Execution on login004

----------------------------------------------------------------------
ePolyScat Version E3
----------------------------------------------------------------------

Authors: R. R. Lucchese, N. Sanna, A. P. P. Natalense, and F. A. Gianturco
http://www.chem.tamu.edu/rgroup/lucchese/ePolyScat.E3.manual/manual.html
Please cite the following two papers when reporting results obtained with  this program
F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 100, 6464 (1994).
A. P. P. Natalense and R. R. Lucchese, J. Chem. Phys. 111, 5344 (1999).

----------------------------------------------------------------------

Starting at 2011-08-29  10:39:56.347 (GMT -0500)
Using    16 processors

----------------------------------------------------------------------


+ Start of Input Records
#
# input file for test07
#
# electron scattering from N2 molden SCF, polarization potential, low energy
#
  LMax   15     # maximum l to be used for wave functions
  EMax  50.0    # EMax, maximum asymptotic energy in eV
  EngForm      # Energy formulas
   0 0         # charge, formula type

  FegeEng 13.0   # Energy correction (in eV) used in the fege potential
  ScatContSym 'PG'  # Scattering symmetry
  LMaxK    6     # Maximum l in the K matirx
  ScatEng  3.401425   # list of scattering energies

Convert '/g/home/rrl581a/Applications/ePolyScat.E3/tests/test07.molden' 'molden'
GetBlms
ExpOrb
GetPot
Scat
TotalCrossSection
+ End of input reached
+ Data Record LMax - 15
+ Data Record EMax - 50.0
+ Data Record EngForm - 0 0
+ Data Record FegeEng - 13.0
+ Data Record ScatContSym - 'PG'
+ Data Record LMaxK - 6
+ Data Record ScatEng - 3.401425

+ Command Convert
+ '/g/home/rrl581a/Applications/ePolyScat.E3/tests/test07.molden' 'molden'

----------------------------------------------------------------------
MoldenCnv - Molden (from Molpro) conversion program
----------------------------------------------------------------------

Expansion center is (in Angstroms) -
     0.0000000000   0.0000000000   0.0000000000
Convert from Angstroms to Bohr radii
Found    110 basis functions
Selecting orbitals
Number of orbitals selected is     7
Selecting    1   1 Ene =     -15.6842 Spin =Alpha Occup =   2.000000
Selecting    2   2 Ene =     -15.6806 Spin =Alpha Occup =   2.000000
Selecting    3   3 Ene =      -1.4752 Spin =Alpha Occup =   2.000000
Selecting    4   4 Ene =      -0.7786 Spin =Alpha Occup =   2.000000
Selecting    5   5 Ene =      -0.6350 Spin =Alpha Occup =   2.000000
Selecting    6   6 Ene =      -0.6161 Spin =Alpha Occup =   2.000000
Selecting    7   7 Ene =      -0.6161 Spin =Alpha Occup =   2.000000

Atoms found    2  Coordinates in Angstroms
Z =  7 ZS =  7 r =   0.0000000000   0.0000000000  -0.5470000000
Z =  7 ZS =  7 r =   0.0000000000   0.0000000000   0.5470000000
Maximum distance from expansion center is    0.5470000000

+ Command GetBlms
+

----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------

Found point group  DAh
Reduce angular grid using nthd =  2  nphid =  4
Found point group for abelian subgroup D2h
Time Now =         0.0625  Delta time =         0.0625 End GetPGroup
List of unique axes
  N  Vector                      Z   R
  1  0.00000  0.00000  1.00000   7  0.54700   7  0.54700
List of corresponding x axes
  N  Vector
  1  1.00000  0.00000  0.00000
Computed default value of LMaxA =   11
Determining angular grid in GetAxMax  LMax =   15  LMaxA =   11  LMaxAb =   30
MMax =    3  MMaxAbFlag =    2
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11   3   3   3   3
On the double L grid used for products
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19
  20  21  22  14  14  14  14   6   6   6   6

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is DAh
LMax = =   15
 The dimension of each irreducable representation is
    SG    (  1)    A2G   (  1)    B1G   (  1)    B2G   (  1)    PG    (  2)
    DG    (  2)    FG    (  2)    GG    (  2)    SU    (  1)    A2U   (  1)
    B1U   (  1)    B2U   (  1)    PU    (  2)    DU    (  2)    FU    (  2)
    GU    (  2)
 Number of symmetry operations in the abelian subgroup (excluding E) =    7
 The operations are -
    12    22    32     2     3    21    31
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 SG        1         1          9       1  1  1  1  1  1  1
 A2G       1         2          1       1 -1 -1  1  1 -1 -1
 B1G       1         3          3      -1  1 -1  1 -1  1 -1
 B2G       1         4          3      -1 -1  1  1 -1 -1  1
 PG        1         5          8      -1 -1  1  1 -1 -1  1
 PG        2         6          8      -1  1 -1  1 -1  1 -1
 DG        1         7          9       1 -1 -1  1  1 -1 -1
 DG        2         8          9       1  1  1  1  1  1  1
 FG        1         9          8      -1 -1  1  1 -1 -1  1
 FG        2        10          8      -1  1 -1  1 -1  1 -1
 GG        1        11          7       1 -1 -1  1  1 -1 -1
 GG        2        12          7       1  1  1  1  1  1  1
 SU        1        13          9       1 -1 -1 -1 -1  1  1
 A2U       1        14          1       1  1  1 -1 -1 -1 -1
 B1U       1        15          4      -1 -1  1 -1  1  1 -1
 B2U       1        16          4      -1  1 -1 -1  1 -1  1
 PU        1        17         11      -1 -1  1 -1  1  1 -1
 PU        2        18         11      -1  1 -1 -1  1 -1  1
 DU        1        19          9       1 -1 -1 -1 -1  1  1
 DU        2        20          9       1  1  1 -1 -1 -1 -1
 FU        1        21         10      -1 -1  1 -1  1  1 -1
 FU        2        22         10      -1  1 -1 -1  1 -1  1
 GU        1        23          7       1 -1 -1 -1 -1  1  1
 GU        2        24          7       1  1  1 -1 -1 -1 -1
Time Now =         0.4650  Delta time =         0.4024 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
SG    1    0(   1)    1(   1)    2(   2)    3(   2)    4(   3)    5(   3)    6(   4)    7(   4)    8(   5)    9(   5)
          10(   7)   11(   7)
A2G   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   0)    7(   0)    8(   0)    9(   0)
          10(   1)   11(   1)
B1G   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   1)    7(   1)    8(   2)    9(   2)
          10(   3)   11(   3)
B2G   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   1)    7(   1)    8(   2)    9(   2)
          10(   3)   11(   3)
PG    1    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)    6(   3)    7(   3)    8(   4)    9(   4)
          10(   6)   11(   6)
PG    2    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)    6(   3)    7(   3)    8(   4)    9(   4)
          10(   6)   11(   6)
DG    1    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)    6(   3)    7(   3)    8(   5)    9(   5)
          10(   7)   11(   7)
DG    2    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)    6(   3)    7(   3)    8(   5)    9(   5)
          10(   7)   11(   7)
FG    1    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   1)    6(   2)    7(   2)    8(   4)    9(   4)
          10(   6)   11(   6)
FG    2    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   1)    6(   2)    7(   2)    8(   4)    9(   4)
          10(   6)   11(   6)
GG    1    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   1)    6(   3)    7(   3)    8(   5)    9(   5)
          10(   7)   11(   7)
GG    2    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   1)    6(   3)    7(   3)    8(   5)    9(   5)
          10(   7)   11(   7)
SU    1    0(   0)    1(   1)    2(   1)    3(   2)    4(   2)    5(   3)    6(   3)    7(   4)    8(   4)    9(   5)
          10(   5)   11(   7)
A2U   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   0)    7(   0)    8(   0)    9(   0)
          10(   0)   11(   1)
B1U   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   1)    6(   1)    7(   2)    8(   2)    9(   3)
          10(   3)   11(   4)
B2U   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   1)    6(   1)    7(   2)    8(   2)    9(   3)
          10(   3)   11(   4)
PU    1    0(   0)    1(   1)    2(   1)    3(   2)    4(   2)    5(   3)    6(   3)    7(   4)    8(   4)    9(   6)
          10(   6)   11(   9)
PU    2    0(   0)    1(   1)    2(   1)    3(   2)    4(   2)    5(   3)    6(   3)    7(   4)    8(   4)    9(   6)
          10(   6)   11(   9)
DU    1    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   2)    6(   2)    7(   3)    8(   3)    9(   5)
          10(   5)   11(   7)
DU    2    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   2)    6(   2)    7(   3)    8(   3)    9(   5)
          10(   5)   11(   7)
FU    1    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   2)    6(   2)    7(   4)    8(   4)    9(   6)
          10(   6)   11(   8)
FU    2    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   2)    6(   2)    7(   4)    8(   4)    9(   6)
          10(   6)   11(   8)
GU    1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   1)    6(   1)    7(   3)    8(   3)    9(   5)
          10(   5)   11(   7)
GU    2    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   1)    6(   1)    7(   3)    8(   3)    9(   5)
          10(   5)   11(   7)

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is D2h
LMax = =   30
 The dimension of each irreducable representation is
    AG    (  1)    B1G   (  1)    B2G   (  1)    B3G   (  1)    AU    (  1)
    B1U   (  1)    B2U   (  1)    B3U   (  1)
Abelian axes
    1       1.000000       0.000000       0.000000
    2       0.000000       1.000000       0.000000
    3       0.000000       0.000000       1.000000
Symmetry operation directions
  1       0.000000       0.000000       1.000000 ang =  0  1 type = 0 axis = 3
  2       0.000000       0.000000       1.000000 ang =  1  2 type = 2 axis = 3
  3       1.000000       0.000000       0.000000 ang =  1  2 type = 2 axis = 1
  4       0.000000       1.000000       0.000000 ang =  1  2 type = 2 axis = 2
  5       0.000000       0.000000       1.000000 ang =  1  2 type = 3 axis = 3
  6       0.000000       0.000000       1.000000 ang =  0  1 type = 1 axis = 3
  7       1.000000       0.000000       0.000000 ang =  0  1 type = 1 axis = 1
  8       0.000000       1.000000       0.000000 ang =  0  1 type = 1 axis = 2
irep =    1  sym =AG    1  eigs =   1   1   1   1   1   1   1   1
irep =    2  sym =B1G   1  eigs =   1   1  -1  -1   1   1  -1  -1
irep =    3  sym =B2G   1  eigs =   1  -1  -1   1   1  -1  -1   1
irep =    4  sym =B3G   1  eigs =   1  -1   1  -1   1  -1   1  -1
irep =    5  sym =AU    1  eigs =   1   1   1   1  -1  -1  -1  -1
irep =    6  sym =B1U   1  eigs =   1   1  -1  -1  -1  -1   1   1
irep =    7  sym =B2U   1  eigs =   1  -1  -1   1  -1   1   1  -1
irep =    8  sym =B3U   1  eigs =   1  -1   1  -1  -1   1  -1   1
 Number of symmetry operations in the abelian subgroup (excluding E) =    7
 The operations are -
     2     3     4     5     6     7     8
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 AG        1         1        102       1  1  1  1  1  1  1
 B1G       1         2         86       1 -1 -1  1  1 -1 -1
 B2G       1         3         86      -1 -1  1  1 -1 -1  1
 B3G       1         4         86      -1  1 -1  1 -1  1 -1
 AU        1         5         75       1  1  1 -1 -1 -1 -1
 B1U       1         6         90       1 -1 -1 -1 -1  1  1
 B2U       1         7         86      -1 -1  1 -1  1  1 -1
 B3U       1         8         86      -1  1 -1 -1  1 -1  1
Time Now =         0.4787  Delta time =         0.0138 End SymGen

+ Command ExpOrb
+
In GetRMax, RMaxEps =  0.10000000E-05  RMax =    9.6359862155 Angs

----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------

Maximum R in the grid (RMax) =     9.63599 Angs
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) =   10.0
In regions controlled by the wave length (HFacWave) =   10.0
Factor used to control the minimum exponent at each center (MinExpFac) =  300.0
Maximum asymptotic kinetic energy (EMAx) =  50.00000 eV
Maximum step size (MaxStep) =   9.63599 Angs
Factor to increase grid by (GridFac) =     1

    1  Center at =     0.00000 Angs  Alpha Max = 0.10000E+01
    2  Center at =     0.54700 Angs  Alpha Max = 0.14700E+05

Generated Grid

  irg  nin  ntot      step Angs     R end Angs
    1    8     8    0.18998E-02     0.01520
    2    8    16    0.26749E-02     0.03660
    3    8    24    0.43054E-02     0.07104
    4    8    32    0.57696E-02     0.11720
    5    8    40    0.67259E-02     0.17101
    6    8    48    0.68378E-02     0.22571
    7    8    56    0.62927E-02     0.27605
    8    8    64    0.61050E-02     0.32489
    9    8    72    0.67380E-02     0.37879
   10    8    80    0.77685E-02     0.44094
   11    8    88    0.48305E-02     0.47958
   12    8    96    0.30704E-02     0.50415
   13    8   104    0.19517E-02     0.51976
   14    8   112    0.12406E-02     0.52969
   15    8   120    0.78856E-03     0.53599
   16    8   128    0.54521E-03     0.54036
   17    8   136    0.45672E-03     0.54401
   18    8   144    0.37374E-03     0.54700
   19    8   152    0.43646E-03     0.55049
   20    8   160    0.46530E-03     0.55421
   21    8   168    0.57358E-03     0.55880
   22    8   176    0.87025E-03     0.56576
   23    8   184    0.13836E-02     0.57683
   24    8   192    0.21997E-02     0.59443
   25    8   200    0.34972E-02     0.62241
   26    8   208    0.55601E-02     0.66689
   27    8   216    0.88398E-02     0.73761
   28    8   224    0.14054E-01     0.85004
   29    8   232    0.17629E-01     0.99108
   30    8   240    0.20554E-01     1.15551
   31    8   248    0.29077E-01     1.38812
   32    8   256    0.41231E-01     1.71797
   33    8   264    0.46626E-01     2.09097
   34    8   272    0.51232E-01     2.50083
   35    8   280    0.55135E-01     2.94191
   36    8   288    0.58434E-01     3.40939
   37    8   296    0.61228E-01     3.89921
   38    8   304    0.63602E-01     4.40802
   39    8   312    0.65632E-01     4.93308
   40    8   320    0.67378E-01     5.47210
   41    8   328    0.68888E-01     6.02321
   42    8   336    0.70204E-01     6.58485
   43    8   344    0.71357E-01     7.15571
   44    8   352    0.72374E-01     7.73470
   45    8   360    0.73275E-01     8.32090
   46    8   368    0.74079E-01     8.91353
   47    8   376    0.74798E-01     9.51191
   48    8   384    0.15509E-01     9.63599
Time Now =         0.4916  Delta time =         0.0128 End GenGrid

----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------

Maximum scattering l (lmax) =   15
Maximum scattering m (mmaxs) =   15
Maximum numerical integration l (lmaxi) =   30
Maximum numerical integration m (mmaxi) =   30
Maximum l to include in the asymptotic region (lmasym) =   11
Parameter used to determine the cutoff points (PCutRd) =  0.10000000E-07 au
Maximum E used to determine grid (in eV) =       50.00000
Print flag (iprnfg) =    0
lmasymtyts =   10
 Actual value of lmasym found =     11
Number of regions of the same l expansion (NAngReg) =    8
Angular regions
    1 L =    2  from (    1)         0.00190  to (    7)         0.01330
    2 L =    4  from (    8)         0.01520  to (   15)         0.03392
    3 L =    6  from (   16)         0.03660  to (   23)         0.06674
    4 L =    7  from (   24)         0.07104  to (   31)         0.11143
    5 L =    9  from (   32)         0.11720  to (   39)         0.16428
    6 L =   11  from (   40)         0.17101  to (   47)         0.21887
    7 L =   15  from (   48)         0.22571  to (  240)         1.15551
    8 L =   11  from (  241)         1.18459  to (  384)         9.63599
There are     2 angular regions for computing spherical harmonics
    1 lval =   11
    2 lval =   15
Last grid points by processor WorkExp =     1.500
Proc id =   -1  Last grid point =       1
Proc id =    0  Last grid point =      56
Proc id =    1  Last grid point =      72
Proc id =    2  Last grid point =      96
Proc id =    3  Last grid point =     112
Proc id =    4  Last grid point =     128
Proc id =    5  Last grid point =     152
Proc id =    6  Last grid point =     168
Proc id =    7  Last grid point =     184
Proc id =    8  Last grid point =     200
Proc id =    9  Last grid point =     224
Proc id =   10  Last grid point =     240
Proc id =   11  Last grid point =     272
Proc id =   12  Last grid point =     296
Proc id =   13  Last grid point =     328
Proc id =   14  Last grid point =     360
Proc id =   15  Last grid point =     384
Time Now =         0.4949  Delta time =         0.0034 End AngGCt

----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------


 R of maximum density
     1  SG    1 at max irg =   19  r =   0.55049
     2  SU    1 at max irg =   19  r =   0.55049
     3  SG    1 at max irg =   18  r =   0.54700
     4  SU    1 at max irg =   29  r =   0.99108
     5  SG    1 at max irg =   29  r =   0.99108
     6  PU    1 at max irg =   26  r =   0.66689
     7  PU    2 at max irg =   26  r =   0.66689

Rotation coefficients for orbital     1  grp =    1 SG    1
     1  1.0000000000

Rotation coefficients for orbital     2  grp =    2 SU    1
     2  1.0000000000

Rotation coefficients for orbital     3  grp =    3 SG    1
     3  1.0000000000

Rotation coefficients for orbital     4  grp =    4 SU    1
     4  1.0000000000

Rotation coefficients for orbital     5  grp =    5 SG    1
     5  1.0000000000

Rotation coefficients for orbital     6  grp =    6 PU    1
     6  1.0000000000    7  0.0000000000

Rotation coefficients for orbital     7  grp =    6 PU    2
     6  0.0000000000    7  1.0000000000
Number of orbital groups and degeneracis are         6
  1  1  1  1  1  2
Number of orbital groups and number of electrons when fully occupied
         6
  2  2  2  2  2  4
Time Now =         0.8026  Delta time =         0.3076 End RotOrb

----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------

 First orbital group to expand (mofr) =    1
 Last orbital group to expand (moto) =    6
Orbital     1 of  SG    1 symmetry normalization integral =  0.98788415
Orbital     2 of  SU    1 symmetry normalization integral =  0.99051993
Orbital     3 of  SG    1 symmetry normalization integral =  0.99928699
Orbital     4 of  SU    1 symmetry normalization integral =  0.99958573
Orbital     5 of  SG    1 symmetry normalization integral =  0.99994443
Orbital     6 of  PU    1 symmetry normalization integral =  0.99999094
Time Now =         0.9306  Delta time =         0.1280 End ExpOrb

+ Command GetPot
+

----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------

Total density =     14.00000000
Time Now =         0.9338  Delta time =         0.0032 End Den

----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------

 vasymp =  0.14000000E+02 facnorm =  0.10000000E+01
Time Now =         0.9417  Delta time =         0.0079 Electronic part
Time Now =         0.9420  Delta time =         0.0004 End StPot

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.34014250E+01 eV (  0.12500008E+00 AU)
Time Now =         0.9604  Delta time =         0.0184 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = PG    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    6
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     3
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     3
Maximum in the asymptotic region (lpasym) =   11
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   78
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =    6
Highest l used at large r (lpasym) =   11
Higest l used in the asymptotic potential (lpzb) =   22
Maximum L used in the homogeneous solution (LMaxHomo) =   11
Number of partial waves in the homogeneous solution (npHomo) =    6
Time Now =         0.9658  Delta time =         0.0053 Energy independent setup

Compute solution for E =    3.4014250000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.88817842E-15
 i =  2  lval =   3  stpote =  0.77624824E-18
 i =  3  lval =   3  stpote =  0.24254360E-03
 i =  4  lval =   5  stpote = -0.15009698E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.94343437E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.94343438E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.94343441E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.94343444E-16
For potential     3
Number of asymptotic regions =      63
Final point in integration =   0.17552480E+03 Angstroms
Time Now =         1.4598  Delta time =         0.4941 End SolveHomo
     REAL PART -  Final k matrix
     ROW  1
  0.76318045E+00 0.68887942E-02 0.26609839E-04
     ROW  2
  0.68887942E-02-0.50005513E-02-0.19317235E-02
     ROW  3
  0.26609843E-04-0.19317235E-02-0.26433912E-02
 eigenphases
 -0.6132031E-02 -0.1573605E-02  0.6519224E+00
 eigenphase sum 0.644217E+00  scattering length=  -1.50224
 eps+pi 0.378581E+01  eps+2*pi 0.692740E+01

MaxIter =   7 c.s. =      5.18190653 angs^2  rmsk=     0.00000000
Time Now =         3.2435  Delta time =         1.7837 End ScatStab

+ Command TotalCrossSection
+
Symmetry PG -
        E (eV)      XS(angs^2)    EPS(radians)
       3.401425       5.181907       0.644217

 Total Cross Sections

 Energy      Total Cross Section
   3.40143    10.36381
Time Now =         3.2444  Delta time =         0.0009 Finalize