----------------------------------------------------------------------
ePolyScat Version E2
----------------------------------------------------------------------

Authors: R. R. Lucchese, N. Sanna, A. P. P. Natalense, and F. A. Gianturco
http://www.chem.tamu.edu/rgroup/lucchese/ePolyScat.E2.manual/manual.html
Please cite the following two papers when reporting results obtained with  this program
F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 100, 6464 (1994).
A. P. P. Natalense and R. R. Lucchese, J. Chem. Phys. 111, 5344 (1999).

----------------------------------------------------------------------

Starting at 2009-03-13  12:15:46.335 (GMT -0500)
Using    16 processors

----------------------------------------------------------------------


+ Start of Input Records
#
# input file for test32
#
# positron scattering from CH4 in A1 symmetry
#
  LMax   15     # maximum l to be used for wave functions
  EMax  50.0    # EMax, maximum asymptotic energy in eV
  EngForm 0 0   # no charge on the molecule and all orbitals are doubly occupied
  VCorr 'BN'
  AsyPol
   0.25  # SwitchD, distance where switching function is down to 0.1
   1     # nterm, number of terms needed to define asymptotic potential
   1     # center for polarization term 1 is for C atom
   1     # ittyp type of polarization term, = 1 for spherically symmetric
         # = 2 for reading in the full tensor
   17.50 # value of the spherical polarizability
   3     # icrtyp, flag to determine where r match is, 3 for second crossing
         # or at nearest approach
   0     # ilntyp, flag to determine what matching line is used, 0 - use
         # l = 0 radial function as matching function
  ScatContSym 'A1'  # Scattering symmetry
  LMaxK   3     # Maximum l in the K matirx

Convert '/scratch/rrl581a/ePolyScat.E2/tests/test32.g03' 'g03'
GetBlms
ExpOrb
GetPot
GrnType 1
ScatPos 0.1 0.5 1.0
TotalCrossSection
+ End of input reached
+ Data Record LMax - 15
+ Data Record EMax - 50.0
+ Data Record EngForm - 0 0
+ Data Record VCorr - 'BN'
+ Data Record AsyPol
+ 0.25 / 1 / 1 / 1 / 17.50 / 3 / 0
+ Data Record ScatContSym - 'A1'
+ Data Record LMaxK - 3

+ Command Convert
+ '/scratch/rrl581a/ePolyScat.E2/tests/test32.g03' 'g03'

----------------------------------------------------------------------
g03cnv - read input from G03 output
----------------------------------------------------------------------

Expansion center is (in Angstroms) -
     0.0000000000   0.0000000000   0.0000000000
CardFlag =    T
Normal Mode flag =    F
Selecting orbitals
from     1  to     5  number already selected     0
Number of orbitals selected is     5
Highest orbital read in is =    5
Time Now =         0.0440  Delta time =         0.0440 End g03cnv

Atoms found    5  Coordinates in Angstroms
Z =  6 ZS =  6 r =   0.0000000000   0.0000000000   0.0000000000
Z =  1 ZS =  1 r =   0.6254700000   0.6254700000   0.6254700000
Z =  1 ZS =  1 r =  -0.6254700000  -0.6254700000   0.6254700000
Z =  1 ZS =  1 r =   0.6254700000  -0.6254700000  -0.6254700000
Z =  1 ZS =  1 r =  -0.6254700000   0.6254700000  -0.6254700000
Maximum distance from expansion center is    1.0833458186

+ Command GetBlms
+

----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------

Found point group  Td
Reduce angular grid using nthd =  1  nphid =  4
Found point group for abelian subgroup D2
Time Now =         0.0485  Delta time =         0.0045 End GetPGroup
List of unique axes
  N  Vector                      Z   R
  1  0.00000  0.00000  1.00000
  2  0.57735  0.57735  0.57735   1  2.04723
  3 -0.57735 -0.57735  0.57735   1  2.04723
  4  0.57735 -0.57735 -0.57735   1  2.04723
  5 -0.57735  0.57735 -0.57735   1  2.04723
List of corresponding x axes
  N  Vector
  1  1.00000 -0.00000 -0.00000
  2  0.81650 -0.40825 -0.40825
  3  0.81650 -0.40825  0.40825
  4  0.81650  0.40825  0.40825
  5  0.81650  0.40825 -0.40825
Computed default value of LMaxA =   11
Determineing angular grid in GetAxMax  LMax =   15  LMaxA =   11  LMaxAb =   30
MMax =    3  MMaxAbFlag =    1
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11  12  13  -1  -1
For axis     2  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3
For axis     3  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3
For axis     4  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3
For axis     5  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3
On the double L grid used for products
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19
  20  21  22  23  24  25  26  27  28  29  30
For axis     2  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
For axis     3  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
For axis     4  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
For axis     5  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is Td
LMax = =   15
 The dimension of each irreducable representation is
    A1    (  1)    A2    (  1)    E     (  2)    T1    (  3)    T2    (  3)
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     8    11    14
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A1        1         1         15       1  1  1
 A2        1         2          7       1  1  1
 E         1         3         20       1  1  1
 E         2         4         20       1  1  1
 T1        1         5         27      -1 -1  1
 T1        2         6         27      -1  1 -1
 T1        3         7         27       1 -1 -1
 T2        1         8         36      -1 -1  1
 T2        2         9         36      -1  1 -1
 T2        3        10         36       1 -1 -1
Time Now =         0.5779  Delta time =         0.5294 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
A1    1    0(   1)    1(   1)    2(   1)    3(   2)    4(   3)    5(   3)    6(   4)    7(   5)    8(   6)    9(   7)
          10(   8)   11(   9)
A2    1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   1)    7(   1)    8(   1)    9(   2)
          10(   3)   11(   3)
E     1    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   3)    6(   4)    7(   5)    8(   7)    9(   8)
          10(  10)   11(  12)
E     2    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   3)    6(   4)    7(   5)    8(   7)    9(   8)
          10(  10)   11(  12)
T1    1    0(   0)    1(   0)    2(   0)    3(   1)    4(   2)    5(   3)    6(   4)    7(   6)    8(   8)    9(  10)
          10(  12)   11(  15)
T1    2    0(   0)    1(   0)    2(   0)    3(   1)    4(   2)    5(   3)    6(   4)    7(   6)    8(   8)    9(  10)
          10(  12)   11(  15)
T1    3    0(   0)    1(   0)    2(   0)    3(   1)    4(   2)    5(   3)    6(   4)    7(   6)    8(   8)    9(  10)
          10(  12)   11(  15)
T2    1    0(   0)    1(   1)    2(   2)    3(   3)    4(   4)    5(   6)    6(   8)    7(  10)    8(  12)    9(  15)
          10(  18)   11(  21)
T2    2    0(   0)    1(   1)    2(   2)    3(   3)    4(   4)    5(   6)    6(   8)    7(  10)    8(  12)    9(  15)
          10(  18)   11(  21)
T2    3    0(   0)    1(   1)    2(   2)    3(   3)    4(   4)    5(   6)    6(   8)    7(  10)    8(  12)    9(  15)
          10(  18)   11(  21)

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is D2
LMax = =   30
 The dimension of each irreducable representation is
    A     (  1)    B1    (  1)    B2    (  1)    B3    (  1)
Abelian axes
    1       1.000000       0.000000       0.000000
    2       0.000000       1.000000       0.000000
    3       0.000000       0.000000       1.000000
Symmetry operation directions
  1       0.000000       0.000000       1.000000 ang =  0  1 type = 0 axis = 3
  2       0.000000       0.000000       1.000000 ang =  1  2 type = 2 axis = 3
  3       1.000000       0.000000       0.000000 ang =  1  2 type = 2 axis = 1
  4       0.000000       1.000000       0.000000 ang =  1  2 type = 2 axis = 2
irep =    1  sym =A     1  eigs =   1   1   1   1
irep =    2  sym =B1    1  eigs =   1   1  -1  -1
irep =    3  sym =B2    1  eigs =   1  -1  -1   1
irep =    4  sym =B3    1  eigs =   1  -1   1  -1
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     2     3     4
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A         1         1        241       1  1  1
 B1        1         2        240       1 -1 -1
 B2        1         3        240      -1 -1  1
 B3        1         4        240      -1  1 -1
Time Now =         0.6014  Delta time =         0.0235 End SymGen

+ Command ExpOrb
+
In GetRMax, RMaxEps =  0.10000000E-05  RMax =    6.0697810263 Angs

----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------

Maximum R in the grid (RMax) =     6.06978 Angs
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) =   10.0
In regions controlled by the wave length (HFacWave) =   10.0
Factor used to control the minimum exponent at each center (MinExpFac) =  300.0
Maximum asymptotic kinetic energy (EMAx) =  50.00000 eV
Maximum step size (MaxStep) =   0.01058 Angs
Factor to increase grid by (GridFac) =     1

    1  Center at =     0.00000 Angs  Alpha Max = 0.10800E+05
    2  Center at =     1.08335 Angs  Alpha Max = 0.30000E+03

Generated Grid

  irg  nin  ntot      step Angs     R end Angs
    1    8     8    0.50920E-03     0.00407
    2    8    16    0.54286E-03     0.00842
    3    8    24    0.66917E-03     0.01377
    4    8    32    0.10153E-02     0.02189
    5    8    40    0.16142E-02     0.03481
    6    8    48    0.25663E-02     0.05534
    7    8    56    0.40801E-02     0.08798
    8    8    64    0.64868E-02     0.13987
    9    8    72    0.10071E-01     0.22044
   10   64   136    0.10584E-01     0.89779
   11    8   144    0.84583E-02     0.96545
   12    8   152    0.53694E-02     1.00841
   13    8   160    0.37587E-02     1.03848
   14    8   168    0.31773E-02     1.06390
   15    8   176    0.24310E-02     1.08335
   16    8   184    0.30552E-02     1.10779
   17    8   192    0.32571E-02     1.13384
   18    8   200    0.40150E-02     1.16596
   19    8   208    0.60918E-02     1.21470
   20    8   216    0.96851E-02     1.29218
   21   64   280    0.10584E-01     1.96953
   22   64   344    0.10584E-01     2.64687
   23   64   408    0.10584E-01     3.32422
   24   64   472    0.10584E-01     4.00157
   25   64   536    0.10584E-01     4.67891
   26   64   600    0.10584E-01     5.35626
   27   64   664    0.10584E-01     6.03361
   28    8   672    0.45217E-02     6.06978
Time Now =         0.6136  Delta time =         0.0123 End GenGrid

----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------

Maximum scattering l (lmax) =   15
Maximum scattering m (mmaxs) =   15
Maximum numerical integration l (lmaxi) =   30
Maximum numerical integration m (mmaxi) =   30
Maximum l to include in the asymptotic region (lmasym) =   11
Parameter used to determine the cutoff points (PCutRd) =  0.10000000E-07 au
Maximum E used to determine grid (in eV) =       50.00000
Print flag (iprnfg) =    0
lmasymtyts =   11
 Actual value of lmasym found =     11
Number of regions of the same l expansion (NAngReg) =    9
Angular regions
    1 L =    2  from (    1)         0.00051  to (    7)         0.00356
    2 L =    5  from (    8)         0.00407  to (   23)         0.01310
    3 L =    6  from (   24)         0.01377  to (   31)         0.02088
    4 L =    7  from (   32)         0.02189  to (   47)         0.05277
    5 L =    8  from (   48)         0.05534  to (   55)         0.08390
    6 L =   10  from (   56)         0.08798  to (   63)         0.13338
    7 L =   11  from (   64)         0.13987  to (  111)         0.63320
    8 L =   15  from (  112)         0.64378  to (  288)         2.05419
    9 L =   11  from (  289)         2.06478  to (  672)         6.06978
Angular regions for computing spherical harmonics
    1 lval =   11
    2 lval =   15
Last grid points by processor WorkExp =     1.500
Proc id =   -1  Last grid point =       1
Proc id =    0  Last grid point =      88
Proc id =    1  Last grid point =     128
Proc id =    2  Last grid point =     152
Proc id =    3  Last grid point =     184
Proc id =    4  Last grid point =     216
Proc id =    5  Last grid point =     240
Proc id =    6  Last grid point =     272
Proc id =    7  Last grid point =     304
Proc id =    8  Last grid point =     352
Proc id =    9  Last grid point =     400
Proc id =   10  Last grid point =     440
Proc id =   11  Last grid point =     488
Proc id =   12  Last grid point =     536
Proc id =   13  Last grid point =     584
Proc id =   14  Last grid point =     632
Proc id =   15  Last grid point =     672
Time Now =         0.6515  Delta time =         0.0379 End AngGCt

----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------


 R of maximum density
     1  A1    1 at max irg =    7  r =   0.08798
     2  A1    1 at max irg =   15  r =   0.72845
     3  T2    1 at max irg =   19  r =   1.00841
     4  T2    2 at max irg =   19  r =   1.00841
     5  T2    3 at max irg =   19  r =   1.00841

Rotation coefficients for orbital     1  grp =    1 A1    1
     1  1.0000000000

Rotation coefficients for orbital     2  grp =    2 A1    1
     2  1.0000000000

Rotation coefficients for orbital     3  grp =    3 T2    1
     3  1.0000000000    4  0.0000000000    5 -0.0000000000

Rotation coefficients for orbital     4  grp =    3 T2    2
     3 -0.0000000000    4  1.0000000000    5  0.0000000000

Rotation coefficients for orbital     5  grp =    3 T2    3
     3  0.0000000000    4 -0.0000000000    5  1.0000000000
Number of orbital groups and degeneracis are         3
  1  1  3
Number of orbital groups and number of electrons when fully occupied
         3
  2  2  6
Time Now =         0.7398  Delta time =         0.0883 End RotOrb

----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------

 First orbital group to expand (mofr) =    1
 Last orbital group to expand (moto) =    3
Orbital     1 of  A1    1 symmetry normalization integral =  0.99999999
Orbital     2 of  A1    1 symmetry normalization integral =  0.99999913
Orbital     3 of  T2    1 symmetry normalization integral =  0.99999811
Time Now =         1.0063  Delta time =         0.2665 End ExpOrb

+ Command GetPot
+

----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------

Total density =     10.00000000
Time Now =         1.0142  Delta time =         0.0079 End Den

----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------

 vasymp =  0.10000000E+02 facnorm =  0.10000000E+01
Time Now =         1.0721  Delta time =         0.0580 Electronic part
Time Now =         1.0746  Delta time =         0.0024 End StPot

----------------------------------------------------------------------
VcpBN - VCP Boronski and Nieminen polarization potential program
----------------------------------------------------------------------

Time Now =         1.1272  Delta time =         0.0526 End VcpBN

----------------------------------------------------------------------
AsyPol - Program to match polarization potential to asymptotic form
----------------------------------------------------------------------

Switching distance (SwitchD) =     0.25000
Number of terms in the asymptotic polarization potential (nterm) =    1
Term =    1  At center =    1
Explicit coordinates =  0.00000000E+00  0.00000000E+00  0.00000000E+00
Type =    1
Polarizability =  0.17500000E+02 au
Last center is at (RCenterX) =   0.00000 Angs
 Radial matching parameter (icrtyp) =    3
 Matching line type (ilntyp) =    0
 Matching point is at r =   1.1441757113
Matching uses curve crossing (iMatchType = 1)
First nonzero weight at R =        0.38978 Angs
Last point of the switching region R=        1.88486 Angs
Total asymptotic potential is   0.17500000E+02 a.u.
Time Now =         1.1603  Delta time =         0.0332 End AsyPol
+ Data Record GrnType - 1

+ Command ScatPos
+ 0.1 0.5 1.0

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A1    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    3
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   T
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.17500000E+02  au
Number of integration regions used =    47
Number of partial waves (np) =    15
Number of asymptotic solutions on the right (NAsymR) =     2
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   11
Number of partial waves in the asymptotic region (npasym) =    9
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  133
Changed sign of static potential for positron scattering
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    3
Highest l used at large r (lpasym) =   11
Higest l used in the asymptotic potential (lpzb) =   22
Maximum L used in the homogeneous solution (LMaxHomo) =   11
Number of partial waves in the homogeneous solution (npHomo) =    9
Time Now =         1.1872  Delta time =         0.0268 Energy independent setup

Compute solution for E =    0.1000000000 eV
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.17500000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.32266821E-15
 i =  2  lval =   3  stpote =  0.10967662E-17
 i =  3  lval =   3  stpote =  0.37572338E-17
 i =  4  lval =   4  stpote =  0.24286351E-03
For potential     2
For potential     3
 i =  1  lvals =   6   6  stpote =  0.21684043E-18  second term =  0.00000000E+00
 i =  2  lvals =   6   6  stpote = -0.26645929E-18  second term =  0.00000000E+00
 i =  3  lvals =   6   6  stpote =  0.54079182E-19  second term =  0.00000000E+00
 i =  4  lvals =   7   9  stpote = -0.11689087E-05  second term = -0.11689087E-05
Number of asymptotic regions =       8
Final point in integration =   0.22035788E+03 Angstroms
Time Now =         3.9514  Delta time =         2.7643 End SolveHomo
iL =   1 Iter =   1 c.s. =    420.21977993 angs^2  rmsk=     0.46842695
iL =   1 Iter =   2 c.s. =    420.21977993 angs^2  rmsk=     0.00000000
iL =   1 Iter =   3 c.s. =    420.68695795 angs^2  rmsk=     0.00074583
iL =   1 Iter =   4 c.s. =    420.68695680 angs^2  rmsk=     0.00000000
iL =   1 Iter =   5 c.s. =    420.68695680 angs^2  rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =    420.68695680 angs^2  rmsk=     0.00063971
iL =   2 Iter =   2 c.s. =    420.68695680 angs^2  rmsk=     0.00000000
iL =   2 Iter =   3 c.s. =    420.68695677 angs^2  rmsk=     0.00000018
      Final k matrix
     ROW  1
  ( 0.32651111E+00, 0.87866937E+00) (-0.27404863E-04,-0.74038001E-04)
     ROW  2
  (-0.27404862E-04,-0.74038000E-04) ( 0.12769676E-02, 0.16434542E-05)
 eigenphases
  0.1276967E-02  0.1215012E+01
 eigenphase sum 0.121629E+01  scattering length= -31.51294
 eps+pi 0.435788E+01  eps+2*pi 0.749947E+01

MaxIter =   5 c.s. =    420.68695677 angs^2  rmsk=     0.00000018
Time Now =         8.2200  Delta time =         4.2685 End ScatStab

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A1    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    3
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   T
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.17500000E+02  au
Number of integration regions used =    47
Number of partial waves (np) =    15
Number of asymptotic solutions on the right (NAsymR) =     2
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   11
Number of partial waves in the asymptotic region (npasym) =    9
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  133
Changed sign of static potential for positron scattering
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    3
Highest l used at large r (lpasym) =   11
Higest l used in the asymptotic potential (lpzb) =   22
Maximum L used in the homogeneous solution (LMaxHomo) =   11
Number of partial waves in the homogeneous solution (npHomo) =    9
Time Now =         8.2340  Delta time =         0.0141 Energy independent setup

Compute solution for E =    0.5000000000 eV
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.17500000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.32266821E-15
 i =  2  lval =   3  stpote =  0.10967662E-17
 i =  3  lval =   3  stpote =  0.37572338E-17
 i =  4  lval =   4  stpote =  0.24286351E-03
For potential     2
For potential     3
 i =  1  lvals =   6   6  stpote =  0.21684043E-18  second term =  0.00000000E+00
 i =  2  lvals =   6   6  stpote = -0.26645929E-18  second term =  0.00000000E+00
 i =  3  lvals =   6   6  stpote =  0.54079182E-19  second term =  0.00000000E+00
 i =  4  lvals =   7   9  stpote = -0.11689087E-05  second term = -0.11689087E-05
Number of asymptotic regions =      11
Final point in integration =   0.14734858E+03 Angstroms
Time Now =        10.8612  Delta time =         2.6272 End SolveHomo
iL =   1 Iter =   1 c.s. =     64.49682028 angs^2  rmsk=     0.41035316
iL =   1 Iter =   2 c.s. =     64.49682028 angs^2  rmsk=     0.00000000
iL =   1 Iter =   3 c.s. =     64.57071447 angs^2  rmsk=     0.00041154
iL =   1 Iter =   4 c.s. =     64.57071429 angs^2  rmsk=     0.00000000
iL =   1 Iter =   5 c.s. =     64.57071429 angs^2  rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =     64.57071429 angs^2  rmsk=     0.00320859
iL =   2 Iter =   2 c.s. =     64.57071429 angs^2  rmsk=     0.00000000
iL =   2 Iter =   3 c.s. =     64.57071406 angs^2  rmsk=     0.00000083
iL =   2 Iter =   4 c.s. =     64.57071406 angs^2  rmsk=     0.00000000
iL =   2 Iter =   5 c.s. =     64.57071406 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.46863908E+00, 0.67428938E+00) (-0.44580699E-03,-0.65021773E-03)
     ROW  2
  (-0.44580699E-03,-0.65021773E-03) ( 0.63682454E-02, 0.41343461E-04)
 eigenphases
  0.6367990E-02  0.9634260E+00
 eigenphase sum 0.969794E+00  scattering length=  -7.60849
 eps+pi 0.411139E+01  eps+2*pi 0.725298E+01

MaxIter =   5 c.s. =     64.57071406 angs^2  rmsk=     0.00000000
Time Now =        16.4659  Delta time =         5.6047 End ScatStab

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A1    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    3
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   T
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.17500000E+02  au
Number of integration regions used =    47
Number of partial waves (np) =    15
Number of asymptotic solutions on the right (NAsymR) =     2
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   11
Number of partial waves in the asymptotic region (npasym) =    9
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  133
Changed sign of static potential for positron scattering
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    3
Highest l used at large r (lpasym) =   11
Higest l used in the asymptotic potential (lpzb) =   22
Maximum L used in the homogeneous solution (LMaxHomo) =   11
Number of partial waves in the homogeneous solution (npHomo) =    9
Time Now =        16.4800  Delta time =         0.0141 Energy independent setup

Compute solution for E =    1.0000000000 eV
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.17500000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.32266821E-15
 i =  2  lval =   3  stpote =  0.10967662E-17
 i =  3  lval =   3  stpote =  0.37572338E-17
 i =  4  lval =   4  stpote =  0.24286351E-03
For potential     2
For potential     3
 i =  1  lvals =   6   6  stpote =  0.21684043E-18  second term =  0.00000000E+00
 i =  2  lvals =   6   6  stpote = -0.26645929E-18  second term =  0.00000000E+00
 i =  3  lvals =   6   6  stpote =  0.54079182E-19  second term =  0.00000000E+00
 i =  4  lvals =   7   9  stpote = -0.11689087E-05  second term = -0.11689087E-05
Number of asymptotic regions =      13
Final point in integration =   0.12389835E+03 Angstroms
Time Now =        19.1146  Delta time =         2.6346 End SolveHomo
iL =   1 Iter =   1 c.s. =     24.32197139 angs^2  rmsk=     0.35637154
iL =   1 Iter =   2 c.s. =     24.32197139 angs^2  rmsk=     0.00000000
iL =   1 Iter =   3 c.s. =     24.35427395 angs^2  rmsk=     0.00033740
iL =   1 Iter =   4 c.s. =     24.35427388 angs^2  rmsk=     0.00000000
iL =   1 Iter =   5 c.s. =     24.35427388 angs^2  rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =     24.35427388 angs^2  rmsk=     0.00645311
iL =   2 Iter =   2 c.s. =     24.35427388 angs^2  rmsk=     0.00000000
iL =   2 Iter =   3 c.s. =     24.35427313 angs^2  rmsk=     0.00000198
iL =   2 Iter =   4 c.s. =     24.35427313 angs^2  rmsk=     0.00000000
iL =   2 Iter =   5 c.s. =     24.35427313 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.49992273E+00, 0.50851083E+00) (-0.15187801E-02,-0.15845657E-02)
     ROW  2
  (-0.15187801E-02,-0.15845657E-02) ( 0.12716498E-01, 0.16722525E-03)
 eigenphases
  0.1271315E-01  0.7939143E+00
 eigenphase sum 0.806627E+00  scattering length=  -3.84862
 eps+pi 0.394822E+01  eps+2*pi 0.708981E+01

MaxIter =   5 c.s. =     24.35427313 angs^2  rmsk=     0.00000000
Time Now =        24.7213  Delta time =         5.6068 End ScatStab

+ Command TotalCrossSection
+
Symmetry A1 -
        E (eV)      XS(angs^2)    EPS(radians)
       0.100000     420.686957       1.216289
       0.500000      64.570714       0.969794
       1.000000      24.354273       0.806627

 Total Cross Sections

 Energy      Total Cross Section
   0.10000   420.68696
   0.50000    64.57071
   1.00000    24.35427
Time Now =        24.7327  Delta time =         0.0114 Finalize