Execution on lucch1.chem.tamu.edu

----------------------------------------------------------------------
ePolyScat Version E3
----------------------------------------------------------------------

Authors: R. R. Lucchese, N. Sanna, A. P. P. Natalense, and F. A. Gianturco
http://www.chem.tamu.edu/rgroup/lucchese/ePolyScat.E3.manual/manual.html
Please cite the following two papers when reporting results obtained with  this program
F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 100, 6464 (1994).
A. P. P. Natalense and R. R. Lucchese, J. Chem. Phys. 111, 5344 (1999).

----------------------------------------------------------------------

Starting at 2011-11-18  17:28:32.893 (GMT -0600)
Using     4 processors

----------------------------------------------------------------------


+ Start of Input Records
#
# input file for test11
#
# electron scattering from N2 molden SCF, scattering from N2+ ground state
#
  LMax   22     # maximum l to be used for wave functions
  EMax  50.0    # EMax, maximum asymptotic energy in eV
  FegeEng 13.0   # Energy correction (in eV) used in the fege potential

  OrbOcc     2 2 2 2 1 4  # occupation of the orbital groups of target
  TargSym 'SG'      # Symmetry of the target state
  TargSpinDeg 2     # Target spin degeneracy

  SpinDeg 1         # Spin degeneracy of the total scattering state (=1 singlet)
  ScatSym     'SU'  # Scattering symmetry of total final state
  ScatContSym 'SU'  # Scattering symmetry of the continuum orbital

  LMaxK    10     # Maximum l in the K matirx
  ScatEng  10.0   # list of scattering energies

Convert '/Users/lucchese/Applications/ePolyScat.E3/tests/test11.molden' 'molden'
GetBlms
ExpOrb
GenFormScat
GetPot
GrnType 1
Scat
+ End of input reached
+ Data Record LMax - 22
+ Data Record EMax - 50.0
+ Data Record FegeEng - 13.0
+ Data Record OrbOcc - 2 2 2 2 1 4
+ Data Record TargSym - 'SG'
+ Data Record TargSpinDeg - 2
+ Data Record SpinDeg - 1
+ Data Record ScatSym - 'SU'
+ Data Record ScatContSym - 'SU'
+ Data Record LMaxK - 10
+ Data Record ScatEng - 10.0

+ Command Convert
+ '/Users/lucchese/Applications/ePolyScat.E3/tests/test11.molden' 'molden'

----------------------------------------------------------------------
MoldenCnv - Molden (from Molpro) conversion program
----------------------------------------------------------------------

Expansion center is (in Angstroms) -
     0.0000000000   0.0000000000   0.0000000000
Convert from Angstroms to Bohr radii
Found    110 basis functions
Selecting orbitals
Number of orbitals selected is     7
Selecting    1   1 Ene =     -15.6842 Spin =Alpha Occup =   2.000000
Selecting    2   2 Ene =     -15.6806 Spin =Alpha Occup =   2.000000
Selecting    3   3 Ene =      -1.4752 Spin =Alpha Occup =   2.000000
Selecting    4   4 Ene =      -0.7786 Spin =Alpha Occup =   2.000000
Selecting    5   5 Ene =      -0.6350 Spin =Alpha Occup =   2.000000
Selecting    6   6 Ene =      -0.6161 Spin =Alpha Occup =   2.000000
Selecting    7   7 Ene =      -0.6161 Spin =Alpha Occup =   2.000000

Atoms found    2  Coordinates in Angstroms
Z =  7 ZS =  7 r =   0.0000000000   0.0000000000  -0.5470000000
Z =  7 ZS =  7 r =   0.0000000000   0.0000000000   0.5470000000
Maximum distance from expansion center is    0.5470000000

+ Command GetBlms
+

----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------

Found point group  DAh
Reduce angular grid using nthd =  2  nphid =  4
Found point group for abelian subgroup D2h
Time Now =         0.0374  Delta time =         0.0374 End GetPGroup
List of unique axes
  N  Vector                      Z   R
  1  0.00000  0.00000  1.00000   7  0.54700   7  0.54700
List of corresponding x axes
  N  Vector
  1  1.00000  0.00000  0.00000
Computed default value of LMaxA =   12
Determining angular grid in GetAxMax  LMax =   22  LMaxA =   12  LMaxAb =   44
MMax =    3  MMaxAbFlag =    2
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11  12   3   3   3   3   3   3   3
   3   3   3
On the double L grid used for products
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19
  20  21  22  23  24  15  15  15  15  15  15  15  15  15  15   6   6   6   6   6
   6   6   6   6   6

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is DAh
LMax = =   22
 The dimension of each irreducable representation is
    SG    (  1)    A2G   (  1)    B1G   (  1)    B2G   (  1)    PG    (  2)
    DG    (  2)    FG    (  2)    GG    (  2)    SU    (  1)    A2U   (  1)
    B1U   (  1)    B2U   (  1)    PU    (  2)    DU    (  2)    FU    (  2)
    GU    (  2)
 Number of symmetry operations in the abelian subgroup (excluding E) =    7
 The operations are -
    12    22    32     2     3    21    31
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 SG        1         1         14       1  1  1  1  1  1  1
 A2G       1         2          2       1 -1 -1  1  1 -1 -1
 B1G       1         3          4      -1  1 -1  1 -1  1 -1
 B2G       1         4          4      -1 -1  1  1 -1 -1  1
 PG        1         5         14      -1 -1  1  1 -1 -1  1
 PG        2         6         14      -1  1 -1  1 -1  1 -1
 DG        1         7         15       1 -1 -1  1  1 -1 -1
 DG        2         8         15       1  1  1  1  1  1  1
 FG        1         9         13      -1 -1  1  1 -1 -1  1
 FG        2        10         13      -1  1 -1  1 -1  1 -1
 GG        1        11          9       1 -1 -1  1  1 -1 -1
 GG        2        12          9       1  1  1  1  1  1  1
 SU        1        13         12       1 -1 -1 -1 -1  1  1
 A2U       1        14          1       1  1  1 -1 -1 -1 -1
 B1U       1        15          4      -1 -1  1 -1  1  1 -1
 B2U       1        16          4      -1  1 -1 -1  1 -1  1
 PU        1        17         14      -1 -1  1 -1  1  1 -1
 PU        2        18         14      -1  1 -1 -1  1 -1  1
 DU        1        19         12       1 -1 -1 -1 -1  1  1
 DU        2        20         12       1  1  1 -1 -1 -1 -1
 FU        1        21         13      -1 -1  1 -1  1  1 -1
 FU        2        22         13      -1  1 -1 -1  1 -1  1
 GU        1        23          7       1 -1 -1 -1 -1  1  1
 GU        2        24          7       1  1  1 -1 -1 -1 -1
Time Now =         3.1445  Delta time =         3.1070 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
SG    1    0(   1)    1(   1)    2(   2)    3(   2)    4(   3)    5(   3)    6(   4)    7(   4)    8(   5)    9(   5)
          10(   7)   11(   7)   12(   9)
A2G   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   0)    7(   0)    8(   0)    9(   0)
          10(   1)   11(   1)   12(   2)
B1G   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   1)    7(   1)    8(   2)    9(   2)
          10(   3)   11(   3)   12(   4)
B2G   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   1)    7(   1)    8(   2)    9(   2)
          10(   3)   11(   3)   12(   4)
PG    1    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)    6(   3)    7(   3)    8(   4)    9(   4)
          10(   6)   11(   6)   12(   9)
PG    2    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)    6(   3)    7(   3)    8(   4)    9(   4)
          10(   6)   11(   6)   12(   9)
DG    1    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)    6(   3)    7(   3)    8(   5)    9(   5)
          10(   7)   11(   7)   12(  10)
DG    2    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)    6(   3)    7(   3)    8(   5)    9(   5)
          10(   7)   11(   7)   12(  10)
FG    1    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   1)    6(   2)    7(   2)    8(   4)    9(   4)
          10(   6)   11(   6)   12(   8)
FG    2    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   1)    6(   2)    7(   2)    8(   4)    9(   4)
          10(   6)   11(   6)   12(   8)
GG    1    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   1)    6(   3)    7(   3)    8(   5)    9(   5)
          10(   7)   11(   7)   12(   9)
GG    2    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   1)    6(   3)    7(   3)    8(   5)    9(   5)
          10(   7)   11(   7)   12(   9)
SU    1    0(   0)    1(   1)    2(   1)    3(   2)    4(   2)    5(   3)    6(   3)    7(   4)    8(   4)    9(   5)
          10(   5)   11(   7)   12(   7)
A2U   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   0)    7(   0)    8(   0)    9(   0)
          10(   0)   11(   1)   12(   1)
B1U   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   1)    6(   1)    7(   2)    8(   2)    9(   3)
          10(   3)   11(   4)   12(   4)
B2U   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   1)    6(   1)    7(   2)    8(   2)    9(   3)
          10(   3)   11(   4)   12(   4)
PU    1    0(   0)    1(   1)    2(   1)    3(   2)    4(   2)    5(   3)    6(   3)    7(   4)    8(   4)    9(   6)
          10(   6)   11(   9)   12(   9)
PU    2    0(   0)    1(   1)    2(   1)    3(   2)    4(   2)    5(   3)    6(   3)    7(   4)    8(   4)    9(   6)
          10(   6)   11(   9)   12(   9)
DU    1    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   2)    6(   2)    7(   3)    8(   3)    9(   5)
          10(   5)   11(   7)   12(   7)
DU    2    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   2)    6(   2)    7(   3)    8(   3)    9(   5)
          10(   5)   11(   7)   12(   7)
FU    1    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   2)    6(   2)    7(   4)    8(   4)    9(   6)
          10(   6)   11(   8)   12(   8)
FU    2    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   2)    6(   2)    7(   4)    8(   4)    9(   6)
          10(   6)   11(   8)   12(   8)
GU    1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   1)    6(   1)    7(   3)    8(   3)    9(   5)
          10(   5)   11(   7)   12(   7)
GU    2    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   1)    6(   1)    7(   3)    8(   3)    9(   5)
          10(   5)   11(   7)   12(   7)

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is D2h
LMax = =   44
 The dimension of each irreducable representation is
    AG    (  1)    B1G   (  1)    B2G   (  1)    B3G   (  1)    AU    (  1)
    B1U   (  1)    B2U   (  1)    B3U   (  1)
Abelian axes
    1       1.000000       0.000000       0.000000
    2       0.000000       1.000000       0.000000
    3       0.000000       0.000000       1.000000
Symmetry operation directions
  1       0.000000       0.000000       1.000000 ang =  0  1 type = 0 axis = 3
  2       0.000000       0.000000       1.000000 ang =  1  2 type = 2 axis = 3
  3       1.000000       0.000000       0.000000 ang =  1  2 type = 2 axis = 1
  4       0.000000       1.000000       0.000000 ang =  1  2 type = 2 axis = 2
  5       0.000000       0.000000       1.000000 ang =  1  2 type = 3 axis = 3
  6       0.000000       0.000000       1.000000 ang =  0  1 type = 1 axis = 3
  7       1.000000       0.000000       0.000000 ang =  0  1 type = 1 axis = 1
  8       0.000000       1.000000       0.000000 ang =  0  1 type = 1 axis = 2
irep =    1  sym =AG    1  eigs =   1   1   1   1   1   1   1   1
irep =    2  sym =B1G   1  eigs =   1   1  -1  -1   1   1  -1  -1
irep =    3  sym =B2G   1  eigs =   1  -1  -1   1   1  -1  -1   1
irep =    4  sym =B3G   1  eigs =   1  -1   1  -1   1  -1   1  -1
irep =    5  sym =AU    1  eigs =   1   1   1   1  -1  -1  -1  -1
irep =    6  sym =B1U   1  eigs =   1   1  -1  -1  -1  -1   1   1
irep =    7  sym =B2U   1  eigs =   1  -1  -1   1  -1   1   1  -1
irep =    8  sym =B3U   1  eigs =   1  -1   1  -1  -1   1  -1   1
 Number of symmetry operations in the abelian subgroup (excluding E) =    7
 The operations are -
     2     3     4     5     6     7     8
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 AG        1         1        151       1  1  1  1  1  1  1
 B1G       1         2        128       1 -1 -1  1  1 -1 -1
 B2G       1         3        133      -1 -1  1  1 -1 -1  1
 B3G       1         4        133      -1  1 -1  1 -1  1 -1
 AU        1         5        116       1  1  1 -1 -1 -1 -1
 B1U       1         6        138       1 -1 -1 -1 -1  1  1
 B2U       1         7        133      -1 -1  1 -1  1  1 -1
 B3U       1         8        133      -1  1 -1 -1  1 -1  1
Time Now =         3.1507  Delta time =         0.0062 End SymGen

+ Command ExpOrb
+
In GetRMax, RMaxEps =  0.10000000E-05  RMax =    9.6381913156 Angs

----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------

Maximum R in the grid (RMax) =     9.63819 Angs
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) =   10.0
In regions controlled by the wave length (HFacWave) =   10.0
Factor used to control the minimum exponent at each center (MinExpFac) =  300.0
Maximum asymptotic kinetic energy (EMAx) =  50.00000 eV
Maximum step size (MaxStep) =   9.63819 Angs
Factor to increase grid by (GridFac) =     1

    1  Center at =     0.00000 Angs  Alpha Max = 0.10000E+01
    2  Center at =     0.54700 Angs  Alpha Max = 0.14700E+05

Generated Grid

  irg  nin  ntot      step Angs     R end Angs
    1    8     8    0.18998E-02     0.01520
    2    8    16    0.26749E-02     0.03660
    3    8    24    0.43054E-02     0.07104
    4    8    32    0.57696E-02     0.11720
    5    8    40    0.67259E-02     0.17101
    6    8    48    0.68378E-02     0.22571
    7    8    56    0.62927E-02     0.27605
    8    8    64    0.55946E-02     0.32081
    9    8    72    0.49428E-02     0.36035
   10    8    80    0.49699E-02     0.40011
   11    8    88    0.55183E-02     0.44425
   12    8    96    0.46796E-02     0.48169
   13    8   104    0.29745E-02     0.50549
   14    8   112    0.18907E-02     0.52061
   15    8   120    0.12018E-02     0.53023
   16    8   128    0.76392E-03     0.53634
   17    8   136    0.53578E-03     0.54062
   18    8   144    0.45350E-03     0.54425
   19    8   152    0.34340E-03     0.54700
   20    8   160    0.43646E-03     0.55049
   21    8   168    0.46530E-03     0.55421
   22    8   176    0.57358E-03     0.55880
   23    8   184    0.87025E-03     0.56576
   24    8   192    0.13836E-02     0.57683
   25    8   200    0.21997E-02     0.59443
   26    8   208    0.34972E-02     0.62241
   27    8   216    0.55601E-02     0.66689
   28    8   224    0.88398E-02     0.73761
   29    8   232    0.10173E-01     0.81899
   30    8   240    0.11296E-01     0.90936
   31    8   248    0.15091E-01     1.03009
   32    8   256    0.21623E-01     1.20307
   33    8   264    0.32069E-01     1.45962
   34    8   272    0.42541E-01     1.79995
   35    8   280    0.47749E-01     2.18194
   36    8   288    0.52186E-01     2.59943
   37    8   296    0.55941E-01     3.04696
   38    8   304    0.59116E-01     3.51989
   39    8   312    0.61806E-01     4.01434
   40    8   320    0.64096E-01     4.52711
   41    8   328    0.66056E-01     5.05556
   42    8   336    0.67743E-01     5.59750
   43    8   344    0.69206E-01     6.15115
   44    8   352    0.70482E-01     6.71501
   45    8   360    0.71602E-01     7.28782
   46    8   368    0.72590E-01     7.86855
   47    8   376    0.73468E-01     8.45629
   48    8   384    0.74251E-01     9.05029
   49    8   392    0.73487E-01     9.63819
Time Now =         3.4886  Delta time =         0.3380 End GenGrid

----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------

Maximum scattering l (lmax) =   22
Maximum scattering m (mmaxs) =   22
Maximum numerical integration l (lmaxi) =   44
Maximum numerical integration m (mmaxi) =   44
Maximum l to include in the asymptotic region (lmasym) =   12
Parameter used to determine the cutoff points (PCutRd) =  0.10000000E-07 au
Maximum E used to determine grid (in eV) =       50.00000
Print flag (iprnfg) =    0
lmasymtyts =   12
 Actual value of lmasym found =     12
Number of regions of the same l expansion (NAngReg) =   11
Angular regions
    1 L =    2  from (    1)         0.00190  to (    7)         0.01330
    2 L =    4  from (    8)         0.01520  to (   15)         0.03392
    3 L =    6  from (   16)         0.03660  to (   23)         0.06674
    4 L =    7  from (   24)         0.07104  to (   31)         0.11143
    5 L =    9  from (   32)         0.11720  to (   39)         0.16428
    6 L =   11  from (   40)         0.17101  to (   47)         0.21887
    7 L =   12  from (   48)         0.22571  to (   55)         0.26976
    8 L =   20  from (   56)         0.27605  to (   71)         0.35540
    9 L =   22  from (   72)         0.36035  to (  240)         0.90936
   10 L =   20  from (  241)         0.92445  to (  256)         1.20307
   11 L =   12  from (  257)         1.23514  to (  392)         9.63819
There are     2 angular regions for computing spherical harmonics
    1 lval =   12
    2 lval =   22
Last grid points by processor WorkExp =     1.500
Proc id =   -1  Last grid point =       1
Proc id =    0  Last grid point =     120
Proc id =    1  Last grid point =     184
Proc id =    2  Last grid point =     248
Proc id =    3  Last grid point =     392
Time Now =         3.4952  Delta time =         0.0066 End AngGCt

----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------


 R of maximum density
     1  Orig    1  Eng =  -15.684200  SG    1 at max irg =  160  r =   0.55049
     2  Orig    2  Eng =  -15.680600  SU    1 at max irg =  160  r =   0.55049
     3  Orig    3  Eng =   -1.475200  SG    1 at max irg =  152  r =   0.54700
     4  Orig    4  Eng =   -0.778600  SU    1 at max irg =  240  r =   0.90936
     5  Orig    5  Eng =   -0.635000  SG    1 at max irg =  240  r =   0.90936
     6  Orig    6  Eng =   -0.616100  PU    1 at max irg =  216  r =   0.66689
     7  Orig    7  Eng =   -0.616100  PU    2 at max irg =  216  r =   0.66689

Rotation coefficients for orbital     1  grp =    1 SG    1
     1  1.0000000000

Rotation coefficients for orbital     2  grp =    2 SU    1
     1  1.0000000000

Rotation coefficients for orbital     3  grp =    3 SG    1
     1  1.0000000000

Rotation coefficients for orbital     4  grp =    4 SU    1
     1  1.0000000000

Rotation coefficients for orbital     5  grp =    5 SG    1
     1  1.0000000000

Rotation coefficients for orbital     6  grp =    6 PU    1
     1  1.0000000000    2  0.0000000000

Rotation coefficients for orbital     7  grp =    6 PU    2
     1  0.0000000000    2  1.0000000000
Number of orbital groups and degeneracis are         6
  1  1  1  1  1  2
Number of orbital groups and number of electrons when fully occupied
         6
  2  2  2  2  2  4
Time Now =         4.2003  Delta time =         0.7051 End RotOrb

----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------

 First orbital group to expand (mofr) =    1
 Last orbital group to expand (moto) =    6
Orbital     1 of  SG    1 symmetry normalization integral =  0.99799207
Orbital     2 of  SU    1 symmetry normalization integral =  0.99757112
Orbital     3 of  SG    1 symmetry normalization integral =  0.99989262
Orbital     4 of  SU    1 symmetry normalization integral =  0.99989735
Orbital     5 of  SG    1 symmetry normalization integral =  0.99999037
Orbital     6 of  PU    1 symmetry normalization integral =  0.99999965
Time Now =         6.2729  Delta time =         2.0726 End ExpOrb

+ Command GenFormScat
+

----------------------------------------------------------------------
SymProd - Construct products of symmetry types
----------------------------------------------------------------------

Number of sets of degenerate orbitals =    6
Set    1  has degeneracy     1
Orbital     1  is num     1  type =   1  name - SG    1
Set    2  has degeneracy     1
Orbital     1  is num     2  type =  13  name - SU    1
Set    3  has degeneracy     1
Orbital     1  is num     3  type =   1  name - SG    1
Set    4  has degeneracy     1
Orbital     1  is num     4  type =  13  name - SU    1
Set    5  has degeneracy     1
Orbital     1  is num     5  type =   1  name - SG    1
Set    6  has degeneracy     2
Orbital     1  is num     6  type =  17  name - PU    1
Orbital     2  is num     7  type =  18  name - PU    2
Orbital occupations by degenerate group
    1  SG       occ = 2
    2  SU       occ = 2
    3  SG       occ = 2
    4  SU       occ = 2
    5  SG       occ = 1
    6  PU       occ = 4
The dimension of each irreducable representation is
    SG    (  1)    A2G   (  1)    B1G   (  1)    B2G   (  1)    PG    (  2)
    DG    (  2)    FG    (  2)    GG    (  2)    SU    (  1)    A2U   (  1)
    B1U   (  1)    B2U   (  1)    PU    (  2)    DU    (  2)    FU    (  2)
    GU    (  2)
Symmetry of the continuum orbital is SU
Symmetry of the total state is SU
Spin degeneracy of the total state is =    1
Symmetry of the target state is SG
Spin degeneracy of the target state is =    2
Open shell symmetry types
    1  SG     iele =    1
Use only configuration of type SG
MS2 =    1  SDGN =    2
NumAlpha =    1
List of determinants found
    1:   1.00000   0.00000    1
Spin adapted configurations
Configuration    1
    1:   1.00000   0.00000    1
 Each irreducable representation is present the number of times indicated
    SG    (  1)

 representation SG     component     1  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1
Open shell symmetry types
    1  SG     iele =    1
    2  SU     iele =    1
Use only configuration of type SU
 Each irreducable representation is present the number of times indicated
    SU    (  1)

 representation SU     component     1  fun    1
Symmeterized Function from AddNewShell
    1:  -0.70711   0.00000    1    4
    2:   0.70711   0.00000    2    3
Open shell symmetry types
    1  SG     iele =    1
Use only configuration of type SG
MS2 =    1  SDGN =    2
NumAlpha =    1
List of determinants found
    1:   1.00000   0.00000    1
Spin adapted configurations
Configuration    1
    1:   1.00000   0.00000    1
 Each irreducable representation is present the number of times indicated
    SG    (  1)

 representation SG     component     1  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1
Direct product basis set
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   11
                             12   13   14   16
    2:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   11
                             12   13   14   15
Time Now =         6.2742  Delta time =         0.0013 End SymProd

----------------------------------------------------------------------
MatEle - Program to compute Matrix Elements over Determinants
----------------------------------------------------------------------

Configuration     1
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   11
                             12   13   14   16
    2:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   11
                             12   13   14   15
Direct product Configuration Cont sym =    1  Targ sym =    1
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   11
                             12   13   14   16
    2:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   11
                             12   13   14   15
Overlap of Direct Product expansion and Symmeterized states
Symmetry of Continuum =    9
Symmetry of target =    1
Symmetry of total states =    9

Total symmetry component =    1

Cont      Target Component
Comp        1
   1   0.10000000E+01
Time Now =         6.2743  Delta time =         0.0002 End MatEle

+ Command GetPot
+

----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------

Total density =     13.00000000
Time Now =         6.2927  Delta time =         0.0183 End Den

----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------

 vasymp =  0.13000000E+02 facnorm =  0.10000000E+01
Time Now =         6.3436  Delta time =         0.0510 Electronic part
Time Now =         6.3448  Delta time =         0.0012 End StPot
+ Data Record GrnType - 1

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.10000000E+02 eV (  0.36749326E+00 AU)
Time Now =         6.4171  Delta time =         0.0723 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = SU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    49
Number of partial waves (np) =    12
Number of asymptotic solutions on the right (NAsymR) =     5
Number of asymptotic solutions on the left (NAsymL) =     5
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     5
Maximum in the asymptotic region (lpasym) =   12
Number of partial waves in the asymptotic region (npasym) =    7
Number of orthogonality constraints (NOrthUse) =    2
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   91
Maximum l used in usual function (lmax) =   22
Maximum m used in usual function (LMax) =   22
Maxamum l used in expanding static potential (lpotct) =   44
Maximum l used in exapnding the exchange potential (lmaxab) =   44
Higest l included in the expansion of the wave function (lnp) =   21
Higest l included in the K matrix (lna) =    9
Highest l used at large r (lpasym) =   12
Higest l used in the asymptotic potential (lpzb) =   24
Maximum L used in the homogeneous solution (LMaxHomo) =   12
Number of partial waves in the homogeneous solution (npHomo) =    7
Time Now =         6.4536  Delta time =         0.0364 Energy independent setup

Compute solution for E =   10.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.44408921E-15
 i =  2  lval =   3  stpote =  0.11960622E-17
 i =  3  lval =   3  stpote = -0.50327971E-03
 i =  4  lval =   5  stpote = -0.13893897E-20
For potential     2
 i =  1  exps = -0.72854168E+02 -0.20000000E+01  stpote = -0.77334759E-16
 i =  2  exps = -0.72854168E+02 -0.20000000E+01  stpote = -0.77334759E-16
 i =  3  exps = -0.72854168E+02 -0.20000000E+01  stpote = -0.77334758E-16
 i =  4  exps = -0.72854168E+02 -0.20000000E+01  stpote = -0.77334757E-16
For potential     3
Number of asymptotic regions =     121
Final point in integration =   0.19721978E+03 Angstroms
Time Now =        11.0904  Delta time =         4.6368 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.32608062E+00, 0.87004624E+00) ( 0.21737152E-02,-0.82041644E-01)
  ( 0.94322044E-03,-0.86153296E-03) ( 0.31968299E-05,-0.53155637E-05)
  ( 0.54789148E-08,-0.57751526E-07)
     ROW  2
  ( 0.21735820E-02,-0.82041609E-01) ( 0.34501263E+00, 0.14782414E+00)
  ( 0.13056067E-01, 0.56856053E-02) ( 0.10879683E-05, 0.74477214E-04)
  (-0.30047968E-07, 0.55072786E-07)
     ROW  3
  ( 0.94321171E-03,-0.86152274E-03) ( 0.13056073E-01, 0.56856064E-02)
  ( 0.20240108E-01, 0.63693297E-03) ( 0.47356203E-02, 0.14088736E-03)
  (-0.21976901E-05, 0.13232503E-04)
     ROW  4
  ( 0.31965146E-05,-0.53154471E-05) ( 0.10879093E-05, 0.74476423E-04)
  ( 0.47356203E-02, 0.14088737E-03) ( 0.93951400E-02, 0.11859337E-03)
  ( 0.28030928E-02, 0.41880642E-04)
     ROW  5
  ( 0.64476156E-08,-0.53233530E-07) (-0.31583455E-07, 0.53229697E-07)
  (-0.21976889E-05, 0.13232487E-04) ( 0.28030928E-02, 0.41880642E-04)
  ( 0.55467952E-02, 0.42047196E-04)
 eigenphases
  0.3711893E-02  0.9323282E-02  0.2162771E-01  0.3818297E+00  0.1215904E+01
 eigenphase sum 0.163240E+01  scattering length=  18.91157
 eps+pi 0.477399E+01  eps+2*pi 0.791558E+01

MaxIter =   8 c.s. =      4.87712495 angs^2  rmsk=     0.00000000
Time Now =        45.4746  Delta time =        34.3842 End ScatStab
Time Now =        45.4751  Delta time =         0.0005 Finalize