Execution on login004

----------------------------------------------------------------------
ePolyScat Version E3
----------------------------------------------------------------------

Authors: R. R. Lucchese, N. Sanna, A. P. P. Natalense, and F. A. Gianturco
http://www.chem.tamu.edu/rgroup/lucchese/ePolyScat.E3.manual/manual.html
Please cite the following two papers when reporting results obtained with  this program
F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 100, 6464 (1994).
A. P. P. Natalense and R. R. Lucchese, J. Chem. Phys. 111, 5344 (1999).

----------------------------------------------------------------------

Starting at 2011-08-29  10:39:19.519 (GMT -0500)
Using    16 processors

----------------------------------------------------------------------


+ Start of Input Records
#
# input file for test04
#
# electron scattering from SiH4 in A1 symmetry
#
  LMax   15     # maximum l to be used for wave functions
  EMax  50.0    # EMax, maximum asymptotic energy in eV
  EngForm       # Energy formulas
   0 0
  VCorr 'PZ'
  AsyPol
 0.15  # SwitchD, distance where switching function is down to 0.1
 1     # nterm, number of terms needed to define asymptotic potential
 1     # center for polarization term 1 is for C atom
 1     # ittyp type of polarization term, = 1 for spherically symmetric
       # = 2 for reading in the full tensor
 30.40 # value of the spherical polarizability
 3     # icrtyp, flag to determine where r match is, 3 for second crossing
       # or at nearest approach
 0     # ilntyp, flag to determine what matching line is used, 0 - use
       # l = 0 radial function as matching function
  FegeEng 13.29   # Energy correction (in eV) used in the fege potential
  ScatContSym 'A1'  # Scattering symmetry
  LMaxK   10     # Maximum l in the K matirx
  ScatEng 0.5 10.0 15.0      # list of scattering energies
  GrnType 1

Convert '/g/home/rrl581a/Applications/ePolyScat.E3/tests/test04.g03' 'g03'
GetBlms
ExpOrb
GetPot
Scat
TotalCrossSection
+ End of input reached
+ Data Record LMax - 15
+ Data Record EMax - 50.0
+ Data Record EngForm - 0 0
+ Data Record VCorr - 'PZ'
+ Data Record AsyPol
+ 0.15 / 1 / 1 / 1 / 30.40 / 3 / 0
+ Data Record FegeEng - 13.29
+ Data Record ScatContSym - 'A1'
+ Data Record LMaxK - 10
+ Data Record ScatEng - 0.5 10.0 15.0
+ Data Record GrnType - 1

+ Command Convert
+ '/g/home/rrl581a/Applications/ePolyScat.E3/tests/test04.g03' 'g03'

----------------------------------------------------------------------
g03cnv - read input from G03 output
----------------------------------------------------------------------

Expansion center is (in Angstroms) -
     0.0000000000   0.0000000000   0.0000000000
Command line = # RHF/6-311G(2D,2P) 6D 10F SCF=TIGHT GFINPUT PUNCH=MO
CardFlag =    T
Normal Mode flag =    F
Selecting orbitals
from     1  to     9  number already selected     0
Number of orbitals selected is     9
Highest orbital read in is =    9
Time Now =         0.0341  Delta time =         0.0341 End g03cnv

Atoms found    5  Coordinates in Angstroms
Z = 14 ZS = 14 r =   0.0000000000   0.0000000000   0.0000000000
Z =  1 ZS =  1 r =   0.8440860000   0.8440860000   0.8440860000
Z =  1 ZS =  1 r =  -0.8440860000  -0.8440860000   0.8440860000
Z =  1 ZS =  1 r =   0.8440860000  -0.8440860000  -0.8440860000
Z =  1 ZS =  1 r =  -0.8440860000   0.8440860000  -0.8440860000
Maximum distance from expansion center is    1.4619998380

+ Command GetBlms
+

----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------

Found point group  Td
Reduce angular grid using nthd =  1  nphid =  4
Found point group for abelian subgroup D2
Time Now =         0.6458  Delta time =         0.6116 End GetPGroup
List of unique axes
  N  Vector                      Z   R
  1  0.00000  0.00000  1.00000
  2  0.57735  0.57735  0.57735   1  1.46200
  3 -0.57735 -0.57735  0.57735   1  1.46200
  4  0.57735 -0.57735 -0.57735   1  1.46200
  5 -0.57735  0.57735 -0.57735   1  1.46200
List of corresponding x axes
  N  Vector
  1  1.00000  0.00000  0.00000
  2  0.81650 -0.40825 -0.40825
  3  0.81650 -0.40825  0.40825
  4  0.81650  0.40825  0.40825
  5  0.81650  0.40825 -0.40825
Computed default value of LMaxA =   14
Determining angular grid in GetAxMax  LMax =   15  LMaxA =   14  LMaxAb =   30
MMax =    3  MMaxAbFlag =    1
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  -1
For axis     2  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3
For axis     3  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3
For axis     4  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3
For axis     5  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3
On the double L grid used for products
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19
  20  21  22  23  24  25  26  27  28  29  30
For axis     2  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
For axis     3  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
For axis     4  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
For axis     5  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is Td
LMax = =   15
 The dimension of each irreducable representation is
    A1    (  1)    A2    (  1)    E     (  2)    T1    (  3)    T2    (  3)
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     8    11    14
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A1        1         1         15       1  1  1
 A2        1         2          7       1  1  1
 E         1         3         21       1  1  1
 E         2         4         21       1  1  1
 T1        1         5         27      -1 -1  1
 T1        2         6         27      -1  1 -1
 T1        3         7         27       1 -1 -1
 T2        1         8         36      -1 -1  1
 T2        2         9         36      -1  1 -1
 T2        3        10         36       1 -1 -1
Time Now =         0.9819  Delta time =         0.3361 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
A1    1    0(   1)    1(   1)    2(   1)    3(   2)    4(   3)    5(   3)    6(   4)    7(   5)    8(   6)    9(   7)
          10(   8)   11(   9)   12(  11)   13(  12)   14(  13)
A2    1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   1)    7(   1)    8(   1)    9(   2)
          10(   3)   11(   3)   12(   4)   13(   5)   14(   6)
E     1    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   3)    6(   4)    7(   5)    8(   7)    9(   8)
          10(  10)   11(  12)   12(  14)   13(  16)   14(  19)
E     2    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   3)    6(   4)    7(   5)    8(   7)    9(   8)
          10(  10)   11(  12)   12(  14)   13(  16)   14(  19)
T1    1    0(   0)    1(   0)    2(   0)    3(   1)    4(   2)    5(   3)    6(   4)    7(   6)    8(   8)    9(  10)
          10(  12)   11(  15)   12(  18)   13(  21)   14(  24)
T1    2    0(   0)    1(   0)    2(   0)    3(   1)    4(   2)    5(   3)    6(   4)    7(   6)    8(   8)    9(  10)
          10(  12)   11(  15)   12(  18)   13(  21)   14(  24)
T1    3    0(   0)    1(   0)    2(   0)    3(   1)    4(   2)    5(   3)    6(   4)    7(   6)    8(   8)    9(  10)
          10(  12)   11(  15)   12(  18)   13(  21)   14(  24)
T2    1    0(   0)    1(   1)    2(   2)    3(   3)    4(   4)    5(   6)    6(   8)    7(  10)    8(  12)    9(  15)
          10(  18)   11(  21)   12(  24)   13(  28)   14(  32)
T2    2    0(   0)    1(   1)    2(   2)    3(   3)    4(   4)    5(   6)    6(   8)    7(  10)    8(  12)    9(  15)
          10(  18)   11(  21)   12(  24)   13(  28)   14(  32)
T2    3    0(   0)    1(   1)    2(   2)    3(   3)    4(   4)    5(   6)    6(   8)    7(  10)    8(  12)    9(  15)
          10(  18)   11(  21)   12(  24)   13(  28)   14(  32)

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is D2
LMax = =   30
 The dimension of each irreducable representation is
    A     (  1)    B1    (  1)    B2    (  1)    B3    (  1)
Abelian axes
    1       1.000000       0.000000       0.000000
    2       0.000000       1.000000       0.000000
    3       0.000000       0.000000       1.000000
Symmetry operation directions
  1       0.000000       0.000000       1.000000 ang =  0  1 type = 0 axis = 3
  2       0.000000       0.000000       1.000000 ang =  1  2 type = 2 axis = 3
  3       1.000000       0.000000       0.000000 ang =  1  2 type = 2 axis = 1
  4       0.000000       1.000000       0.000000 ang =  1  2 type = 2 axis = 2
irep =    1  sym =A     1  eigs =   1   1   1   1
irep =    2  sym =B1    1  eigs =   1   1  -1  -1
irep =    3  sym =B2    1  eigs =   1  -1  -1   1
irep =    4  sym =B3    1  eigs =   1  -1   1  -1
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     2     3     4
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A         1         1        241       1  1  1
 B1        1         2        240       1 -1 -1
 B2        1         3        240      -1 -1  1
 B3        1         4        240      -1  1 -1
Time Now =         1.0021  Delta time =         0.0203 End SymGen

+ Command ExpOrb
+
In GetRMax, RMaxEps =  0.10000000E-05  RMax =    8.2582051784 Angs

----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------

Maximum R in the grid (RMax) =     8.25821 Angs
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) =   10.0
In regions controlled by the wave length (HFacWave) =   10.0
Factor used to control the minimum exponent at each center (MinExpFac) =  300.0
Maximum asymptotic kinetic energy (EMAx) =  50.00000 eV
Maximum step size (MaxStep) =   0.01058 Angs
Factor to increase grid by (GridFac) =     1

    1  Center at =     0.00000 Angs  Alpha Max = 0.69379E+05
    2  Center at =     1.46200 Angs  Alpha Max = 0.30000E+03

Generated Grid

  irg  nin  ntot      step Angs     R end Angs
    1    8     8    0.20090E-03     0.00161
    2    8    16    0.21418E-03     0.00332
    3    8    24    0.26402E-03     0.00543
    4    8    32    0.40058E-03     0.00864
    5    8    40    0.63687E-03     0.01373
    6    8    48    0.10125E-02     0.02183
    7    8    56    0.16098E-02     0.03471
    8    8    64    0.25593E-02     0.05519
    9    8    72    0.40690E-02     0.08774
   10    8    80    0.64692E-02     0.13949
   11    8    88    0.10285E-01     0.22177
   12   64   152    0.10584E-01     0.89912
   13   32   184    0.10584E-01     1.23779
   14    8   192    0.10289E-01     1.32010
   15    8   200    0.64628E-02     1.37180
   16    8   208    0.42286E-02     1.40563
   17    8   216    0.33452E-02     1.43239
   18    8   224    0.30634E-02     1.45690
   19    8   232    0.63733E-03     1.46200
   20    8   240    0.30552E-02     1.48644
   21    8   248    0.32571E-02     1.51250
   22    8   256    0.40150E-02     1.54462
   23    8   264    0.60918E-02     1.59335
   24    8   272    0.96851E-02     1.67083
   25   64   336    0.10584E-01     2.34818
   26   64   400    0.10584E-01     3.02553
   27   64   464    0.10584E-01     3.70287
   28   64   528    0.10584E-01     4.38022
   29   64   592    0.10584E-01     5.05757
   30   64   656    0.10584E-01     5.73491
   31   64   720    0.10584E-01     6.41226
   32   64   784    0.10584E-01     7.08961
   33   64   848    0.10584E-01     7.76695
   34   40   888    0.10584E-01     8.19030
   35    8   896    0.84886E-02     8.25821
Time Now =         1.0155  Delta time =         0.0134 End GenGrid

----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------

Maximum scattering l (lmax) =   15
Maximum scattering m (mmaxs) =   15
Maximum numerical integration l (lmaxi) =   30
Maximum numerical integration m (mmaxi) =   30
Maximum l to include in the asymptotic region (lmasym) =   14
Parameter used to determine the cutoff points (PCutRd) =  0.10000000E-07 au
Maximum E used to determine grid (in eV) =       50.00000
Print flag (iprnfg) =    0
lmasymtyts =   14
 Actual value of lmasym found =     14
Number of regions of the same l expansion (NAngReg) =   11
Angular regions
    1 L =    2  from (    1)         0.00020  to (    7)         0.00141
    2 L =    5  from (    8)         0.00161  to (   23)         0.00517
    3 L =    6  from (   24)         0.00543  to (   31)         0.00824
    4 L =    7  from (   32)         0.00864  to (   47)         0.02082
    5 L =    8  from (   48)         0.02183  to (   55)         0.03310
    6 L =    9  from (   56)         0.03471  to (   63)         0.05263
    7 L =   11  from (   64)         0.05519  to (   71)         0.08367
    8 L =   12  from (   72)         0.08774  to (   79)         0.13302
    9 L =   14  from (   80)         0.13949  to (  159)         0.97320
   10 L =   15  from (  160)         0.98379  to (  344)         2.43285
   11 L =   14  from (  345)         2.44343  to (  896)         8.25821
There are     2 angular regions for computing spherical harmonics
    1 lval =   14
    2 lval =   15
Last grid points by processor WorkExp =     1.500
Proc id =   -1  Last grid point =       1
Proc id =    0  Last grid point =     104
Proc id =    1  Last grid point =     160
Proc id =    2  Last grid point =     208
Proc id =    3  Last grid point =     256
Proc id =    4  Last grid point =     304
Proc id =    5  Last grid point =     360
Proc id =    6  Last grid point =     408
Proc id =    7  Last grid point =     464
Proc id =    8  Last grid point =     520
Proc id =    9  Last grid point =     576
Proc id =   10  Last grid point =     632
Proc id =   11  Last grid point =     680
Proc id =   12  Last grid point =     736
Proc id =   13  Last grid point =     792
Proc id =   14  Last grid point =     848
Proc id =   15  Last grid point =     896
Time Now =         1.0365  Delta time =         0.0210 End AngGCt

----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------


 R of maximum density
     1  A1    1 at max irg =    7  r =   0.03471
     2  A1    1 at max irg =   11  r =   0.22177
     3  T2    1 at max irg =   11  r =   0.22177
     4  T2    2 at max irg =   11  r =   0.22177
     5  T2    3 at max irg =   11  r =   0.22177
     6  A1    1 at max irg =   22  r =   1.15312
     7  T2    1 at max irg =   27  r =   1.43239
     8  T2    2 at max irg =   27  r =   1.43239
     9  T2    3 at max irg =   27  r =   1.43239

Rotation coefficients for orbital     1  grp =    1 A1    1
     1  1.0000000000

Rotation coefficients for orbital     2  grp =    2 A1    1
     2  1.0000000000

Rotation coefficients for orbital     3  grp =    3 T2    1
     3  0.0000000000    4  1.0000000000    5  0.0000000000

Rotation coefficients for orbital     4  grp =    3 T2    2
     3  1.0000000000    4  0.0000000000    5  0.0000000000

Rotation coefficients for orbital     5  grp =    3 T2    3
     3  0.0000000000    4  0.0000000000    5  1.0000000000

Rotation coefficients for orbital     6  grp =    4 A1    1
     6  1.0000000000

Rotation coefficients for orbital     7  grp =    5 T2    1
     7  1.0000000000    8  0.0000000000    9  0.0000000000

Rotation coefficients for orbital     8  grp =    5 T2    2
     7  0.0000000000    8  0.0000000000    9  1.0000000000

Rotation coefficients for orbital     9  grp =    5 T2    3
     7  0.0000000000    8  1.0000000000    9  0.0000000000
Number of orbital groups and degeneracis are         5
  1  1  3  1  3
Number of orbital groups and number of electrons when fully occupied
         5
  2  2  6  2  6
Time Now =         1.3036  Delta time =         0.2672 End RotOrb

----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------

 First orbital group to expand (mofr) =    1
 Last orbital group to expand (moto) =    5
Orbital     1 of  A1    1 symmetry normalization integral =  0.99999997
Orbital     2 of  A1    1 symmetry normalization integral =  1.00000000
Orbital     3 of  T2    1 symmetry normalization integral =  1.00000000
Orbital     4 of  A1    1 symmetry normalization integral =  0.99993723
Orbital     5 of  T2    1 symmetry normalization integral =  0.99990632
Time Now =         1.5143  Delta time =         0.2106 End ExpOrb

+ Command GetPot
+

----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------

Total density =     18.00000000
Time Now =         1.5241  Delta time =         0.0099 End Den

----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------

 vasymp =  0.18000000E+02 facnorm =  0.10000000E+01
Time Now =         1.5647  Delta time =         0.0406 Electronic part
Time Now =         1.5671  Delta time =         0.0024 End StPot

----------------------------------------------------------------------
vcppol - VCP polarization potential program
----------------------------------------------------------------------

Time Now =         1.5891  Delta time =         0.0220 End VcpPol

----------------------------------------------------------------------
AsyPol - Program to match polarization potential to asymptotic form
----------------------------------------------------------------------

Switching distance (SwitchD) =     0.15000
Number of terms in the asymptotic polarization potential (nterm) =    1
Term =    1  At center =    1
Explicit coordinates =  0.00000000E+00  0.00000000E+00  0.00000000E+00
Type =    1
Polarizability =  0.30400000E+02 au
Last center is at (RCenterX) =   0.00000 Angs
 Radial matching parameter (icrtyp) =    3
 Matching line type (ilntyp) =    0
 Matching point is at r =   2.5561441412 Angs
Matching uses curve crossing (iMatchType = 1)
First nonzero weight at(RFirstWt)  R =        2.09418 Angs
Last point of the switching region (RLastWt) R=        3.02553 Angs
Total asymptotic potential is   0.30400000E+02 a.u.
Time Now =         1.6093  Delta time =         0.0201 End AsyPol

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13290000E+02  eV
 Do E =  0.50000000E+00 eV (  0.18374663E-01 AU)
Time Now =         1.6341  Delta time =         0.0248 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = A1    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.30400000E+02  au
Number of integration regions used =    64
Number of partial waves (np) =    15
Number of asymptotic solutions on the right (NAsymR) =     8
Number of asymptotic solutions on the left (NAsymL) =     8
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     8
Maximum in the asymptotic region (lpasym) =   14
Number of partial waves in the asymptotic region (npasym) =   13
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  211
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   14
Higest l used in the asymptotic potential (lpzb) =   28
Maximum L used in the homogeneous solution (LMaxHomo) =   14
Number of partial waves in the homogeneous solution (npHomo) =   13
Time Now =         1.6466  Delta time =         0.0125 Energy independent setup

Compute solution for E =    0.5000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.30400000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.83266727E-15
 i =  2  lval =   3  stpote =  0.20281459E-18
 i =  3  lval =   3  stpote =  0.79928093E-18
 i =  4  lval =   4  stpote =  0.18264481E-03
For potential     2
 i =  1  exps = -0.62422985E+02 -0.20000000E+01  stpote = -0.20743955E-15
 i =  2  exps = -0.62422985E+02 -0.20000000E+01  stpote = -0.20725113E-15
 i =  3  exps = -0.62422985E+02 -0.20000000E+01  stpote = -0.20707334E-15
 i =  4  exps = -0.62422985E+02 -0.20000000E+01  stpote = -0.20691307E-15
For potential     3
 i =  1  lvals =   6   6  stpote = -0.21684043E-18  second term =  0.00000000E+00
 i =  2  lvals =   6   6  stpote = -0.34087294E-19  second term =  0.00000000E+00
 i =  3  lvals =   6   6  stpote =  0.20971189E-19  second term =  0.00000000E+00
 i =  4  lvals =   7   9  stpote = -0.43817023E-05  second term = -0.43817023E-05
Number of asymptotic regions =      12
Final point in integration =   0.17342652E+03 Angstroms
Time Now =         4.9647  Delta time =         3.3181 End SolveHomo
      Final k matrix
     ROW  1
  (-0.12761044E+00, 0.16559405E-01) ( 0.85723219E-03,-0.10148596E-03)
  (-0.14118661E-03, 0.18488975E-04) (-0.61200921E-06, 0.15416989E-06)
  (-0.22825565E-07, 0.86793536E-08) ( 0.26369476E-09,-0.20377850E-10)
  (-0.19052005E-10, 0.13408821E-10) ( 0.60600724E-12,-0.22974547E-12)
     ROW  2
  ( 0.85723218E-03,-0.10148596E-03) ( 0.11367955E-01, 0.13106370E-03)
  ( 0.10310468E-02, 0.16834740E-04) ( 0.87312320E-04, 0.11367575E-05)
  (-0.24071847E-06,-0.57476810E-07) ( 0.23257195E-08,-0.77078591E-10)
  (-0.21132500E-08,-0.18105034E-08) ( 0.59230251E-10,-0.55546522E-11)
     ROW  3
  (-0.14118660E-03, 0.18488976E-04) ( 0.10310468E-02, 0.16834740E-04)
  ( 0.50763446E-02, 0.26855282E-04) ( 0.15364016E-05, 0.10622505E-06)
  (-0.40837019E-04,-0.25100485E-06) (-0.95739197E-07,-0.40050294E-08)
  ( 0.75253986E-09,-0.35729389E-10) (-0.63140890E-09,-0.53148483E-09)
     ROW  4
  (-0.61240704E-06, 0.15396958E-06) ( 0.87312328E-04, 0.11367828E-05)
  ( 0.15364010E-05, 0.10622366E-06) ( 0.16373772E-02, 0.27090585E-05)
  (-0.14142514E-03,-0.38133393E-06) ( 0.15675336E-06,-0.11147474E-07)
  (-0.20452566E-04,-0.44094661E-07) (-0.27298272E-07,-0.27569737E-08)
     ROW  5
  (-0.22837054E-07, 0.86714127E-08) (-0.24071820E-06,-0.57475853E-07)
  (-0.40837019E-04,-0.25100491E-06) (-0.14142514E-03,-0.38133393E-06)
  ( 0.10584473E-02, 0.11492946E-05) ( 0.84535860E-04, 0.15061724E-06)
  ( 0.20388380E-06, 0.19553808E-08) ( 0.12930931E-04, 0.18645401E-07)
     ROW  6
  ( 0.26378123E-09,-0.20266537E-10) ( 0.23257188E-08,-0.77089052E-10)
  (-0.95739197E-07,-0.40050285E-08) ( 0.15675336E-06,-0.11147474E-07)
  ( 0.84535860E-04, 0.15061724E-06) ( 0.72349568E-03, 0.53110905E-06)
  (-0.21414743E-04,-0.26545083E-07) ( 0.10689776E-06, 0.55054969E-09)
     ROW  7
  (-0.19063183E-10, 0.13404897E-10) (-0.21132495E-08,-0.18105025E-08)
  ( 0.75253983E-09,-0.35729442E-10) (-0.20452566E-04,-0.44094661E-07)
  ( 0.20388380E-06, 0.19553808E-08) (-0.21414743E-04,-0.26545083E-07)
  ( 0.51692395E-03, 0.26997021E-06) ( 0.42689113E-04, 0.38363474E-07)
     ROW  8
  ( 0.60630666E-12,-0.22949925E-12) ( 0.59230238E-10,-0.55546825E-11)
  (-0.63140890E-09,-0.53148483E-09) (-0.27298272E-07,-0.27569737E-08)
  ( 0.12930931E-04, 0.18645401E-07) ( 0.10689776E-06, 0.55054969E-09)
  ( 0.42689113E-04, 0.38363474E-07) ( 0.38175220E-03, 0.14886714E-06)
 eigenphases
 -0.1290437E+00  0.3690656E-03  0.5265746E-03  0.7044404E-03  0.1046645E-02
  0.1670058E-02  0.4912794E-02  0.1153928E-01
 eigenphase sum-0.108275E+00  scattering length=   0.56703
 eps+pi 0.303332E+01  eps+2*pi 0.617491E+01

MaxIter =   7 c.s. =      1.60123239 angs^2  rmsk=     0.00000000
Time Now =        30.3343  Delta time =        25.3696 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13290000E+02  eV
 Do E =  0.10000000E+02 eV (  0.36749326E+00 AU)
Time Now =        30.3669  Delta time =         0.0327 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = A1    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.30400000E+02  au
Number of integration regions used =    64
Number of partial waves (np) =    15
Number of asymptotic solutions on the right (NAsymR) =     8
Number of asymptotic solutions on the left (NAsymL) =     8
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     8
Maximum in the asymptotic region (lpasym) =   14
Number of partial waves in the asymptotic region (npasym) =   13
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  211
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   14
Higest l used in the asymptotic potential (lpzb) =   28
Maximum L used in the homogeneous solution (LMaxHomo) =   14
Number of partial waves in the homogeneous solution (npHomo) =   13
Time Now =        30.3776  Delta time =         0.0107 Energy independent setup

Compute solution for E =   10.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.30400000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.83266727E-15
 i =  2  lval =   3  stpote =  0.20281459E-18
 i =  3  lval =   3  stpote =  0.79928093E-18
 i =  4  lval =   4  stpote =  0.18264481E-03
For potential     2
 i =  1  exps = -0.62422985E+02 -0.20000000E+01  stpote = -0.12474517E-15
 i =  2  exps = -0.62422985E+02 -0.20000000E+01  stpote = -0.12461093E-15
 i =  3  exps = -0.62422985E+02 -0.20000000E+01  stpote = -0.12448320E-15
 i =  4  exps = -0.62422985E+02 -0.20000000E+01  stpote = -0.12436717E-15
For potential     3
 i =  1  lvals =   6   6  stpote = -0.21684043E-18  second term =  0.00000000E+00
 i =  2  lvals =   6   6  stpote = -0.34087294E-19  second term =  0.00000000E+00
 i =  3  lvals =   6   6  stpote =  0.20971189E-19  second term =  0.00000000E+00
 i =  4  lvals =   7   9  stpote = -0.43817023E-05  second term = -0.43817023E-05
Number of asymptotic regions =      24
Final point in integration =   0.82011193E+02 Angstroms
Time Now =        34.2504  Delta time =         3.8727 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.12809558E+00, 0.80288040E+00) ( 0.35376923E+00,-0.10258096E+00)
  (-0.69570499E-01, 0.36177584E-01) (-0.51587056E-02, 0.18059899E-02)
  (-0.81090418E-03, 0.24225409E-03) ( 0.41239354E-04,-0.78173040E-05)
  (-0.13153753E-04, 0.27162404E-05) ( 0.18922667E-05,-0.84258094E-07)
     ROW  2
  ( 0.35376923E+00,-0.10258096E+00) ( 0.64074791E-01, 0.79254754E+00)
  ( 0.18087613E-01,-0.15547185E+00) ( 0.47917656E-04,-0.11527641E-01)
  (-0.88062458E-04,-0.18091250E-02) (-0.69534786E-05, 0.84780742E-04)
  (-0.41898974E-05,-0.28708385E-04) ( 0.21281804E-06, 0.38325571E-05)
     ROW  3
  (-0.69570499E-01, 0.36177584E-01) ( 0.18087613E-01,-0.15547185E+00)
  ( 0.11441447E+00, 0.45849347E-01) ( 0.15004841E-02, 0.25603386E-02)
  ( 0.15715151E-03, 0.37998942E-03) (-0.85270420E-04,-0.28545931E-04)
  ( 0.11191888E-04, 0.66751576E-05) (-0.28113974E-05,-0.11009976E-05)
     ROW  4
  (-0.51587056E-02, 0.18059899E-02) ( 0.47917655E-04,-0.11527641E-01)
  ( 0.15004841E-02, 0.25603386E-02) ( 0.33950336E-01, 0.13312915E-02)
  (-0.22866890E-02,-0.10026428E-03) (-0.15252824E-04,-0.55672542E-05)
  (-0.29118208E-03,-0.12592194E-04) (-0.13721836E-04,-0.13551028E-05)
     ROW  5
  (-0.81090418E-03, 0.24225409E-03) (-0.88062458E-04,-0.18091250E-02)
  ( 0.15715151E-03, 0.37998942E-03) (-0.22866890E-02,-0.10026428E-03)
  ( 0.21468131E-01, 0.47293743E-03) ( 0.15423077E-02, 0.55348192E-04)
  ( 0.41144688E-04, 0.15908268E-05) ( 0.21108932E-03, 0.62386245E-05)
     ROW  6
  ( 0.41239356E-04,-0.78173044E-05) (-0.69534801E-05, 0.84780741E-04)
  (-0.85270419E-04,-0.28545931E-04) (-0.15252823E-04,-0.55672542E-05)
  ( 0.15423077E-02, 0.55348192E-04) ( 0.14516736E-01, 0.21336419E-03)
  (-0.40701744E-03,-0.10065308E-04) ( 0.16341086E-04, 0.44370319E-06)
     ROW  7
  (-0.13153747E-04, 0.27162321E-05) (-0.41898484E-05,-0.28708409E-04)
  ( 0.11191881E-04, 0.66751647E-05) (-0.29118208E-03,-0.12592194E-04)
  ( 0.41144687E-04, 0.15908268E-05) (-0.40701744E-03,-0.10065308E-04)
  ( 0.10393748E-01, 0.10898097E-03) ( 0.81571291E-03, 0.14744348E-04)
     ROW  8
  ( 0.18922664E-05,-0.84257280E-07) ( 0.21281177E-06, 0.38325612E-05)
  (-0.28113967E-05,-0.11009988E-05) (-0.13721836E-04,-0.13551029E-05)
  ( 0.21108932E-03, 0.62386244E-05) ( 0.16341086E-04, 0.44370319E-06)
  ( 0.81571291E-03, 0.14744348E-04) ( 0.76711720E-02, 0.59989434E-04)
 eigenphases
 -0.1287117E+01  0.7441247E-02  0.1057380E-01  0.1422414E-01  0.2140411E-01
  0.3436184E-01  0.1205879E+00  0.9969793E+00
 eigenphase sum-0.815444E-01  scattering length=   0.09533
 eps+pi 0.306005E+01  eps+2*pi 0.620164E+01

MaxIter =   7 c.s. =      7.86851516 angs^2  rmsk=     0.00000000
Time Now =        72.9968  Delta time =        38.7464 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13290000E+02  eV
 Do E =  0.15000000E+02 eV (  0.55123989E+00 AU)
Time Now =        73.0244  Delta time =         0.0277 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = A1    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.30400000E+02  au
Number of integration regions used =    64
Number of partial waves (np) =    15
Number of asymptotic solutions on the right (NAsymR) =     8
Number of asymptotic solutions on the left (NAsymL) =     8
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     8
Maximum in the asymptotic region (lpasym) =   14
Number of partial waves in the asymptotic region (npasym) =   13
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  211
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   14
Higest l used in the asymptotic potential (lpzb) =   28
Maximum L used in the homogeneous solution (LMaxHomo) =   14
Number of partial waves in the homogeneous solution (npHomo) =   13
Time Now =        73.0351  Delta time =         0.0107 Energy independent setup

Compute solution for E =   15.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.30400000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.83266727E-15
 i =  2  lval =   3  stpote =  0.20281459E-18
 i =  3  lval =   3  stpote =  0.79928093E-18
 i =  4  lval =   4  stpote =  0.18264481E-03
For potential     2
 i =  1  exps = -0.62422985E+02 -0.20000000E+01  stpote = -0.10236820E-15
 i =  2  exps = -0.62422985E+02 -0.20000000E+01  stpote = -0.10226083E-15
 i =  3  exps = -0.62422985E+02 -0.20000000E+01  stpote = -0.10215920E-15
 i =  4  exps = -0.62422985E+02 -0.20000000E+01  stpote = -0.10206731E-15
For potential     3
 i =  1  lvals =   6   6  stpote = -0.21684043E-18  second term =  0.00000000E+00
 i =  2  lvals =   6   6  stpote = -0.34087294E-19  second term =  0.00000000E+00
 i =  3  lvals =   6   6  stpote =  0.20971189E-19  second term =  0.00000000E+00
 i =  4  lvals =   7   9  stpote = -0.43817023E-05  second term = -0.43817023E-05
Number of asymptotic regions =      26
Final point in integration =   0.74105983E+02 Angstroms
Time Now =        76.9072  Delta time =         3.8721 End SolveHomo
      Final k matrix
     ROW  1
  ( 0.35177215E+00, 0.62379956E+00) ( 0.29973627E+00,-0.11793425E+00)
  (-0.69191096E-01, 0.48239606E-01) (-0.73807625E-02, 0.29038326E-02)
  (-0.14533349E-02, 0.45606295E-03) ( 0.94429435E-04,-0.16585368E-04)
  (-0.35541822E-04, 0.53732767E-05) ( 0.62112497E-05, 0.29876677E-07)
     ROW  2
  ( 0.29973627E+00,-0.11793425E+00) (-0.13869835E+00, 0.78644370E+00)
  ( 0.88800048E-01,-0.19151683E+00) ( 0.59274873E-02,-0.18704174E-01)
  ( 0.11634655E-02,-0.34532668E-02) (-0.11070908E-03, 0.18459492E-03)
  ( 0.20763506E-04,-0.76927673E-04) (-0.50784095E-05, 0.11384949E-04)
     ROW  3
  (-0.69191096E-01, 0.48239606E-01) ( 0.88800048E-01,-0.19151683E+00)
  ( 0.15438957E+00, 0.82340737E-01) ( 0.28119010E-02, 0.58404466E-02)
  ( 0.15017572E-02, 0.12663858E-02) (-0.31179744E-03,-0.11392022E-03)
  ( 0.42103939E-04, 0.28494261E-04) (-0.12949784E-04,-0.54123343E-05)
     ROW  4
  (-0.73807625E-02, 0.29038326E-02) ( 0.59274873E-02,-0.18704174E-01)
  ( 0.28119010E-02, 0.58404466E-02) ( 0.53383380E-01, 0.33563308E-02)
  (-0.23047305E-02,-0.10420984E-03) (-0.40987419E-04,-0.14132145E-04)
  (-0.21559841E-03,-0.13139268E-04) (-0.51586964E-04,-0.45298639E-05)
     ROW  5
  (-0.14533349E-02, 0.45606295E-03) ( 0.11634655E-02,-0.34532668E-02)
  ( 0.15017572E-02, 0.12663858E-02) (-0.23047305E-02,-0.10420984E-03)
  ( 0.32863478E-01, 0.11102853E-02) ( 0.20436420E-02, 0.11051440E-03)
  ( 0.12890959E-03, 0.62957125E-05) ( 0.24096758E-03, 0.11002906E-04)
     ROW  6
  ( 0.94429435E-04,-0.16585369E-04) (-0.11070908E-03, 0.18459492E-03)
  (-0.31179744E-03,-0.11392022E-03) (-0.40987419E-04,-0.14132145E-04)
  ( 0.20436420E-02, 0.11051440E-03) ( 0.21856425E-01, 0.48266311E-03)
  (-0.58069312E-03,-0.21506633E-04) ( 0.42256568E-04, 0.14019970E-05)
     ROW  7
  (-0.35541823E-04, 0.53732763E-05) ( 0.20763506E-04,-0.76927672E-04)
  ( 0.42103939E-04, 0.28494261E-04) (-0.21559841E-03,-0.13139268E-04)
  ( 0.12890959E-03, 0.62957125E-05) (-0.58069312E-03,-0.21506633E-04)
  ( 0.15644394E-01, 0.24662302E-03) ( 0.11684825E-02, 0.31783920E-04)
     ROW  8
  ( 0.62112498E-05, 0.29876646E-07) (-0.50784096E-05, 0.11384949E-04)
  (-0.12949784E-04,-0.54123343E-05) (-0.51586964E-04,-0.45298639E-05)
  ( 0.24096758E-03, 0.11002906E-04) ( 0.42256568E-04, 0.14019970E-05)
  ( 0.11684825E-02, 0.31783920E-04) ( 0.11530536E-01, 0.13530824E-03)
 eigenphases
 -0.1240088E+01  0.1121812E-01  0.1589556E-01  0.2154954E-01  0.3297991E-01
  0.5372058E-01  0.1829901E+00  0.8510128E+00
 eigenphase sum-0.707213E-01  scattering length=   0.06747
 eps+pi 0.307087E+01  eps+2*pi 0.621246E+01

MaxIter =   6 c.s. =      4.78110674 angs^2  rmsk=     0.00000000
Time Now =       115.5009  Delta time =        38.5936 End ScatStab

+ Command TotalCrossSection
+
Symmetry A1 -
        E (eV)      XS(angs^2)    EPS(radians)
       0.500000       1.601232      -0.108275
      10.000000       7.868515      -0.081544
      15.000000       4.781107      -0.070721

 Total Cross Sections

 Energy      Total Cross Section
   0.50000     1.60123
  10.00000     7.86852
  15.00000     4.78111
Time Now =       115.5057  Delta time =         0.0048 Finalize