----------------------------------------------------------------------
ePolyScat Version E2
----------------------------------------------------------------------

Authors: R. R. Lucchese, N. Sanna, A. P. P. Natalense, and F. A. Gianturco
http://www.chem.tamu.edu/rgroup/lucchese/ePolyScat.E2.manual/manual.html
Please cite the following two papers when reporting results obtained with  this program
F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 100, 6464 (1994).
A. P. P. Natalense and R. R. Lucchese, J. Chem. Phys. 111, 5344 (1999).

----------------------------------------------------------------------

Starting at 2009-03-13  12:16:17.635 (GMT -0500)
Using    16 processors

----------------------------------------------------------------------


+ Start of Input Records
#
# input file for test34
#
# N2 molden SCF, (3-sigma-g)^-1 photoionization, find resonance
#
  LMax   22     # maximum l to be used for wave functions
  EMax  50.0    # EMax, maximum asymptotic energy in eV
  FegeEng 13.0   # Energy correction (in eV) used in the fege potential

 InitSym 'SG'      # Initial state symmetry
 InitSpinDeg 1     # Initial state spin degeneracy
 OrbOccInit 2 2 2 2 2 4  # Orbital occupation of initial state
 OrbOcc     2 2 2 2 1 4  # occupation of the orbital groups of target
 SpinDeg 1         # Spin degeneracy of the total scattering state (=1 singlet)
 TargSym 'SG'      # Symmetry of the target state
 TargSpinDeg 2     # Target spin degeneracy
 IPot 15.581    # ionization potentail

Convert '/scratch/rrl581a/ePolyScat.E2/tests/test34.molden' 'molden'
GetBlms
ExpOrb

 ScatSym     'SU'  # Scattering symmetry of total final state
 ScatContSym 'SU'  # Scattering symmetry of continuum electron

GenFormPhIon
DipoleOp
GetPot
  DPotEng  10.0  # Energy (in eV) for the local exchange potential
  ResSearchEng
  1                   # nengrb - number of energy step regions
  1. 1.     # first energy and step (in eV)
   20.          # final ending point, engrb(nengrb+1)
   10.                 # eendzi, largest imaginary part
   2.                # estpzi, imaginary energy step
GetDPot
ResSearch
#
+ End of input reached
+ Data Record LMax - 22
+ Data Record EMax - 50.0
+ Data Record FegeEng - 13.0
+ Data Record InitSym - 'SG'
+ Data Record InitSpinDeg - 1
+ Data Record OrbOccInit - 2 2 2 2 2 4
+ Data Record OrbOcc - 2 2 2 2 1 4
+ Data Record SpinDeg - 1
+ Data Record TargSym - 'SG'
+ Data Record TargSpinDeg - 2
+ Data Record IPot - 15.581

+ Command Convert
+ '/scratch/rrl581a/ePolyScat.E2/tests/test34.molden' 'molden'

----------------------------------------------------------------------
MoldenCnv - Molden (from Molpro) conversion program
----------------------------------------------------------------------

Expansion center is (in Angstroms) -
     0.0000000000   0.0000000000   0.0000000000
Convert from Angstroms to Bohr radii
Found    110 basis functions
Selecting orbitals
Number of orbitals selected is     7
Selecting    1   1 Ene =     -15.6842 Spin =Alpha Occup =   2.000000
Selecting    2   2 Ene =     -15.6806 Spin =Alpha Occup =   2.000000
Selecting    3   3 Ene =      -1.4752 Spin =Alpha Occup =   2.000000
Selecting    4   4 Ene =      -0.7786 Spin =Alpha Occup =   2.000000
Selecting    5   5 Ene =      -0.6350 Spin =Alpha Occup =   2.000000
Selecting    6   6 Ene =      -0.6161 Spin =Alpha Occup =   2.000000
Selecting    7   7 Ene =      -0.6161 Spin =Alpha Occup =   2.000000

Atoms found    2  Coordinates in Angstroms
Z =  7 ZS =  7 r =   0.0000000000   0.0000000000  -0.5470000000
Z =  7 ZS =  7 r =   0.0000000000   0.0000000000   0.5470000000
Maximum distance from expansion center is    0.5470000000

+ Command GetBlms
+

----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------

Found point group  DAh
Reduce angular grid using nthd =  2  nphid =  4
Found point group for abelian subgroup D2h
Time Now =         0.0666  Delta time =         0.0666 End GetPGroup
List of unique axes
  N  Vector                      Z   R
  1  0.00000  0.00000  1.00000   7  1.03368   7  1.03368
List of corresponding x axes
  N  Vector
  1  1.00000 -0.00000 -0.00000
Computed default value of LMaxA =    9
Determineing angular grid in GetAxMax  LMax =   22  LMaxA =    9  LMaxAb =   44
MMax =    3  MMaxAbFlag =    2
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9   3   3   3   3   3   3   3   3   3   3
   3   3   3
On the double L grid used for products
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  12
  12  12  12  12  12  12  12  12  12  12  12  12   6   6   6   6   6   6   6   6
   6   6   6   6   6

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is DAh
LMax = =   22
 The dimension of each irreducable representation is
    SG    (  1)    A2G   (  1)    B1G   (  1)    B2G   (  1)    PG    (  2)
    DG    (  2)    FG    (  2)    GG    (  2)    SU    (  1)    A2U   (  1)
    B1U   (  1)    B2U   (  1)    PU    (  2)    DU    (  2)    FU    (  2)
    GU    (  2)
 Number of symmetry operations in the abelian subgroup (excluding E) =    7
 The operations are -
    12    22    32     2     3    21    31
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 SG        1         1         12       1  1  1  1  1  1  1
 A2G       1         2          0       1 -1 -1  1  1 -1 -1
 B1G       1         3          2      -1  1 -1  1 -1  1 -1
 B2G       1         4          2      -1 -1  1  1 -1 -1  1
 PG        1         5         11      -1 -1  1  1 -1 -1  1
 PG        2         6         11      -1  1 -1  1 -1  1 -1
 DG        1         7         12       1 -1 -1  1  1 -1 -1
 DG        2         8         12       1  1  1  1  1  1  1
 FG        1         9         11      -1 -1  1  1 -1 -1  1
 FG        2        10         11      -1  1 -1  1 -1  1 -1
 GG        1        11          5       1 -1 -1  1  1 -1 -1
 GG        2        12          5       1  1  1  1  1  1  1
 SU        1        13         11       1 -1 -1 -1 -1  1  1
 A2U       1        14          0       1  1  1 -1 -1 -1 -1
 B1U       1        15          3      -1 -1  1 -1  1  1 -1
 B2U       1        16          3      -1  1 -1 -1  1 -1  1
 PU        1        17         12      -1 -1  1 -1  1  1 -1
 PU        2        18         12      -1  1 -1 -1  1 -1  1
 DU        1        19         11       1 -1 -1 -1 -1  1  1
 DU        2        20         11       1  1  1 -1 -1 -1 -1
 FU        1        21         12      -1 -1  1 -1  1  1 -1
 FU        2        22         12      -1  1 -1 -1  1 -1  1
 GU        1        23          5       1 -1 -1 -1 -1  1  1
 GU        2        24          5       1  1  1 -1 -1 -1 -1
Time Now =         2.8255  Delta time =         2.7589 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
SG    1    0(   1)    1(   1)    2(   2)    3(   2)    4(   3)    5(   3)    6(   4)    7(   4)    8(   5)    9(   5)
A2G   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   0)    7(   0)    8(   0)    9(   0)
B1G   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   1)    7(   1)    8(   2)    9(   2)
B2G   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   1)    7(   1)    8(   2)    9(   2)
PG    1    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)    6(   3)    7(   3)    8(   4)    9(   4)
PG    2    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)    6(   3)    7(   3)    8(   4)    9(   4)
DG    1    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)    6(   3)    7(   3)    8(   5)    9(   5)
DG    2    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)    6(   3)    7(   3)    8(   5)    9(   5)
FG    1    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   1)    6(   2)    7(   2)    8(   4)    9(   4)
FG    2    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   1)    6(   2)    7(   2)    8(   4)    9(   4)
GG    1    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   1)    6(   3)    7(   3)    8(   5)    9(   5)
GG    2    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   1)    6(   3)    7(   3)    8(   5)    9(   5)
SU    1    0(   0)    1(   1)    2(   1)    3(   2)    4(   2)    5(   3)    6(   3)    7(   4)    8(   4)    9(   5)
A2U   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   0)    7(   0)    8(   0)    9(   0)
B1U   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   1)    6(   1)    7(   2)    8(   2)    9(   3)
B2U   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   1)    6(   1)    7(   2)    8(   2)    9(   3)
PU    1    0(   0)    1(   1)    2(   1)    3(   2)    4(   2)    5(   3)    6(   3)    7(   4)    8(   4)    9(   6)
PU    2    0(   0)    1(   1)    2(   1)    3(   2)    4(   2)    5(   3)    6(   3)    7(   4)    8(   4)    9(   6)
DU    1    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   2)    6(   2)    7(   3)    8(   3)    9(   5)
DU    2    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   2)    6(   2)    7(   3)    8(   3)    9(   5)
FU    1    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   2)    6(   2)    7(   4)    8(   4)    9(   6)
FU    2    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   2)    6(   2)    7(   4)    8(   4)    9(   6)
GU    1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   1)    6(   1)    7(   3)    8(   3)    9(   5)
GU    2    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   1)    6(   1)    7(   3)    8(   3)    9(   5)

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is D2h
LMax = =   44
 The dimension of each irreducable representation is
    AG    (  1)    B1G   (  1)    B2G   (  1)    B3G   (  1)    AU    (  1)
    B1U   (  1)    B2U   (  1)    B3U   (  1)
Abelian axes
    1       1.000000      -0.000000       0.000000
    2       0.000000       1.000000      -0.000000
    3       0.000000       0.000000       1.000000
Symmetry operation directions
  1       0.000000       0.000000       1.000000 ang =  0  1 type = 0 axis = 3
  2       0.000000       0.000000       1.000000 ang =  1  2 type = 2 axis = 3
  3       1.000000      -0.000000       0.000000 ang =  1  2 type = 2 axis = 1
  4       0.000000       1.000000       0.000000 ang =  1  2 type = 2 axis = 2
  5       0.000000       0.000000       1.000000 ang =  1  2 type = 3 axis = 3
  6       0.000000       0.000000       1.000000 ang =  0  1 type = 1 axis = 3
  7       1.000000       0.000000       0.000000 ang =  0  1 type = 1 axis = 1
  8       0.000000       1.000000       0.000000 ang =  0  1 type = 1 axis = 2
irep =    1  sym =AG    1  eigs =   1   1   1   1   1   1   1   1
irep =    2  sym =B1G   1  eigs =   1   1  -1  -1   1   1  -1  -1
irep =    3  sym =B2G   1  eigs =   1  -1  -1   1   1  -1  -1   1
irep =    4  sym =B3G   1  eigs =   1  -1   1  -1   1  -1   1  -1
irep =    5  sym =AU    1  eigs =   1   1   1   1  -1  -1  -1  -1
irep =    6  sym =B1U   1  eigs =   1   1  -1  -1  -1  -1   1   1
irep =    7  sym =B2U   1  eigs =   1  -1  -1   1  -1   1   1  -1
irep =    8  sym =B3U   1  eigs =   1  -1   1  -1  -1   1  -1   1
 Number of symmetry operations in the abelian subgroup (excluding E) =    7
 The operations are -
     2     3     4     5     6     7     8
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 AG        1         1        125       1  1  1  1  1  1  1
 B1G       1         2        102       1 -1 -1  1  1 -1 -1
 B2G       1         3        102      -1 -1  1  1 -1 -1  1
 B3G       1         4        102      -1  1 -1  1 -1  1 -1
 AU        1         5         96       1  1  1 -1 -1 -1 -1
 B1U       1         6        118       1 -1 -1 -1 -1  1  1
 B2U       1         7        105      -1 -1  1 -1  1  1 -1
 B3U       1         8        105      -1  1 -1 -1  1 -1  1
Time Now =         2.8461  Delta time =         0.0206 End SymGen

+ Command ExpOrb
+
In GetRMax, RMaxEps =  0.10000000E-05  RMax =    9.6359862155 Angs

----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------

Maximum R in the grid (RMax) =     9.63599 Angs
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) =   10.0
In regions controlled by the wave length (HFacWave) =   10.0
Factor used to control the minimum exponent at each center (MinExpFac) =  300.0
Maximum asymptotic kinetic energy (EMAx) =  50.00000 eV
Maximum step size (MaxStep) =   9.63599 Angs
Factor to increase grid by (GridFac) =     1

    1  Center at =     0.00000 Angs  Alpha Max = 0.10000E+01
    2  Center at =     0.54700 Angs  Alpha Max = 0.14700E+05

Generated Grid

  irg  nin  ntot      step Angs     R end Angs
    1    8     8    0.18998E-02     0.01520
    2    8    16    0.26749E-02     0.03660
    3    8    24    0.43054E-02     0.07104
    4    8    32    0.57696E-02     0.11720
    5    8    40    0.67259E-02     0.17101
    6    8    48    0.68378E-02     0.22571
    7    8    56    0.62927E-02     0.27605
    8    8    64    0.55946E-02     0.32081
    9    8    72    0.49428E-02     0.36035
   10    8    80    0.49699E-02     0.40011
   11    8    88    0.55183E-02     0.44425
   12    8    96    0.46796E-02     0.48169
   13    8   104    0.29745E-02     0.50549
   14    8   112    0.18907E-02     0.52061
   15    8   120    0.12018E-02     0.53023
   16    8   128    0.76392E-03     0.53634
   17    8   136    0.53578E-03     0.54062
   18    8   144    0.45350E-03     0.54425
   19    8   152    0.34340E-03     0.54700
   20    8   160    0.43646E-03     0.55049
   21    8   168    0.46530E-03     0.55421
   22    8   176    0.57358E-03     0.55880
   23    8   184    0.87025E-03     0.56576
   24    8   192    0.13836E-02     0.57683
   25    8   200    0.21997E-02     0.59443
   26    8   208    0.34972E-02     0.62241
   27    8   216    0.55601E-02     0.66689
   28    8   224    0.88398E-02     0.73761
   29    8   232    0.10173E-01     0.81899
   30    8   240    0.11296E-01     0.90936
   31    8   248    0.15091E-01     1.03009
   32    8   256    0.21623E-01     1.20307
   33    8   264    0.32069E-01     1.45962
   34    8   272    0.42541E-01     1.79995
   35    8   280    0.47749E-01     2.18194
   36    8   288    0.52186E-01     2.59943
   37    8   296    0.55941E-01     3.04696
   38    8   304    0.59116E-01     3.51989
   39    8   312    0.61806E-01     4.01434
   40    8   320    0.64096E-01     4.52711
   41    8   328    0.66056E-01     5.05556
   42    8   336    0.67743E-01     5.59750
   43    8   344    0.69206E-01     6.15115
   44    8   352    0.70482E-01     6.71501
   45    8   360    0.71602E-01     7.28782
   46    8   368    0.72590E-01     7.86855
   47    8   376    0.73468E-01     8.45629
   48    8   384    0.74251E-01     9.05029
   49    8   392    0.73212E-01     9.63599
Time Now =         2.9458  Delta time =         0.0997 End GenGrid

----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------

Maximum scattering l (lmax) =   22
Maximum scattering m (mmaxs) =   22
Maximum numerical integration l (lmaxi) =   44
Maximum numerical integration m (mmaxi) =   44
Maximum l to include in the asymptotic region (lmasym) =    9
Parameter used to determine the cutoff points (PCutRd) =  0.10000000E-07 au
Maximum E used to determine grid (in eV) =       50.00000
Print flag (iprnfg) =    0
lmasymtyts =    8
 Actual value of lmasym found =      9
Number of regions of the same l expansion (NAngReg) =    9
Angular regions
    1 L =    2  from (    1)         0.00190  to (    7)         0.01330
    2 L =    4  from (    8)         0.01520  to (   15)         0.03392
    3 L =    6  from (   16)         0.03660  to (   23)         0.06674
    4 L =    7  from (   24)         0.07104  to (   31)         0.11143
    5 L =    9  from (   32)         0.11720  to (   47)         0.21887
    6 L =   17  from (   48)         0.22571  to (   63)         0.31521
    7 L =   22  from (   64)         0.32081  to (  240)         0.90936
    8 L =   17  from (  241)         0.92445  to (  264)         1.45962
    9 L =    9  from (  265)         1.50216  to (  392)         9.63599
Angular regions for computing spherical harmonics
    1 lval =    9
    2 lval =   22
Last grid points by processor WorkExp =     1.500
Proc id =   -1  Last grid point =       1
Proc id =    0  Last grid point =      64
Proc id =    1  Last grid point =      80
Proc id =    2  Last grid point =      96
Proc id =    3  Last grid point =     112
Proc id =    4  Last grid point =     128
Proc id =    5  Last grid point =     144
Proc id =    6  Last grid point =     160
Proc id =    7  Last grid point =     168
Proc id =    8  Last grid point =     184
Proc id =    9  Last grid point =     200
Proc id =   10  Last grid point =     216
Proc id =   11  Last grid point =     232
Proc id =   12  Last grid point =     248
Proc id =   13  Last grid point =     280
Proc id =   14  Last grid point =     336
Proc id =   15  Last grid point =     392
Time Now =         2.9556  Delta time =         0.0098 End AngGCt

----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------


 R of maximum density
     1  SG    1 at max irg =   20  r =   0.55049
     2  SU    1 at max irg =   20  r =   0.55049
     3  SG    1 at max irg =   19  r =   0.54700
     4  SU    1 at max irg =   30  r =   0.90936
     5  SG    1 at max irg =   30  r =   0.90936
     6  PU    1 at max irg =   27  r =   0.66689
     7  PU    2 at max irg =   27  r =   0.66689

Rotation coefficients for orbital     1  grp =    1 SG    1
     1  1.0000000000

Rotation coefficients for orbital     2  grp =    2 SU    1
     2  1.0000000000

Rotation coefficients for orbital     3  grp =    3 SG    1
     3  1.0000000000

Rotation coefficients for orbital     4  grp =    4 SU    1
     4  1.0000000000

Rotation coefficients for orbital     5  grp =    5 SG    1
     5  1.0000000000

Rotation coefficients for orbital     6  grp =    6 PU    1
     6  1.0000000000    7 -0.0000000000

Rotation coefficients for orbital     7  grp =    6 PU    2
     6  0.0000000000    7  1.0000000000
Number of orbital groups and degeneracis are         6
  1  1  1  1  1  2
Number of orbital groups and number of electrons when fully occupied
         6
  2  2  2  2  2  4
Time Now =         3.5066  Delta time =         0.5510 End RotOrb

----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------

 First orbital group to expand (mofr) =    1
 Last orbital group to expand (moto) =    6
Orbital     1 of  SG    1 symmetry normalization integral =  0.99799208
Orbital     2 of  SU    1 symmetry normalization integral =  0.99757112
Orbital     3 of  SG    1 symmetry normalization integral =  0.99989261
Orbital     4 of  SU    1 symmetry normalization integral =  0.99989735
Orbital     5 of  SG    1 symmetry normalization integral =  0.99999034
Orbital     6 of  PU    1 symmetry normalization integral =  0.99999965
Time Now =         5.1198  Delta time =         1.6132 End ExpOrb
+ Data Record ScatSym - 'SU'
+ Data Record ScatContSym - 'SU'

+ Command GenFormPhIon
+

----------------------------------------------------------------------
SymProd - Construct products of symmetry types
----------------------------------------------------------------------

Number of sets of degenerate orbitals =    6
Set    1  has degeneracy     1
Orbital     1  is num     1  type =   1  name - SG    1
Set    2  has degeneracy     1
Orbital     1  is num     2  type =  13  name - SU    1
Set    3  has degeneracy     1
Orbital     1  is num     3  type =   1  name - SG    1
Set    4  has degeneracy     1
Orbital     1  is num     4  type =  13  name - SU    1
Set    5  has degeneracy     1
Orbital     1  is num     5  type =   1  name - SG    1
Set    6  has degeneracy     2
Orbital     1  is num     6  type =  17  name - PU    1
Orbital     2  is num     7  type =  18  name - PU    2
Orbital occupations by degenerate group
    1  SG       occ = 2
    2  SU       occ = 2
    3  SG       occ = 2
    4  SU       occ = 2
    5  SG       occ = 1
    6  PU       occ = 4
The dimension of each irreducable representation is
    SG    (  1)    A2G   (  1)    B1G   (  1)    B2G   (  1)    PG    (  2)
    DG    (  2)    FG    (  2)    GG    (  2)    SU    (  1)    A2U   (  1)
    B1U   (  1)    B2U   (  1)    PU    (  2)    DU    (  2)    FU    (  2)
    GU    (  2)
Symmetry of the continuum orbital is SU
Symmetry of the total state is SU
Spin degeneracy of the total state is =    1
Symmetry of the target state is SG
Spin degeneracy of the target state is =    2
Symmetry of the initial state is SG
Spin degeneracy of the initial state is =    1
Orbital occupations of initial state by degenerate group
    1  SG       occ = 2
    2  SU       occ = 2
    3  SG       occ = 2
    4  SU       occ = 2
    5  SG       occ = 2
    6  PU       occ = 4
Open shell symmetry types
    1  SG     iele =    1
Use only configuration of type SG
MS2 =    1  SDGN =    2
NumAlpha =    1
List of determinants found
    1:   1.00000   0.00000    1
Spin adapted configurations
Configuration    1
    1:   1.00000   0.00000    1
 Each irreducable representation is present the number of times indicated
    SG    (  1)

 representation SG     component     1  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1
Open shell symmetry types
    1  SG     iele =    1
    2  SU     iele =    1
Use only configuration of type SU
 Each irreducable representation is present the number of times indicated
    SU    (  1)

 representation SU     component     1  fun    1
Symmeterized Function from AddNewShell
    1:  -0.70711   0.00000    1    4
    2:   0.70711   0.00000    2    3
Open shell symmetry types
    1  SG     iele =    1
Use only configuration of type SG
MS2 =    1  SDGN =    2
NumAlpha =    1
List of determinants found
    1:   1.00000   0.00000    1
Spin adapted configurations
Configuration    1
    1:   1.00000   0.00000    1
 Each irreducable representation is present the number of times indicated
    SG    (  1)

 representation SG     component     1  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1
Direct product basis set
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   11
                             12   13   14   16
    2:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   11
                             12   13   14   15
Closed shell target
Time Now =         5.1231  Delta time =         0.0033 End SymProd

----------------------------------------------------------------------
MatEle - Program to compute Matrix Elements over Determinants
----------------------------------------------------------------------

Configuration     1
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   11
                             12   13   14   16
    2:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   11
                             12   13   14   15
Direct product Configuration Cont sym =    1  Targ sym =    1
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   11
                             12   13   14   16
    2:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   11
                             12   13   14   15
Overlap of Direct Product expansion and Symmeterized states
Symmetry of Continuum =    9
Symmetry of target =    1
Symmetry of total states =    9

Total symmetry component =    1

Cont      Target Component
Comp        1
   1   0.10000000E+01
Initial State Configuration
    1:   1.00000   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14
One electron matrix elements between initial and final states
    1:   -1.414213562    0.000000000  <    9|   15>

Reduced formula list
    1    5    1 -0.1414213562E+01
Time Now =         5.1234  Delta time =         0.0003 End MatEle

+ Command DipoleOp
+

----------------------------------------------------------------------
DipoleOp - Dipole Operator Program
----------------------------------------------------------------------

Number of orbitals in formula for the dipole operator (NOrbSel) =    1
Symmetry of the continuum orbital (iContSym) =     9 or SU
Symmetry of total final state (iTotalSym) =     9 or SU
Symmetry of the initial state (iInitSym) =     1 or SG
Symmetry of the ionized target state (iTargSym) =     1 or SG
List of unique symmetry types
In the product of the symmetry types SU    SG
 Each irreducable representation is present the number of times indicated
    SU    (  1)
In the product of the symmetry types SU    SG
 Each irreducable representation is present the number of times indicated
    SU    (  1)
In the product of the symmetry types SU    A2G
 Each irreducable representation is present the number of times indicated
    A2U   (  1)
In the product of the symmetry types SU    B1G
 Each irreducable representation is present the number of times indicated
    B1U   (  1)
In the product of the symmetry types SU    B2G
 Each irreducable representation is present the number of times indicated
    B2U   (  1)
In the product of the symmetry types SU    PG
 Each irreducable representation is present the number of times indicated
    PU    (  1)
In the product of the symmetry types SU    DG
 Each irreducable representation is present the number of times indicated
    DU    (  1)
In the product of the symmetry types SU    FG
 Each irreducable representation is present the number of times indicated
    FU    (  1)
In the product of the symmetry types SU    GG
 Each irreducable representation is present the number of times indicated
    GU    (  1)
In the product of the symmetry types SU    SU
 Each irreducable representation is present the number of times indicated
    SG    (  1)
Unique dipole matrix type     1 Dipole symmetry type =SU
     Final state symmetry type = SU     Target sym =SG
     Continuum type =SU
In the product of the symmetry types SU    A2U
 Each irreducable representation is present the number of times indicated
    A2G   (  1)
In the product of the symmetry types SU    B1U
 Each irreducable representation is present the number of times indicated
    B1G   (  1)
In the product of the symmetry types SU    B2U
 Each irreducable representation is present the number of times indicated
    B2G   (  1)
In the product of the symmetry types SU    PU
 Each irreducable representation is present the number of times indicated
    PG    (  1)
In the product of the symmetry types SU    DU
 Each irreducable representation is present the number of times indicated
    DG    (  1)
In the product of the symmetry types SU    FU
 Each irreducable representation is present the number of times indicated
    FG    (  1)
In the product of the symmetry types SU    GU
 Each irreducable representation is present the number of times indicated
    GG    (  1)
In the product of the symmetry types PU    SG
 Each irreducable representation is present the number of times indicated
    PU    (  1)
In the product of the symmetry types PU    SG
 Each irreducable representation is present the number of times indicated
    PU    (  1)
In the product of the symmetry types PU    A2G
 Each irreducable representation is present the number of times indicated
    PU    (  1)
In the product of the symmetry types PU    B1G
 Each irreducable representation is present the number of times indicated
    GU    (  1)
In the product of the symmetry types PU    B2G
 Each irreducable representation is present the number of times indicated
    GU    (  1)
In the product of the symmetry types PU    PG
 Each irreducable representation is present the number of times indicated
    SU    (  1)
    A2U   (  1)
    DU    (  1)
In the product of the symmetry types PU    DG
 Each irreducable representation is present the number of times indicated
    PU    (  1)
    FU    (  1)
In the product of the symmetry types PU    FG
 Each irreducable representation is present the number of times indicated
    DU    (  1)
    GU    (  1)
In the product of the symmetry types PU    GG
 Each irreducable representation is present the number of times indicated
    B1U   (  1)
    B2U   (  1)
    FU    (  1)
In the product of the symmetry types PU    SU
 Each irreducable representation is present the number of times indicated
    PG    (  1)
In the product of the symmetry types PU    A2U
 Each irreducable representation is present the number of times indicated
    PG    (  1)
In the product of the symmetry types PU    B1U
 Each irreducable representation is present the number of times indicated
    GG    (  1)
In the product of the symmetry types PU    B2U
 Each irreducable representation is present the number of times indicated
    GG    (  1)
In the product of the symmetry types PU    PU
 Each irreducable representation is present the number of times indicated
    SG    (  1)
    A2G   (  1)
    DG    (  1)
Unique dipole matrix type     2 Dipole symmetry type =PU
     Final state symmetry type = PU     Target sym =SG
     Continuum type =PU
In the product of the symmetry types PU    DU
 Each irreducable representation is present the number of times indicated
    PG    (  1)
    FG    (  1)
In the product of the symmetry types PU    FU
 Each irreducable representation is present the number of times indicated
    DG    (  1)
    GG    (  1)
In the product of the symmetry types PU    GU
 Each irreducable representation is present the number of times indicated
    B1G   (  1)
    B2G   (  1)
    FG    (  1)
In the product of the symmetry types SU    SG
 Each irreducable representation is present the number of times indicated
    SU    (  1)
In the product of the symmetry types PU    SG
 Each irreducable representation is present the number of times indicated
    PU    (  1)
In the product of the symmetry types PU    SG
 Each irreducable representation is present the number of times indicated
    PU    (  1)
Irreducible representation containing the dipole operator is SU
Number of different dipole operators in this representation is     1
In the product of the symmetry types SU    SG
 Each irreducable representation is present the number of times indicated
    SU    (  1)
Vector of the total symmetry
ie =    1  ij =    1
    1 (  0.10000000E+01, -0.00000000E+00)
Component Dipole Op Sym =  1 goes to Total Sym component   1 phase = 1.0

Dipole operator types by symmetry components (x=1, y=2, z=3)
sym comp =  1
  coefficients =  0.00000000  0.00000000  1.00000000

Formula for dipole operator

Dipole operator sym comp 1  index =    1
  1  Cont comp  1  Orb  5  Coef =  -1.4142135620
Symmetry type to write out (SymTyp) =SU
Time Now =        10.4420  Delta time =         5.3185 End DipoleOp

+ Command GetPot
+

----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------

Total density =     13.00000000
Time Now =        10.4506  Delta time =         0.0087 End Den

----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------

 vasymp =  0.13000000E+02 facnorm =  0.10000000E+01
Time Now =        10.4731  Delta time =         0.0225 Electronic part
Time Now =        10.4742  Delta time =         0.0010 End StPot
+ Data Record DPotEng - 10.0
+ Data Record ResSearchEng
+ 1 / 1. 1. / 20. / 10. / 2.

+ Command GetDPot
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.10000000E+02 eV (  0.36749326E+00 AU)
Time Now =        10.5118  Delta time =         0.0377 End Fege

----------------------------------------------------------------------
DPot - compute diabatic local potential
----------------------------------------------------------------------

Symmetry type of adibatic potential (symtps) =SU
For a linear molueule, use partial waves with m =    0
Positron flag =    F
Maximum L to include in the diagonal representation (LMaxA) =     9
Maximum np to to write out (nppx) =    5
Unit for plot data (iuvpot) =    0
General print flag (iprnfg) =    0
Charge at the origin is =    0
Charge =  1
Number of radial regions (nrlast) =   49
Found fege potential
Maximum l used in usual function (LMax) =   22
Time Now =        10.5330  Delta time =         0.0212 End DPot

+ Command ResSearch
+

----------------------------------------------------------------------
Resonance - program to find resonances
----------------------------------------------------------------------

iuwavf, unit for adiabatic wave function =    0
iuwavo, unit for spherical wave function =    0
iureng, unit to save energies on =    0
idstop, flag to indicate what calculations to do = 0000
Print flag =    0
Runge Kutta Factor =    4
Resonance search type (ResSearchType) =    0
Symmetry type of adibatic potential (symtps) =SU
Number of energy regions =    1
Region     1 starts at E =  0.10000000E+01 eV with step size =  0.10000000E+01  eV
End point of last region E =  0.20000000E+02 eV
Largest imaginary part =  0.10000000E+02 eV
Imaginary step size =  0.20000000E+01 eV
Charge on the molecule is     1
vmin = -0.15463969E+04 eV
Time Now =        10.5468  Delta time =         0.0138 Starting docalc
 Number of energies (neng) =    20
     E (eV)       Phase Sum        T sum
    1.0000000000  -0.13186863E+01   0.53023889E+02
    2.0000000000  -0.13548851E+01   0.27143568E+02
    3.0000000000  -0.13742882E+01   0.18424263E+02
    4.0000000000  -0.13745721E+01   0.14071552E+02
    5.0000000000  -0.13488443E+01   0.11568630E+02
    6.0000000000  -0.12835867E+01   0.10151936E+02
    7.0000000000  -0.11571262E+01   0.96118882E+01
    8.0000000000  -0.93774371E+00   0.99063806E+01
    9.0000000000  -0.60968628E+00   0.10477847E+02
   10.0000000000  -0.24131453E+00   0.99244697E+01
   11.0000000000   0.53613719E-01   0.82787045E+01
   12.0000000000   0.24523006E+00   0.66764593E+01
   13.0000000000   0.36156599E+00   0.54772515E+01
   14.0000000000   0.43139740E+00   0.46079392E+01
   15.0000000000   0.47294474E+00   0.39584099E+01
   16.0000000000   0.49683965E+00   0.34539178E+01
   17.0000000000   0.50935769E+00   0.30489193E+01
   18.0000000000   0.51433507E+00   0.27153121E+01
   19.0000000000   0.51418704E+00   0.24349200E+01
   20.0000000000   0.51045710E+00   0.21954476E+01
 Special Points
 eng =    1.00000 (eV)  phase = -0.13186863E+01  tsum =  0.53023889E+02 first
 eng =    4.00000 (eV)  phase = -0.13745721E+01  tsum =  0.14071552E+02 min
 eng =    7.00000 (eV)  phase = -0.11571262E+01  tsum =  0.96118882E+01 min T
 eng =    9.00000 (eV)  phase = -0.60968628E+00  tsum =  0.10477847E+02 max T
 eng =   18.00000 (eV)  phase =  0.51433507E+00  tsum =  0.27153121E+01 max
 eng =   20.00000 (eV)  phase =  0.51045710E+00  tsum =  0.21954476E+01 last
 Min - Max jumps
 mean eng =   11.00000  d eng =   14.00000  dphase =    1.88891
Time Now =        12.8994  Delta time =         2.3526 Begin resonance Search
The number of initial guesses of roots is       52

 Sorted roots on unphysical sheet of open channels
    1   0.1880075262336079E+01  -0.3804537908570523E+01  m2 =  0.357E-07  0.966E-08
    2   0.2181940967732411E+01  -0.4647613525569205E+01  m2 = -0.311E-04 -0.391E-04
    3   0.3924247827017213E+01  -0.5121159829487399E+01  m2 =  0.190E-06 -0.432E-06
    4   0.4590060434410439E+01  -0.5135745715234207E+01  m2 = -0.182E-07  0.360E-09
    5   0.5373774249833768E+01  -0.5360566242546384E+01  m2 =  0.344E-07 -0.640E-07
    6   0.6808928765842584E+01  -0.6797728123049576E+01  m2 = -0.175E-04 -0.167E-05
    7   0.8301838113469447E+01  -0.6741799117181085E+01  m2 = -0.551E-07 -0.339E-07
    8   0.9066805260961660E+01  -0.6772540178954443E+01  m2 = -0.258E-08  0.404E-07
    9   0.9302350760950052E+01  -0.2386692425720562E+01  m2 = -0.651E-13 -0.145E-12
   10   0.9994385508087259E+01  -0.7040906393546932E+01  m2 =  0.369E-07  0.250E-07
   11   0.1207339323453117E+02  -0.8380320478206398E+01  m2 =  0.408E-05 -0.354E-05
   12   0.1350827360651497E+02  -0.8399479742147010E+01  m2 =  0.149E-06  0.659E-07
   13   0.1416323844064825E+02  -0.8703626893066771E+01  m2 = -0.934E-07  0.116E-06
   14   0.1546458150252921E+02  -0.9221198925045144E+01  m2 = -0.249E-06 -0.120E-06
   15   0.1958459704931546E+02  -0.9943892464532491E+01  m2 = -0.656E-08  0.349E-09

 Selected roots on unphysical sheet of open channels
    1   0.9302350760950052E+01  -0.2386692425720562E+01  m2 = -0.651E-13 -0.145E-12

Selected roots for comparison
SelcRoots    1  9.302351 -2.386692 eV

Time Now =        24.0292  Delta time =        11.1298 End Resonance
Time Now =        24.0306  Delta time =         0.0014 Finalize