  name - SU    1
Set    3  has degeneracy     1
Orbital     1  is num     3  type =   1  name - SG    1
Set    4  has degeneracy     1
Orbital     1  is num     4  type =  13  name - SU    1
Set    5  has degeneracy     1
Orbital     1  is num     5  type =   1  name - SG    1
Set    6  has degeneracy     2
Orbital     1  is num     6  type =  17  name - PU    1
Orbital     2  is num     7  type =  18  name - PU    2
Orbital occupations by degenerate group
    1  SG       occ = 2
    2  SU       occ = 2
    3  SG       occ = 2
    4  SU       occ = 2
    5  SG       occ = 1
    6  PU       occ = 4
The dimension of each irreducable representation is
    SG    (  1)    A2G   (  1)    B1G   (  1)    B2G   (  1)    PG    (  2)
    DG    (  2)    FG    (  2)    GG    (  2)    SU    (  1)    A2U   (  1)
    B1U   (  1)    B2U   (  1)    PU    (  2)    DU    (  2)    FU    (  2)
    GU    (  2)
Symmetry of the continuum orbital is SU
Symmetry of the total state is SU
Spin degeneracy of the total state is =    1
Symmetry of the target state is SG
Spin degeneracy of the target state is =    2
Symmetry of the initial state is SG
Spin degeneracy of the initial state is =    1
Orbital occupations of initial state by degenerate group
    1  SG       occ = 2
    2  SU       occ = 2
    3  SG       occ = 2
    4  SU       occ = 2
    5  SG       occ = 2
    6  PU       occ = 4
Open shell symmetry types
    1  SG     iele =    1
Use only configuration of type SG
MS2 =    1  SDGN =    2
NumAlpha =    1
List of determinants found
    1:   1.00000   0.00000    1
Spin adapted configurations
Configuration    1
    1:   1.00000   0.00000    1
 Each irreducable representation is present the number of times indicated
    SG    (  1)

 representation SG     component     1  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1
Open shell symmetry types
    1  SG     iele =    1
    2  SU     iele =    1
Use only configuration of type SU
 Each irreducable representation is present the number of times indicated
    SU    (  1)

 representation SU     component     1  fun    1
Symmeterized Function from AddNewShell
    1:  -0.70711   0.00000    1    4
    2:   0.70711   0.00000    2    3
Open shell symmetry types
    1  SG     iele =    1
Use only configuration of type SG
MS2 =    1  SDGN =    2
NumAlpha =    1
List of determinants found
    1:   1.00000   0.00000    1
Spin adapted configurations
Configuration    1
    1:   1.00000   0.00000    1
 Each irreducable representation is present the number of times indicated
    SG    (  1)

 representation SG     component     1  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1
Direct product basis set
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   11
                             12   13   14   16
    2:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   11
                             12   13   14   15
Closed shell target
Time Now =         7.9667  Delta time =         0.0163 End SymProd

----------------------------------------------------------------------
MatEle - Program to compute Matrix Elements over Determinants
----------------------------------------------------------------------

Configuration     1
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   11
                             12   13   14   16
    2:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   11
                             12   13   14   15
Direct product Configuration Cont sym =    1  Targ sym =    1
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   11
                             12   13   14   16
    2:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   11
                             12   13   14   15
Overlap of Direct Product expansion and Symmeterized states
Symmetry of Continuum =    9
Symmetry of target =    1
Symmetry of total states =    9

Total symmetry component =    1

Cont      Target Component
Comp        1
   1   0.10000000E+01
Initial State Configuration
    1:   1.00000   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14
One electron matrix elements between initial and final states
    1:   -1.414213562    0.000000000  <    9|   15>

Reduced formula list
    1    5    1 -0.1414213562E+01
Time Now =         7.9669  Delta time =         0.0002 End MatEle

+ Command DipoleOp
+

----------------------------------------------------------------------
DipoleOp - Dipole Operator Program
----------------------------------------------------------------------

Number of orbitals in formula for the dipole operator (NOrbSel) =    1
Symmetry of the continuum orbital (iContSym) =     9 or SU
Symmetry of total final state (iTotalSym) =     9 or SU
Symmetry of the initial state (iInitSym) =     1 or SG
Symmetry of the ionized target state (iTargSym) =     1 or SG
List of unique symmetry types
In the product of the symmetry types SU    SG
 Each irreducable representation is present the number of times indicated
    SU    (  1)
In the product of the symmetry types SU    SG
 Each irreducable representation is present the number of times indicated
    SU    (  1)
In the product of the symmetry types SU    A2G
 Each irreducable representation is present the number of times indicated
    A2U   (  1)
In the product of the symmetry types SU    B1G
 Each irreducable representation is present the number of times indicated
    B1U   (  1)
In the product of the symmetry types SU    B2G
 Each irreducable representation is present the number of times indicated
    B2U   (  1)
In the product of the symmetry types SU    PG
 Each irreducable representation is present the number of times indicated
    PU    (  1)
In the product of the symmetry types SU    DG
 Each irreducable representation is present the number of times indicated
    DU    (  1)
In the product of the symmetry types SU    FG
 Each irreducable representation is present the number of times indicated
    FU    (  1)
In the product of the symmetry types SU    GG
 Each irreducable representation is present the number of times indicated
    GU    (  1)
In the product of the symmetry types SU    SU
 Each irreducable representation is present the number of times indicated
    SG    (  1)
Unique dipole matrix type     1 Dipole symmetry type =SU
     Final state symmetry type = SU     Target sym =SG
     Continuum type =SU
In the product of the symmetry types SU    A2U
 Each irreducable representation is present the number of times indicated
    A2G   (  1)
In the product of the symmetry types SU    B1U
 Each irreducable representation is present the number of times indicated
    B1G   (  1)
In the product of the symmetry types SU    B2U
 Each irreducable representation is present the number of times indicated
    B2G   (  1)
In the product of the symmetry types SU    PU
 Each irreducable representation is present the number of times indicated
    PG    (  1)
In the product of the symmetry types SU    DU
 Each irreducable representation is present the number of times indicated
    DG    (  1)
In the product of the symmetry types SU    FU
 Each irreducable representation is present the number of times indicated
    FG    (  1)
In the product of the symmetry types SU    GU
 Each irreducable representation is present the number of times indicated
    GG    (  1)
In the product of the symmetry types PU    SG
 Each irreducable representation is present the number of times indicated
    PU    (  1)
In the product of the symmetry types PU    SG
 Each irreducable representation is present the number of times indicated
    PU    (  1)
In the product of the symmetry types PU    A2G
 Each irreducable representation is present the number of times indicated
    PU    (  1)
In the product of the symmetry types PU    B1G
 Each irreducable representation is present the number of times indicated
    GU    (  1)
In the product of the symmetry types PU    B2G
 Each irreducable representation is present the number of times indicated
    GU    (  1)
In the product of the symmetry types PU    PG
 Each irreducable representation is present the number of times indicated
    SU    (  1)
    A2U   (  1)
    DU    (  1)
In the product of the symmetry types PU    DG
 Each irreducable representation is present the number of times indicated
    PU    (  1)
    FU    (  1)
In the product of the symmetry types PU    FG
 Each irreducable representation is present the number of times indicated
    DU    (  1)
    GU    (  1)
In the product of the symmetry types PU    GG
 Each irreducable representation is present the number of times indicated
    B1U   (  1)
    B2U   (  1)
    FU    (  1)
In the product of the symmetry types PU    SU
 Each irreducable representation is present the number of times indicated
    PG    (  1)
In the product of the symmetry types PU    A2U
 Each irreducable representation is present the number of times indicated
    PG    (  1)
In the product of the symmetry types PU    B1U
 Each irreducable representation is present the number of times indicated
    GG    (  1)
In the product of the symmetry types PU    B2U
 Each irreducable representation is present the number of times indicated
    GG    (  1)
In the product of the symmetry types PU    PU
 Each irreducable representation is present the number of times indicated
    SG    (  1)
    A2G   (  1)
    DG    (  1)
Unique dipole matrix type     2 Dipole symmetry type =PU
     Final state symmetry type = PU     Target sym =SG
     Continuum type =PU
In the product of the symmetry types PU    DU
 Each irreducable representation is present the number of times indicated
    PG    (  1)
    FG    (  1)
In the product of the symmetry types PU    FU
 Each irreducable representation is present the number of times indicated
    DG    (  1)
    GG    (  1)
In the product of the symmetry types PU    GU
 Each irreducable representation is present the number of times indicated
    B1G   (  1)
    B2G   (  1)
    FG    (  1)
In the product of the symmetry types SU    SG
 Each irreducable representation is present the number of times indicated
    SU    (  1)
In the product of the symmetry types PU    SG
 Each irreducable representation is present the number of times indicated
    PU    (  1)
In the product of the symmetry types PU    SG
 Each irreducable representation is present the number of times indicated
    PU    (  1)
Irreducible representation containing the dipole operator is SU
Number of different dipole operators in this representation is     1
In the product of the symmetry types SU    SG
 Each irreducable representation is present the number of times indicated
    SU    (  1)
Vector of the total symmetry
ie =    1  ij =    1
    1 (  0.10000000E+01,  0.00000000E+00)
Component Dipole Op Sym =  1 goes to Total Sym component   1 phase = 1.0

Dipole operator types by symmetry components (x=1, y=2, z=3)
sym comp =  1
  coefficients =  0.00000000  0.00000000  1.00000000

Formula for dipole operator

Dipole operator sym comp 1  index =    1
  1  Cont comp  1  Orb  5  Coef =  -1.4142135620
Symmetry type to write out (SymTyp) =SU
Time Now =        59.7474  Delta time =        51.7805 End DipoleOp

+ Command GetPot
+

----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------

Total density =     13.00000000
Time Now =        59.7610  Delta time =         0.0135 End Den

----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------

 vasymp =  0.13000000E+02 facnorm =  0.10000000E+01
Time Now =        59.7957  Delta time =         0.0348 Electronic part
Time Now =        59.7966  Delta time =         0.0008 End StPot

+ Command PhIon
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.10000000E+02 eV (  0.36749326E+00 AU)
Time Now =        59.9643  Delta time =         0.1678 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = SU    1
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =      T
Maximum l for computed scattering solutions (LMaxK) =    9
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.52917721E+02 Angs
Asymptotic cutoff type (iAsymCond) =    3
Number of integration regions used =    50
Number of partial waves (np) =    12
Number of asymptotic solutions on the right (NAsymR) =     5
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   11
Number of partial waves in the asymptotic region (npasym) =    7
Number of orthogonality constraints (NOrthUse) =    2
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   78
Maximum l used in usual function (lmax) =   22
Maximum m used in usual function (LMax) =   22
Maxamum l used in expanding static potential (lpotct) =   44
Maximum l used in exapnding the exchange potential (lmaxab) =   44
Higest l included in the expansion of the wave function (lnp) =   21
Higest l included in the K matrix (lna) =    9
Highest l used at large r (lpasym) =   11
Higest l used in the asymptotic potential (lpzb) =   22
Maximum L used in the homogeneous solution (LMaxHomo) =   11
Number of partial waves in the homogeneous solution (npHomo) =    7
Time Now =        59.9953  Delta time =         0.0309 Energy independent setup

Compute solution for E =   10.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.30531133E-15
 i =  2  lval =   3  stpote =  0.77682769E-18
 i =  3  lval =   3  stpote = -0.49030616E-03
 i =  4  lval =   5  stpote = -0.13315006E-20
For potential     2
 i =  1  exps = -0.73646201E+02 -0.20000000E+01  stpote = -0.86942367E-16
 i =  2  exps = -0.73646201E+02 -0.20000000E+01  stpote = -0.86942359E-16
 i =  3  exps = -0.73646201E+02 -0.20000000E+01  stpote = -0.86942343E-16
 i =  4  exps = -0.73646201E+02 -0.20000000E+01  stpote = -0.86942320E-16
For potential     3
Number of asymptotic regions =      28
Final point in integration =   0.52917721E+02 Angstroms
Time Now =        62.3143  Delta time =         2.3191 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.29879721E+00,-0.11561474E+01) (-0.13308302E+01, 0.66676130E+00)
  (-0.21607345E-01, 0.22409125E-01) (-0.15062418E-03, 0.15781488E-03)
  (-0.64497659E-06, 0.62230931E-06)
     ROW  2
  ( 0.26121867E+00,-0.10110990E+01) (-0.11647736E+01, 0.58350307E+00)
  (-0.19996683E-01, 0.19634554E-01) (-0.14883952E-03, 0.14349875E-03)
  (-0.70733352E-06, 0.59292062E-06)
MaxIter =   7 c.s. =      6.43112046 rmsk=     0.00000003
Time Now =        74.3878  Delta time =        12.0735 End ScatStab

+ Command GetCro
+

----------------------------------------------------------------------
CnvIdy - read in and convert dynamical matrix elements and convert to raw form
----------------------------------------------------------------------

Time Now =        74.3883  Delta time =         0.0005 End CnvIdy
Found     1 energies :
    10.00000
List of matrix element types found   Number =    1
    1  Cont Sym SU     Targ Sym SG     Total Sym SU
Keeping     1 energies :
    10.00000
Time Now =        74.3884  Delta time =         0.0001 End SelIdy

----------------------------------------------------------------------
CrossSection - compute photoionization cross section
----------------------------------------------------------------------

Ionization potential (IPot) =     15.5810 eV
Label -
Cross section by partial wave      F
Cross Sections for

     Sigma LENGTH   at all energies
      Eng
    25.5810  0.58622619E+01

     Sigma MIXED    at all energies
      Eng
    25.5810  0.54560536E+01

     Sigma VELOCITY at all energies
      Eng
    25.5810  0.50779953E+01

     Beta LENGTH   at all energies
      Eng
    25.5810  0.48032767E+00

     Beta MIXED    at all energies
      Eng
    25.5810  0.48001399E+00

     Beta VELOCITY at all energies
      Eng
    25.5810  0.47970021E+00

          COMPOSITE CROSS SECTIONS AT ALL ENERGIES
         Energy  SIGMA LEN  SIGMA MIX  SIGMA VEL   BETA LEN   BETA MIX   BETA VEL
EPhi     25.5810     5.8623     5.4561     5.0780     0.4803     0.4800     0.4797
Time Now =        74.3913  Delta time =         0.0029 End CrossSection
+ Data Record ScatSym - 'PU'
+ Data Record ScatContSym - 'PU'

+ Command FileName
+ 'MatrixElements' 'testxxPU.idy' 'REWIND'
Opening file testxxPU.idy at position REWIND

+ Command GenFormPhIon
+

----------------------------------------------------------------------
SymProd - Construct products of symmetry types
----------------------------------------------------------------------

Number of sets of degenerate orbitals =    6
Set    1  has degeneracy     1
Orbital     1  is num     1  type =   1  name - SG    1
Set    2  has degeneracy     1
Orbital     1  is num     2  type =  13  name - SU    1
Set    3  has degeneracy     1
Orbital     1  is num     3  type =   1  name - SG    1
Set    4  has degeneracy     1
Orbital     1  is num     4  type =  13  name - SU    1
Set    5  has degeneracy     1
Orbital     1  is num     5  type =   1  name - SG    1
Set    6  has degeneracy     2
Orbital     1  is num     6  type =  17  name - PU    1
Orbital     2  is num     7  type =  18  name - PU    2
Orbital occupations by degenerate group
    1  SG       occ = 2
    2  SU       occ = 2
    3  SG       occ = 2
    4  SU       occ = 2
    5  SG       occ = 1
    6  PU       occ = 4
The dimension of each irreducable representation is
    SG    (  1)    A2G   (  1)    B1G   (  1)    B2G   (  1)    PG    (  2)
    DG    (  2)    FG    (  2)    GG    (  2)    SU    (  1)    A2U   (  1)
    B1U   (  1)    B2U   (  1)    PU    (  2)    DU    (  2)    FU    (  2)
    GU    (  2)
Symmetry of the continuum orbital is PU
Symmetry of the total state is PU
Spin degeneracy of the total state is =    1
Symmetry of the target state is SG
Spin degeneracy of the target state is =    2
Symmetry of the initial state is SG
Spin degeneracy of the initial state is =    1
Orbital occupations of initial state by degenerate group
    1  SG       occ = 2
    2  SU       occ = 2
    3  SG       occ = 2
    4  SU       occ = 2
    5  SG       occ = 2
    6  PU       occ = 4
Open shell symmetry types
    1  SG     iele =    1
Use only configuration of type SG
MS2 =    1  SDGN =    2
NumAlpha =    1
List of determinants found
    1:   1.00000   0.00000    1
Spin adapted configurations
Configuration    1
    1:   1.00000   0.00000    1
 Each irreducable representation is present the number of times indicated
    SG    (  1)

 representation SG     component     1  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1
Open shell symmetry types
    1  SG     iele =    1
    2  PU     iele =    1
Use only configuration of type PU
 Each irreducable representation is present the number of times indicated
    PU    (  1)

 representation PU     component     1  fun    1
Symmeterized Function from AddNewShell
    1:  -0.70711   0.00000    1    5
    2:   0.70711   0.00000    2    3

 representation PU     component     2  fun    1
Symmeterized Function from AddNewShell
    1:  -0.70711   0.00000    1    6
    2:   0.70711   0.00000    2    4
Open shell symmetry types
    1  SG     iele =    1
Use only configuration of type SG
MS2 =    1  SDGN =    2
NumAlpha =    1
List of determinants found
    1:   1.00000   0.00000    1
Spin adapted configurations
Configuration    1
    1:   1.00000   0.00000    1
 Each irreducable representation is present the number of times indicated
    SG    (  1)

 representation SG     component     1  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1
Direct product basis set
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   11
                             12   13   14   17
    2:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   11
                             12   13   14   15
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   11
                             12   13   14   18
    2:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   11
                             12   13   14   16
Closed shell target
Time Now =        74.4026  Delta time =         0.0113 End SymProd

----------------------------------------------------------------------
MatEle - Program to compute Matrix Elements over Determinants
----------------------------------------------------------------------

Configuration     1
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   11
                             12   13   14   17
    2:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   11
                             12   13   14   15
Configuration     2
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   11
                             12   13   14   18
    2:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   11
                             12   13   14   16
Direct product Configuration Cont sym =    1  Targ sym =    1
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   11
                             12   13   14   17
    2:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   11
                             12   13   14   15
Direct product Configuration Cont sym =    2  Targ sym =    1
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   11
                             12   13   14   18
    2:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   11
                             12   13   14   16
Overlap of Direct Product expansion and Symmeterized states
Symmetry of Continuum =   13
Symmetry of target =    1
Symmetry of total states =   13

Total symmetry component =    1

Cont      Target Component
Comp        1
   1   0.10000000E+01
   2   0.00000000E+00

Total symmetry component =    2

Cont      Target Component
Comp        1
   1   0.00000000E+00
   2   0.10000000E+01
Initial State Configuration
    1:   1.00000   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14
One electron matrix elements between initial and final states
    1:   -1.414213562    0.000000000  <    9|   15>

Reduced formula list
    1    5    1 -0.1414213562E+01
Time Now =        74.4028  Delta time =         0.0002 End MatEle

+ Command DipoleOp
+

----------------------------------------------------------------------
DipoleOp - Dipole Operator Program
----------------------------------------------------------------------

Number of orbitals in formula for the dipole operator (NOrbSel) =    1
Symmetry of the continuum orbital (iContSym) =    13 or PU
Symmetry of total final state (iTotalSym) =    13 or PU
Symmetry of the initial state (iInitSym) =     1 or SG
Symmetry of the ionized target state (iTargSym) =     1 or SG
List of unique symmetry types
In the product of the symmetry types SU    SG
 Each irreducable representation is present the number of times indicated
    SU    (  1)
In the product of the symmetry types SU    SG
 Each irreducable representation is present the number of times indicated
    SU    (  1)
In the product of the symmetry types SU    A2G
 Each irreducable representation is present the number of times indicated
    A2U   (  1)
In the product of the symmetry types SU    B1G
 Each irreducable representation is present the number of times indicated
    B1U   (  1)
In the product of the symmetry types SU    B2G
 Each irreducable representation is present the number of times indicated
    B2U   (  1)
In the product of the symmetry types SU    PG
 Each irreducable representation is present the number of times indicated
    PU    (  1)
In the product of the symmetry types SU    DG
 Each irreducable representation is present the number of times indicated
    DU    (  1)
In the product of the symmetry types SU    FG
 Each irreducable representation is present the number of times indicated
    FU    (  1)
In the product of the symmetry types SU    GG
 Each irreducable representation is present the number of times indicated
    GU    (  1)
In the product of the symmetry types SU    SU
 Each irreducable representation is present the number of times indicated
    SG    (  1)
Unique dipole matrix type     1 Dipole symmetry type =SU
     Final state symmetry type = SU     Target sym =SG
     Continuum type =SU
In the product of the symmetry types SU    A2U
 Each irreducable representation is present the number of times indicated
    A2G   (  1)
In the product of the symmetry types SU    B1U
 Each irreducable representation is present the number of times indicated
    B1G   (  1)
In the product of the symmetry types SU    B2U
 Each irreducable representation is present the number of times indicated
    B2G   (  1)
In the product of the symmetry types SU    PU
 Each irreducable representation is present the number of times indicated
    PG    (  1)
In the product of the symmetry types SU    DU
 Each irreducable representation is present the number of times indicated
    DG    (  1)
In the product of the symmetry types SU    FU
 Each irreducable representation is present the number of times indicated
    FG    (  1)
In the product of the symmetry types SU    GU
 Each irreducable representation is present the number of times indicated
    GG    (  1)
In the product of the symmetry types PU    SG
 Each irreducable representation is present the number of times indicated
    PU    (  1)
In the product of the symmetry types PU    SG
 Each irreducable representation is present the number of times indicated
    PU    (  1)
In the product of the symmetry types PU    A2G
 Each irreducable representation is present the number of times indicated
    PU    (  1)
In the product of the symmetry types PU    B1G
 Each irreducable representation is present the number of times indicated
    GU    (  1)
In the product of the symmetry types PU    B2G
 Each irreducable representation is present the number of times indicated
    GU    (  1)
In the product of the symmetry types PU    PG
 Each irreducable representation is present the number of times indicated
    SU    (  1)
    A2U   (  1)
    DU    (  1)
In the product of the symmetry types PU    DG
 Each irreducable representation is present the number of times indicated
    PU    (  1)
    FU    (  1)
In the product of the symmetry types PU    FG
 Each irreducable representation is present the number of times indicated
    DU    (  1)
    GU    (  1)
In the product of the symmetry types PU    GG
 Each irreducable representation is present the number of times indicated
    B1U   (  1)
    B2U   (  1)
    FU    (  1)
In the product of the symmetry types PU    SU
 Each irreducable representation is present the number of times indicated
    PG    (  1)
In the product of the symmetry types PU    A2U
 Each irreducable representation is present the number of times indicated
    PG    (  1)
In the product of the symmetry types PU    B1U
 Each irreducable representation is present the number of times indicated
    GG    (  1)
In the product of the symmetry types PU    B2U
 Each irreducable representation is present the number of times indicated
    GG    (  1)
In the product of the symmetry types PU    PU
 Each irreducable representation is present the number of times indicated
    SG    (  1)
    A2G   (  1)
    DG    (  1)
Unique dipole matrix type     2 Dipole symmetry type =PU
     Final state symmetry type = PU     Target sym =SG
     Continuum type =PU
In the product of the symmetry types PU    DU
 Each irreducable representation is present the number of times indicated
    PG    (  1)
    FG    (  1)
In the product of the symmetry types PU    FU
 Each irreducable representation is present the number of times indicated
    DG    (  1)
    GG    (  1)
In the product of the symmetry types PU    GU
 Each irreducable representation is present the number of times indicated
    B1G   (  1)
    B2G   (  1)
    FG    (  1)
In the product of the symmetry types SU    SG
 Each irreducable representation is present the number of times indicated
    SU    (  1)
In the product of the symmetry types PU    SG
 Each irreducable representation is present the number of times indicated
    PU    (  1)
In the product of the symmetry types PU    SG
 Each irreducable representation is present the number of times indicated
    PU    (  1)
Irreducible representation containing the dipole operator is PU
Number of different dipole operators in this representation is     1
In the product of the symmetry types PU    SG
 Each irreducable representation is present the number of times indicated
    PU    (  1)
Vector of the total symmetry
ie =    1  ij =    1
    1 (  0.10000000E+01,  0.00000000E+00)
    2 (  0.13877788E-15,  0.00000000E+00)
Vector of the total symmetry
ie =    2  ij =    1
    1 (  0.13877788E-15,  0.00000000E+00)
    2 (  0.10000000E+01,  0.00000000E+00)
Component Dipole Op Sym =  1 goes to Total Sym component   1 phase = 1.0
Component Dipole Op Sym =  2 goes to Total Sym component   2 phase = 1.0

Dipole operator types by symmetry components (x=1, y=2, z=3)
sym comp =  1
  coefficients =  0.00000000  1.00000000  0.00000000
sym comp =  2
  coefficients =  1.00000000  0.00000000  0.00000000

Formula for dipole operator

Dipole operator sym comp 1  index =    1
  1  Cont comp  1  Orb  5  Coef =  -1.4142135620
Symmetry type to write out (SymTyp) =PU
Time Now =       126.2532  Delta time =        51.8504 End DipoleOp

+ Command GetPot
+

----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------

Total density =     13.00000000
Time Now =       126.2663  Delta time =         0.0130 End Den

----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------

 vasymp =  0.13000000E+02 facnorm =  0.10000000E+01
Time Now =       126.3010  Delta time =         0.0348 Electronic part
Time Now =       126.3019  Delta time =         0.0008 End StPot

+ Command PhIon
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.10000000E+02 eV (  0.36749326E+00 AU)
Time Now =       126.4719  Delta time =         0.1701 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = PU    1
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =      T
Maximum l for computed scattering solutions (LMaxK) =    9
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.52917721E+02 Angs
Asymptotic cutoff type (iAsymCond) =    3
Number of integration regions used =    50
Number of partial waves (np) =    14
Number of asymptotic solutions on the right (NAsymR) =     6
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   11
Number of partial waves in the asymptotic region (npasym) =    9
Number of orthogonality constraints (NOrthUse) =    1
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   78
Maximum l used in usual function (lmax) =   22
Maximum m used in usual function (LMax) =   22
Maxamum l used in expanding static potential (lpotct) =   44
Maximum l used in exapnding the exchange potential (lmaxab) =   44
Higest l included in the expansion of the wave function (lnp) =   21
Higest l included in the K matrix (lna) =    9
Highest l used at large r (lpasym) =   11
Higest l used in the asymptotic potential (lpzb) =   22
Maximum L used in the homogeneous solution (LMaxHomo) =   11
Number of partial waves in the homogeneous solution (npHomo) =    9
Time Now =       126.5026  Delta time =         0.0307 Energy independent setup

Compute solution for E =   10.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.30531133E-15
 i =  2  lval =   3  stpote =  0.77682769E-18
 i =  3  lval =   3  stpote = -0.49030616E-03
 i =  4  lval =   5  stpote = -0.13315006E-20
For potential     2
 i =  1  exps = -0.73646201E+02 -0.20000000E+01  stpote = -0.86942367E-16
 i =  2  exps = -0.73646201E+02 -0.20000000E+01  stpote = -0.86942359E-16
 i =  3  exps = -0.73646201E+02 -0.20000000E+01  stpote = -0.86942343E-16
 i =  4  exps = -0.73646201E+02 -0.20000000E+01  stpote = -0.86942320E-16
For potential     3
Number of asymptotic regions =      28
Final point in integration =   0.52917721E+02 Angstroms
Time Now =       129.3018  Delta time =         2.7991 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.57226346E-02,-0.51633124E+00) (-0.81002942E+00, 0.10250330E+00)
  (-0.17802267E-01, 0.89326638E-02) (-0.12269061E-03, 0.81613065E-04)
  ( 0.13726933E-16, 0.60605642E-16) (-0.45809287E-06, 0.30411230E-06)
     ROW  2
  (-0.30272222E-02,-0.48644467E+00) (-0.67631917E+00, 0.80221873E-01)
  (-0.15080984E-01, 0.73466545E-02) (-0.10874376E-03, 0.68365299E-04)
  ( 0.92662072E-17, 0.54552525E-16) (-0.44986020E-06, 0.26838839E-06)
MaxIter =   7 c.s. =      1.63444421 rmsk=     0.00000000
Time Now =       141.8000  Delta time =        12.4982 End ScatStab

+ Command GetCro
+

----------------------------------------------------------------------
CnvIdy - read in and convert dynamical matrix elements and convert to raw form
----------------------------------------------------------------------

Time Now =       141.8004  Delta time =         0.0005 End CnvIdy
Found     1 energies :
    10.00000
List of matrix element types found   Number =    1
    1  Cont Sym PU     Targ Sym SG     Total Sym PU
Keeping     1 energies :
    10.00000
Time Now =       141.8005  Delta time =         0.0000 End SelIdy

----------------------------------------------------------------------
CrossSection - compute photoionization cross section
----------------------------------------------------------------------

Ionization potential (IPot) =     15.5810 eV
Label -
Cross section by partial wave      F
Cross Sections for

     Sigma LENGTH   at all energies
      Eng
    25.5810  0.30052602E+01

     Sigma MIXED    at all energies
      Eng
    25.5810  0.27649216E+01

     Sigma VELOCITY at all energies
      Eng
    25.5810  0.25522308E+01

     Beta LENGTH   at all energies
      Eng
    25.5810  0.12530155E+01

     Beta MIXED    at all energies
      Eng
    25.5810  0.12888065E+01

     Beta VELOCITY at all energies
      Eng
    25.5810  0.13227976E+01

          COMPOSITE CROSS SECTIONS AT ALL ENERGIES
         Energy  SIGMA LEN  SIGMA MIX  SIGMA VEL   BETA LEN   BETA MIX   BETA VEL
EPhi     25.5810     3.0053     2.7649     2.5522     1.2530     1.2888     1.3228
Time Now =       141.8031  Delta time =         0.0027 End CrossSection

+ Command GetCro
+ 'testxxPU.idy' 'testxxSU.idy'
Taking dipole matrix from file testxxPU.idy

----------------------------------------------------------------------
CnvIdy - read in and convert dynamical matrix elements and convert to raw form
----------------------------------------------------------------------

Time Now =       141.8034  Delta time =         0.0002 End CnvIdy
Taking dipole matrix from file testxxSU.idy

----------------------------------------------------------------------
CnvIdy - read in and convert dynamical matrix elements and convert to raw form
----------------------------------------------------------------------

Time Now =       141.8232  Delta time =         0.0199 End CnvIdy
Found     1 energies :
    10.00000
List of matrix element types found   Number =    2
    1  Cont Sym PU     Targ Sym SG     Total Sym PU
    2  Cont Sym SU     Targ Sym SG     Total Sym SU
Keeping     1 energies :
    10.00000
Time Now =       141.8233  Delta time =         0.0000 End SelIdy

----------------------------------------------------------------------
CrossSection - compute photoionization cross section
----------------------------------------------------------------------

Ionization potential (IPot) =     15.5810 eV
Label -
Cross section by partial wave      F
Cross Sections for

     Sigma LENGTH   at all energies
      Eng
    25.5810  0.88675221E+01

     Sigma MIXED    at all energies
      Eng
    25.5810  0.82209752E+01

     Sigma VELOCITY at all energies
      Eng
    25.5810  0.76302261E+01

     Beta LENGTH   at all energies
      Eng
    25.5810  0.10007536E+01

     Beta MIXED    at all energies
      Eng
    25.5810  0.10269925E+01

     Beta VELOCITY at all energies
      Eng
    25.5810  0.10528459E+01

          COMPOSITE CROSS SECTIONS AT ALL ENERGIES
         Energy  SIGMA LEN  SIGMA MIX  SIGMA VEL   BETA LEN   BETA MIX   BETA VEL
EPhi     25.5810     8.8675     8.2210     7.6302     1.0008     1.0270     1.0528
Time Now =       141.8259  Delta time =         0.0027 End CrossSection
Time Now =       141.8261  Delta time =         0.0002 Finalize