----------------------------------------------------------------------
ePolyScat Version E2
----------------------------------------------------------------------

Authors: R. R. Lucchese, N. Sanna, A. P. P. Natalense, and F. A. Gianturco
http://www.chem.tamu.edu/rgroup/lucchese/ePolyScat.E2.manual/manual.html
Please cite the following two papers when reporting results obtained with  this program
F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 100, 6464 (1994).
A. P. P. Natalense and R. R. Lucchese, J. Chem. Phys. 111, 5344 (1999).

----------------------------------------------------------------------

Starting at 2009-03-13  12:07:56.446 (GMT -0500)
Using    16 processors

----------------------------------------------------------------------


+ Start of Input Records
#
# input file for test31
#
# electron scattering from N2O in C-inf-v symmetry
#
  LMax   15     # maximum l to be used for wave functions
  EMax  50.0    # EMax, maximum asymptotic energy in eV
  EngForm      # Energy formulas
   0 0         # charge, formula type
  VCorr 'PZ'
  FegeEng 11.0   # Energy correction (in eV) used in the fege potential
  LMaxK   5     # Maximum l in the K matirx

Convert '/scratch/rrl581a/ePolyScat.E2/tests/test31.molden' 'molden'
GetBlms
ExpOrb
GetPot
ScatEng  0.5 1.0
ScatContSym 'S'  # Scattering symmetry
Scat
ScatContSym 'A2'  # Scattering symmetry
Scat
ScatContSym 'B1'  # Scattering symmetry
Scat
ScatContSym 'B2'  # Scattering symmetry
Scat
ScatContSym 'P'  # Scattering symmetry
Scat
ScatContSym 'D'  # Scattering symmetry
Scat
ScatContSym 'F'  # Scattering symmetry
Scat
ScatContSym 'G'  # Scattering symmetry
Scat
TotalCrossSection
+ End of input reached
+ Data Record LMax - 15
+ Data Record EMax - 50.0
+ Data Record EngForm - 0 0
+ Data Record VCorr - 'PZ'
+ Data Record FegeEng - 11.0
+ Data Record LMaxK - 5

+ Command Convert
+ '/scratch/rrl581a/ePolyScat.E2/tests/test31.molden' 'molden'

----------------------------------------------------------------------
MoldenCnv - Molden (from Molpro) conversion program
----------------------------------------------------------------------

Expansion center is (in Angstroms) -
     0.0000000000   0.0000000000   0.0000000000
Convert from Angstroms to Bohr radii
Found    165 basis functions
Selecting orbitals
Number of orbitals selected is    11
Selecting    1   1 Ene =     -20.6585 Spin =Alpha Occup =   2.000000
Selecting    2   2 Ene =     -15.8462 Spin =Alpha Occup =   2.000000
Selecting    3   3 Ene =     -15.6997 Spin =Alpha Occup =   2.000000
Selecting    4   4 Ene =      -1.6145 Spin =Alpha Occup =   2.000000
Selecting    5   5 Ene =      -1.4241 Spin =Alpha Occup =   2.000000
Selecting    6   6 Ene =      -0.8343 Spin =Alpha Occup =   2.000000
Selecting    7   7 Ene =      -0.7633 Spin =Alpha Occup =   2.000000
Selecting    8   8 Ene =      -0.7633 Spin =Alpha Occup =   2.000000
Selecting    9   9 Ene =      -0.6990 Spin =Alpha Occup =   2.000000
Selecting   10  10 Ene =      -0.4918 Spin =Alpha Occup =   2.000000
Selecting   11  11 Ene =      -0.4918 Spin =Alpha Occup =   2.000000

Atoms found    3  Coordinates in Angstroms
Z =  7 ZS =  7 r =   0.0000000000   0.0000000000  -1.1996367307
Z =  7 ZS =  7 r =   0.0000000000   0.0000000000  -0.0714367307
Z =  8 ZS =  8 r =   0.0000000000   0.0000000000   1.1127632693
Maximum distance from expansion center is    1.1996367307

+ Command GetBlms
+

----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------

#############################################################################
Expansion center is not at the center of charge
For high symmetry systems, a better expansion point may be
    0.0000000000    0.0000000000    0.0003944309
#############################################################################
Found point group  CAv
Reduce angular grid using nthd =  1  nphid =  4
Found point group for abelian subgroup C2v
Time Now =         0.1413  Delta time =         0.1413 End GetPGroup
List of unique axes
  N  Vector                      Z   R
  1  0.00000  0.00000  1.00000   7  2.26698   7  0.13500   8  2.10282
List of corresponding x axes
  N  Vector
  1  1.00000 -0.00000 -0.00000
Computed default value of LMaxA =   11
Determineing angular grid in GetAxMax  LMax =   15  LMaxA =   11  LMaxAb =   30
MMax =    3  MMaxAbFlag =    2
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11   3   3   3   3
On the double L grid used for products
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19
  20  21  22  14  14  14  14   6   6   6   6

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is CAv
LMax = =   15
 The dimension of each irreducable representation is
    S     (  1)    A2    (  1)    B1    (  1)    B2    (  1)    P     (  2)
    D     (  2)    F     (  2)    G     (  2)
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
    11    16     6
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 S         1         1         18       1  1  1
 A2        1         2          2      -1 -1  1
 B1        1         3          7       1 -1 -1
 B2        1         4          7      -1  1 -1
 P         1         5         19      -1  1 -1
 P         2         6         19       1 -1 -1
 D         1         7         18      -1 -1  1
 D         2         8         18       1  1  1
 F         1         9         18      -1  1 -1
 F         2        10         18       1 -1 -1
 G         1        11         14      -1 -1  1
 G         2        12         14       1  1  1
Time Now =         0.5732  Delta time =         0.4319 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
S     1    0(   1)    1(   2)    2(   3)    3(   4)    4(   5)    5(   6)    6(   7)    7(   8)    8(   9)    9(  10)
          10(  12)   11(  14)
A2    1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   0)    7(   0)    8(   0)    9(   0)
          10(   1)   11(   2)
B1    1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   1)    6(   2)    7(   3)    8(   4)    9(   5)
          10(   6)   11(   7)
B2    1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   1)    6(   2)    7(   3)    8(   4)    9(   5)
          10(   6)   11(   7)
P     1    0(   0)    1(   1)    2(   2)    3(   3)    4(   4)    5(   5)    6(   6)    7(   7)    8(   8)    9(  10)
          10(  12)   11(  15)
P     2    0(   0)    1(   1)    2(   2)    3(   3)    4(   4)    5(   5)    6(   6)    7(   7)    8(   8)    9(  10)
          10(  12)   11(  15)
D     1    0(   0)    1(   0)    2(   1)    3(   2)    4(   3)    5(   4)    6(   5)    7(   6)    8(   8)    9(  10)
          10(  12)   11(  14)
D     2    0(   0)    1(   0)    2(   1)    3(   2)    4(   3)    5(   4)    6(   5)    7(   6)    8(   8)    9(  10)
          10(  12)   11(  14)
F     1    0(   0)    1(   0)    2(   0)    3(   1)    4(   2)    5(   3)    6(   4)    7(   6)    8(   8)    9(  10)
          10(  12)   11(  14)
F     2    0(   0)    1(   0)    2(   0)    3(   1)    4(   2)    5(   3)    6(   4)    7(   6)    8(   8)    9(  10)
          10(  12)   11(  14)
G     1    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   2)    6(   4)    7(   6)    8(   8)    9(  10)
          10(  12)   11(  14)
G     2    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   2)    6(   4)    7(   6)    8(   8)    9(  10)
          10(  12)   11(  14)

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is C2v
LMax = =   30
 The dimension of each irreducable representation is
    A1    (  1)    A2    (  1)    B1    (  1)    B2    (  1)
Abelian axes
    1       1.000000      -0.000000       0.000000
    2       0.000000       1.000000      -0.000000
    3       0.000000       0.000000       1.000000
Symmetry operation directions
  1       0.000000       0.000000       1.000000 ang =  0  1 type = 0 axis = 3
  2       1.000000      -0.000000       0.000000 ang =  0  1 type = 1 axis = 1
  3       0.000000       1.000000       0.000000 ang =  0  1 type = 1 axis = 2
  4       0.000000       0.000000       1.000000 ang =  1  2 type = 2 axis = 3
irep =    1  sym =A1    1  eigs =   1   1   1   1
irep =    2  sym =A2    1  eigs =   1  -1  -1   1
irep =    3  sym =B1    1  eigs =   1  -1   1  -1
irep =    4  sym =B2    1  eigs =   1   1  -1  -1
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     2     3     4
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A1        1         1        192       1  1  1
 A2        1         2        161      -1 -1  1
 B1        1         3        172      -1  1 -1
 B2        1         4        172       1 -1 -1
Time Now =         0.5900  Delta time =         0.0168 End SymGen

+ Command ExpOrb
+
In GetRMax, RMaxEps =  0.10000000E-05  RMax =   10.1919807741 Angs

----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------

Maximum R in the grid (RMax) =    10.19198 Angs
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) =   10.0
In regions controlled by the wave length (HFacWave) =   10.0
Factor used to control the minimum exponent at each center (MinExpFac) =  300.0
Maximum asymptotic kinetic energy (EMAx) =  50.00000 eV
Maximum step size (MaxStep) =  10.19198 Angs
Factor to increase grid by (GridFac) =     1

    1  Center at =     0.00000 Angs  Alpha Max = 0.10000E+01
    2  Center at =     0.07144 Angs  Alpha Max = 0.14700E+05
    3  Center at =     1.11276 Angs  Alpha Max = 0.19200E+05
    4  Center at =     1.19964 Angs  Alpha Max = 0.14700E+05

Generated Grid

  irg  nin  ntot      step Angs     R end Angs
    1    8     8    0.24811E-03     0.00198
    2    8    16    0.34934E-03     0.00478
    3    8    24    0.56228E-03     0.00928
    4    8    32    0.75349E-03     0.01531
    5    8    40    0.87839E-03     0.02233
    6    8    48    0.89299E-03     0.02948
    7    8    56    0.82181E-03     0.03605
    8    8    64    0.79746E-03     0.04243
    9    8    72    0.87999E-03     0.04947
   10    8    80    0.10144E-02     0.05759
   11    8    88    0.63907E-03     0.06270
   12    8    96    0.49076E-03     0.06662
   13    8   104    0.44016E-03     0.07015
   14    8   112    0.16133E-03     0.07144
   15    8   120    0.43646E-03     0.07493
   16    8   128    0.46530E-03     0.07865
   17    8   136    0.57358E-03     0.08324
   18    8   144    0.87025E-03     0.09020
   19    8   152    0.13836E-02     0.10127
   20    8   160    0.21003E-02     0.11807
   21    8   168    0.24487E-02     0.13766
   22    8   176    0.30036E-02     0.16169
   23    8   184    0.44832E-02     0.19756
   24    8   192    0.69972E-02     0.25353
   25    8   200    0.11546E-01     0.34590
   26    8   208    0.14029E-01     0.45813
   27    8   216    0.12903E-01     0.56136
   28    8   224    0.12415E-01     0.66068
   29    8   232    0.13702E-01     0.77030
   30    8   240    0.15828E-01     0.89692
   31    8   248    0.98306E-02     0.97556
   32    8   256    0.62487E-02     1.02555
   33    8   264    0.39719E-02     1.05733
   34    8   272    0.25247E-02     1.07753
   35    8   280    0.16048E-02     1.09037
   36    8   288    0.10201E-02     1.09853
   37    8   296    0.64840E-03     1.10371
   38    8   304    0.46148E-03     1.10741
   39    8   312    0.39438E-03     1.11056
   40    8   320    0.27530E-03     1.11276
   41    8   328    0.38190E-03     1.11582
   42    8   336    0.40714E-03     1.11908
   43    8   344    0.50188E-03     1.12309
   44    8   352    0.76147E-03     1.12918
   45    8   360    0.12106E-02     1.13887
   46    8   368    0.19247E-02     1.15427
   47    8   376    0.20665E-02     1.17080
   48    8   384    0.13135E-02     1.18131
   49    8   392    0.83492E-03     1.18798
   50    8   400    0.56407E-03     1.19250
   51    8   408    0.46335E-03     1.19620
   52    8   416    0.42911E-03     1.19964
   53    8   424    0.43646E-03     1.20313
   54    8   432    0.46530E-03     1.20685
   55    8   440    0.57358E-03     1.21144
   56    8   448    0.87025E-03     1.21840
   57    8   456    0.13836E-02     1.22947
   58    8   464    0.21997E-02     1.24707
   59    8   472    0.34972E-02     1.27505
   60    8   480    0.55601E-02     1.31953
   61    8   488    0.88398E-02     1.39025
   62    8   496    0.14054E-01     1.50268
   63    8   504    0.22344E-01     1.68143
   64    8   512    0.31346E-01     1.93220
   65    8   520    0.35860E-01     2.21908
   66    8   528    0.40238E-01     2.54099
   67    8   536    0.44103E-01     2.89381
   68    8   544    0.47521E-01     3.27398
   69    8   552    0.50548E-01     3.67836
   70    8   560    0.53236E-01     4.10425
   71    8   568    0.55627E-01     4.54926
   72    8   576    0.57759E-01     5.01134
   73    8   584    0.59666E-01     5.48866
   74    8   592    0.61376E-01     5.97967
   75    8   600    0.62914E-01     6.48299
   76    8   608    0.64302E-01     6.99740
   77    8   616    0.65557E-01     7.52186
   78    8   624    0.66696E-01     8.05542
   79    8   632    0.67733E-01     8.59729
   80    8   640    0.68679E-01     9.14672
   81    8   648    0.69545E-01     9.70308
   82    8   656    0.61112E-01    10.19198
Time Now =         0.7392  Delta time =         0.1492 End GenGrid

----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------

Maximum scattering l (lmax) =   15
Maximum scattering m (mmaxs) =   15
Maximum numerical integration l (lmaxi) =   30
Maximum numerical integration m (mmaxi) =   30
Maximum l to include in the asymptotic region (lmasym) =   11
Parameter used to determine the cutoff points (PCutRd) =  0.10000000E-07 au
Maximum E used to determine grid (in eV) =       50.00000
Print flag (iprnfg) =    0
lmasymtyts =   11
 Actual value of lmasym found =     11
Number of regions of the same l expansion (NAngReg) =   11
Angular regions
    1 L =    2  from (    1)         0.00025  to (    7)         0.00174
    2 L =    3  from (    8)         0.00198  to (   23)         0.00872
    3 L =    4  from (   24)         0.00928  to (   31)         0.01455
    4 L =    5  from (   32)         0.01531  to (   39)         0.02145
    5 L =    6  from (   40)         0.02233  to (   47)         0.02858
    6 L =    8  from (   48)         0.02948  to (   55)         0.03523
    7 L =   10  from (   56)         0.03605  to (   63)         0.04163
    8 L =   15  from (   64)         0.04243  to (  168)         0.13766
    9 L =   11  from (  169)         0.14067  to (  215)         0.54846
   10 L =   15  from (  216)         0.56136  to (  528)         2.54099
   11 L =   11  from (  529)         2.58509  to (  656)        10.19198
Angular regions for computing spherical harmonics
    1 lval =   11
    2 lval =   15
Last grid points by processor WorkExp =     1.500
Proc id =   -1  Last grid point =       1
Proc id =    0  Last grid point =      88
Proc id =    1  Last grid point =     120
Proc id =    2  Last grid point =     152
Proc id =    3  Last grid point =     200
Proc id =    4  Last grid point =     240
Proc id =    5  Last grid point =     272
Proc id =    6  Last grid point =     312
Proc id =    7  Last grid point =     344
Proc id =    8  Last grid point =     376
Proc id =    9  Last grid point =     408
Proc id =   10  Last grid point =     440
Proc id =   11  Last grid point =     480
Proc id =   12  Last grid point =     512
Proc id =   13  Last grid point =     552
Proc id =   14  Last grid point =     608
Proc id =   15  Last grid point =     656
Time Now =         0.7677  Delta time =         0.0284 End AngGCt

----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------


 R of maximum density
     1  S     1 at max irg =   41  r =   1.11582
     2  S     1 at max irg =   19  r =   0.10127
     3  S     1 at max irg =   53  r =   1.20313
     4  S     1 at max irg =   29  r =   0.77030
     5  S     1 at max irg =   30  r =   0.89692
     6  S     1 at max irg =   61  r =   1.39025
     7  P     1 at max irg =   42  r =   1.11908
     8  P     2 at max irg =   42  r =   1.11908
     9  S     1 at max irg =   62  r =   1.50268
    10  P     1 at max irg =   50  r =   1.19250
    11  P     2 at max irg =   50  r =   1.19250

Rotation coefficients for orbital     1  grp =    1 S     1
     1  1.0000000000

Rotation coefficients for orbital     2  grp =    2 S     1
     2  1.0000000000

Rotation coefficients for orbital     3  grp =    3 S     1
     3  1.0000000000

Rotation coefficients for orbital     4  grp =    4 S     1
     4  1.0000000000

Rotation coefficients for orbital     5  grp =    5 S     1
     5  1.0000000000

Rotation coefficients for orbital     6  grp =    6 S     1
     6  1.0000000000

Rotation coefficients for orbital     7  grp =    7 P     1
     7  1.0000000000    8  0.0000000000

Rotation coefficients for orbital     8  grp =    7 P     2
     7 -0.0000000000    8  1.0000000000

Rotation coefficients for orbital     9  grp =    8 S     1
     9  1.0000000000

Rotation coefficients for orbital    10  grp =    9 P     1
    10  1.0000000000   11  0.0000000000

Rotation coefficients for orbital    11  grp =    9 P     2
    10 -0.0000000000   11  1.0000000000
Number of orbital groups and degeneracis are         9
  1  1  1  1  1  1  2  1  2
Number of orbital groups and number of electrons when fully occupied
         9
  2  2  2  2  2  2  4  2  4
Time Now =         1.6051  Delta time =         0.8374 End RotOrb

----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------

 First orbital group to expand (mofr) =    1
 Last orbital group to expand (moto) =    9
Orbital     1 of  S     1 symmetry normalization integral =  0.81879080
Orbital     2 of  S     1 symmetry normalization integral =  1.00001158
Orbital     3 of  S     1 symmetry normalization integral =  0.84553998
Orbital     4 of  S     1 symmetry normalization integral =  0.99263389
Orbital     5 of  S     1 symmetry normalization integral =  0.99187657
Orbital     6 of  S     1 symmetry normalization integral =  0.99409551
Orbital     7 of  P     1 symmetry normalization integral =  0.99939852
Orbital     8 of  S     1 symmetry normalization integral =  0.99644428
Orbital     9 of  P     1 symmetry normalization integral =  0.99823542
Time Now =         6.6918  Delta time =         5.0868 End ExpOrb

+ Command GetPot
+

----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------

Total density =     22.00000000
Time Now =         6.7912  Delta time =         0.0994 End Den

----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------

 vasymp =  0.22000000E+02 facnorm =  0.10000000E+01
Time Now =         6.8410  Delta time =         0.0498 Electronic part
Time Now =         6.8436  Delta time =         0.0026 End StPot

----------------------------------------------------------------------
vcppol - VCP polarization potential program
----------------------------------------------------------------------

Time Now =         6.9018  Delta time =         0.0583 End VcpPol
+ Data Record ScatEng - 0.5 1.0
+ Data Record ScatContSym - 'S'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.11000000E+02  eV
 Do E =  0.50000000E+00 eV (  0.18374663E-01 AU)
Time Now =         6.9629  Delta time =         0.0611 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =S     1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    5
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    47
Number of partial waves (np) =    18
Number of asymptotic solutions on the right (NAsymR) =     6
Number of asymptotic solutions on the left (NAsymL) =     6
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     6
Maximum in the asymptotic region (lpasym) =   11
Number of partial waves in the asymptotic region (npasym) =   14
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  144
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    5
Highest l used at large r (lpasym) =   11
Higest l used in the asymptotic potential (lpzb) =   22
Maximum L used in the homogeneous solution (LMaxHomo) =   11
Number of partial waves in the homogeneous solution (npHomo) =   14
Time Now =         6.9830  Delta time =         0.0200 Energy independent setup

Compute solution for E =    0.5000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.52820418E-16
 i =  2  lval =   2  stpote =  0.12436576E-02
 i =  3  lval =   3  stpote = -0.61917009E-18
 i =  4  lval =   3  stpote =  0.48083042E-03
For potential     2
 i =  1  exps = -0.77040210E+02 -0.20000000E+01  stpote = -0.15114165E-15
 i =  2  exps = -0.77040210E+02 -0.20000000E+01  stpote = -0.15114165E-15
 i =  3  exps = -0.77040210E+02 -0.20000000E+01  stpote = -0.15114164E-15
 i =  4  exps = -0.77040210E+02 -0.20000000E+01  stpote = -0.15114162E-15
For potential     3
 i =  1  exps = -0.10672354E+01 -0.36467396E-01  stpote = -0.25437634E-05
 i =  2  exps = -0.10672354E+01 -0.36467396E-01  stpote = -0.25437634E-05
 i =  3  exps = -0.10672354E+01 -0.36467396E-01  stpote = -0.25437634E-05
 i =  4  exps = -0.10672354E+01 -0.36467396E-01  stpote = -0.25437634E-05
Number of asymptotic regions =     421
Final point in integration =   0.58444315E+04 Angstroms
Time Now =        30.8865  Delta time =        23.9036 End SolveHomo
iL =   1 Iter =   1 c.s. =     29.40248805 angs^2  rmsk=     0.10823869
iL =   1 Iter =   2 c.s. =     12.04774111 angs^2  rmsk=     0.05137503
iL =   1 Iter =   3 c.s. =      7.69983273 angs^2  rmsk=     0.01762634
iL =   1 Iter =   4 c.s. =      7.44557906 angs^2  rmsk=     0.00120611
iL =   1 Iter =   5 c.s. =      7.92634110 angs^2  rmsk=     0.00231897
iL =   1 Iter =   6 c.s. =      7.90482172 angs^2  rmsk=     0.00010225
iL =   1 Iter =   7 c.s. =      7.90260480 angs^2  rmsk=     0.00001108
iL =   1 Iter =   8 c.s. =      7.90248336 angs^2  rmsk=     0.00000094
iL =   1 Iter =   9 c.s. =      7.90247114 angs^2  rmsk=     0.00000006
iL =   2 Iter =   1 c.s. =      7.90247114 angs^2  rmsk=     0.02537374
iL =   2 Iter =   2 c.s. =      6.96159647 angs^2  rmsk=     0.01263006
iL =   2 Iter =   3 c.s. =      6.82781128 angs^2  rmsk=     0.00317337
iL =   2 Iter =   4 c.s. =      6.78412930 angs^2  rmsk=     0.00051570
iL =   2 Iter =   5 c.s. =      6.80256097 angs^2  rmsk=     0.00035061
iL =   2 Iter =   6 c.s. =      6.80190325 angs^2  rmsk=     0.00001157
iL =   2 Iter =   7 c.s. =      6.80193327 angs^2  rmsk=     0.00000229
iL =   2 Iter =   8 c.s. =      6.80197355 angs^2  rmsk=     0.00000052
iL =   2 Iter =   9 c.s. =      6.80196969 angs^2  rmsk=     0.00000005
iL =   3 Iter =   1 c.s. =      6.80196969 angs^2  rmsk=     0.01710294
iL =   3 Iter =   2 c.s. =      6.57781627 angs^2  rmsk=     0.00318687
iL =   3 Iter =   3 c.s. =      6.55394760 angs^2  rmsk=     0.00089227
iL =   3 Iter =   4 c.s. =      6.54986967 angs^2  rmsk=     0.00005075
iL =   3 Iter =   5 c.s. =      6.55791272 angs^2  rmsk=     0.00015858
iL =   3 Iter =   6 c.s. =      6.55784463 angs^2  rmsk=     0.00000129
iL =   3 Iter =   7 c.s. =      6.55784852 angs^2  rmsk=     0.00000012
iL =   3 Iter =   8 c.s. =      6.55784993 angs^2  rmsk=     0.00000005
iL =   4 Iter =   1 c.s. =      6.55784993 angs^2  rmsk=     0.00831882
iL =   4 Iter =   2 c.s. =      6.55580197 angs^2  rmsk=     0.00020425
iL =   4 Iter =   3 c.s. =      6.55548137 angs^2  rmsk=     0.00004062
iL =   4 Iter =   4 c.s. =      6.55554875 angs^2  rmsk=     0.00000562
iL =   4 Iter =   5 c.s. =      6.55559897 angs^2  rmsk=     0.00000585
iL =   4 Iter =   6 c.s. =      6.55558524 angs^2  rmsk=     0.00000455
iL =   4 Iter =   7 c.s. =      6.55558510 angs^2  rmsk=     0.00000001
iL =   4 Iter =   8 c.s. =      6.55558513 angs^2  rmsk=     0.00000000
iL =   5 Iter =   1 c.s. =      6.55558513 angs^2  rmsk=     0.00617369
iL =   5 Iter =   2 c.s. =      6.55555698 angs^2  rmsk=     0.00002935
iL =   5 Iter =   3 c.s. =      6.55554853 angs^2  rmsk=     0.00001162
iL =   5 Iter =   4 c.s. =      6.55554911 angs^2  rmsk=     0.00000085
iL =   5 Iter =   5 c.s. =      6.55555131 angs^2  rmsk=     0.00000509
iL =   5 Iter =   6 c.s. =      6.55555129 angs^2  rmsk=     0.00000003
iL =   5 Iter =   7 c.s. =      6.55555129 angs^2  rmsk=     0.00000000
iL =   6 Iter =   1 c.s. =      6.55555129 angs^2  rmsk=     0.00384871
iL =   6 Iter =   2 c.s. =      6.55555126 angs^2  rmsk=     0.00000069
iL =   6 Iter =   3 c.s. =      6.55555126 angs^2  rmsk=     0.00000032
iL =   6 Iter =   4 c.s. =      6.55555126 angs^2  rmsk=     0.00000014
iL =   6 Iter =   5 c.s. =      6.55555126 angs^2  rmsk=     0.00000001
     REAL PART -  Final k matrix
     ROW  1
 -0.20377534E+00-0.77943649E-01-0.47404011E-01 0.14400527E-02-0.68258756E-03
 -0.13042523E-04
     ROW  2
 -0.77943585E-01-0.21455164E-01-0.61728443E-01-0.81115623E-02 0.55714093E-04
 -0.64402359E-04
     ROW  3
 -0.47403990E-01-0.61728440E-01-0.42438191E-02-0.38951156E-01-0.41494677E-02
  0.49549281E-04
     ROW  4
  0.14400527E-02-0.81115624E-02-0.38951156E-01-0.79817390E-02-0.28471381E-01
 -0.26111554E-02
     ROW  5
 -0.68258934E-03 0.55713377E-04-0.41494675E-02-0.28471381E-01-0.55130945E-02
 -0.22647955E-01
     ROW  6
 -0.13049330E-04-0.64407312E-04 0.49549310E-04-0.26111554E-02-0.22647955E-01
 -0.36739888E-02
 eigenphases
 -0.2461993E+00 -0.6228057E-01 -0.2648316E-01  0.4129496E-02  0.2902511E-01
  0.6026889E-01
 eigenphase sum-0.241540E+00  scattering length=   1.28507
 eps+pi 0.290005E+01  eps+2*pi 0.604165E+01

MaxIter =   9 c.s. =      6.55555126 angs^2  rmsk=     0.00000001
Time Now =        58.4633  Delta time =        27.5768 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.11000000E+02  eV
 Do E =  0.10000000E+01 eV (  0.36749326E-01 AU)
Time Now =        58.5262  Delta time =         0.0629 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =S     1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    5
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    47
Number of partial waves (np) =    18
Number of asymptotic solutions on the right (NAsymR) =     6
Number of asymptotic solutions on the left (NAsymL) =     6
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     6
Maximum in the asymptotic region (lpasym) =   11
Number of partial waves in the asymptotic region (npasym) =   14
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  144
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    5
Highest l used at large r (lpasym) =   11
Higest l used in the asymptotic potential (lpzb) =   22
Maximum L used in the homogeneous solution (LMaxHomo) =   11
Number of partial waves in the homogeneous solution (npHomo) =   14
Time Now =        58.5461  Delta time =         0.0199 Energy independent setup

Compute solution for E =    1.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.52820418E-16
 i =  2  lval =   2  stpote =  0.12436576E-02
 i =  3  lval =   3  stpote = -0.61917009E-18
 i =  4  lval =   3  stpote =  0.48083042E-03
For potential     2
 i =  1  exps = -0.77040210E+02 -0.20000000E+01  stpote = -0.15022066E-15
 i =  2  exps = -0.77040210E+02 -0.20000000E+01  stpote = -0.15022065E-15
 i =  3  exps = -0.77040210E+02 -0.20000000E+01  stpote = -0.15022064E-15
 i =  4  exps = -0.77040210E+02 -0.20000000E+01  stpote = -0.15022063E-15
For potential     3
 i =  1  exps = -0.10672354E+01 -0.36467396E-01  stpote = -0.25437634E-05
 i =  2  exps = -0.10672354E+01 -0.36467396E-01  stpote = -0.25437634E-05
 i =  3  exps = -0.10672354E+01 -0.36467396E-01  stpote = -0.25437634E-05
 i =  4  exps = -0.10672354E+01 -0.36467396E-01  stpote = -0.25437634E-05
Number of asymptotic regions =     421
Final point in integration =   0.41318981E+04 Angstroms
Time Now =        82.4229  Delta time =        23.8768 End SolveHomo
iL =   1 Iter =   1 c.s. =     28.24871894 angs^2  rmsk=     0.17981387
iL =   1 Iter =   2 c.s. =     15.66556265 angs^2  rmsk=     0.07837532
iL =   1 Iter =   3 c.s. =     11.51124035 angs^2  rmsk=     0.02464671
iL =   1 Iter =   4 c.s. =     11.44118934 angs^2  rmsk=     0.00075982
iL =   1 Iter =   5 c.s. =     11.93124427 angs^2  rmsk=     0.00303662
iL =   1 Iter =   6 c.s. =     11.91201716 angs^2  rmsk=     0.00012039
iL =   1 Iter =   7 c.s. =     11.90951912 angs^2  rmsk=     0.00001586
iL =   1 Iter =   8 c.s. =     11.90932921 angs^2  rmsk=     0.00000228
iL =   1 Iter =   9 c.s. =     11.90931886 angs^2  rmsk=     0.00000007
iL =   2 Iter =   1 c.s. =     11.90931886 angs^2  rmsk=     0.04262998
iL =   2 Iter =   2 c.s. =      9.84570944 angs^2  rmsk=     0.02332021
iL =   2 Iter =   3 c.s. =      9.54439209 angs^2  rmsk=     0.00591500
iL =   2 Iter =   4 c.s. =      9.52597439 angs^2  rmsk=     0.00067051
iL =   2 Iter =   5 c.s. =      9.55135680 angs^2  rmsk=     0.00061150
iL =   2 Iter =   6 c.s. =      9.55050088 angs^2  rmsk=     0.00002114
iL =   2 Iter =   7 c.s. =      9.55036272 angs^2  rmsk=     0.00000472
iL =   2 Iter =   8 c.s. =      9.55038843 angs^2  rmsk=     0.00000181
iL =   2 Iter =   9 c.s. =      9.55038679 angs^2  rmsk=     0.00000004
iL =   3 Iter =   1 c.s. =      9.55038679 angs^2  rmsk=     0.03357035
iL =   3 Iter =   2 c.s. =      8.90132866 angs^2  rmsk=     0.01045062
iL =   3 Iter =   3 c.s. =      8.77522513 angs^2  rmsk=     0.00252699
iL =   3 Iter =   4 c.s. =      8.76984604 angs^2  rmsk=     0.00013612
iL =   3 Iter =   5 c.s. =      8.78953301 angs^2  rmsk=     0.00042755
iL =   3 Iter =   6 c.s. =      8.78944673 angs^2  rmsk=     0.00000334
iL =   3 Iter =   7 c.s. =      8.78947344 angs^2  rmsk=     0.00000081
iL =   3 Iter =   8 c.s. =      8.78948715 angs^2  rmsk=     0.00000032
iL =   3 Iter =   9 c.s. =      8.78948675 angs^2  rmsk=     0.00000004
iL =   4 Iter =   1 c.s. =      8.78948675 angs^2  rmsk=     0.00882755
iL =   4 Iter =   2 c.s. =      8.78325440 angs^2  rmsk=     0.00073544
iL =   4 Iter =   3 c.s. =      8.78210400 angs^2  rmsk=     0.00013304
iL =   4 Iter =   4 c.s. =      8.78266098 angs^2  rmsk=     0.00002871
iL =   4 Iter =   5 c.s. =      8.78271835 angs^2  rmsk=     0.00001393
iL =   4 Iter =   6 c.s. =      8.78275497 angs^2  rmsk=     0.00000281
iL =   4 Iter =   7 c.s. =      8.78275390 angs^2  rmsk=     0.00000027
iL =   4 Iter =   8 c.s. =      8.78275419 angs^2  rmsk=     0.00000004
iL =   4 Iter =   9 c.s. =      8.78275418 angs^2  rmsk=     0.00000000
iL =   5 Iter =   1 c.s. =      8.78275418 angs^2  rmsk=     0.00629596
iL =   5 Iter =   2 c.s. =      8.78235105 angs^2  rmsk=     0.00024794
iL =   5 Iter =   3 c.s. =      8.78231488 angs^2  rmsk=     0.00007430
iL =   5 Iter =   4 c.s. =      8.78227227 angs^2  rmsk=     0.00000256
iL =   5 Iter =   5 c.s. =      8.78228757 angs^2  rmsk=     0.00001851
iL =   5 Iter =   6 c.s. =      8.78228736 angs^2  rmsk=     0.00000023
iL =   5 Iter =   7 c.s. =      8.78228732 angs^2  rmsk=     0.00000004
iL =   5 Iter =   8 c.s. =      8.78228732 angs^2  rmsk=     0.00000000
iL =   6 Iter =   1 c.s. =      8.78228732 angs^2  rmsk=     0.00391490
iL =   6 Iter =   2 c.s. =      8.78228589 angs^2  rmsk=     0.00000842
iL =   6 Iter =   3 c.s. =      8.78228568 angs^2  rmsk=     0.00000295
iL =   6 Iter =   4 c.s. =      8.78228565 angs^2  rmsk=     0.00000102
iL =   6 Iter =   5 c.s. =      8.78228567 angs^2  rmsk=     0.00000023
iL =   6 Iter =   6 c.s. =      8.78228567 angs^2  rmsk=     0.00000001
iL =   6 Iter =   7 c.s. =      8.78228567 angs^2  rmsk=     0.00000000
     REAL PART -  Final k matrix
     ROW  1
 -0.40992511E+00-0.45686178E-01-0.11183367E+00 0.39186222E-02-0.25021859E-02
 -0.21587547E-04
     ROW  2
 -0.45686189E-01-0.71129142E-01-0.60753216E-01-0.12501682E-01 0.32587275E-04
 -0.31591220E-03
     ROW  3
 -0.11183369E+00-0.60753221E-01 0.23743308E-01-0.40545476E-01-0.46217355E-02
  0.13607350E-03
     ROW  4
  0.39186212E-02-0.12501682E-01-0.40545476E-01-0.19507267E-02-0.28823962E-01
 -0.34506651E-02
     ROW  5
 -0.25021866E-02 0.32587815E-04-0.46217355E-02-0.28823962E-01-0.62178890E-02
 -0.22696667E-01
     ROW  6
 -0.21588533E-04-0.31591168E-03 0.13607362E-03-0.34506651E-02-0.22696667E-01
 -0.49537416E-02
 eigenphases
 -0.4199940E+00 -0.8837791E-01 -0.4185401E-01 -0.3549852E-02  0.2684875E-01
  0.8312199E-01
 eigenphase sum-0.443805E+00  scattering length=   1.75369
 eps+pi 0.269779E+01  eps+2*pi 0.583938E+01

MaxIter =   9 c.s. =      8.78228567 angs^2  rmsk=     0.00000000
Time Now =       113.8232  Delta time =        31.4002 End ScatStab
+ Data Record ScatContSym - 'A2'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.11000000E+02  eV
 Do E =  0.50000000E+00 eV (  0.18374663E-01 AU)
Time Now =       113.8862  Delta time =         0.0630 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A2    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    5
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    47
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.11000000E+02  eV
 Do E =  0.10000000E+01 eV (  0.36749326E-01 AU)
Time Now =       113.9530  Delta time =         0.0668 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A2    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    5
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    47
No asymptotic partial waves with this value of LMaxK
+ Data Record ScatContSym - 'B1'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.11000000E+02  eV
 Do E =  0.50000000E+00 eV (  0.18374663E-01 AU)
Time Now =       114.0198  Delta time =         0.0669 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =B1    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    5
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    47
Number of partial waves (np) =     7
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     1
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     1
Maximum in the asymptotic region (lpasym) =   11
Number of partial waves in the asymptotic region (npasym) =    7
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  144
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   11
Higest l included in the K matrix (lna) =    5
Highest l used at large r (lpasym) =   11
Higest l used in the asymptotic potential (lpzb) =   22
Maximum L used in the homogeneous solution (LMaxHomo) =   11
Number of partial waves in the homogeneous solution (npHomo) =    7
Time Now =       114.0396  Delta time =         0.0198 Energy independent setup

Compute solution for E =    0.5000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.52820418E-16
 i =  2  lval =   2  stpote =  0.12436576E-02
 i =  3  lval =   3  stpote = -0.61917009E-18
 i =  4  lval =   3  stpote =  0.48083042E-03
For potential     2
 i =  1  exps = -0.77040210E+02 -0.20000000E+01  stpote = -0.15114165E-15
 i =  2  exps = -0.77040210E+02 -0.20000000E+01  stpote = -0.15114165E-15
 i =  3  exps = -0.77040210E+02 -0.20000000E+01  stpote = -0.15114164E-15
 i =  4  exps = -0.77040210E+02 -0.20000000E+01  stpote = -0.15114162E-15
For potential     3
 i =  1  exps = -0.10672354E+01 -0.36467396E-01  stpote = -0.25437634E-05
 i =  2  exps = -0.10672354E+01 -0.36467396E-01  stpote = -0.25437634E-05
 i =  3  exps = -0.10672354E+01 -0.36467396E-01  stpote = -0.25437634E-05
 i =  4  exps = -0.10672354E+01 -0.36467396E-01  stpote = -0.25437634E-05
Number of asymptotic regions =     421
Final point in integration =   0.58444315E+04 Angstroms
Time Now =       125.1395  Delta time =        11.0999 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00292791 angs^2  rmsk=     0.00552973
iL =   1 Iter =   2 c.s. =      0.00292791 angs^2  rmsk=     0.00000000
iL =   1 Iter =   3 c.s. =      0.00292791 angs^2  rmsk=     0.00000000
     REAL PART -  Final k matrix
     ROW  1
  0.55297281E-02
 eigenphases
  0.5529672E-02
 eigenphase sum 0.552967E-02  scattering length=  -0.02885
 eps+pi 0.314712E+01  eps+2*pi 0.628871E+01

MaxIter =   3 c.s. =      0.00292791 angs^2  rmsk=     0.00000000
Time Now =       126.2951  Delta time =         1.1556 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.11000000E+02  eV
 Do E =  0.10000000E+01 eV (  0.36749326E-01 AU)
Time Now =       126.3583  Delta time =         0.0631 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =B1    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    5
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    47
Number of partial waves (np) =     7
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     1
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     1
Maximum in the asymptotic region (lpasym) =   11
Number of partial waves in the asymptotic region (npasym) =    7
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  144
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   11
Higest l included in the K matrix (lna) =    5
Highest l used at large r (lpasym) =   11
Higest l used in the asymptotic potential (lpzb) =   22
Maximum L used in the homogeneous solution (LMaxHomo) =   11
Number of partial waves in the homogeneous solution (npHomo) =    7
Time Now =       126.3785  Delta time =         0.0202 Energy independent setup

Compute solution for E =    1.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.52820418E-16
 i =  2  lval =   2  stpote =  0.12436576E-02
 i =  3  lval =   3  stpote = -0.61917009E-18
 i =  4  lval =   3  stpote =  0.48083042E-03
For potential     2
 i =  1  exps = -0.77040210E+02 -0.20000000E+01  stpote = -0.15022066E-15
 i =  2  exps = -0.77040210E+02 -0.20000000E+01  stpote = -0.15022065E-15
 i =  3  exps = -0.77040210E+02 -0.20000000E+01  stpote = -0.15022064E-15
 i =  4  exps = -0.77040210E+02 -0.20000000E+01  stpote = -0.15022063E-15
For potential     3
 i =  1  exps = -0.10672354E+01 -0.36467396E-01  stpote = -0.25437634E-05
 i =  2  exps = -0.10672354E+01 -0.36467396E-01  stpote = -0.25437634E-05
 i =  3  exps = -0.10672354E+01 -0.36467396E-01  stpote = -0.25437634E-05
 i =  4  exps = -0.10672354E+01 -0.36467396E-01  stpote = -0.25437634E-05
Number of asymptotic regions =     421
Final point in integration =   0.41318981E+04 Angstroms
Time Now =       137.4999  Delta time =        11.1214 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00295761 angs^2  rmsk=     0.00785992
iL =   1 Iter =   2 c.s. =      0.00295762 angs^2  rmsk=     0.00000000
iL =   1 Iter =   3 c.s. =      0.00295762 angs^2  rmsk=     0.00000000
     REAL PART -  Final k matrix
     ROW  1
  0.78599152E-02
 eigenphases
  0.7859753E-02
 eigenphase sum 0.785975E-02  scattering length=  -0.02899
 eps+pi 0.314945E+01  eps+2*pi 0.629105E+01

MaxIter =   3 c.s. =      0.00295762 angs^2  rmsk=     0.00000000
Time Now =       138.6602  Delta time =         1.1604 End ScatStab
+ Data Record ScatContSym - 'B2'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.11000000E+02  eV
 Do E =  0.50000000E+00 eV (  0.18374663E-01 AU)
Time Now =       138.7237  Delta time =         0.0635 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =B2    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    5
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    47
Number of partial waves (np) =     7
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     1
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     1
Maximum in the asymptotic region (lpasym) =   11
Number of partial waves in the asymptotic region (npasym) =    7
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  144
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   11
Higest l included in the K matrix (lna) =    5
Highest l used at large r (lpasym) =   11
Higest l used in the asymptotic potential (lpzb) =   22
Maximum L used in the homogeneous solution (LMaxHomo) =   11
Number of partial waves in the homogeneous solution (npHomo) =    7
Time Now =       138.7435  Delta time =         0.0198 Energy independent setup

Compute solution for E =    0.5000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.52820418E-16
 i =  2  lval =   2  stpote =  0.12436576E-02
 i =  3  lval =   3  stpote = -0.61917009E-18
 i =  4  lval =   3  stpote =  0.48083042E-03
For potential     2
 i =  1  exps = -0.77040210E+02 -0.20000000E+01  stpote = -0.15114165E-15
 i =  2  exps = -0.77040210E+02 -0.20000000E+01  stpote = -0.15114165E-15
 i =  3  exps = -0.77040210E+02 -0.20000000E+01  stpote = -0.15114164E-15
 i =  4  exps = -0.77040210E+02 -0.20000000E+01  stpote = -0.15114162E-15
For potential     3
 i =  1  exps = -0.10672354E+01 -0.36467396E-01  stpote = -0.25437634E-05
 i =  2  exps = -0.10672354E+01 -0.36467396E-01  stpote = -0.25437634E-05
 i =  3  exps = -0.10672354E+01 -0.36467396E-01  stpote = -0.25437634E-05
 i =  4  exps = -0.10672354E+01 -0.36467396E-01  stpote = -0.25437634E-05
Number of asymptotic regions =     421
Final point in integration =   0.58444315E+04 Angstroms
Time Now =       149.8406  Delta time =        11.0971 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00292791 angs^2  rmsk=     0.00552973
iL =   1 Iter =   2 c.s. =      0.00292791 angs^2  rmsk=     0.00000000
iL =   1 Iter =   3 c.s. =      0.00292791 angs^2  rmsk=     0.00000000
     REAL PART -  Final k matrix
     ROW  1
  0.55297281E-02
 eigenphases
  0.5529672E-02
 eigenphase sum 0.552967E-02  scattering length=  -0.02885
 eps+pi 0.314712E+01  eps+2*pi 0.628871E+01

MaxIter =   3 c.s. =      0.00292791 angs^2  rmsk=     0.00000000
Time Now =       150.9987  Delta time =         1.1580 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.11000000E+02  eV
 Do E =  0.10000000E+01 eV (  0.36749326E-01 AU)
Time Now =       151.0621  Delta time =         0.0634 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =B2    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    5
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    47
Number of partial waves (np) =     7
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     1
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     1
Maximum in the asymptotic region (lpasym) =   11
Number of partial waves in the asymptotic region (npasym) =    7
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  144
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   11
Higest l included in the K matrix (lna) =    5
Highest l used at large r (lpasym) =   11
Higest l used in the asymptotic potential (lpzb) =   22
Maximum L used in the homogeneous solution (LMaxHomo) =   11
Number of partial waves in the homogeneous solution (npHomo) =    7
Time Now =       151.0819  Delta time =         0.0199 Energy independent setup

Compute solution for E =    1.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.52820418E-16
 i =  2  lval =   2  stpote =  0.12436576E-02
 i =  3  lval =   3  stpote = -0.61917009E-18
 i =  4  lval =   3  stpote =  0.48083042E-03
For potential     2
 i =  1  exps = -0.77040210E+02 -0.20000000E+01  stpote = -0.15022066E-15
 i =  2  exps = -0.77040210E+02 -0.20000000E+01  stpote = -0.15022065E-15
 i =  3  exps = -0.77040210E+02 -0.20000000E+01  stpote = -0.15022064E-15
 i =  4  exps = -0.77040210E+02 -0.20000000E+01  stpote = -0.15022063E-15
For potential     3
 i =  1  exps = -0.10672354E+01 -0.36467396E-01  stpote = -0.25437634E-05
 i =  2  exps = -0.10672354E+01 -0.36467396E-01  stpote = -0.25437634E-05
 i =  3  exps = -0.10672354E+01 -0.36467396E-01  stpote = -0.25437634E-05
 i =  4  exps = -0.10672354E+01 -0.36467396E-01  stpote = -0.25437634E-05
Number of asymptotic regions =     421
Final point in integration =   0.41318981E+04 Angstroms
Time Now =       162.2120  Delta time =        11.1301 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00295761 angs^2  rmsk=     0.00785992
iL =   1 Iter =   2 c.s. =      0.00295762 angs^2  rmsk=     0.00000000
iL =   1 Iter =   3 c.s. =      0.00295762 angs^2  rmsk=     0.00000000
     REAL PART -  Final k matrix
     ROW  1
  0.78599152E-02
 eigenphases
  0.7859753E-02
 eigenphase sum 0.785975E-02  scattering length=  -0.02899
 eps+pi 0.314945E+01  eps+2*pi 0.629105E+01

MaxIter =   3 c.s. =      0.00295762 angs^2  rmsk=     0.00000000
Time Now =       163.3710  Delta time =         1.1590 End ScatStab
+ Data Record ScatContSym - 'P'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.11000000E+02  eV
 Do E =  0.50000000E+00 eV (  0.18374663E-01 AU)
Time Now =       163.4347  Delta time =         0.0637 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =P     1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    5
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    47
Number of partial waves (np) =    19
Number of asymptotic solutions on the right (NAsymR) =     5
Number of asymptotic solutions on the left (NAsymL) =     5
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     5
Maximum in the asymptotic region (lpasym) =   11
Number of partial waves in the asymptotic region (npasym) =   15
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  144
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    5
Highest l used at large r (lpasym) =   11
Higest l used in the asymptotic potential (lpzb) =   22
Maximum L used in the homogeneous solution (LMaxHomo) =   11
Number of partial waves in the homogeneous solution (npHomo) =   15
Time Now =       163.4546  Delta time =         0.0199 Energy independent setup

Compute solution for E =    0.5000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.52820418E-16
 i =  2  lval =   2  stpote =  0.12436576E-02
 i =  3  lval =   3  stpote = -0.61917009E-18
 i =  4  lval =   3  stpote =  0.48083042E-03
For potential     2
 i =  1  exps = -0.77040210E+02 -0.20000000E+01  stpote = -0.15114165E-15
 i =  2  exps = -0.77040210E+02 -0.20000000E+01  stpote = -0.15114165E-15
 i =  3  exps = -0.77040210E+02 -0.20000000E+01  stpote = -0.15114164E-15
 i =  4  exps = -0.77040210E+02 -0.20000000E+01  stpote = -0.15114162E-15
For potential     3
 i =  1  exps = -0.10672354E+01 -0.36467396E-01  stpote = -0.25437634E-05
 i =  2  exps = -0.10672354E+01 -0.36467396E-01  stpote = -0.25437634E-05
 i =  3  exps = -0.10672354E+01 -0.36467396E-01  stpote = -0.25437634E-05
 i =  4  exps = -0.10672354E+01 -0.36467396E-01  stpote = -0.25437634E-05
Number of asymptotic regions =     421
Final point in integration =   0.58444315E+04 Angstroms
Time Now =       189.5902  Delta time =        26.1356 End SolveHomo
iL =   1 Iter =   1 c.s. =      4.11444209 angs^2  rmsk=     0.04217037
iL =   1 Iter =   2 c.s. =      4.26805913 angs^2  rmsk=     0.00101328
iL =   1 Iter =   3 c.s. =      3.54357062 angs^2  rmsk=     0.00491356
iL =   1 Iter =   4 c.s. =      4.60979576 angs^2  rmsk=     0.00678057
iL =   1 Iter =   5 c.s. =      4.64010648 angs^2  rmsk=     0.00017088
iL =   1 Iter =   6 c.s. =      4.64344619 angs^2  rmsk=     0.00002250
iL =   1 Iter =   7 c.s. =      4.64085830 angs^2  rmsk=     0.00001491
iL =   1 Iter =   8 c.s. =      4.64086472 angs^2  rmsk=     0.00000008
iL =   2 Iter =   1 c.s. =      4.64086472 angs^2  rmsk=     0.01310999
iL =   2 Iter =   2 c.s. =      4.68085333 angs^2  rmsk=     0.00113911
iL =   2 Iter =   3 c.s. =      4.71392477 angs^2  rmsk=     0.00062782
iL =   2 Iter =   4 c.s. =      4.70577250 angs^2  rmsk=     0.00016306
iL =   2 Iter =   5 c.s. =      4.70738579 angs^2  rmsk=     0.00003354
iL =   2 Iter =   6 c.s. =      4.70816651 angs^2  rmsk=     0.00003657
iL =   2 Iter =   7 c.s. =      4.70815677 angs^2  rmsk=     0.00000131
iL =   2 Iter =   8 c.s. =      4.70814732 angs^2  rmsk=     0.00000083
iL =   3 Iter =   1 c.s. =      4.70814732 angs^2  rmsk=     0.00924943
iL =   3 Iter =   2 c.s. =      4.70930106 angs^2  rmsk=     0.00008160
iL =   3 Iter =   3 c.s. =      4.71004205 angs^2  rmsk=     0.00019184
iL =   3 Iter =   4 c.s. =      4.71032869 angs^2  rmsk=     0.00003316
iL =   3 Iter =   5 c.s. =      4.71074121 angs^2  rmsk=     0.00001715
iL =   3 Iter =   6 c.s. =      4.71039648 angs^2  rmsk=     0.00001110
iL =   3 Iter =   7 c.s. =      4.71039578 angs^2  rmsk=     0.00000005
iL =   3 Iter =   8 c.s. =      4.71039597 angs^2  rmsk=     0.00000001
iL =   4 Iter =   1 c.s. =      4.71039597 angs^2  rmsk=     0.00718263
iL =   4 Iter =   2 c.s. =      4.71037786 angs^2  rmsk=     0.00000933
iL =   4 Iter =   3 c.s. =      4.71037850 angs^2  rmsk=     0.00000529
iL =   4 Iter =   4 c.s. =      4.71037954 angs^2  rmsk=     0.00000060
iL =   4 Iter =   5 c.s. =      4.71038017 angs^2  rmsk=     0.00000038
iL =   4 Iter =   6 c.s. =      4.71037973 angs^2  rmsk=     0.00000020
iL =   4 Iter =   7 c.s. =      4.71037970 angs^2  rmsk=     0.00000001
iL =   5 Iter =   1 c.s. =      4.71037970 angs^2  rmsk=     0.00451528
iL =   5 Iter =   2 c.s. =      4.71037964 angs^2  rmsk=     0.00000036
iL =   5 Iter =   3 c.s. =      4.71037955 angs^2  rmsk=     0.00000060
iL =   5 Iter =   4 c.s. =      4.71037954 angs^2  rmsk=     0.00000004
iL =   5 Iter =   5 c.s. =      4.71037952 angs^2  rmsk=     0.00000005
     REAL PART -  Final k matrix
     ROW  1
  0.19648106E+00-0.59902831E-01-0.43975134E-03 0.10433236E-03-0.41388368E-04
     ROW  2
 -0.59902830E-01 0.10089542E-01-0.36992547E-01-0.36865245E-02 0.35830481E-04
     ROW  3
 -0.43975134E-03-0.36992547E-01-0.53026680E-02-0.27596622E-01-0.24696453E-02
     ROW  4
  0.10432639E-03-0.36865171E-02-0.27596621E-01-0.46636788E-02-0.22195905E-01
     ROW  5
 -0.41569933E-04 0.35811064E-04-0.24696382E-02-0.22195905E-01-0.33063982E-02
 eigenphases
 -0.5565996E-01 -0.1902030E-01  0.1440689E-01  0.3907038E-01  0.2113362E+00
 eigenphase sum 0.190133E+00  scattering length=  -1.00395
 eps+pi 0.333173E+01  eps+2*pi 0.647332E+01

MaxIter =   8 c.s. =      4.71037952 angs^2  rmsk=     0.00000005
Time Now =       210.6682  Delta time =        21.0780 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.11000000E+02  eV
 Do E =  0.10000000E+01 eV (  0.36749326E-01 AU)
Time Now =       210.7311  Delta time =         0.0630 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =P     1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    5
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    47
Number of partial waves (np) =    19
Number of asymptotic solutions on the right (NAsymR) =     5
Number of asymptotic solutions on the left (NAsymL) =     5
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     5
Maximum in the asymptotic region (lpasym) =   11
Number of partial waves in the asymptotic region (npasym) =   15
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  144
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    5
Highest l used at large r (lpasym) =   11
Higest l used in the asymptotic potential (lpzb) =   22
Maximum L used in the homogeneous solution (LMaxHomo) =   11
Number of partial waves in the homogeneous solution (npHomo) =   15
Time Now =       210.7510  Delta time =         0.0199 Energy independent setup

Compute solution for E =    1.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.52820418E-16
 i =  2  lval =   2  stpote =  0.12436576E-02
 i =  3  lval =   3  stpote = -0.61917009E-18
 i =  4  lval =   3  stpote =  0.48083042E-03
For potential     2
 i =  1  exps = -0.77040210E+02 -0.20000000E+01  stpote = -0.15022066E-15
 i =  2  exps = -0.77040210E+02 -0.20000000E+01  stpote = -0.15022065E-15
 i =  3  exps = -0.77040210E+02 -0.20000000E+01  stpote = -0.15022064E-15
 i =  4  exps = -0.77040210E+02 -0.20000000E+01  stpote = -0.15022063E-15
For potential     3
 i =  1  exps = -0.10672354E+01 -0.36467396E-01  stpote = -0.25437634E-05
 i =  2  exps = -0.10672354E+01 -0.36467396E-01  stpote = -0.25437634E-05
 i =  3  exps = -0.10672354E+01 -0.36467396E-01  stpote = -0.25437634E-05
 i =  4  exps = -0.10672354E+01 -0.36467396E-01  stpote = -0.25437634E-05
Number of asymptotic regions =     421
Final point in integration =   0.41318981E+04 Angstroms
Time Now =       236.6674  Delta time =        25.9164 End SolveHomo
iL =   1 Iter =   1 c.s. =      3.77506237 angs^2  rmsk=     0.05820464
iL =   1 Iter =   2 c.s. =      4.08536959 angs^2  rmsk=     0.00333968
iL =   1 Iter =   3 c.s. =      2.32677308 angs^2  rmsk=     0.01936450
iL =   1 Iter =   4 c.s. =      4.90740453 angs^2  rmsk=     0.02549462
iL =   1 Iter =   5 c.s. =      4.99877996 angs^2  rmsk=     0.00072733
iL =   1 Iter =   6 c.s. =      5.03126755 angs^2  rmsk=     0.00027212
iL =   1 Iter =   7 c.s. =      5.02775677 angs^2  rmsk=     0.00002819
iL =   1 Iter =   8 c.s. =      5.02777376 angs^2  rmsk=     0.00000038
iL =   1 Iter =   9 c.s. =      5.02777758 angs^2  rmsk=     0.00000012
iL =   2 Iter =   1 c.s. =      5.02777758 angs^2  rmsk=     0.01474930
iL =   2 Iter =   2 c.s. =      5.14819102 angs^2  rmsk=     0.00453555
iL =   2 Iter =   3 c.s. =      5.26428989 angs^2  rmsk=     0.00321200
iL =   2 Iter =   4 c.s. =      5.24704640 angs^2  rmsk=     0.00073284
iL =   2 Iter =   5 c.s. =      5.19487570 angs^2  rmsk=     0.00247146
iL =   2 Iter =   6 c.s. =      5.25910753 angs^2  rmsk=     0.00254924
iL =   2 Iter =   7 c.s. =      5.25928955 angs^2  rmsk=     0.00001109
iL =   2 Iter =   8 c.s. =      5.25912566 angs^2  rmsk=     0.00000689
iL =   3 Iter =   1 c.s. =      5.25912566 angs^2  rmsk=     0.00958374
iL =   3 Iter =   2 c.s. =      5.26571214 angs^2  rmsk=     0.00058538
iL =   3 Iter =   3 c.s. =      5.27691109 angs^2  rmsk=     0.00129784
iL =   3 Iter =   4 c.s. =      5.27793699 angs^2  rmsk=     0.00018026
iL =   3 Iter =   5 c.s. =      5.24079779 angs^2  rmsk=     0.00231123
iL =   3 Iter =   6 c.s. =      5.27941831 angs^2  rmsk=     0.00234223
iL =   3 Iter =   7 c.s. =      5.27941219 angs^2  rmsk=     0.00000033
iL =   3 Iter =   8 c.s. =      5.27941372 angs^2  rmsk=     0.00000008
iL =   4 Iter =   1 c.s. =      5.27941372 angs^2  rmsk=     0.00728084
iL =   4 Iter =   2 c.s. =      5.27935786 angs^2  rmsk=     0.00007517
iL =   4 Iter =   3 c.s. =      5.27940842 angs^2  rmsk=     0.00006184
iL =   4 Iter =   4 c.s. =      5.27942211 angs^2  rmsk=     0.00000978
iL =   4 Iter =   5 c.s. =      5.27944453 angs^2  rmsk=     0.00000631
iL =   4 Iter =   6 c.s. =      5.27942745 angs^2  rmsk=     0.00000376
iL =   4 Iter =   7 c.s. =      5.27942720 angs^2  rmsk=     0.00000011
iL =   4 Iter =   8 c.s. =      5.27942725 angs^2  rmsk=     0.00000002
iL =   5 Iter =   1 c.s. =      5.27942725 angs^2  rmsk=     0.00458287
iL =   5 Iter =   2 c.s. =      5.27942601 angs^2  rmsk=     0.00000567
iL =   5 Iter =   3 c.s. =      5.27942409 angs^2  rmsk=     0.00001087
iL =   5 Iter =   4 c.s. =      5.27942373 angs^2  rmsk=     0.00000098
iL =   5 Iter =   5 c.s. =      5.27942336 angs^2  rmsk=     0.00000100
iL =   5 Iter =   6 c.s. =      5.27942344 angs^2  rmsk=     0.00000091
iL =   5 Iter =   7 c.s. =      5.27942344 angs^2  rmsk=     0.00000001
iL =   5 Iter =   8 c.s. =      5.27942344 angs^2  rmsk=     0.00000001
     REAL PART -  Final k matrix
     ROW  1
  0.31529866E+00-0.82278183E-01 0.16124124E-01-0.23223248E-03-0.10472274E-03
     ROW  2
 -0.82277598E-01 0.52818541E-01-0.41676531E-01-0.36185524E-02 0.50073345E-04
     ROW  3
  0.16124124E-01-0.41676531E-01 0.38829584E-02-0.28156331E-01-0.31839321E-02
     ROW  4
 -0.23223627E-03-0.36185524E-02-0.28156331E-01-0.49801146E-02-0.22251802E-01
     ROW  5
 -0.10472271E-03 0.50073345E-04-0.31839321E-02-0.22251802E-01-0.44366807E-02
 eigenphases
 -0.4724393E-01 -0.9843554E-02  0.2174000E-01  0.5674796E-01  0.3287725E+00
 eigenphase sum 0.350173E+00  scattering length=  -1.34716
 eps+pi 0.349177E+01  eps+2*pi 0.663336E+01

MaxIter =   9 c.s. =      5.27942344 angs^2  rmsk=     0.00000001
Time Now =       261.4716  Delta time =        24.8042 End ScatStab
+ Data Record ScatContSym - 'D'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.11000000E+02  eV
 Do E =  0.50000000E+00 eV (  0.18374663E-01 AU)
Time Now =       261.5345  Delta time =         0.0629 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =D     1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    5
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    47
Number of partial waves (np) =    18
Number of asymptotic solutions on the right (NAsymR) =     4
Number of asymptotic solutions on the left (NAsymL) =     4
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     4
Maximum in the asymptotic region (lpasym) =   11
Number of partial waves in the asymptotic region (npasym) =   14
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  144
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    5
Highest l used at large r (lpasym) =   11
Higest l used in the asymptotic potential (lpzb) =   22
Maximum L used in the homogeneous solution (LMaxHomo) =   11
Number of partial waves in the homogeneous solution (npHomo) =   14
Time Now =       261.5544  Delta time =         0.0199 Energy independent setup

Compute solution for E =    0.5000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.52820418E-16
 i =  2  lval =   2  stpote =  0.12436576E-02
 i =  3  lval =   3  stpote = -0.61917009E-18
 i =  4  lval =   3  stpote =  0.48083042E-03
For potential     2
 i =  1  exps = -0.77040210E+02 -0.20000000E+01  stpote = -0.15114165E-15
 i =  2  exps = -0.77040210E+02 -0.20000000E+01  stpote = -0.15114165E-15
 i =  3  exps = -0.77040210E+02 -0.20000000E+01  stpote = -0.15114164E-15
 i =  4  exps = -0.77040210E+02 -0.20000000E+01  stpote = -0.15114162E-15
For potential     3
 i =  1  exps = -0.10672354E+01 -0.36467396E-01  stpote = -0.25437634E-05
 i =  2  exps = -0.10672354E+01 -0.36467396E-01  stpote = -0.25437634E-05
 i =  3  exps = -0.10672354E+01 -0.36467396E-01  stpote = -0.25437634E-05
 i =  4  exps = -0.10672354E+01 -0.36467396E-01  stpote = -0.25437634E-05
Number of asymptotic regions =     421
Final point in integration =   0.58444315E+04 Angstroms
Time Now =       285.1553  Delta time =        23.6010 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.49744557 angs^2  rmsk=     0.01804022
iL =   1 Iter =   2 c.s. =      0.49877396 angs^2  rmsk=     0.00004545
iL =   1 Iter =   3 c.s. =      0.49877475 angs^2  rmsk=     0.00000003
iL =   1 Iter =   4 c.s. =      0.49877463 angs^2  rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =      0.49877463 angs^2  rmsk=     0.00957623
iL =   2 Iter =   2 c.s. =      0.49881320 angs^2  rmsk=     0.00000211
iL =   2 Iter =   3 c.s. =      0.49881319 angs^2  rmsk=     0.00000000
iL =   2 Iter =   4 c.s. =      0.49881320 angs^2  rmsk=     0.00000000
iL =   3 Iter =   1 c.s. =      0.49881320 angs^2  rmsk=     0.00810940
iL =   3 Iter =   2 c.s. =      0.49881209 angs^2  rmsk=     0.00000066
iL =   3 Iter =   3 c.s. =      0.49881209 angs^2  rmsk=     0.00000000
iL =   3 Iter =   4 c.s. =      0.49881209 angs^2  rmsk=     0.00000000
iL =   4 Iter =   1 c.s. =      0.49881209 angs^2  rmsk=     0.00524899
iL =   4 Iter =   2 c.s. =      0.49881208 angs^2  rmsk=     0.00000001
iL =   4 Iter =   3 c.s. =      0.49881208 angs^2  rmsk=     0.00000000
     REAL PART -  Final k matrix
     ROW  1
  0.37482127E-01-0.29156092E-01-0.24240235E-02 0.31283014E-04
     ROW  2
 -0.29156092E-01 0.18250581E-02-0.24698859E-01-0.20571006E-02
     ROW  3
 -0.24240235E-02-0.24698859E-01-0.21298803E-02-0.20778372E-01
     ROW  4
  0.31283014E-04-0.20571006E-02-0.20778372E-01-0.22036863E-02
 eigenphases
 -0.3862701E-01 -0.6015603E-02  0.2367447E-01  0.5589834E-01
 eigenphase sum 0.349302E-01  scattering length=  -0.18229
 eps+pi 0.317652E+01  eps+2*pi 0.631812E+01

MaxIter =   4 c.s. =      0.49881208 angs^2  rmsk=     0.00000000
Time Now =       291.8307  Delta time =         6.6753 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.11000000E+02  eV
 Do E =  0.10000000E+01 eV (  0.36749326E-01 AU)
Time Now =       291.8938  Delta time =         0.0631 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =D     1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    5
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    47
Number of partial waves (np) =    18
Number of asymptotic solutions on the right (NAsymR) =     4
Number of asymptotic solutions on the left (NAsymL) =     4
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     4
Maximum in the asymptotic region (lpasym) =   11
Number of partial waves in the asymptotic region (npasym) =   14
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  144
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    5
Highest l used at large r (lpasym) =   11
Higest l used in the asymptotic potential (lpzb) =   22
Maximum L used in the homogeneous solution (LMaxHomo) =   11
Number of partial waves in the homogeneous solution (npHomo) =   14
Time Now =       291.9137  Delta time =         0.0199 Energy independent setup

Compute solution for E =    1.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.52820418E-16
 i =  2  lval =   2  stpote =  0.12436576E-02
 i =  3  lval =   3  stpote = -0.61917009E-18
 i =  4  lval =   3  stpote =  0.48083042E-03
For potential     2
 i =  1  exps = -0.77040210E+02 -0.20000000E+01  stpote = -0.15022066E-15
 i =  2  exps = -0.77040210E+02 -0.20000000E+01  stpote = -0.15022065E-15
 i =  3  exps = -0.77040210E+02 -0.20000000E+01  stpote = -0.15022064E-15
 i =  4  exps = -0.77040210E+02 -0.20000000E+01  stpote = -0.15022063E-15
For potential     3
 i =  1  exps = -0.10672354E+01 -0.36467396E-01  stpote = -0.25437634E-05
 i =  2  exps = -0.10672354E+01 -0.36467396E-01  stpote = -0.25437634E-05
 i =  3  exps = -0.10672354E+01 -0.36467396E-01  stpote = -0.25437634E-05
 i =  4  exps = -0.10672354E+01 -0.36467396E-01  stpote = -0.25437634E-05
Number of asymptotic regions =     421
Final point in integration =   0.41318981E+04 Angstroms
Time Now =       315.8316  Delta time =        23.9179 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.52606040 angs^2  rmsk=     0.02630395
iL =   1 Iter =   2 c.s. =      0.53415663 angs^2  rmsk=     0.00025527
iL =   1 Iter =   3 c.s. =      0.53416174 angs^2  rmsk=     0.00000016
iL =   1 Iter =   4 c.s. =      0.53416092 angs^2  rmsk=     0.00000003
iL =   2 Iter =   1 c.s. =      0.53416092 angs^2  rmsk=     0.01049861
iL =   2 Iter =   2 c.s. =      0.53437233 angs^2  rmsk=     0.00001861
iL =   2 Iter =   3 c.s. =      0.53437233 angs^2  rmsk=     0.00000001
iL =   2 Iter =   4 c.s. =      0.53437231 angs^2  rmsk=     0.00000001
iL =   3 Iter =   1 c.s. =      0.53437231 angs^2  rmsk=     0.00819616
iL =   3 Iter =   2 c.s. =      0.53436895 angs^2  rmsk=     0.00000700
iL =   3 Iter =   3 c.s. =      0.53436895 angs^2  rmsk=     0.00000000
iL =   3 Iter =   4 c.s. =      0.53436895 angs^2  rmsk=     0.00000000
iL =   4 Iter =   1 c.s. =      0.53436895 angs^2  rmsk=     0.00531128
iL =   4 Iter =   2 c.s. =      0.53436878 angs^2  rmsk=     0.00000018
iL =   4 Iter =   3 c.s. =      0.53436878 angs^2  rmsk=     0.00000000
     REAL PART -  Final k matrix
     ROW  1
  0.83414409E-01-0.31502704E-01-0.15782844E-02 0.13618915E-03
     ROW  2
 -0.31502704E-01 0.11611780E-01-0.25178435E-01-0.26129957E-02
     ROW  3
 -0.15782844E-02-0.25178435E-01-0.14879169E-02-0.20883242E-01
     ROW  4
  0.13618915E-03-0.26129956E-02-0.20883242E-01-0.28973800E-02
 eigenphases
 -0.3481882E-01  0.6021629E-03  0.2898451E-01  0.9558681E-01
 eigenphase sum 0.903547E-01  scattering length=  -0.33419
 eps+pi 0.323195E+01  eps+2*pi 0.637354E+01

MaxIter =   4 c.s. =      0.53436878 angs^2  rmsk=     0.00000000
Time Now =       322.5050  Delta time =         6.6734 End ScatStab
+ Data Record ScatContSym - 'F'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.11000000E+02  eV
 Do E =  0.50000000E+00 eV (  0.18374663E-01 AU)
Time Now =       322.5683  Delta time =         0.0633 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =F     1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    5
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    47
Number of partial waves (np) =    18
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     3
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     3
Maximum in the asymptotic region (lpasym) =   11
Number of partial waves in the asymptotic region (npasym) =   14
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  144
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    5
Highest l used at large r (lpasym) =   11
Higest l used in the asymptotic potential (lpzb) =   22
Maximum L used in the homogeneous solution (LMaxHomo) =   11
Number of partial waves in the homogeneous solution (npHomo) =   14
Time Now =       322.5881  Delta time =         0.0198 Energy independent setup

Compute solution for E =    0.5000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.52820418E-16
 i =  2  lval =   2  stpote =  0.12436576E-02
 i =  3  lval =   3  stpote = -0.61917009E-18
 i =  4  lval =   3  stpote =  0.48083042E-03
For potential     2
 i =  1  exps = -0.77040210E+02 -0.20000000E+01  stpote = -0.15114165E-15
 i =  2  exps = -0.77040210E+02 -0.20000000E+01  stpote = -0.15114165E-15
 i =  3  exps = -0.77040210E+02 -0.20000000E+01  stpote = -0.15114164E-15
 i =  4  exps = -0.77040210E+02 -0.20000000E+01  stpote = -0.15114162E-15
For potential     3
 i =  1  exps = -0.10672354E+01 -0.36467396E-01  stpote = -0.25437634E-05
 i =  2  exps = -0.10672354E+01 -0.36467396E-01  stpote = -0.25437634E-05
 i =  3  exps = -0.10672354E+01 -0.36467396E-01  stpote = -0.25437634E-05
 i =  4  exps = -0.10672354E+01 -0.36467396E-01  stpote = -0.25437634E-05
Number of asymptotic regions =     421
Final point in integration =   0.58444315E+04 Angstroms
Time Now =       346.3392  Delta time =        23.7511 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.14960158 angs^2  rmsk=     0.01318066
iL =   1 Iter =   2 c.s. =      0.14960184 angs^2  rmsk=     0.00000003
iL =   1 Iter =   3 c.s. =      0.14960184 angs^2  rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =      0.14960184 angs^2  rmsk=     0.00876344
iL =   2 Iter =   2 c.s. =      0.14960189 angs^2  rmsk=     0.00000001
iL =   2 Iter =   3 c.s. =      0.14960189 angs^2  rmsk=     0.00000000
iL =   3 Iter =   1 c.s. =      0.14960189 angs^2  rmsk=     0.00606988
iL =   3 Iter =   2 c.s. =      0.14960189 angs^2  rmsk=     0.00000000
iL =   3 Iter =   3 c.s. =      0.14960189 angs^2  rmsk=     0.00000000
     REAL PART -  Final k matrix
     ROW  1
  0.13481498E-01-0.18899741E-01-0.13593920E-02
     ROW  2
 -0.18899741E-01 0.20906023E-02-0.18155179E-01
     ROW  3
 -0.13593920E-02-0.18155179E-01-0.36467602E-03
 eigenphases
 -0.2322164E-01  0.7267081E-02  0.3115594E-01
 eigenphase sum 0.152014E-01  scattering length=  -0.07930
 eps+pi 0.315679E+01  eps+2*pi 0.629839E+01

MaxIter =   3 c.s. =      0.14960189 angs^2  rmsk=     0.00000000
Time Now =       349.8475  Delta time =         3.5083 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.11000000E+02  eV
 Do E =  0.10000000E+01 eV (  0.36749326E-01 AU)
Time Now =       349.9109  Delta time =         0.0634 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =F     1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    5
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    47
Number of partial waves (np) =    18
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     3
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     3
Maximum in the asymptotic region (lpasym) =   11
Number of partial waves in the asymptotic region (npasym) =   14
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  144
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    5
Highest l used at large r (lpasym) =   11
Higest l used in the asymptotic potential (lpzb) =   22
Maximum L used in the homogeneous solution (LMaxHomo) =   11
Number of partial waves in the homogeneous solution (npHomo) =   14
Time Now =       349.9307  Delta time =         0.0198 Energy independent setup

Compute solution for E =    1.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.52820418E-16
 i =  2  lval =   2  stpote =  0.12436576E-02
 i =  3  lval =   3  stpote = -0.61917009E-18
 i =  4  lval =   3  stpote =  0.48083042E-03
For potential     2
 i =  1  exps = -0.77040210E+02 -0.20000000E+01  stpote = -0.15022066E-15
 i =  2  exps = -0.77040210E+02 -0.20000000E+01  stpote = -0.15022065E-15
 i =  3  exps = -0.77040210E+02 -0.20000000E+01  stpote = -0.15022064E-15
 i =  4  exps = -0.77040210E+02 -0.20000000E+01  stpote = -0.15022063E-15
For potential     3
 i =  1  exps = -0.10672354E+01 -0.36467396E-01  stpote = -0.25437634E-05
 i =  2  exps = -0.10672354E+01 -0.36467396E-01  stpote = -0.25437634E-05
 i =  3  exps = -0.10672354E+01 -0.36467396E-01  stpote = -0.25437634E-05
 i =  4  exps = -0.10672354E+01 -0.36467396E-01  stpote = -0.25437634E-05
Number of asymptotic regions =     421
Final point in integration =   0.41318981E+04 Angstroms
Time Now =       373.5153  Delta time =        23.5846 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.09932810 angs^2  rmsk=     0.01519164
iL =   1 Iter =   2 c.s. =      0.09933046 angs^2  rmsk=     0.00000030
iL =   1 Iter =   3 c.s. =      0.09933045 angs^2  rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =      0.09933045 angs^2  rmsk=     0.00904416
iL =   2 Iter =   2 c.s. =      0.09933085 angs^2  rmsk=     0.00000012
iL =   2 Iter =   3 c.s. =      0.09933085 angs^2  rmsk=     0.00000000
iL =   3 Iter =   1 c.s. =      0.09933085 angs^2  rmsk=     0.00612194
iL =   3 Iter =   2 c.s. =      0.09933083 angs^2  rmsk=     0.00000004
iL =   3 Iter =   3 c.s. =      0.09933083 angs^2  rmsk=     0.00000000
     REAL PART -  Final k matrix
     ROW  1
  0.24848595E-01-0.19582855E-01-0.16449778E-02
     ROW  2
 -0.19582855E-01 0.42670392E-02-0.18288898E-01
     ROW  3
 -0.16449778E-02-0.18288898E-01-0.33617884E-03
 eigenphases
 -0.2129064E-01  0.1143410E-01  0.3861951E-01
 eigenphase sum 0.287630E-01  scattering length=  -0.10612
 eps+pi 0.317036E+01  eps+2*pi 0.631195E+01

MaxIter =   3 c.s. =      0.09933083 angs^2  rmsk=     0.00000000
Time Now =       377.0236  Delta time =         3.5083 End ScatStab
+ Data Record ScatContSym - 'G'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.11000000E+02  eV
 Do E =  0.50000000E+00 eV (  0.18374663E-01 AU)
Time Now =       377.0871  Delta time =         0.0635 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =G     1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    5
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    47
Number of partial waves (np) =    14
Number of asymptotic solutions on the right (NAsymR) =     2
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   11
Number of partial waves in the asymptotic region (npasym) =   14
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  144
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   11
Higest l included in the K matrix (lna) =    5
Highest l used at large r (lpasym) =   11
Higest l used in the asymptotic potential (lpzb) =   22
Maximum L used in the homogeneous solution (LMaxHomo) =   11
Number of partial waves in the homogeneous solution (npHomo) =   14
Time Now =       377.1069  Delta time =         0.0198 Energy independent setup

Compute solution for E =    0.5000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.52820418E-16
 i =  2  lval =   2  stpote =  0.12436576E-02
 i =  3  lval =   3  stpote = -0.61917009E-18
 i =  4  lval =   3  stpote =  0.48083042E-03
For potential     2
 i =  1  exps = -0.77040210E+02 -0.20000000E+01  stpote = -0.15114165E-15
 i =  2  exps = -0.77040210E+02 -0.20000000E+01  stpote = -0.15114165E-15
 i =  3  exps = -0.77040210E+02 -0.20000000E+01  stpote = -0.15114164E-15
 i =  4  exps = -0.77040210E+02 -0.20000000E+01  stpote = -0.15114162E-15
For potential     3
 i =  1  exps = -0.10672354E+01 -0.36467396E-01  stpote = -0.25437634E-05
 i =  2  exps = -0.10672354E+01 -0.36467396E-01  stpote = -0.25437634E-05
 i =  3  exps = -0.10672354E+01 -0.36467396E-01  stpote = -0.25437634E-05
 i =  4  exps = -0.10672354E+01 -0.36467396E-01  stpote = -0.25437634E-05
Number of asymptotic regions =     421
Final point in integration =   0.58444315E+04 Angstroms
Time Now =       400.6040  Delta time =        23.4971 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.04215842 angs^2  rmsk=     0.01049297
iL =   1 Iter =   2 c.s. =      0.04215842 angs^2  rmsk=     0.00000000
iL =   1 Iter =   3 c.s. =      0.04215842 angs^2  rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =      0.04215842 angs^2  rmsk=     0.00690554
iL =   2 Iter =   2 c.s. =      0.04215842 angs^2  rmsk=     0.00000000
iL =   2 Iter =   3 c.s. =      0.04215842 angs^2  rmsk=     0.00000000
     REAL PART -  Final k matrix
     ROW  1
  0.79883220E-02-0.13632708E-01
     ROW  2
 -0.13632708E-01 0.22125013E-02
 eigenphases
 -0.8834592E-02  0.1903335E-01
 eigenphase sum 0.101988E-01  scattering length=  -0.05320
 eps+pi 0.315179E+01  eps+2*pi 0.629338E+01

MaxIter =   3 c.s. =      0.04215842 angs^2  rmsk=     0.00000000
Time Now =       403.0084  Delta time =         2.4044 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.11000000E+02  eV
 Do E =  0.10000000E+01 eV (  0.36749326E-01 AU)
Time Now =       403.0716  Delta time =         0.0632 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =G     1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    5
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    47
Number of partial waves (np) =    14
Number of asymptotic solutions on the right (NAsymR) =     2
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   11
Number of partial waves in the asymptotic region (npasym) =   14
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  144
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   11
Higest l included in the K matrix (lna) =    5
Highest l used at large r (lpasym) =   11
Higest l used in the asymptotic potential (lpzb) =   22
Maximum L used in the homogeneous solution (LMaxHomo) =   11
Number of partial waves in the homogeneous solution (npHomo) =   14
Time Now =       403.0914  Delta time =         0.0198 Energy independent setup

Compute solution for E =    1.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.52820418E-16
 i =  2  lval =   2  stpote =  0.12436576E-02
 i =  3  lval =   3  stpote = -0.61917009E-18
 i =  4  lval =   3  stpote =  0.48083042E-03
For potential     2
 i =  1  exps = -0.77040210E+02 -0.20000000E+01  stpote = -0.15022066E-15
 i =  2  exps = -0.77040210E+02 -0.20000000E+01  stpote = -0.15022065E-15
 i =  3  exps = -0.77040210E+02 -0.20000000E+01  stpote = -0.15022064E-15
 i =  4  exps = -0.77040210E+02 -0.20000000E+01  stpote = -0.15022063E-15
For potential     3
 i =  1  exps = -0.10672354E+01 -0.36467396E-01  stpote = -0.25437634E-05
 i =  2  exps = -0.10672354E+01 -0.36467396E-01  stpote = -0.25437634E-05
 i =  3  exps = -0.10672354E+01 -0.36467396E-01  stpote = -0.25437634E-05
 i =  4  exps = -0.10672354E+01 -0.36467396E-01  stpote = -0.25437634E-05
Number of asymptotic regions =     421
Final point in integration =   0.41318981E+04 Angstroms
Time Now =       426.6547  Delta time =        23.5632 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.02572558 angs^2  rmsk=     0.01159270
iL =   1 Iter =   2 c.s. =      0.02572558 angs^2  rmsk=     0.00000000
iL =   1 Iter =   3 c.s. =      0.02572558 angs^2  rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =      0.02572558 angs^2  rmsk=     0.00708897
iL =   2 Iter =   2 c.s. =      0.02572559 angs^2  rmsk=     0.00000000
iL =   2 Iter =   3 c.s. =      0.02572559 angs^2  rmsk=     0.00000000
     REAL PART -  Final k matrix
     ROW  1
  0.12087384E-01-0.13800128E-01
     ROW  2
 -0.13800128E-01 0.32512559E-02
 eigenphases
 -0.6820668E-02  0.2215579E-01
 eigenphase sum 0.153351E-01  scattering length=  -0.05657
 eps+pi 0.315693E+01  eps+2*pi 0.629852E+01

MaxIter =   3 c.s. =      0.02572559 angs^2  rmsk=     0.00000000
Time Now =       429.0642  Delta time =         2.4095 End ScatStab

+ Command TotalCrossSection
+
Symmetry S -
        E (eV)      XS(angs^2)    EPS(radians)
       0.500000       6.555550      -0.241540
       1.000000       8.782285      -0.443805
Symmetry A2 -
        E (eV)      XS(angs^2)    EPS(radians)
       0.500000       0.000000       0.000000
       1.000000       0.000000       0.000000
Symmetry B1 -
        E (eV)      XS(angs^2)    EPS(radians)
       0.500000       0.002928       0.005530
       1.000000       0.002958       0.007860
Symmetry B2 -
        E (eV)      XS(angs^2)    EPS(radians)
       0.500000       0.002928       0.005530
       1.000000       0.002958       0.007860
Symmetry P -
        E (eV)      XS(angs^2)    EPS(radians)
       0.500000       4.710380       0.190133
       1.000000       5.279420       0.350173
Symmetry D -
        E (eV)      XS(angs^2)    EPS(radians)
       0.500000       0.498812       0.034930
       1.000000       0.534369       0.090355
Symmetry F -
        E (eV)      XS(angs^2)    EPS(radians)
       0.500000       0.149602       0.015201
       1.000000       0.099331       0.028763
Symmetry G -
        E (eV)      XS(angs^2)    EPS(radians)
       0.500000       0.042158       0.010199
       1.000000       0.025726       0.015335

 Total Cross Sections

 Energy      Total Cross Section
   0.50000    17.36331
   1.00000    20.66589
Time Now =       429.0722  Delta time =         0.0081 Finalize