Execution on login004

----------------------------------------------------------------------
ePolyScat Version E3
----------------------------------------------------------------------

Authors: R. R. Lucchese, N. Sanna, A. P. P. Natalense, and F. A. Gianturco
http://www.chem.tamu.edu/rgroup/lucchese/ePolyScat.E3.manual/manual.html
Please cite the following two papers when reporting results obtained with  this program
F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 100, 6464 (1994).
A. P. P. Natalense and R. R. Lucchese, J. Chem. Phys. 111, 5344 (1999).

----------------------------------------------------------------------

Starting at 2011-08-29  10:39:19.100 (GMT -0500)
Using    16 processors

----------------------------------------------------------------------


+ Start of Input Records
#
# input file for test02
#
# electron scattering from CH4 in T2 symmetry, static-exchange with orthogonalization
#
  LMax   15     # maximum l to be used for wave functions
  EMax  50.0    # EMax, maximum asymptotic energy in eV

  EngForm      # Energy formulas
   0 2
   3
   2.0 -1.0 1
   2.0 -1.0 1
   2.0 -1.0 1

  FegeEng 13.0   # Energy correction (in eV) used in the fege potential
  ScatContSym 'T2'  # Scattering symmetry
  LMaxK   4     # Maximum l in the K matirx

Convert '/g/home/rrl581a/Applications/ePolyScat.E3/tests/test02.g03' 'g03'
GetBlms
ExpOrb
GetPot
Scat 0.5
TotalCrossSection
+ End of input reached
+ Data Record LMax - 15
+ Data Record EMax - 50.0
+ Data Record EngForm
+ 0 2 / 3 / 2.0 -1.0 1 / 2.0 -1.0 1 / 2.0 -1.0 1
+ Data Record FegeEng - 13.0
+ Data Record ScatContSym - 'T2'
+ Data Record LMaxK - 4

+ Command Convert
+ '/g/home/rrl581a/Applications/ePolyScat.E3/tests/test02.g03' 'g03'

----------------------------------------------------------------------
g03cnv - read input from G03 output
----------------------------------------------------------------------

Expansion center is (in Angstroms) -
     0.0000000000   0.0000000000   0.0000000000
Command line = # HF/STO-3G SCF=TIGHT 6D 10F GFINPUT PUNCH=MO
CardFlag =    T
Normal Mode flag =    F
Selecting orbitals
from     1  to     5  number already selected     0
Number of orbitals selected is     5
Highest orbital read in is =    5
Time Now =         0.0792  Delta time =         0.0792 End g03cnv

Atoms found    5  Coordinates in Angstroms
Z =  6 ZS =  6 r =   0.0000000000   0.0000000000   0.0000000000
Z =  1 ZS =  1 r =   0.6254700000   0.6254700000   0.6254700000
Z =  1 ZS =  1 r =  -0.6254700000  -0.6254700000   0.6254700000
Z =  1 ZS =  1 r =   0.6254700000  -0.6254700000  -0.6254700000
Z =  1 ZS =  1 r =  -0.6254700000   0.6254700000  -0.6254700000
Maximum distance from expansion center is    1.0833458186

+ Command GetBlms
+

----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------

Found point group  Td
Reduce angular grid using nthd =  1  nphid =  4
Found point group for abelian subgroup D2
Time Now =         1.0663  Delta time =         0.9871 End GetPGroup
List of unique axes
  N  Vector                      Z   R
  1  0.00000  0.00000  1.00000
  2  0.57735  0.57735  0.57735   1  1.08335
  3 -0.57735 -0.57735  0.57735   1  1.08335
  4  0.57735 -0.57735 -0.57735   1  1.08335
  5 -0.57735  0.57735 -0.57735   1  1.08335
List of corresponding x axes
  N  Vector
  1  1.00000  0.00000  0.00000
  2  0.81650 -0.40825 -0.40825
  3  0.81650 -0.40825  0.40825
  4  0.81650  0.40825  0.40825
  5  0.81650  0.40825 -0.40825
Computed default value of LMaxA =   13
Determining angular grid in GetAxMax  LMax =   15  LMaxA =   13  LMaxAb =   30
MMax =    3  MMaxAbFlag =    1
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11  12  13  -1  -1
For axis     2  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3
For axis     3  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3
For axis     4  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3
For axis     5  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3
On the double L grid used for products
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19
  20  21  22  23  24  25  26  27  28  29  30
For axis     2  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
For axis     3  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
For axis     4  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
For axis     5  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is Td
LMax = =   15
 The dimension of each irreducable representation is
    A1    (  1)    A2    (  1)    E     (  2)    T1    (  3)    T2    (  3)
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     8    11    14
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A1        1         1         15       1  1  1
 A2        1         2          7       1  1  1
 E         1         3         20       1  1  1
 E         2         4         20       1  1  1
 T1        1         5         27      -1 -1  1
 T1        2         6         27      -1  1 -1
 T1        3         7         27       1 -1 -1
 T2        1         8         36      -1 -1  1
 T2        2         9         36      -1  1 -1
 T2        3        10         36       1 -1 -1
Time Now =         1.3344  Delta time =         0.2681 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
A1    1    0(   1)    1(   1)    2(   1)    3(   2)    4(   3)    5(   3)    6(   4)    7(   5)    8(   6)    9(   7)
          10(   8)   11(   9)   12(  11)   13(  12)
A2    1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   1)    7(   1)    8(   1)    9(   2)
          10(   3)   11(   3)   12(   4)   13(   5)
E     1    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   3)    6(   4)    7(   5)    8(   7)    9(   8)
          10(  10)   11(  12)   12(  14)   13(  16)
E     2    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   3)    6(   4)    7(   5)    8(   7)    9(   8)
          10(  10)   11(  12)   12(  14)   13(  16)
T1    1    0(   0)    1(   0)    2(   0)    3(   1)    4(   2)    5(   3)    6(   4)    7(   6)    8(   8)    9(  10)
          10(  12)   11(  15)   12(  18)   13(  21)
T1    2    0(   0)    1(   0)    2(   0)    3(   1)    4(   2)    5(   3)    6(   4)    7(   6)    8(   8)    9(  10)
          10(  12)   11(  15)   12(  18)   13(  21)
T1    3    0(   0)    1(   0)    2(   0)    3(   1)    4(   2)    5(   3)    6(   4)    7(   6)    8(   8)    9(  10)
          10(  12)   11(  15)   12(  18)   13(  21)
T2    1    0(   0)    1(   1)    2(   2)    3(   3)    4(   4)    5(   6)    6(   8)    7(  10)    8(  12)    9(  15)
          10(  18)   11(  21)   12(  24)   13(  28)
T2    2    0(   0)    1(   1)    2(   2)    3(   3)    4(   4)    5(   6)    6(   8)    7(  10)    8(  12)    9(  15)
          10(  18)   11(  21)   12(  24)   13(  28)
T2    3    0(   0)    1(   1)    2(   2)    3(   3)    4(   4)    5(   6)    6(   8)    7(  10)    8(  12)    9(  15)
          10(  18)   11(  21)   12(  24)   13(  28)

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is D2
LMax = =   30
 The dimension of each irreducable representation is
    A     (  1)    B1    (  1)    B2    (  1)    B3    (  1)
Abelian axes
    1       1.000000       0.000000       0.000000
    2       0.000000       1.000000       0.000000
    3       0.000000       0.000000       1.000000
Symmetry operation directions
  1       0.000000       0.000000       1.000000 ang =  0  1 type = 0 axis = 3
  2       0.000000       0.000000       1.000000 ang =  1  2 type = 2 axis = 3
  3       1.000000       0.000000       0.000000 ang =  1  2 type = 2 axis = 1
  4       0.000000       1.000000       0.000000 ang =  1  2 type = 2 axis = 2
irep =    1  sym =A     1  eigs =   1   1   1   1
irep =    2  sym =B1    1  eigs =   1   1  -1  -1
irep =    3  sym =B2    1  eigs =   1  -1  -1   1
irep =    4  sym =B3    1  eigs =   1  -1   1  -1
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     2     3     4
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A         1         1        241       1  1  1
 B1        1         2        240       1 -1 -1
 B2        1         3        240      -1 -1  1
 B3        1         4        240      -1  1 -1
Time Now =         1.3561  Delta time =         0.0217 End SymGen

+ Command ExpOrb
+
In GetRMax, RMaxEps =  0.10000000E-05  RMax =    6.0716362768 Angs

----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------

Maximum R in the grid (RMax) =     6.07164 Angs
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) =   10.0
In regions controlled by the wave length (HFacWave) =   10.0
Factor used to control the minimum exponent at each center (MinExpFac) =  300.0
Maximum asymptotic kinetic energy (EMAx) =  50.00000 eV
Maximum step size (MaxStep) =   6.07164 Angs
Factor to increase grid by (GridFac) =     1

    1  Center at =     0.00000 Angs  Alpha Max = 0.10800E+05
    2  Center at =     1.08335 Angs  Alpha Max = 0.30000E+03

Generated Grid

  irg  nin  ntot      step Angs     R end Angs
    1    8     8    0.50920E-03     0.00407
    2    8    16    0.54286E-03     0.00842
    3    8    24    0.66917E-03     0.01377
    4    8    32    0.10153E-02     0.02189
    5    8    40    0.16142E-02     0.03481
    6    8    48    0.25663E-02     0.05534
    7    8    56    0.40801E-02     0.08798
    8    8    64    0.64868E-02     0.13987
    9    8    72    0.10071E-01     0.22044
   10    8    80    0.11697E-01     0.31402
   11    8    88    0.12338E-01     0.41272
   12    8    96    0.11651E-01     0.50593
   13    8   104    0.11293E-01     0.59627
   14    8   112    0.12366E-01     0.69520
   15    8   120    0.14418E-01     0.81054
   16    8   128    0.12423E-01     0.90993
   17    8   136    0.78984E-02     0.97311
   18    8   144    0.50206E-02     1.01328
   19    8   152    0.36334E-02     1.04235
   20    8   160    0.31364E-02     1.06744
   21    8   168    0.19887E-02     1.08335
   22    8   176    0.30552E-02     1.10779
   23    8   184    0.32571E-02     1.13384
   24    8   192    0.40150E-02     1.16596
   25    8   200    0.60918E-02     1.21470
   26    8   208    0.96851E-02     1.29218
   27    8   216    0.15398E-01     1.41536
   28    8   224    0.24481E-01     1.61121
   29    8   232    0.33415E-01     1.87853
   30    8   240    0.38959E-01     2.19021
   31    8   248    0.46359E-01     2.56107
   32    8   256    0.58081E-01     3.02572
   33    8   264    0.61727E-01     3.51954
   34    8   272    0.64635E-01     4.03662
   35    8   280    0.66998E-01     4.57261
   36    8   288    0.68947E-01     5.12418
   37    8   296    0.70575E-01     5.68878
   38    8   304    0.47857E-01     6.07164
Time Now =         1.3636  Delta time =         0.0075 End GenGrid

----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------

Maximum scattering l (lmax) =   15
Maximum scattering m (mmaxs) =   15
Maximum numerical integration l (lmaxi) =   30
Maximum numerical integration m (mmaxi) =   30
Maximum l to include in the asymptotic region (lmasym) =   13
Parameter used to determine the cutoff points (PCutRd) =  0.10000000E-07 au
Maximum E used to determine grid (in eV) =       50.00000
Print flag (iprnfg) =    0
lmasymtyts =   13
 Actual value of lmasym found =     13
Number of regions of the same l expansion (NAngReg) =   10
Angular regions
    1 L =    2  from (    1)         0.00051  to (    7)         0.00356
    2 L =    5  from (    8)         0.00407  to (   23)         0.01310
    3 L =    6  from (   24)         0.01377  to (   31)         0.02088
    4 L =    7  from (   32)         0.02189  to (   47)         0.05277
    5 L =    8  from (   48)         0.05534  to (   55)         0.08390
    6 L =   10  from (   56)         0.08798  to (   63)         0.13338
    7 L =   11  from (   64)         0.13987  to (   71)         0.21037
    8 L =   13  from (   72)         0.22044  to (  111)         0.68283
    9 L =   15  from (  112)         0.69520  to (  232)         1.87853
   10 L =   13  from (  233)         1.91749  to (  304)         6.07164
There are     2 angular regions for computing spherical harmonics
    1 lval =   13
    2 lval =   15
Last grid points by processor WorkExp =     1.500
Proc id =   -1  Last grid point =       1
Proc id =    0  Last grid point =      64
Proc id =    1  Last grid point =      80
Proc id =    2  Last grid point =     104
Proc id =    3  Last grid point =     120
Proc id =    4  Last grid point =     136
Proc id =    5  Last grid point =     152
Proc id =    6  Last grid point =     160
Proc id =    7  Last grid point =     176
Proc id =    8  Last grid point =     192
Proc id =    9  Last grid point =     208
Proc id =   10  Last grid point =     224
Proc id =   11  Last grid point =     232
Proc id =   12  Last grid point =     256
Proc id =   13  Last grid point =     272
Proc id =   14  Last grid point =     288
Proc id =   15  Last grid point =     304
Time Now =         1.3714  Delta time =         0.0078 End AngGCt

----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------


 R of maximum density
     1  A1    1 at max irg =    7  r =   0.08798
     2  A1    1 at max irg =   15  r =   0.81054
     3  T2    1 at max irg =   17  r =   0.97311
     4  T2    2 at max irg =   17  r =   0.97311
     5  T2    3 at max irg =   17  r =   0.97311

Rotation coefficients for orbital     1  grp =    1 A1    1
     1  1.0000000000

Rotation coefficients for orbital     2  grp =    2 A1    1
     2  1.0000000000

Rotation coefficients for orbital     3  grp =    3 T2    1
     3  1.0000000000    4  0.0000000000    5  0.0000000000

Rotation coefficients for orbital     4  grp =    3 T2    2
     3  0.0000000000    4  1.0000000000    5  0.0000000000

Rotation coefficients for orbital     5  grp =    3 T2    3
     3  0.0000000000    4  0.0000000000    5  1.0000000000
Number of orbital groups and degeneracis are         3
  1  1  3
Number of orbital groups and number of electrons when fully occupied
         3
  2  2  6
Time Now =         1.5701  Delta time =         0.1987 End RotOrb

----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------

 First orbital group to expand (mofr) =    1
 Last orbital group to expand (moto) =    3
Orbital     1 of  A1    1 symmetry normalization integral =  0.99999999
Orbital     2 of  A1    1 symmetry normalization integral =  0.99999913
Orbital     3 of  T2    1 symmetry normalization integral =  0.99999813
Time Now =         1.5937  Delta time =         0.0237 End ExpOrb

+ Command GetPot
+

----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------

Total density =     10.00000000
Time Now =         1.5992  Delta time =         0.0055 End Den

----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------

 vasymp =  0.10000000E+02 facnorm =  0.10000000E+01
Time Now =         1.6151  Delta time =         0.0159 Electronic part
Time Now =         1.6162  Delta time =         0.0010 End StPot

+ Command Scat
+ 0.5

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+00 eV (  0.18374663E-01 AU)
Time Now =         1.6318  Delta time =         0.0156 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = T2    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =      F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    38
Number of partial waves (np) =    36
Number of asymptotic solutions on the right (NAsymR) =     4
Number of asymptotic solutions on the left (NAsymL) =     4
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     4
Maximum in the asymptotic region (lpasym) =   13
Number of partial waves in the asymptotic region (npasym) =   28
Number of orthogonality constraints (NOrthUse) =    1
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  183
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    4
Highest l used at large r (lpasym) =   13
Higest l used in the asymptotic potential (lpzb) =   26
Maximum L used in the homogeneous solution (LMaxHomo) =   13
Number of partial waves in the homogeneous solution (npHomo) =   28
Time Now =         1.6393  Delta time =         0.0075 Energy independent setup

Compute solution for E =    0.5000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.55511151E-15
 i =  2  lval =   3  stpote =  0.56016944E-18
 i =  3  lval =   3  stpote =  0.13430849E-17
 i =  4  lval =   4  stpote = -0.24256633E-03
For potential     2
 i =  1  exps = -0.45894919E+02 -0.20000000E+01  stpote = -0.55269986E-17
 i =  2  exps = -0.45894919E+02 -0.20000000E+01  stpote = -0.53028581E-17
 i =  3  exps = -0.45894919E+02 -0.20000000E+01  stpote = -0.50962839E-17
 i =  4  exps = -0.45894919E+02 -0.20000000E+01  stpote = -0.49141452E-17
For potential     3
Number of asymptotic regions =      14
Final point in integration =   0.10001501E+03 Angstroms
Time Now =         4.9818  Delta time =         3.3424 End SolveHomo
     REAL PART -  Final k matrix
     ROW  1
 -0.36297332E-01 0.80338345E-03 0.84299845E-04-0.18368588E-03
     ROW  2
  0.80338345E-03 0.77764211E-03 0.83176655E-03-0.19880030E-04
     ROW  3
  0.84299846E-04 0.83176655E-03-0.33389455E-04-0.76326157E-04
     ROW  4
 -0.18368588E-03-0.19880030E-04-0.76326157E-04 0.16112723E-04
 eigenphases
 -0.3629982E-01 -0.5546002E-03  0.1905345E-04  0.1314355E-02
 eigenphase sum-0.355210E-01  scattering length=   0.18537
 eps+pi 0.310607E+01  eps+2*pi 0.624766E+01

MaxIter =   5 c.s. =      0.12631405 angs^2  rmsk=     0.00000000
Time Now =         7.9307  Delta time =         2.9490 End ScatStab

+ Command TotalCrossSection
+
Symmetry T2 -
        E (eV)      XS(angs^2)    EPS(radians)
       0.500000       0.126314      -0.035521

 Total Cross Sections

 Energy      Total Cross Section
   0.50000     0.37894
Time Now =         7.9335  Delta time =         0.0028 Finalize
--------------------------------------------------------------------------
The OpenFabrics stack has reported a network error event.  Open MPI
will try to continue, but your job may end up failing.

  Local host:        node152
  MPI process PID:   24289
  Error number:      3 (IBV_EVENT_QP_ACCESS_ERR)

This error may indicate connectivity problems within the fabric;
please contact your system administrator.
--------------------------------------------------------------------------
[node152:24287] 1 more process has sent help message help-mpi-btl-openib.txt / of error event
[node152:24287] Set MCA parameter "orte_base_help_aggregate" to 0 to see all help / error messages