Execution on login004

----------------------------------------------------------------------
ePolyScat Version E3
----------------------------------------------------------------------

Authors: R. R. Lucchese, N. Sanna, A. P. P. Natalense, and F. A. Gianturco
http://www.chem.tamu.edu/rgroup/lucchese/ePolyScat.E3.manual/manual.html
Please cite the following two papers when reporting results obtained with  this program
F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 100, 6464 (1994).
A. P. P. Natalense and R. R. Lucchese, J. Chem. Phys. 111, 5344 (1999).

----------------------------------------------------------------------

Starting at 2011-08-29  10:39:39.466 (GMT -0500)
Using    16 processors

----------------------------------------------------------------------


+ Start of Input Records
#
# input file for test06
#
# electron scattering from N2 molden SCF, polarization potential, low energy
#
  LMax   15     # maximum l to be used for wave functions
  EMax  50.0    # EMax, maximum asymptotic energy in eV
  EngForm      # Energy formulas
   0 0         # charge, formula type
  VCorr 'PZ'
  AsyPol
 0.15  # SwitchD, distance where switching function is down to 0.1
 1     # nterm, number of terms needed to define asymptotic potential
 0     # center for polarization term 1 is for C atom
 0.0 0.0 0.0   # use molecular center for polarization term
 2     # ittyp type of polarization term, = 1 for spherically symmetric
       # = 2 for reading in the full tensor
 8.664 8.664 17.904 0.0 0.0 0.0 # axx, ayy, azz, axy, axz, ayz
 3     # icrtyp, flag to determine where r match is, 3 for second crossing
       # or at nearest approach
 0     # ilntyp, flag to determine what matching line is used, 0 - use
       # l = 0 radial function as matching function

  FegeEng 13.0   # Energy correction (in eV) used in the fege potential
  ScatContSym 'SG'  # Scattering symmetry
  LMaxK    8     # Maximum l in the K matirx

Convert '/g/home/rrl581a/Applications/ePolyScat.E3/tests/test06.molden' 'molden'
GetBlms
ExpOrb
GetPot
Scat 0.001 0.01 0.02
TotalCrossSection
+ End of input reached
+ Data Record LMax - 15
+ Data Record EMax - 50.0
+ Data Record EngForm - 0 0
+ Data Record VCorr - 'PZ'
+ Data Record AsyPol
+ 0.15 / 1 / 0 / 0.0 0.0 0.0 / 2 / 8.664 8.664 17.904 0.0 0.0 0.0 / 3 / 0
+ Data Record FegeEng - 13.0
+ Data Record ScatContSym - 'SG'
+ Data Record LMaxK - 8

+ Command Convert
+ '/g/home/rrl581a/Applications/ePolyScat.E3/tests/test06.molden' 'molden'

----------------------------------------------------------------------
MoldenCnv - Molden (from Molpro) conversion program
----------------------------------------------------------------------

Expansion center is (in Angstroms) -
     0.0000000000   0.0000000000   0.0000000000
Convert from Angstroms to Bohr radii
Found    110 basis functions
Selecting orbitals
Number of orbitals selected is     7
Selecting    1   1 Ene =     -15.6842 Spin =Alpha Occup =   2.000000
Selecting    2   2 Ene =     -15.6806 Spin =Alpha Occup =   2.000000
Selecting    3   3 Ene =      -1.4752 Spin =Alpha Occup =   2.000000
Selecting    4   4 Ene =      -0.7786 Spin =Alpha Occup =   2.000000
Selecting    5   5 Ene =      -0.6350 Spin =Alpha Occup =   2.000000
Selecting    6   6 Ene =      -0.6161 Spin =Alpha Occup =   2.000000
Selecting    7   7 Ene =      -0.6161 Spin =Alpha Occup =   2.000000

Atoms found    2  Coordinates in Angstroms
Z =  7 ZS =  7 r =   0.0000000000   0.0000000000  -0.5470000000
Z =  7 ZS =  7 r =   0.0000000000   0.0000000000   0.5470000000
Maximum distance from expansion center is    0.5470000000

+ Command GetBlms
+

----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------

Found point group  DAh
Reduce angular grid using nthd =  2  nphid =  4
Found point group for abelian subgroup D2h
Time Now =         0.1148  Delta time =         0.1148 End GetPGroup
List of unique axes
  N  Vector                      Z   R
  1  0.00000  0.00000  1.00000   7  0.54700   7  0.54700
List of corresponding x axes
  N  Vector
  1  1.00000  0.00000  0.00000
Computed default value of LMaxA =   11
Determining angular grid in GetAxMax  LMax =   15  LMaxA =   11  LMaxAb =   30
MMax =    3  MMaxAbFlag =    2
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11   3   3   3   3
On the double L grid used for products
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19
  20  21  22  14  14  14  14   6   6   6   6

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is DAh
LMax = =   15
 The dimension of each irreducable representation is
    SG    (  1)    A2G   (  1)    B1G   (  1)    B2G   (  1)    PG    (  2)
    DG    (  2)    FG    (  2)    GG    (  2)    SU    (  1)    A2U   (  1)
    B1U   (  1)    B2U   (  1)    PU    (  2)    DU    (  2)    FU    (  2)
    GU    (  2)
 Number of symmetry operations in the abelian subgroup (excluding E) =    7
 The operations are -
    12    22    32     2     3    21    31
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 SG        1         1          9       1  1  1  1  1  1  1
 A2G       1         2          1       1 -1 -1  1  1 -1 -1
 B1G       1         3          3      -1  1 -1  1 -1  1 -1
 B2G       1         4          3      -1 -1  1  1 -1 -1  1
 PG        1         5          8      -1 -1  1  1 -1 -1  1
 PG        2         6          8      -1  1 -1  1 -1  1 -1
 DG        1         7          9       1 -1 -1  1  1 -1 -1
 DG        2         8          9       1  1  1  1  1  1  1
 FG        1         9          8      -1 -1  1  1 -1 -1  1
 FG        2        10          8      -1  1 -1  1 -1  1 -1
 GG        1        11          7       1 -1 -1  1  1 -1 -1
 GG        2        12          7       1  1  1  1  1  1  1
 SU        1        13          9       1 -1 -1 -1 -1  1  1
 A2U       1        14          1       1  1  1 -1 -1 -1 -1
 B1U       1        15          4      -1 -1  1 -1  1  1 -1
 B2U       1        16          4      -1  1 -1 -1  1 -1  1
 PU        1        17         11      -1 -1  1 -1  1  1 -1
 PU        2        18         11      -1  1 -1 -1  1 -1  1
 DU        1        19          9       1 -1 -1 -1 -1  1  1
 DU        2        20          9       1  1  1 -1 -1 -1 -1
 FU        1        21         10      -1 -1  1 -1  1  1 -1
 FU        2        22         10      -1  1 -1 -1  1 -1  1
 GU        1        23          7       1 -1 -1 -1 -1  1  1
 GU        2        24          7       1  1  1 -1 -1 -1 -1
Time Now =         0.7445  Delta time =         0.6296 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
SG    1    0(   1)    1(   1)    2(   2)    3(   2)    4(   3)    5(   3)    6(   4)    7(   4)    8(   5)    9(   5)
          10(   7)   11(   7)
A2G   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   0)    7(   0)    8(   0)    9(   0)
          10(   1)   11(   1)
B1G   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   1)    7(   1)    8(   2)    9(   2)
          10(   3)   11(   3)
B2G   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   1)    7(   1)    8(   2)    9(   2)
          10(   3)   11(   3)
PG    1    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)    6(   3)    7(   3)    8(   4)    9(   4)
          10(   6)   11(   6)
PG    2    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)    6(   3)    7(   3)    8(   4)    9(   4)
          10(   6)   11(   6)
DG    1    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)    6(   3)    7(   3)    8(   5)    9(   5)
          10(   7)   11(   7)
DG    2    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)    6(   3)    7(   3)    8(   5)    9(   5)
          10(   7)   11(   7)
FG    1    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   1)    6(   2)    7(   2)    8(   4)    9(   4)
          10(   6)   11(   6)
FG    2    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   1)    6(   2)    7(   2)    8(   4)    9(   4)
          10(   6)   11(   6)
GG    1    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   1)    6(   3)    7(   3)    8(   5)    9(   5)
          10(   7)   11(   7)
GG    2    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   1)    6(   3)    7(   3)    8(   5)    9(   5)
          10(   7)   11(   7)
SU    1    0(   0)    1(   1)    2(   1)    3(   2)    4(   2)    5(   3)    6(   3)    7(   4)    8(   4)    9(   5)
          10(   5)   11(   7)
A2U   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   0)    7(   0)    8(   0)    9(   0)
          10(   0)   11(   1)
B1U   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   1)    6(   1)    7(   2)    8(   2)    9(   3)
          10(   3)   11(   4)
B2U   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   1)    6(   1)    7(   2)    8(   2)    9(   3)
          10(   3)   11(   4)
PU    1    0(   0)    1(   1)    2(   1)    3(   2)    4(   2)    5(   3)    6(   3)    7(   4)    8(   4)    9(   6)
          10(   6)   11(   9)
PU    2    0(   0)    1(   1)    2(   1)    3(   2)    4(   2)    5(   3)    6(   3)    7(   4)    8(   4)    9(   6)
          10(   6)   11(   9)
DU    1    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   2)    6(   2)    7(   3)    8(   3)    9(   5)
          10(   5)   11(   7)
DU    2    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   2)    6(   2)    7(   3)    8(   3)    9(   5)
          10(   5)   11(   7)
FU    1    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   2)    6(   2)    7(   4)    8(   4)    9(   6)
          10(   6)   11(   8)
FU    2    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   2)    6(   2)    7(   4)    8(   4)    9(   6)
          10(   6)   11(   8)
GU    1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   1)    6(   1)    7(   3)    8(   3)    9(   5)
          10(   5)   11(   7)
GU    2    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   1)    6(   1)    7(   3)    8(   3)    9(   5)
          10(   5)   11(   7)

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is D2h
LMax = =   30
 The dimension of each irreducable representation is
    AG    (  1)    B1G   (  1)    B2G   (  1)    B3G   (  1)    AU    (  1)
    B1U   (  1)    B2U   (  1)    B3U   (  1)
Abelian axes
    1       1.000000       0.000000       0.000000
    2       0.000000       1.000000       0.000000
    3       0.000000       0.000000       1.000000
Symmetry operation directions
  1       0.000000       0.000000       1.000000 ang =  0  1 type = 0 axis = 3
  2       0.000000       0.000000       1.000000 ang =  1  2 type = 2 axis = 3
  3       1.000000       0.000000       0.000000 ang =  1  2 type = 2 axis = 1
  4       0.000000       1.000000       0.000000 ang =  1  2 type = 2 axis = 2
  5       0.000000       0.000000       1.000000 ang =  1  2 type = 3 axis = 3
  6       0.000000       0.000000       1.000000 ang =  0  1 type = 1 axis = 3
  7       1.000000       0.000000       0.000000 ang =  0  1 type = 1 axis = 1
  8       0.000000       1.000000       0.000000 ang =  0  1 type = 1 axis = 2
irep =    1  sym =AG    1  eigs =   1   1   1   1   1   1   1   1
irep =    2  sym =B1G   1  eigs =   1   1  -1  -1   1   1  -1  -1
irep =    3  sym =B2G   1  eigs =   1  -1  -1   1   1  -1  -1   1
irep =    4  sym =B3G   1  eigs =   1  -1   1  -1   1  -1   1  -1
irep =    5  sym =AU    1  eigs =   1   1   1   1  -1  -1  -1  -1
irep =    6  sym =B1U   1  eigs =   1   1  -1  -1  -1  -1   1   1
irep =    7  sym =B2U   1  eigs =   1  -1  -1   1  -1   1   1  -1
irep =    8  sym =B3U   1  eigs =   1  -1   1  -1  -1   1  -1   1
 Number of symmetry operations in the abelian subgroup (excluding E) =    7
 The operations are -
     2     3     4     5     6     7     8
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 AG        1         1        102       1  1  1  1  1  1  1
 B1G       1         2         86       1 -1 -1  1  1 -1 -1
 B2G       1         3         86      -1 -1  1  1 -1 -1  1
 B3G       1         4         86      -1  1 -1  1 -1  1 -1
 AU        1         5         75       1  1  1 -1 -1 -1 -1
 B1U       1         6         90       1 -1 -1 -1 -1  1  1
 B2U       1         7         86      -1 -1  1 -1  1  1 -1
 B3U       1         8         86      -1  1 -1 -1  1 -1  1
Time Now =         0.7583  Delta time =         0.0139 End SymGen

+ Command ExpOrb
+
In GetRMax, RMaxEps =  0.10000000E-05  RMax =    9.6359862155 Angs

----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------

Maximum R in the grid (RMax) =     9.63599 Angs
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) =   10.0
In regions controlled by the wave length (HFacWave) =   10.0
Factor used to control the minimum exponent at each center (MinExpFac) =  300.0
Maximum asymptotic kinetic energy (EMAx) =  50.00000 eV
Maximum step size (MaxStep) =   0.01058 Angs
Factor to increase grid by (GridFac) =     1

    1  Center at =     0.00000 Angs  Alpha Max = 0.10000E+01
    2  Center at =     0.54700 Angs  Alpha Max = 0.14700E+05

Generated Grid

  irg  nin  ntot      step Angs     R end Angs
    1    8     8    0.18998E-02     0.01520
    2    8    16    0.26749E-02     0.03660
    3    8    24    0.43054E-02     0.07104
    4    8    32    0.57696E-02     0.11720
    5    8    40    0.67259E-02     0.17101
    6    8    48    0.68378E-02     0.22571
    7    8    56    0.62927E-02     0.27605
    8    8    64    0.61050E-02     0.32489
    9    8    72    0.67380E-02     0.37879
   10    8    80    0.77685E-02     0.44094
   11    8    88    0.48305E-02     0.47958
   12    8    96    0.30704E-02     0.50415
   13    8   104    0.19517E-02     0.51976
   14    8   112    0.12406E-02     0.52969
   15    8   120    0.78856E-03     0.53599
   16    8   128    0.54521E-03     0.54036
   17    8   136    0.45672E-03     0.54401
   18    8   144    0.37374E-03     0.54700
   19    8   152    0.43646E-03     0.55049
   20    8   160    0.46530E-03     0.55421
   21    8   168    0.57358E-03     0.55880
   22    8   176    0.87025E-03     0.56576
   23    8   184    0.13836E-02     0.57683
   24    8   192    0.21997E-02     0.59443
   25    8   200    0.34972E-02     0.62241
   26    8   208    0.55601E-02     0.66689
   27    8   216    0.88398E-02     0.73761
   28   64   280    0.10584E-01     1.41496
   29   64   344    0.10584E-01     2.09230
   30   64   408    0.10584E-01     2.76965
   31   64   472    0.10584E-01     3.44700
   32   64   536    0.10584E-01     4.12434
   33   64   600    0.10584E-01     4.80169
   34   64   664    0.10584E-01     5.47904
   35   64   728    0.10584E-01     6.15638
   36   64   792    0.10584E-01     6.83373
   37   64   856    0.10584E-01     7.51108
   38   64   920    0.10584E-01     8.18842
   39   64   984    0.10584E-01     8.86577
   40   64  1048    0.10584E-01     9.54312
   41    8  1056    0.10584E-01     9.62779
   42    8  1064    0.10251E-02     9.63599
Time Now =         0.7717  Delta time =         0.0134 End GenGrid

----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------

Maximum scattering l (lmax) =   15
Maximum scattering m (mmaxs) =   15
Maximum numerical integration l (lmaxi) =   30
Maximum numerical integration m (mmaxi) =   30
Maximum l to include in the asymptotic region (lmasym) =   11
Parameter used to determine the cutoff points (PCutRd) =  0.10000000E-07 au
Maximum E used to determine grid (in eV) =       50.00000
Print flag (iprnfg) =    0
lmasymtyts =   10
 Actual value of lmasym found =     11
Number of regions of the same l expansion (NAngReg) =    8
Angular regions
    1 L =    2  from (    1)         0.00190  to (    7)         0.01330
    2 L =    4  from (    8)         0.01520  to (   15)         0.03392
    3 L =    6  from (   16)         0.03660  to (   23)         0.06674
    4 L =    7  from (   24)         0.07104  to (   31)         0.11143
    5 L =    9  from (   32)         0.11720  to (   39)         0.16428
    6 L =   11  from (   40)         0.17101  to (   47)         0.21887
    7 L =   15  from (   48)         0.22571  to (  256)         1.16095
    8 L =   11  from (  257)         1.17153  to ( 1064)         9.63599
There are     2 angular regions for computing spherical harmonics
    1 lval =   11
    2 lval =   15
Last grid points by processor WorkExp =     1.500
Proc id =   -1  Last grid point =       1
Proc id =    0  Last grid point =      80
Proc id =    1  Last grid point =     128
Proc id =    2  Last grid point =     176
Proc id =    3  Last grid point =     216
Proc id =    4  Last grid point =     264
Proc id =    5  Last grid point =     336
Proc id =    6  Last grid point =     408
Proc id =    7  Last grid point =     488
Proc id =    8  Last grid point =     560
Proc id =    9  Last grid point =     632
Proc id =   10  Last grid point =     704
Proc id =   11  Last grid point =     776
Proc id =   12  Last grid point =     848
Proc id =   13  Last grid point =     920
Proc id =   14  Last grid point =     992
Proc id =   15  Last grid point =    1064
Time Now =         0.7801  Delta time =         0.0084 End AngGCt

----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------


 R of maximum density
     1  SG    1 at max irg =   19  r =   0.55049
     2  SU    1 at max irg =   19  r =   0.55049
     3  SG    1 at max irg =   18  r =   0.54700
     4  SU    1 at max irg =   29  r =   0.90695
     5  SG    1 at max irg =   30  r =   0.99161
     6  PU    1 at max irg =   26  r =   0.66689
     7  PU    2 at max irg =   26  r =   0.66689

Rotation coefficients for orbital     1  grp =    1 SG    1
     1  1.0000000000

Rotation coefficients for orbital     2  grp =    2 SU    1
     2  1.0000000000

Rotation coefficients for orbital     3  grp =    3 SG    1
     3  1.0000000000

Rotation coefficients for orbital     4  grp =    4 SU    1
     4  1.0000000000

Rotation coefficients for orbital     5  grp =    5 SG    1
     5  1.0000000000

Rotation coefficients for orbital     6  grp =    6 PU    1
     6  1.0000000000    7  0.0000000000

Rotation coefficients for orbital     7  grp =    6 PU    2
     6  0.0000000000    7  1.0000000000
Number of orbital groups and degeneracis are         6
  1  1  1  1  1  2
Number of orbital groups and number of electrons when fully occupied
         6
  2  2  2  2  2  4
Time Now =         1.1273  Delta time =         0.3472 End RotOrb

----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------

 First orbital group to expand (mofr) =    1
 Last orbital group to expand (moto) =    6
Orbital     1 of  SG    1 symmetry normalization integral =  0.98788414
Orbital     2 of  SU    1 symmetry normalization integral =  0.99051993
Orbital     3 of  SG    1 symmetry normalization integral =  0.99928697
Orbital     4 of  SU    1 symmetry normalization integral =  0.99958573
Orbital     5 of  SG    1 symmetry normalization integral =  0.99994441
Orbital     6 of  PU    1 symmetry normalization integral =  0.99999094
Time Now =         1.3746  Delta time =         0.2474 End ExpOrb

+ Command GetPot
+

----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------

Total density =     14.00000000
Time Now =         1.3776  Delta time =         0.0030 End Den

----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------

 vasymp =  0.14000000E+02 facnorm =  0.10000000E+01
Time Now =         1.3921  Delta time =         0.0145 Electronic part
Time Now =         1.3925  Delta time =         0.0005 End StPot

----------------------------------------------------------------------
vcppol - VCP polarization potential program
----------------------------------------------------------------------

Time Now =         1.3991  Delta time =         0.0066 End VcpPol

----------------------------------------------------------------------
AsyPol - Program to match polarization potential to asymptotic form
----------------------------------------------------------------------

Switching distance (SwitchD) =     0.15000
Number of terms in the asymptotic polarization potential (nterm) =    1
Term =    1  At center =    0
Explicit coordinates =  0.00000000E+00  0.00000000E+00  0.00000000E+00
Type =    2
Polarizability tensor in atomic units
  0.86640000E+01  0.00000000E+00  0.00000000E+00
  0.00000000E+00  0.86640000E+01  0.00000000E+00
  0.00000000E+00  0.00000000E+00  0.17904000E+02
Last center is at (RCenterX) =   0.00000 Angs
 Radial matching parameter (icrtyp) =    3
 Matching line type (ilntyp) =    0
 Matching point is at r =   1.9411700182 Angs
Matching uses curve crossing (iMatchType = 1)
First nonzero weight at(RFirstWt)  R =        1.49962 Angs
Last point of the switching region (RLastWt) R=        2.43098 Angs
Total asymptotic potential is   0.11744000E+02 a.u.
Time Now =         1.4072  Delta time =         0.0081 End AsyPol

+ Command Scat
+ 0.001 0.01 0.02

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.10000000E-02 eV (  0.36749326E-04 AU)
Time Now =         1.4282  Delta time =         0.0211 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = SG    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    8
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.11744000E+02  au
Number of integration regions used =    51
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     5
Number of asymptotic solutions on the left (NAsymL) =     5
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     5
Maximum in the asymptotic region (lpasym) =   11
Number of partial waves in the asymptotic region (npasym) =    7
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   78
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =    8
Highest l used at large r (lpasym) =   11
Higest l used in the asymptotic potential (lpzb) =   22
Maximum L used in the homogeneous solution (LMaxHomo) =   11
Number of partial waves in the homogeneous solution (npHomo) =    7
Time Now =         1.4372  Delta time =         0.0090 Energy independent setup

Compute solution for E =    0.0010000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.11744000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.00000000E+00
 i =  2  lval =   3  stpote =  0.77328212E-18
 i =  3  lval =   3  stpote =  0.24254345E-03
 i =  4  lval =   5  stpote = -0.13999648E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.12821943E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.12821943E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.12821943E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.12821943E-15
For potential     3
 i =  1  lvals =   6   6  stpote =  0.27105054E-19  second term =  0.00000000E+00
 i =  2  lvals =   4   4  stpote = -0.13421806E-19  second term =  0.00000000E+00
 i =  3  lvals =   4   6  stpote = -0.43512020E-04  second term = -0.45309967E-04
 i =  4  lvals =   6   6  stpote =  0.11731849E-19  second term =  0.00000000E+00
Number of asymptotic regions =       8
Final point in integration =   0.26414525E+04 Angstroms
Time Now =         2.3306  Delta time =         0.8934 End SolveHomo
     REAL PART -  Final k matrix
     ROW  1
 -0.45361069E-02-0.57106916E-03-0.40082324E-08-0.54377744E-12-0.22097212E-17
     ROW  2
 -0.57107562E-03-0.34725882E-03-0.84277836E-04-0.20729005E-09-0.17602335E-13
     ROW  3
 -0.40090512E-08-0.84277836E-04-0.97864838E-04-0.33859605E-04-0.40707407E-10
     ROW  4
 -0.54377653E-12-0.20729005E-09-0.33859605E-04-0.46026500E-04-0.18454732E-04
     ROW  5
 -0.22094407E-17-0.17602335E-13-0.40707407E-10-0.18454732E-04-0.26613161E-04
 eigenphases
 -0.4612561E-02 -0.3051881E-03 -0.8948801E-04 -0.3791121E-04 -0.8689519E-05
 eigenphase sum-0.505384E-02  scattering length=   0.58950
 eps+pi 0.313654E+01  eps+2*pi 0.627813E+01

MaxIter =   8 c.s. =      1.02353940 angs^2  rmsk=     0.00000000
Time Now =         5.5001  Delta time =         3.1694 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.10000000E-01 eV (  0.36749326E-03 AU)
Time Now =         5.5087  Delta time =         0.0086 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = SG    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    8
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.11744000E+02  au
Number of integration regions used =    51
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     5
Number of asymptotic solutions on the left (NAsymL) =     5
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     5
Maximum in the asymptotic region (lpasym) =   11
Number of partial waves in the asymptotic region (npasym) =    7
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   78
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =    8
Highest l used at large r (lpasym) =   11
Higest l used in the asymptotic potential (lpzb) =   22
Maximum L used in the homogeneous solution (LMaxHomo) =   11
Number of partial waves in the homogeneous solution (npHomo) =    7
Time Now =         5.5170  Delta time =         0.0084 Energy independent setup

Compute solution for E =    0.0100000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.11744000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.00000000E+00
 i =  2  lval =   3  stpote =  0.77328212E-18
 i =  3  lval =   3  stpote =  0.24254345E-03
 i =  4  lval =   5  stpote = -0.13999648E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.13230258E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.13230258E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.13230258E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.13230259E-15
For potential     3
 i =  1  lvals =   6   6  stpote =  0.27105054E-19  second term =  0.00000000E+00
 i =  2  lvals =   4   4  stpote = -0.13421806E-19  second term =  0.00000000E+00
 i =  3  lvals =   4   6  stpote = -0.43512020E-04  second term = -0.45309967E-04
 i =  4  lvals =   6   6  stpote =  0.11731849E-19  second term =  0.00000000E+00
Number of asymptotic regions =      10
Final point in integration =   0.12269512E+04 Angstroms
Time Now =         6.4084  Delta time =         0.8914 End SolveHomo
     REAL PART -  Final k matrix
     ROW  1
 -0.19579039E-01-0.17082307E-02-0.12758395E-06-0.16747655E-10-0.68506311E-15
     ROW  2
 -0.17082324E-02-0.89996561E-03-0.25938119E-03-0.67707760E-08-0.54488742E-12
     ROW  3
 -0.12760118E-06-0.25938119E-03-0.28009107E-03-0.10436672E-03-0.14040994E-08
     ROW  4
 -0.16746928E-10-0.67707759E-08-0.10436672E-03-0.13665913E-03-0.56545009E-04
     ROW  5
 -0.68381551E-15-0.54488736E-12-0.14040994E-08-0.56545009E-04-0.80729530E-04
 eigenphases
 -0.1973144E-01 -0.8626135E-03 -0.2541276E-03 -0.1060920E-03 -0.1964814E-04
 eigenphase sum-0.209739E-01  scattering length=   0.77376
 eps+pi 0.312062E+01  eps+2*pi 0.626221E+01

MaxIter =   8 c.s. =      1.86770486 angs^2  rmsk=     0.00000000
Time Now =         9.8029  Delta time =         3.3945 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.20000000E-01 eV (  0.73498652E-03 AU)
Time Now =         9.8112  Delta time =         0.0083 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = SG    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    8
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.11744000E+02  au
Number of integration regions used =    51
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     5
Number of asymptotic solutions on the left (NAsymL) =     5
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     5
Maximum in the asymptotic region (lpasym) =   11
Number of partial waves in the asymptotic region (npasym) =    7
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   78
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =    8
Highest l used at large r (lpasym) =   11
Higest l used in the asymptotic potential (lpzb) =   22
Maximum L used in the homogeneous solution (LMaxHomo) =   11
Number of partial waves in the homogeneous solution (npHomo) =    7
Time Now =         9.8195  Delta time =         0.0084 Energy independent setup

Compute solution for E =    0.0200000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.11744000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.00000000E+00
 i =  2  lval =   3  stpote =  0.77328212E-18
 i =  3  lval =   3  stpote =  0.24254345E-03
 i =  4  lval =   5  stpote = -0.13999648E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11107338E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11107338E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11107338E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11107338E-15
For potential     3
 i =  1  lvals =   6   6  stpote =  0.27105054E-19  second term =  0.00000000E+00
 i =  2  lvals =   4   4  stpote = -0.13421806E-19  second term =  0.00000000E+00
 i =  3  lvals =   4   6  stpote = -0.43512020E-04  second term = -0.45309967E-04
 i =  4  lvals =   6   6  stpote =  0.11731849E-19  second term =  0.00000000E+00
Number of asymptotic regions =      11
Final point in integration =   0.97417650E+03 Angstroms
Time Now =        10.7103  Delta time =         0.8908 End SolveHomo
     REAL PART -  Final k matrix
     ROW  1
 -0.31612978E-01-0.23714916E-02-0.36296597E-06-0.49826312E-10-0.38392923E-14
     ROW  2
 -0.23714962E-02-0.11030936E-02-0.36156105E-03-0.19196128E-07-0.16000592E-11
     ROW  3
 -0.36299228E-06-0.36156105E-03-0.37043404E-03-0.14602792E-03-0.39967708E-08
     ROW  4
 -0.49820886E-10-0.19196128E-07-0.14602792E-03-0.18514463E-03-0.79123560E-04
     ROW  5
 -0.38389836E-14-0.16000592E-11-0.39967708E-08-0.79123560E-04-0.11072361E-03
 eigenphases
 -0.3178553E-01 -0.1103056E-02 -0.3311027E-03 -0.1351652E-03 -0.1681347E-04
 eigenphase sum-0.333717E-01  scattering length=   0.87073
 eps+pi 0.310822E+01  eps+2*pi 0.624981E+01

MaxIter =   8 c.s. =      2.42099151 angs^2  rmsk=     0.00000000
Time Now =        14.3432  Delta time =         3.6329 End ScatStab

+ Command TotalCrossSection
+
Symmetry SG -
        E (eV)      XS(angs^2)    EPS(radians)
       0.001000       1.023539      -0.005054
       0.010000       1.867705      -0.020974
       0.020000       2.420991      -0.033372

 Total Cross Sections

 Energy      Total Cross Section
   0.00100     1.02354
   0.01000     1.86770
   0.02000     2.42099
Time Now =        14.3445  Delta time =         0.0014 Finalize