----------------------------------------------------------------------
ePolyScat Version E2
----------------------------------------------------------------------

Authors: R. R. Lucchese, N. Sanna, A. P. P. Natalense, and F. A. Gianturco
http://www.chem.tamu.edu/rgroup/lucchese/ePolyScat.E2.manual/manual.html
Please cite the following two papers when reporting results obtained with  this program
F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 100, 6464 (1994).
A. P. P. Natalense and R. R. Lucchese, J. Chem. Phys. 111, 5344 (1999).

----------------------------------------------------------------------

Starting at 2009-03-13  12:15:37.614 (GMT -0500)
Using    16 processors

----------------------------------------------------------------------


+ Start of Input Records
#
# input file for test30
#
# electron scattering from H2O in A1 symmetry
#
  LMax   15     # maximum l to be used for wave functions
  EMax  50.0    # EMax, maximum asymptotic energy in eV
  EngForm      # Energy formulas
   0 0         # charge, formula type
  VCorr 'PZ'
  FegeEng 13.0   # Energy correction (in eV) used in the fege potential
  ScatContSym 'A1'  # Scattering symmetry
  LMaxK   3     # Maximum l in the K matirx
  ScatEng 20.0      # list of scattering energies (in eV)
  PCutRd 1.0e-8
  GrnType 1

   # do the scattering with the center of mass at the origin
Convert '/scratch/rrl581a/ePolyScat.E2/tests/test30.g03' 'g03'
GetBlms
ExpOrb
GetPot
Scat
   # do the scattering with the O at the origin
  NECenter 2
Convert '/scratch/rrl581a/ePolyScat.E2/tests/test30.g03' 'g03'
GetBlms
ExpOrb
GetPot
Scat
Exit
+ End of input reached
+ Data Record LMax - 15
+ Data Record EMax - 50.0
+ Data Record EngForm - 0 0
+ Data Record VCorr - 'PZ'
+ Data Record FegeEng - 13.0
+ Data Record ScatContSym - 'A1'
+ Data Record LMaxK - 3
+ Data Record ScatEng - 20.0
+ Data Record PCutRd - 1.0e-8
+ Data Record GrnType - 1

+ Command Convert
+ '/scratch/rrl581a/ePolyScat.E2/tests/test30.g03' 'g03'

----------------------------------------------------------------------
g03cnv - read input from G03 output
----------------------------------------------------------------------

Expansion center is (in Angstroms) -
     0.0000000000   0.0000000000   0.0000000000
CardFlag =    T
Normal Mode flag =    F
Selecting orbitals
from     1  to     5  number already selected     0
Number of orbitals selected is     5
Highest orbital read in is =    5
Time Now =         0.0685  Delta time =         0.0685 End g03cnv

Atoms found    3  Coordinates in Angstroms
Z =  1 ZS =  1 r =   0.0000000000   0.7594600000  -0.4645210000
Z =  8 ZS =  8 r =   0.0000000000   0.0000000000   0.1161300000
Z =  1 ZS =  1 r =   0.0000000000  -0.7594600000  -0.4645210000
Maximum distance from expansion center is    0.8902579688

+ Command GetBlms
+

----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------

Found point group  C2v
Reduce angular grid using nthd =  1  nphid =  4
Found point group for abelian subgroup C2v
Time Now =         0.0700  Delta time =         0.0015 End GetPGroup
List of unique axes
  N  Vector                      Z   R
  1  0.00000  0.00000  1.00000   8  0.21945
  2  0.00000  0.85308 -0.52178   1  1.68234
  3  0.00000 -0.85308 -0.52178   1  1.68234
List of corresponding x axes
  N  Vector
  1  1.00000 -0.00000 -0.00000
  2  1.00000 -0.00000  0.00000
  3  1.00000  0.00000  0.00000
Computed default value of LMaxA =   10
Determineing angular grid in GetAxMax  LMax =   15  LMaxA =   10  LMaxAb =   30
MMax =    3  MMaxAbFlag =    1
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10   3   3   3   3   3
For axis     2  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3   3   3   2
For axis     3  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3   3   3   2
On the double L grid used for products
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19
  20  21  22  23  24  25  26  27  28  29  30
For axis     2  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
For axis     3  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is C2v
LMax = =   15
 The dimension of each irreducable representation is
    A1    (  1)    A2    (  1)    B1    (  1)    B2    (  1)
Abelian axes
    1       1.000000      -0.000000       0.000000
    2       0.000000       1.000000       0.000000
    3      -0.000000      -0.000000       1.000000
Symmetry operation directions
  1       0.000000       0.000000       1.000000 ang =  0  1 type = 0 axis = 3
  2       1.000000      -0.000000       0.000000 ang =  0  1 type = 1 axis = 1
  3       0.000000       1.000000       0.000000 ang =  0  1 type = 1 axis = 2
  4       0.000000       0.000000      -1.000000 ang =  1  2 type = 2 axis = 3
irep =    1  sym =A1    1  eigs =   1   1   1   1
irep =    2  sym =A2    1  eigs =   1  -1  -1   1
irep =    3  sym =B1    1  eigs =   1  -1   1  -1
irep =    4  sym =B2    1  eigs =   1   1  -1  -1
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     2     3     4
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A1        1         1         65       1  1  1
 A2        1         2         44      -1 -1  1
 B1        1         3         54      -1  1 -1
 B2        1         4         59       1 -1 -1
Time Now =         0.1892  Delta time =         0.1192 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
A1    1    0(   1)    1(   2)    2(   4)    3(   6)    4(   9)    5(  12)    6(  16)    7(  20)    8(  25)    9(  30)
          10(  36)
A2    1    0(   0)    1(   0)    2(   1)    3(   2)    4(   4)    5(   6)    6(   9)    7(  12)    8(  16)    9(  20)
          10(  25)
B1    1    0(   0)    1(   1)    2(   2)    3(   4)    4(   6)    5(   9)    6(  12)    7(  16)    8(  20)    9(  25)
          10(  30)
B2    1    0(   0)    1(   1)    2(   2)    3(   4)    4(   6)    5(   9)    6(  12)    7(  16)    8(  20)    9(  25)
          10(  30)

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is C2v
LMax = =   30
 The dimension of each irreducable representation is
    A1    (  1)    A2    (  1)    B1    (  1)    B2    (  1)
Abelian axes
    1       1.000000      -0.000000       0.000000
    2       0.000000       1.000000       0.000000
    3      -0.000000      -0.000000       1.000000
Symmetry operation directions
  1       0.000000       0.000000       1.000000 ang =  0  1 type = 0 axis = 3
  2       1.000000      -0.000000       0.000000 ang =  0  1 type = 1 axis = 1
  3       0.000000       1.000000       0.000000 ang =  0  1 type = 1 axis = 2
  4       0.000000       0.000000      -1.000000 ang =  1  2 type = 2 axis = 3
irep =    1  sym =A1    1  eigs =   1   1   1   1
irep =    2  sym =A2    1  eigs =   1  -1  -1   1
irep =    3  sym =B1    1  eigs =   1  -1   1  -1
irep =    4  sym =B2    1  eigs =   1   1  -1  -1
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     2     3     4
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A1        1         1        256       1  1  1
 A2        1         2        225      -1 -1  1
 B1        1         3        240      -1  1 -1
 B2        1         4        240       1 -1 -1
Time Now =         0.2130  Delta time =         0.0238 End SymGen

+ Command ExpOrb
+
In GetRMax, RMaxEps =  0.10000000E-05  RMax =   12.0039808364 Angs

----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------

Maximum R in the grid (RMax) =    12.00398 Angs
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) =   10.0
In regions controlled by the wave length (HFacWave) =   10.0
Factor used to control the minimum exponent at each center (MinExpFac) =  300.0
Maximum asymptotic kinetic energy (EMAx) =  50.00000 eV
Maximum step size (MaxStep) =  12.00398 Angs
Factor to increase grid by (GridFac) =     1

    1  Center at =     0.00000 Angs  Alpha Max = 0.10000E+01
    2  Center at =     0.11613 Angs  Alpha Max = 0.19200E+05
    3  Center at =     0.89026 Angs  Alpha Max = 0.30000E+03

Generated Grid

  irg  nin  ntot      step Angs     R end Angs
    1    8     8    0.41063E-03     0.00329
    2    8    16    0.58001E-03     0.00793
    3    8    24    0.93206E-03     0.01538
    4    8    32    0.12452E-02     0.02534
    5    8    40    0.14460E-02     0.03691
    6    8    48    0.14579E-02     0.04857
    7    8    56    0.13371E-02     0.05927
    8    8    64    0.13008E-02     0.06968
    9    8    72    0.14451E-02     0.08124
   10    8    80    0.15789E-02     0.09387
   11    8    88    0.10139E-02     0.10198
   12    8    96    0.64446E-03     0.10714
   13    8   104    0.46007E-03     0.11082
   14    8   112    0.39392E-03     0.11397
   15    8   120    0.27029E-03     0.11613
   16    8   128    0.38190E-03     0.11919
   17    8   136    0.40714E-03     0.12244
   18    8   144    0.50188E-03     0.12646
   19    8   152    0.76147E-03     0.13255
   20    8   160    0.12106E-02     0.14223
   21    8   168    0.19247E-02     0.15763
   22    8   176    0.30601E-02     0.18211
   23    8   184    0.37769E-02     0.21233
   24    8   192    0.44035E-02     0.24756
   25    8   200    0.63618E-02     0.29845
   26    8   208    0.97955E-02     0.37681
   27    8   216    0.92953E-02     0.45118
   28    8   224    0.93571E-02     0.52603
   29    8   232    0.10910E-01     0.61331
   30    8   240    0.12720E-01     0.71507
   31    8   248    0.79791E-02     0.77890
   32    8   256    0.50718E-02     0.81947
   33    8   264    0.36511E-02     0.84868
   34    8   272    0.31419E-02     0.87382
   35    8   280    0.20549E-02     0.89026
   36    8   288    0.30552E-02     0.91470
   37    8   296    0.32571E-02     0.94076
   38    8   304    0.40150E-02     0.97288
   39    8   312    0.60918E-02     1.02161
   40    8   320    0.96851E-02     1.09909
   41    8   328    0.15398E-01     1.22227
   42    8   336    0.24481E-01     1.41812
   43    8   344    0.29411E-01     1.65341
   44    8   352    0.34290E-01     1.92773
   45    8   360    0.45134E-01     2.28880
   46    8   368    0.58373E-01     2.75579
   47    8   376    0.61891E-01     3.25091
   48    8   384    0.64724E-01     3.76871
   49    8   392    0.67043E-01     4.30505
   50    8   400    0.68966E-01     4.85678
   51    8   408    0.70580E-01     5.42142
   52    8   416    0.71948E-01     5.99700
   53    8   424    0.73120E-01     6.58197
   54    8   432    0.74133E-01     7.17503
   55    8   440    0.75016E-01     7.77516
   56    8   448    0.75790E-01     8.38148
   57    8   456    0.76474E-01     8.99327
   58    8   464    0.77082E-01     9.60993
   59    8   472    0.77626E-01    10.23094
   60    8   480    0.78115E-01    10.85586
   61    8   488    0.78556E-01    11.48430
   62    8   496    0.64960E-01    12.00398
Time Now =         0.2730  Delta time =         0.0600 End GenGrid

----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------

Maximum scattering l (lmax) =   15
Maximum scattering m (mmaxs) =   15
Maximum numerical integration l (lmaxi) =   30
Maximum numerical integration m (mmaxi) =   30
Maximum l to include in the asymptotic region (lmasym) =   10
Parameter used to determine the cutoff points (PCutRd) =  0.10000000E-07 au
Maximum E used to determine grid (in eV) =       50.00000
Print flag (iprnfg) =    0
lmasymtyts =   10
 Actual value of lmasym found =     10
Number of regions of the same l expansion (NAngReg) =   10
Angular regions
    1 L =    2  from (    1)         0.00041  to (    7)         0.00287
    2 L =    3  from (    8)         0.00329  to (   23)         0.01445
    3 L =    4  from (   24)         0.01538  to (   31)         0.02410
    4 L =    6  from (   32)         0.02534  to (   39)         0.03546
    5 L =    7  from (   40)         0.03691  to (   47)         0.04712
    6 L =    9  from (   48)         0.04857  to (   55)         0.05793
    7 L =   15  from (   56)         0.05927  to (  200)         0.29845
    8 L =   10  from (  201)         0.30825  to (  223)         0.51668
    9 L =   15  from (  224)         0.52603  to (  352)         1.92773
   10 L =   10  from (  353)         1.97286  to (  496)        12.00398
Angular regions for computing spherical harmonics
    1 lval =   10
    2 lval =   15
Last grid points by processor WorkExp =     1.500
Proc id =   -1  Last grid point =       1
Proc id =    0  Last grid point =      72
Proc id =    1  Last grid point =      96
Proc id =    2  Last grid point =     120
Proc id =    3  Last grid point =     144
Proc id =    4  Last grid point =     168
Proc id =    5  Last grid point =     192
Proc id =    6  Last grid point =     224
Proc id =    7  Last grid point =     248
Proc id =    8  Last grid point =     272
Proc id =    9  Last grid point =     296
Proc id =   10  Last grid point =     320
Proc id =   11  Last grid point =     344
Proc id =   12  Last grid point =     376
Proc id =   13  Last grid point =     416
Proc id =   14  Last grid point =     456
Proc id =   15  Last grid point =     496
Time Now =         0.2984  Delta time =         0.0254 End AngGCt

----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------


 R of maximum density
     1  A1    1 at max irg =   18  r =   0.12646
     2  A1    1 at max irg =   28  r =   0.52603
     3  B2    1 at max irg =   29  r =   0.61331
     4  A1    1 at max irg =   28  r =   0.52603
     5  B1    1 at max irg =   27  r =   0.45118

Rotation coefficients for orbital     1  grp =    1 A1    1
     1  1.0000000000

Rotation coefficients for orbital     2  grp =    2 A1    1
     2  1.0000000000

Rotation coefficients for orbital     3  grp =    3 B2    1
     3  1.0000000000

Rotation coefficients for orbital     4  grp =    4 A1    1
     4  1.0000000000

Rotation coefficients for orbital     5  grp =    5 B1    1
     5  1.0000000000
Number of orbital groups and degeneracis are         5
  1  1  1  1  1
Number of orbital groups and number of electrons when fully occupied
         5
  2  2  2  2  2
Time Now =         0.4854  Delta time =         0.1869 End RotOrb

----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------

 First orbital group to expand (mofr) =    1
 Last orbital group to expand (moto) =    5
Orbital     1 of  A1    1 symmetry normalization integral =  0.99998473
Orbital     2 of  A1    1 symmetry normalization integral =  0.99999607
Orbital     3 of  B2    1 symmetry normalization integral =  0.99999105
Orbital     4 of  A1    1 symmetry normalization integral =  0.99999675
Orbital     5 of  B1    1 symmetry normalization integral =  1.00000007
Time Now =         1.7921  Delta time =         1.3067 End ExpOrb

+ Command GetPot
+

----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------

Total density =     10.00000000
Time Now =         1.7997  Delta time =         0.0076 End Den

----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------

 vasymp =  0.10000000E+02 facnorm =  0.10000000E+01
Time Now =         1.8582  Delta time =         0.0585 Electronic part
Time Now =         1.8614  Delta time =         0.0033 End StPot

----------------------------------------------------------------------
vcppol - VCP polarization potential program
----------------------------------------------------------------------

Time Now =         1.9084  Delta time =         0.0470 End VcpPol

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.20000000E+02 eV (  0.73498652E+00 AU)
Time Now =         1.9658  Delta time =         0.0574 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A1    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    3
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    62
Number of partial waves (np) =    65
Number of asymptotic solutions on the right (NAsymR) =     6
Number of asymptotic solutions on the left (NAsymL) =     6
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     6
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =   36
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  121
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    3
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =   36
Time Now =         1.9807  Delta time =         0.0149 Energy independent setup

Compute solution for E =   20.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.24081973E-15
 i =  2  lval =   2  stpote =  0.30720374E-02
 i =  3  lval =   3  stpote =  0.29177556E-03
 i =  4  lval =   3  stpote =  0.38053679E-04
For potential     2
 i =  1  exps = -0.90736945E+02 -0.20000000E+01  stpote = -0.16510281E-16
 i =  2  exps = -0.90736945E+02 -0.20000000E+01  stpote = -0.16461156E-16
 i =  3  exps = -0.90736945E+02 -0.20000000E+01  stpote = -0.16365814E-16
 i =  4  exps = -0.90736945E+02 -0.20000000E+01  stpote = -0.16229982E-16
For potential     3
 i =  1  exps = -0.73269168E+00 -0.17371867E-01  stpote = -0.15271282E-05
 i =  2  exps = -0.73264473E+00 -0.17370912E-01  stpote = -0.15279359E-05
 i =  3  exps = -0.73255429E+00 -0.17369079E-01  stpote = -0.15294951E-05
 i =  4  exps = -0.73242695E+00 -0.17366516E-01  stpote = -0.15316979E-05
Number of asymptotic regions =    1550
Final point in integration =   0.17112225E+04 Angstroms
Time Now =       110.7121  Delta time =       108.7314 End SolveHomo
iL =   1 Iter =   1 c.s. =      4.85478966 angs^2  rmsk=     0.23734636
iL =   1 Iter =   2 c.s. =      4.87337131 angs^2  rmsk=     0.01101341
iL =   1 Iter =   3 c.s. =      4.87396700 angs^2  rmsk=     0.00084630
iL =   1 Iter =   4 c.s. =      4.87439980 angs^2  rmsk=     0.00003753
iL =   1 Iter =   5 c.s. =      4.87439211 angs^2  rmsk=     0.00000136
iL =   1 Iter =   6 c.s. =      4.87439246 angs^2  rmsk=     0.00000020
iL =   1 Iter =   7 c.s. =      4.87439253 angs^2  rmsk=     0.00000001
iL =   2 Iter =   1 c.s. =      4.87439253 angs^2  rmsk=     0.11660151
iL =   2 Iter =   2 c.s. =      4.84152521 angs^2  rmsk=     0.00975923
iL =   2 Iter =   3 c.s. =      4.84364542 angs^2  rmsk=     0.00095011
iL =   2 Iter =   4 c.s. =      4.84362014 angs^2  rmsk=     0.00002878
iL =   2 Iter =   5 c.s. =      4.84361959 angs^2  rmsk=     0.00000076
iL =   2 Iter =   6 c.s. =      4.84361965 angs^2  rmsk=     0.00000005
iL =   2 Iter =   7 c.s. =      4.84361966 angs^2  rmsk=     0.00000000
iL =   3 Iter =   1 c.s. =      4.84361966 angs^2  rmsk=     0.11740626
iL =   3 Iter =   2 c.s. =      5.09152933 angs^2  rmsk=     0.02186368
iL =   3 Iter =   3 c.s. =      5.09524149 angs^2  rmsk=     0.00045777
iL =   3 Iter =   4 c.s. =      5.09540235 angs^2  rmsk=     0.00002272
iL =   3 Iter =   5 c.s. =      5.09542579 angs^2  rmsk=     0.00000151
iL =   3 Iter =   6 c.s. =      5.09542635 angs^2  rmsk=     0.00000016
iL =   3 Iter =   7 c.s. =      5.09542635 angs^2  rmsk=     0.00000000
iL =   4 Iter =   1 c.s. =      5.09542635 angs^2  rmsk=     0.08348698
iL =   4 Iter =   2 c.s. =      5.28073242 angs^2  rmsk=     0.01783852
iL =   4 Iter =   3 c.s. =      5.27718310 angs^2  rmsk=     0.00072439
iL =   4 Iter =   4 c.s. =      5.27724643 angs^2  rmsk=     0.00001698
iL =   4 Iter =   5 c.s. =      5.27724455 angs^2  rmsk=     0.00000046
iL =   4 Iter =   6 c.s. =      5.27724458 angs^2  rmsk=     0.00000001
iL =   4 Iter =   7 c.s. =      5.27724458 angs^2  rmsk=     0.00000000
iL =   5 Iter =   1 c.s. =      5.27724458 angs^2  rmsk=     0.04587894
iL =   5 Iter =   2 c.s. =      5.27570063 angs^2  rmsk=     0.00527013
iL =   5 Iter =   3 c.s. =      5.27589109 angs^2  rmsk=     0.00010686
iL =   5 Iter =   4 c.s. =      5.27589487 angs^2  rmsk=     0.00000662
iL =   5 Iter =   5 c.s. =      5.27589647 angs^2  rmsk=     0.00000036
iL =   5 Iter =   6 c.s. =      5.27589668 angs^2  rmsk=     0.00000010
iL =   5 Iter =   7 c.s. =      5.27589668 angs^2  rmsk=     0.00000000
iL =   6 Iter =   1 c.s. =      5.27589668 angs^2  rmsk=     0.03881260
iL =   6 Iter =   2 c.s. =      5.27972531 angs^2  rmsk=     0.00426328
iL =   6 Iter =   3 c.s. =      5.27988749 angs^2  rmsk=     0.00012401
iL =   6 Iter =   4 c.s. =      5.27989178 angs^2  rmsk=     0.00000714
iL =   6 Iter =   5 c.s. =      5.27989270 angs^2  rmsk=     0.00000031
iL =   6 Iter =   6 c.s. =      5.27989272 angs^2  rmsk=     0.00000003
iL =   6 Iter =   7 c.s. =      5.27989272 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  (-0.14965971E+00, 0.67000707E+00) ( 0.37817885E-01, 0.27913566E+00)
  (-0.31511555E+00, 0.15012650E-01) ( 0.55130979E-01, 0.19414542E-01)
  ( 0.98486718E-01, 0.15598504E-01) ( 0.77534960E-01,-0.49303346E-02)
     ROW  2
  ( 0.37817895E-01, 0.27913571E+00) (-0.27474449E+00, 0.47687344E+00)
  ( 0.13140253E-01, 0.10836572E+00) (-0.27652352E+00, 0.44571487E-01)
  (-0.46371623E-01,-0.21115015E-01) (-0.36648429E-01, 0.71675578E-02)
     ROW  3
  (-0.31511557E+00, 0.15012655E-01) ( 0.13140245E-01, 0.10836571E+00)
  ( 0.26693601E+00, 0.60254135E+00) ( 0.36677048E-01, 0.14575151E+00)
  (-0.19298249E-01,-0.14819997E+00) ( 0.14193489E-01,-0.10268466E+00)
     ROW  4
  ( 0.55130987E-01, 0.19414552E-01) (-0.27652351E+00, 0.44571486E-01)
  ( 0.36677053E-01, 0.14575151E+00) ( 0.33281372E+00, 0.32724383E+00)
  ( 0.11023829E-01,-0.48353751E-02) (-0.52828988E-01,-0.40345049E-01)
     ROW  5
  ( 0.98486726E-01, 0.15598505E-01) (-0.46371622E-01,-0.21115010E-01)
  (-0.19298248E-01,-0.14819997E+00) ( 0.11023830E-01,-0.48353734E-02)
  ( 0.16576195E+00, 0.83426667E-01) ( 0.56147446E-01, 0.51022352E-01)
     ROW  6
  ( 0.77534965E-01,-0.49303345E-02) (-0.36648428E-01, 0.71675610E-02)
  ( 0.14193489E-01,-0.10268466E+00) (-0.52828987E-01,-0.40345047E-01)
  ( 0.56147446E-01, 0.51022352E-01) ( 0.15314795E+00, 0.63996357E-01)
 eigenphases
 -0.1261442E+01 -0.5374822E+00  0.9704969E-01  0.2369703E+00  0.5557731E+00
  0.9885398E+00
 eigenphase sum 0.794091E-01  scattering length=  -0.06563
 eps+pi 0.322100E+01  eps+2*pi 0.636259E+01

MaxIter =   7 c.s. =      5.27989272 angs^2  rmsk=     0.00000000
Time Now =       162.6483  Delta time =        51.9362 End ScatStab
+ Data Record NECenter - 2

+ Command Convert
+ '/scratch/rrl581a/ePolyScat.E2/tests/test30.g03' 'g03'

----------------------------------------------------------------------
g03cnv - read input from G03 output
----------------------------------------------------------------------

Expansion center is at nucleus     2
CardFlag =    T
Normal Mode flag =    F
Selecting orbitals
from     1  to     5  number already selected     0
Number of orbitals selected is     5
Highest orbital read in is =    5
Time Now =       162.7667  Delta time =         0.1184 End g03cnv

Atoms found    3  Coordinates in Angstroms
Z =  1 ZS =  1 r =   0.0000000000   0.7594600000  -0.5806510000
Z =  8 ZS =  8 r =   0.0000000000   0.0000000000  -0.0000000000
Z =  1 ZS =  1 r =   0.0000000000  -0.7594600000  -0.5806510000
Maximum distance from expansion center is    0.9559995164

+ Command GetBlms
+

----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------

#############################################################################
Expansion center is not at the center of charge
For high symmetry systems, a better expansion point may be
    0.0000000000    0.0000000000   -0.2194542739
#############################################################################
Found point group  C2v
Reduce angular grid using nthd =  1  nphid =  4
Found point group for abelian subgroup C2v
Time Now =       162.7669  Delta time =         0.0003 End GetPGroup
List of unique axes
  N  Vector                      Z   R
  1  0.00000  0.00000  1.00000
  2  0.00000  0.79441 -0.60738   1  1.80658
  3  0.00000 -0.79441 -0.60738   1  1.80658
List of corresponding x axes
  N  Vector
  1  1.00000 -0.00000 -0.00000
  2  1.00000 -0.00000  0.00000
  3  1.00000  0.00000  0.00000
Computed default value of LMaxA =   10
Determineing angular grid in GetAxMax  LMax =   15  LMaxA =   10  LMaxAb =   30
MMax =    3  MMaxAbFlag =    1
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  -1  -1  -1  -1  -1
For axis     2  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3   3   3   2
For axis     3  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3   3   3   2
On the double L grid used for products
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19
  20  21  22  23  24  25  26  27  28  29  30
For axis     2  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
For axis     3  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is C2v
LMax = =   15
 The dimension of each irreducable representation is
    A1    (  1)    A2    (  1)    B1    (  1)    B2    (  1)
Abelian axes
    1       1.000000       0.000000      -0.000000
    2       0.000000       1.000000       0.000000
    3      -0.000000      -0.000000       1.000000
Symmetry operation directions
  1       0.000000       0.000000       1.000000 ang =  0  1 type = 0 axis = 3
  2      -1.000000      -0.000000       0.000000 ang =  0  1 type = 1 axis = 1
  3       0.000000       1.000000       0.000000 ang =  0  1 type = 1 axis = 2
  4       0.000000       0.000000      -1.000000 ang =  1  2 type = 2 axis = 3
irep =    1  sym =A1    1  eigs =   1   1   1   1
irep =    2  sym =A2    1  eigs =   1  -1  -1   1
irep =    3  sym =B1    1  eigs =   1  -1   1  -1
irep =    4  sym =B2    1  eigs =   1   1  -1  -1
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     2     3     4
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A1        1         1         55       1  1  1
 A2        1         2         39      -1 -1  1
 B1        1         3         44      -1  1 -1
 B2        1         4         49       1 -1 -1
Time Now =       162.8735  Delta time =         0.1066 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
A1    1    0(   1)    1(   2)    2(   4)    3(   6)    4(   9)    5(  12)    6(  16)    7(  20)    8(  25)    9(  30)
          10(  36)
A2    1    0(   0)    1(   0)    2(   1)    3(   2)    4(   4)    5(   6)    6(   9)    7(  12)    8(  16)    9(  20)
          10(  25)
B1    1    0(   0)    1(   1)    2(   2)    3(   4)    4(   6)    5(   9)    6(  12)    7(  16)    8(  20)    9(  25)
          10(  30)
B2    1    0(   0)    1(   1)    2(   2)    3(   4)    4(   6)    5(   9)    6(  12)    7(  16)    8(  20)    9(  25)
          10(  30)

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is C2v
LMax = =   30
 The dimension of each irreducable representation is
    A1    (  1)    A2    (  1)    B1    (  1)    B2    (  1)
Abelian axes
    1       1.000000       0.000000      -0.000000
    2       0.000000       1.000000       0.000000
    3      -0.000000      -0.000000       1.000000
Symmetry operation directions
  1       0.000000       0.000000       1.000000 ang =  0  1 type = 0 axis = 3
  2      -1.000000      -0.000000       0.000000 ang =  0  1 type = 1 axis = 1
  3       0.000000       1.000000       0.000000 ang =  0  1 type = 1 axis = 2
  4       0.000000       0.000000      -1.000000 ang =  1  2 type = 2 axis = 3
irep =    1  sym =A1    1  eigs =   1   1   1   1
irep =    2  sym =A2    1  eigs =   1  -1  -1   1
irep =    3  sym =B1    1  eigs =   1  -1   1  -1
irep =    4  sym =B2    1  eigs =   1   1  -1  -1
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     2     3     4
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A1        1         1        256       1  1  1
 A2        1         2        225      -1 -1  1
 B1        1         3        240      -1  1 -1
 B2        1         4        240       1 -1 -1
Time Now =       162.8939  Delta time =         0.0204 End SymGen

+ Command ExpOrb
+
In GetRMax, RMaxEps =  0.10000000E-05  RMax =   12.0832211022 Angs

----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------

Maximum R in the grid (RMax) =    12.08322 Angs
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) =   10.0
In regions controlled by the wave length (HFacWave) =   10.0
Factor used to control the minimum exponent at each center (MinExpFac) =  300.0
Maximum asymptotic kinetic energy (EMAx) =  50.00000 eV
Maximum step size (MaxStep) =  12.08322 Angs
Factor to increase grid by (GridFac) =     1

    1  Center at =     0.00000 Angs  Alpha Max = 0.19200E+05
    2  Center at =     0.95600 Angs  Alpha Max = 0.30000E+03

Generated Grid

  irg  nin  ntot      step Angs     R end Angs
    1    8     8    0.38190E-03     0.00306
    2    8    16    0.40714E-03     0.00631
    3    8    24    0.50188E-03     0.01033
    4    8    32    0.76147E-03     0.01642
    5    8    40    0.12106E-02     0.02610
    6    8    48    0.19247E-02     0.04150
    7    8    56    0.30601E-02     0.06598
    8    8    64    0.48651E-02     0.10490
    9    8    72    0.77349E-02     0.16678
   10    8    80    0.98829E-02     0.24585
   11    8    88    0.10826E-01     0.33245
   12    8    96    0.10549E-01     0.41685
   13    8   104    0.99588E-02     0.49652
   14    8   112    0.10297E-01     0.57890
   15    8   120    0.12006E-01     0.67494
   16    8   128    0.12761E-01     0.77703
   17    8   136    0.81511E-02     0.84224
   18    8   144    0.51812E-02     0.88369
   19    8   152    0.36896E-02     0.91321
   20    8   160    0.31543E-02     0.93844
   21    8   168    0.21947E-02     0.95600
   22    8   176    0.30552E-02     0.98044
   23    8   184    0.32571E-02     1.00650
   24    8   192    0.40150E-02     1.03862
   25    8   200    0.60918E-02     1.08735
   26    8   208    0.96851E-02     1.16483
   27    8   216    0.15398E-01     1.28802
   28    8   224    0.24481E-01     1.48386
   29    8   232    0.30774E-01     1.73006
   30    8   240    0.35880E-01     2.01710
   31    8   248    0.45506E-01     2.38115
   32    8   256    0.59423E-01     2.85653
   33    8   264    0.62783E-01     3.35879
   34    8   272    0.65477E-01     3.88261
   35    8   280    0.67680E-01     4.42405
   36    8   288    0.69507E-01     4.98010
   37    8   296    0.71042E-01     5.54844
   38    8   304    0.72347E-01     6.12722
   39    8   312    0.73466E-01     6.71495
   40    8   320    0.74436E-01     7.31043
   41    8   328    0.75282E-01     7.91269
   42    8   336    0.76025E-01     8.52089
   43    8   344    0.76684E-01     9.13436
   44    8   352    0.77270E-01     9.75252
   45    8   360    0.77795E-01    10.37488
   46    8   368    0.78267E-01    11.00101
   47    8   376    0.78694E-01    11.63057
   48    8   384    0.56582E-01    12.08322
Time Now =       162.9527  Delta time =         0.0588 End GenGrid

----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------

Maximum scattering l (lmax) =   15
Maximum scattering m (mmaxs) =   15
Maximum numerical integration l (lmaxi) =   30
Maximum numerical integration m (mmaxi) =   30
Maximum l to include in the asymptotic region (lmasym) =   10
Parameter used to determine the cutoff points (PCutRd) =  0.10000000E-07 au
Maximum E used to determine grid (in eV) =       50.00000
Print flag (iprnfg) =    0
lmasymtyts =   10
 Actual value of lmasym found =     10
Number of regions of the same l expansion (NAngReg) =    8
Angular regions
    1 L =    2  from (    1)         0.00038  to (    7)         0.00267
    2 L =    5  from (    8)         0.00306  to (   23)         0.00983
    3 L =    6  from (   24)         0.01033  to (   31)         0.01566
    4 L =    7  from (   32)         0.01642  to (   47)         0.03958
    5 L =    8  from (   48)         0.04150  to (   55)         0.06292
    6 L =   10  from (   56)         0.06598  to (  103)         0.48656
    7 L =   15  from (  104)         0.49652  to (  240)         2.01710
    8 L =   10  from (  241)         2.06260  to (  384)        12.08322
Angular regions for computing spherical harmonics
    1 lval =   10
    2 lval =   15
Last grid points by processor WorkExp =     1.500
Proc id =   -1  Last grid point =       1
Proc id =    0  Last grid point =      64
Proc id =    1  Last grid point =      96
Proc id =    2  Last grid point =     112
Proc id =    3  Last grid point =     128
Proc id =    4  Last grid point =     144
Proc id =    5  Last grid point =     160
Proc id =    6  Last grid point =     176
Proc id =    7  Last grid point =     192
Proc id =    8  Last grid point =     208
Proc id =    9  Last grid point =     224
Proc id =   10  Last grid point =     240
Proc id =   11  Last grid point =     272
Proc id =   12  Last grid point =     304
Proc id =   13  Last grid point =     328
Proc id =   14  Last grid point =     360
Proc id =   15  Last grid point =     384
Time Now =       162.9635  Delta time =         0.0108 End AngGCt

----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------


 R of maximum density
     1  A1    1 at max irg =    7  r =   0.06598
     2  A1    1 at max irg =   13  r =   0.49652
     3  B2    1 at max irg =   14  r =   0.57890
     4  A1    1 at max irg =   13  r =   0.49652
     5  B1    1 at max irg =   13  r =   0.49652

Rotation coefficients for orbital     1  grp =    1 A1    1
     1  1.0000000000

Rotation coefficients for orbital     2  grp =    2 A1    1
     2  1.0000000000

Rotation coefficients for orbital     3  grp =    3 B2    1
     3  1.0000000000

Rotation coefficients for orbital     4  grp =    4 A1    1
     4  1.0000000000

Rotation coefficients for orbital     5  grp =    5 B1    1
     5  1.0000000000
Number of orbital groups and degeneracis are         5
  1  1  1  1  1
Number of orbital groups and number of electrons when fully occupied
         5
  2  2  2  2  2
Time Now =       163.1194  Delta time =         0.1558 End RotOrb

----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------

 First orbital group to expand (mofr) =    1
 Last orbital group to expand (moto) =    5
Orbital     1 of  A1    1 symmetry normalization integral =  1.00000000
Orbital     2 of  A1    1 symmetry normalization integral =  0.99999533
Orbital     3 of  B2    1 symmetry normalization integral =  0.99998792
Orbital     4 of  A1    1 symmetry normalization integral =  0.99999558
Orbital     5 of  B1    1 symmetry normalization integral =  1.00000007
Time Now =       164.0921  Delta time =         0.9727 End ExpOrb

+ Command GetPot
+

----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------

Total density =     10.00000000
Time Now =       164.0984  Delta time =         0.0063 End Den

----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------

 vasymp =  0.10000000E+02 facnorm =  0.10000000E+01
Time Now =       164.1375  Delta time =         0.0390 Electronic part
Time Now =       164.1384  Delta time =         0.0009 End StPot

----------------------------------------------------------------------
vcppol - VCP polarization potential program
----------------------------------------------------------------------

Time Now =       164.1757  Delta time =         0.0373 End VcpPol

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.20000000E+02 eV (  0.73498652E+00 AU)
Time Now =       164.2098  Delta time =         0.0341 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A1    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    3
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =    55
Number of asymptotic solutions on the right (NAsymR) =     6
Number of asymptotic solutions on the left (NAsymL) =     6
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     6
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =   36
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  121
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    3
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =   36
Time Now =       164.2208  Delta time =         0.0110 Energy independent setup

Compute solution for E =   20.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.47951530E-16
 i =  2  lval =   2  stpote =  0.30319401E-02
 i =  3  lval =   3  stpote =  0.28607562E-03
 i =  4  lval =   3  stpote = -0.78327717E-05
For potential     2
 i =  1  exps = -0.91335915E+02 -0.20000000E+01  stpote = -0.16899495E-16
 i =  2  exps = -0.91335915E+02 -0.20000000E+01  stpote = -0.16761332E-16
 i =  3  exps = -0.91335915E+02 -0.20000000E+01  stpote = -0.16496832E-16
 i =  4  exps = -0.91335915E+02 -0.20000000E+01  stpote = -0.16128211E-16
For potential     3
 i =  1  exps = -0.73030808E+00 -0.17370132E-01  stpote = -0.16056467E-05
 i =  2  exps = -0.73026083E+00 -0.17369180E-01  stpote = -0.16065070E-05
 i =  3  exps = -0.73016981E+00 -0.17367355E-01  stpote = -0.16081678E-05
 i =  4  exps = -0.73004165E+00 -0.17364804E-01  stpote = -0.16105141E-05
Number of asymptotic regions =    1550
Final point in integration =   0.17113552E+04 Angstroms
Time Now =       271.8330  Delta time =       107.6122 End SolveHomo
iL =   1 Iter =   1 c.s. =      4.78880962 angs^2  rmsk=     0.23572799
iL =   1 Iter =   2 c.s. =      4.79638423 angs^2  rmsk=     0.01089261
iL =   1 Iter =   3 c.s. =      4.79845516 angs^2  rmsk=     0.00067323
iL =   1 Iter =   4 c.s. =      4.79864388 angs^2  rmsk=     0.00001694
iL =   1 Iter =   5 c.s. =      4.79863343 angs^2  rmsk=     0.00000057
iL =   1 Iter =   6 c.s. =      4.79863389 angs^2  rmsk=     0.00000023
iL =   1 Iter =   7 c.s. =      4.79863382 angs^2  rmsk=     0.00000000
iL =   1 Iter =   8 c.s. =      4.79863382 angs^2  rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =      4.79863382 angs^2  rmsk=     0.10807170
iL =   2 Iter =   2 c.s. =      4.76378830 angs^2  rmsk=     0.00806952
iL =   2 Iter =   3 c.s. =      4.76358446 angs^2  rmsk=     0.00071014
iL =   2 Iter =   4 c.s. =      4.76345286 angs^2  rmsk=     0.00002407
iL =   2 Iter =   5 c.s. =      4.76345110 angs^2  rmsk=     0.00000036
iL =   2 Iter =   6 c.s. =      4.76345099 angs^2  rmsk=     0.00000004
iL =   2 Iter =   7 c.s. =      4.76345099 angs^2  rmsk=     0.00000000
iL =   3 Iter =   1 c.s. =      4.76345099 angs^2  rmsk=     0.11300810
iL =   3 Iter =   2 c.s. =      5.01109855 angs^2  rmsk=     0.02160286
iL =   3 Iter =   3 c.s. =      5.01477056 angs^2  rmsk=     0.00044145
iL =   3 Iter =   4 c.s. =      5.01489103 angs^2  rmsk=     0.00003155
iL =   3 Iter =   5 c.s. =      5.01491020 angs^2  rmsk=     0.00000106
iL =   3 Iter =   6 c.s. =      5.01491219 angs^2  rmsk=     0.00000019
iL =   3 Iter =   7 c.s. =      5.01491219 angs^2  rmsk=     0.00000000
iL =   3 Iter =   8 c.s. =      5.01491219 angs^2  rmsk=     0.00000000
iL =   4 Iter =   1 c.s. =      5.01491219 angs^2  rmsk=     0.07764347
iL =   4 Iter =   2 c.s. =      5.21783829 angs^2  rmsk=     0.01830691
iL =   4 Iter =   3 c.s. =      5.21708833 angs^2  rmsk=     0.00057041
iL =   4 Iter =   4 c.s. =      5.21711878 angs^2  rmsk=     0.00001300
iL =   4 Iter =   5 c.s. =      5.21711858 angs^2  rmsk=     0.00000017
iL =   4 Iter =   6 c.s. =      5.21711865 angs^2  rmsk=     0.00000006
iL =   5 Iter =   1 c.s. =      5.21711865 angs^2  rmsk=     0.05245424
iL =   5 Iter =   2 c.s. =      5.21894716 angs^2  rmsk=     0.00602777
iL =   5 Iter =   3 c.s. =      5.21916305 angs^2  rmsk=     0.00012155
iL =   5 Iter =   4 c.s. =      5.21917997 angs^2  rmsk=     0.00000642
iL =   5 Iter =   5 c.s. =      5.21918400 angs^2  rmsk=     0.00000062
iL =   5 Iter =   6 c.s. =      5.21918434 angs^2  rmsk=     0.00000009
iL =   5 Iter =   7 c.s. =      5.21918434 angs^2  rmsk=     0.00000000
iL =   6 Iter =   1 c.s. =      5.21918434 angs^2  rmsk=     0.04097527
iL =   6 Iter =   2 c.s. =      5.22295040 angs^2  rmsk=     0.00393511
iL =   6 Iter =   3 c.s. =      5.22311710 angs^2  rmsk=     0.00006227
iL =   6 Iter =   4 c.s. =      5.22307595 angs^2  rmsk=     0.00002087
iL =   6 Iter =   5 c.s. =      5.22307731 angs^2  rmsk=     0.00000031
iL =   6 Iter =   6 c.s. =      5.22307747 angs^2  rmsk=     0.00000009
iL =   6 Iter =   7 c.s. =      5.22307747 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  (-0.14277207E+00, 0.74879686E+00) ( 0.16301277E-01, 0.23797441E+00)
  (-0.29884085E+00, 0.33356815E-01) ( 0.24328187E-01,-0.11826338E-01)
  ( 0.11926755E+00, 0.82954523E-02) ( 0.65979018E-01,-0.56874401E-02)
     ROW  2
  ( 0.16301277E-01, 0.23797441E+00) (-0.34911790E+00, 0.40636795E+00)
  ( 0.59622550E-01, 0.11945979E+00) (-0.19383893E+00, 0.26968470E-01)
  (-0.63407326E-01,-0.33939530E-01) (-0.23186338E-01,-0.35580318E-02)
     ROW  3
  (-0.29884085E+00, 0.33356815E-01) ( 0.59622551E-01, 0.11945979E+00)
  ( 0.26211680E+00, 0.56721789E+00) ( 0.35062231E-01, 0.11467473E+00)
  (-0.31733381E-01,-0.19471476E+00) ( 0.12887483E-01,-0.11243299E+00)
     ROW  4
  ( 0.24328186E-01,-0.11826338E-01) (-0.19383893E+00, 0.26968470E-01)
  ( 0.35062233E-01, 0.11467473E+00) ( 0.38051726E+00, 0.30211056E+00)
  ( 0.20379843E-01,-0.81397746E-02) (-0.78192076E-01,-0.73636618E-01)
     ROW  5
  ( 0.11926755E+00, 0.82954521E-02) (-0.63407326E-01,-0.33939531E-01)
  (-0.31733381E-01,-0.19471476E+00) ( 0.20379843E-01,-0.81397742E-02)
  ( 0.15133285E+00, 0.11014794E+00) ( 0.50912755E-01, 0.58483497E-01)
     ROW  6
  ( 0.65979018E-01,-0.56874402E-02) (-0.23186338E-01,-0.35580320E-02)
  ( 0.12887483E-01,-0.11243299E+00) (-0.78192075E-01,-0.73636619E-01)
  ( 0.50912755E-01, 0.58483497E-01) ( 0.14703428E+00, 0.71821622E-01)
 eigenphases
 -0.1258702E+01 -0.5371802E+00  0.7777457E-01  0.2126637E+00  0.5543002E+00
  0.9858849E+00
 eigenphase sum 0.347413E-01  scattering length=  -0.02867
 eps+pi 0.317633E+01  eps+2*pi 0.631793E+01

MaxIter =   8 c.s. =      5.22307747 angs^2  rmsk=     0.00000000
Time Now =       318.4501  Delta time =        46.6171 End ScatStab
+ Command Exit
Time Now =       318.4517  Delta time =         0.0016 Finalize