----------------------------------------------------------------------
ePolyScat Version E2
----------------------------------------------------------------------

Authors: R. R. Lucchese, N. Sanna, A. P. P. Natalense, and F. A. Gianturco
http://www.chem.tamu.edu/rgroup/lucchese/ePolyScat.E2.manual/manual.html
Please cite the following two papers when reporting results obtained with  this program
F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 100, 6464 (1994).
A. P. P. Natalense and R. R. Lucchese, J. Chem. Phys. 111, 5344 (1999).

----------------------------------------------------------------------

Starting at 2009-03-13  11:52:49.917 (GMT -0500)
Using    16 processors

----------------------------------------------------------------------


+ Start of Input Records
#
# input file for test27
#
# Photoionization of NO2
#
 LMax   15
 LMaxI  40       # maximum l value used to determine numerical angular grids
 EMax   50.0
 FegeEng 16.3  # Energy correction used in the fege potential
 InitSym 'A1'      # Initial state symmetry
 InitSpinDeg 2     # Initial state spin degeneracy
 OrbOccInit 2 2 2 2 2 2 2 2 2 2 2 1  # Orbital occupation of initial state
 OrbOcc  2 2 2 2 2 2 2 2 2 2 1 1     # occupation of the orbital groups of target
 SpinDeg 2         # Spin degeneracy of the total scattering state (=1 singlet)
 TargSym 'A2'      # Symmetry of the target state
 TargSpinDeg 3     # Target spin degeneracy
 ScatSym     'B2'  # Scattering symmetry of total final state
 ScatContSym 'B1'  # Scattering symmetry of continuum electron
 IPot 13.592        # ionization potentail

Convert '/scratch/rrl581a/ePolyScat.E2/tests/test27.g03' 'g03'
GetBlms
ExpOrb
GenFormPhIon
DipoleOp
GetPot
PhIon 5.0 10.0
GetCro
+ End of input reached
+ Data Record LMax - 15
+ Data Record LMaxI - 40
+ Data Record EMax - 50.0
+ Data Record FegeEng - 16.3
+ Data Record InitSym - 'A1'
+ Data Record InitSpinDeg - 2
+ Data Record OrbOccInit - 2 2 2 2 2 2 2 2 2 2 2 1
+ Data Record OrbOcc - 2 2 2 2 2 2 2 2 2 2 1 1
+ Data Record SpinDeg - 2
+ Data Record TargSym - 'A2'
+ Data Record TargSpinDeg - 3
+ Data Record ScatSym - 'B2'
+ Data Record ScatContSym - 'B1'
+ Data Record IPot - 13.592

+ Command Convert
+ '/scratch/rrl581a/ePolyScat.E2/tests/test27.g03' 'g03'

----------------------------------------------------------------------
g03cnv - read input from G03 output
----------------------------------------------------------------------

Expansion center is (in Angstroms) -
     0.0000000000   0.0000000000   0.0000000000
CardFlag =    T
Normal Mode flag =    F
Selecting orbitals
from     1  to    12  number already selected     0
Number of orbitals selected is    12
Highest orbital read in is =   12
Time Now =         0.0980  Delta time =         0.0980 End g03cnv

Atoms found    3  Coordinates in Angstroms
Z =  7 ZS =  7 r =   0.0000000000   0.0000000000   0.3256890000
Z =  8 ZS =  8 r =   0.0000000000   1.0989810000  -0.1424890000
Z =  8 ZS =  8 r =   0.0000000000  -1.0989810000  -0.1424890000
Maximum distance from expansion center is    1.1081797478

+ Command GetBlms
+

----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------

Found point group  C2v
Reduce angular grid using nthd =  1  nphid =  4
Found point group for abelian subgroup C2v
Time Now =         0.0995  Delta time =         0.0015 End GetPGroup
List of unique axes
  N  Vector                      Z   R
  1  0.00000  0.00000  1.00000   7  0.61546
  2  0.00000  0.99170 -0.12858   8  2.09416
  3  0.00000 -0.99170 -0.12858   8  2.09416
List of corresponding x axes
  N  Vector
  1  1.00000 -0.00000 -0.00000
  2  1.00000 -0.00000  0.00000
  3  1.00000  0.00000  0.00000
Computed default value of LMaxA =   11
Determineing angular grid in GetAxMax  LMax =   15  LMaxA =   11  LMaxAb =   30
MMax =    3  MMaxAbFlag =    1
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11   3   3   3   3
For axis     2  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3   3   3
For axis     3  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3   3   3
On the double L grid used for products
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19
  20  21  22  23  24  25  26  27  28  29  30
For axis     2  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
For axis     3  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is C2v
LMax = =   15
 The dimension of each irreducable representation is
    A1    (  1)    A2    (  1)    B1    (  1)    B2    (  1)
Abelian axes
    1       1.000000       0.000000      -0.000000
    2       0.000000       1.000000       0.000000
    3      -0.000000      -0.000000       1.000000
Symmetry operation directions
  1       0.000000       0.000000       1.000000 ang =  0  1 type = 0 axis = 3
  2      -1.000000      -0.000000       0.000000 ang =  0  1 type = 1 axis = 1
  3       0.000000       1.000000       0.000000 ang =  0  1 type = 1 axis = 2
  4       0.000000       0.000000      -1.000000 ang =  1  2 type = 2 axis = 3
irep =    1  sym =A1    1  eigs =   1   1   1   1
irep =    2  sym =A2    1  eigs =   1  -1  -1   1
irep =    3  sym =B1    1  eigs =   1  -1   1  -1
irep =    4  sym =B2    1  eigs =   1   1  -1  -1
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     2     3     4
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A1        1         1         66       1  1  1
 A2        1         2         46      -1 -1  1
 B1        1         3         56      -1  1 -1
 B2        1         4         60       1 -1 -1
Time Now =         0.2202  Delta time =         0.1207 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
A1    1    0(   1)    1(   2)    2(   4)    3(   6)    4(   9)    5(  12)    6(  16)    7(  20)    8(  25)    9(  30)
          10(  36)   11(  42)
A2    1    0(   0)    1(   0)    2(   1)    3(   2)    4(   4)    5(   6)    6(   9)    7(  12)    8(  16)    9(  20)
          10(  25)   11(  30)
B1    1    0(   0)    1(   1)    2(   2)    3(   4)    4(   6)    5(   9)    6(  12)    7(  16)    8(  20)    9(  25)
          10(  30)   11(  36)
B2    1    0(   0)    1(   1)    2(   2)    3(   4)    4(   6)    5(   9)    6(  12)    7(  16)    8(  20)    9(  25)
          10(  30)   11(  36)

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is C2v
LMax = =   30
 The dimension of each irreducable representation is
    A1    (  1)    A2    (  1)    B1    (  1)    B2    (  1)
Abelian axes
    1       1.000000       0.000000      -0.000000
    2       0.000000       1.000000       0.000000
    3      -0.000000      -0.000000       1.000000
Symmetry operation directions
  1       0.000000       0.000000       1.000000 ang =  0  1 type = 0 axis = 3
  2      -1.000000      -0.000000       0.000000 ang =  0  1 type = 1 axis = 1
  3       0.000000       1.000000       0.000000 ang =  0  1 type = 1 axis = 2
  4       0.000000       0.000000      -1.000000 ang =  1  2 type = 2 axis = 3
irep =    1  sym =A1    1  eigs =   1   1   1   1
irep =    2  sym =A2    1  eigs =   1  -1  -1   1
irep =    3  sym =B1    1  eigs =   1  -1   1  -1
irep =    4  sym =B2    1  eigs =   1   1  -1  -1
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     2     3     4
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A1        1         1        256       1  1  1
 A2        1         2        225      -1 -1  1
 B1        1         3        240      -1  1 -1
 B2        1         4        240       1 -1 -1
Time Now =         0.2435  Delta time =         0.0233 End SymGen

+ Command ExpOrb
+
In GetRMax, RMaxEps =  0.10000000E-05  RMax =    5.8651575393 Angs

----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------

Maximum R in the grid (RMax) =     5.86516 Angs
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) =   10.0
In regions controlled by the wave length (HFacWave) =   10.0
Factor used to control the minimum exponent at each center (MinExpFac) =  300.0
Maximum asymptotic kinetic energy (EMAx) =  50.00000 eV
Maximum step size (MaxStep) =   5.86516 Angs
Factor to increase grid by (GridFac) =     1

    1  Center at =     0.00000 Angs  Alpha Max = 0.10000E+01
    2  Center at =     0.32569 Angs  Alpha Max = 0.14700E+05
    3  Center at =     1.10818 Angs  Alpha Max = 0.19200E+05

Generated Grid

  irg  nin  ntot      step Angs     R end Angs
    1    8     8    0.11312E-02     0.00905
    2    8    16    0.15927E-02     0.02179
    3    8    24    0.25635E-02     0.04230
    4    8    32    0.34353E-02     0.06978
    5    8    40    0.40047E-02     0.10182
    6    8    48    0.40713E-02     0.13439
    7    8    56    0.37467E-02     0.16436
    8    8    64    0.36350E-02     0.19344
    9    8    72    0.40119E-02     0.22554
   10    8    80    0.46254E-02     0.26254
   11    8    88    0.28761E-02     0.28555
   12    8    96    0.18282E-02     0.30017
   13    8   104    0.11621E-02     0.30947
   14    8   112    0.73865E-03     0.31538
   15    8   120    0.52655E-03     0.31959
   16    8   128    0.45044E-03     0.32320
   17    8   136    0.31160E-03     0.32569
   18    8   144    0.43646E-03     0.32918
   19    8   152    0.46530E-03     0.33290
   20    8   160    0.57358E-03     0.33749
   21    8   168    0.87025E-03     0.34445
   22    8   176    0.13836E-02     0.35552
   23    8   184    0.21997E-02     0.37312
   24    8   192    0.34972E-02     0.40110
   25    8   200    0.55601E-02     0.44558
   26    8   208    0.88398E-02     0.51630
   27    8   216    0.10708E-01     0.60196
   28    8   224    0.12484E-01     0.70183
   29    8   232    0.14556E-01     0.81828
   30    8   240    0.13208E-01     0.92394
   31    8   248    0.83911E-02     0.99107
   32    8   256    0.53337E-02     1.03374
   33    8   264    0.33903E-02     1.06086
   34    8   272    0.21550E-02     1.07810
   35    8   280    0.13698E-02     1.08906
   36    8   288    0.87070E-03     1.09603
   37    8   296    0.56043E-03     1.10051
   38    8   304    0.42987E-03     1.10395
   39    8   312    0.38524E-03     1.10703
   40    8   320    0.14343E-03     1.10818
   41    8   328    0.38190E-03     1.11123
   42    8   336    0.40714E-03     1.11449
   43    8   344    0.50188E-03     1.11851
   44    8   352    0.76147E-03     1.12460
   45    8   360    0.12106E-02     1.13428
   46    8   368    0.19247E-02     1.14968
   47    8   376    0.30601E-02     1.17416
   48    8   384    0.48651E-02     1.21308
   49    8   392    0.77349E-02     1.27496
   50    8   400    0.12297E-01     1.37334
   51    8   408    0.19551E-01     1.52975
   52    8   416    0.29356E-01     1.76460
   53    8   424    0.32173E-01     2.02199
   54    8   432    0.36546E-01     2.31436
   55    8   440    0.40481E-01     2.63821
   56    8   448    0.44018E-01     2.99035
   57    8   456    0.47195E-01     3.36791
   58    8   464    0.50046E-01     3.76828
   59    8   472    0.52607E-01     4.18914
   60    8   480    0.54909E-01     4.62841
   61    8   488    0.56980E-01     5.08424
   62    8   496    0.58846E-01     5.55501
   63    8   504    0.38768E-01     5.86516
Time Now =         0.2993  Delta time =         0.0558 End GenGrid

----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------

Maximum scattering l (lmax) =   15
Maximum scattering m (mmaxs) =   15
Maximum numerical integration l (lmaxi) =   40
Maximum numerical integration m (mmaxi) =   40
Maximum l to include in the asymptotic region (lmasym) =   11
Parameter used to determine the cutoff points (PCutRd) =  0.10000000E-07 au
Maximum E used to determine grid (in eV) =       50.00000
Print flag (iprnfg) =    0
lmasymtyts =   11
 Actual value of lmasym found =     11
Number of regions of the same l expansion (NAngReg) =    9
Angular regions
    1 L =    2  from (    1)         0.00113  to (    7)         0.00792
    2 L =    3  from (    8)         0.00905  to (   15)         0.02020
    3 L =    5  from (   16)         0.02179  to (   23)         0.03974
    4 L =    6  from (   24)         0.04230  to (   31)         0.06635
    5 L =    8  from (   32)         0.06978  to (   39)         0.09781
    6 L =    9  from (   40)         0.10182  to (   47)         0.13032
    7 L =   11  from (   48)         0.13439  to (   55)         0.16062
    8 L =   15  from (   56)         0.16436  to (  432)         2.31436
    9 L =   11  from (  433)         2.35484  to (  504)         5.86516
Angular regions for computing spherical harmonics
    1 lval =   11
    2 lval =   15
Last grid points by processor WorkExp =     1.500
Proc id =   -1  Last grid point =       1
Proc id =    0  Last grid point =      72
Proc id =    1  Last grid point =      96
Proc id =    2  Last grid point =     128
Proc id =    3  Last grid point =     152
Proc id =    4  Last grid point =     184
Proc id =    5  Last grid point =     208
Proc id =    6  Last grid point =     232
Proc id =    7  Last grid point =     264
Proc id =    8  Last grid point =     288
Proc id =    9  Last grid point =     320
Proc id =   10  Last grid point =     344
Proc id =   11  Last grid point =     368
Proc id =   12  Last grid point =     400
Proc id =   13  Last grid point =     424
Proc id =   14  Last grid point =     464
Proc id =   15  Last grid point =     504
Time Now =         0.3295  Delta time =         0.0302 End AngGCt

----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------


 R of maximum density
     1  B2    1 at max irg =   40  r =   1.10818
     2  A1    1 at max irg =   40  r =   1.10818
     3  A1    1 at max irg =   18  r =   0.32918
     4  A1    1 at max irg =   29  r =   0.81828
     5  B2    1 at max irg =   30  r =   0.92394
     6  A1    1 at max irg =   50  r =   1.37334
     7  B2    1 at max irg =   50  r =   1.37334
     8  A1    1 at max irg =   42  r =   1.11449
     9  B1    1 at max irg =   41  r =   1.11123
    10  B2    1 at max irg =   47  r =   1.17416
    11  A2    1 at max irg =   46  r =   1.14968
    12  A1    1 at max irg =   45  r =   1.13428

Rotation coefficients for orbital     1  grp =    1 B2    1
     1  1.0000000000

Rotation coefficients for orbital     2  grp =    2 A1    1
     2  1.0000000000

Rotation coefficients for orbital     3  grp =    3 A1    1
     3  1.0000000000

Rotation coefficients for orbital     4  grp =    4 A1    1
     4  1.0000000000

Rotation coefficients for orbital     5  grp =    5 B2    1
     5  1.0000000000

Rotation coefficients for orbital     6  grp =    6 A1    1
     6  1.0000000000

Rotation coefficients for orbital     7  grp =    7 B2    1
     7  1.0000000000

Rotation coefficients for orbital     8  grp =    8 A1    1
     8  1.0000000000

Rotation coefficients for orbital     9  grp =    9 B1    1
     9  1.0000000000

Rotation coefficients for orbital    10  grp =   10 B2    1
    10  1.0000000000

Rotation coefficients for orbital    11  grp =   11 A2    1
    11  1.0000000000

Rotation coefficients for orbital    12  grp =   12 A1    1
    12  1.0000000000
Number of orbital groups and degeneracis are        12
  1  1  1  1  1  1  1  1  1  1  1  1
Number of orbital groups and number of electrons when fully occupied
        12
  2  2  2  2  2  2  2  2  2  2  2  2
Time Now =         0.8599  Delta time =         0.5304 End RotOrb

----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------

 First orbital group to expand (mofr) =    1
 Last orbital group to expand (moto) =   12
Orbital     1 of  B2    1 symmetry normalization integral =  0.81931447
Orbital     2 of  A1    1 symmetry normalization integral =  0.82973378
Orbital     3 of  A1    1 symmetry normalization integral =  0.99890505
Orbital     4 of  A1    1 symmetry normalization integral =  0.99280778
Orbital     5 of  B2    1 symmetry normalization integral =  0.98811005
Orbital     6 of  A1    1 symmetry normalization integral =  0.99392140
Orbital     7 of  B2    1 symmetry normalization integral =  0.99718140
Orbital     8 of  A1    1 symmetry normalization integral =  0.99896976
Orbital     9 of  B1    1 symmetry normalization integral =  0.99908640
Orbital    10 of  B2    1 symmetry normalization integral =  0.99839598
Orbital    11 of  A2    1 symmetry normalization integral =  0.99816656
Orbital    12 of  A1    1 symmetry normalization integral =  0.99848888
Time Now =         4.2399  Delta time =         3.3800 End ExpOrb

+ Command GenFormPhIon
+

----------------------------------------------------------------------
SymProd - Construct products of symmetry types
----------------------------------------------------------------------

Number of sets of degenerate orbitals =   12
Set    1  has degeneracy     1
Orbital     1  is num     1  type =   4  name - B2    1
Set    2  has degeneracy     1
Orbital     1  is num     2  type =   1  name - A1    1
Set    3  has degeneracy     1
Orbital     1  is num     3  type =   1  name - A1    1
Set    4  has degeneracy     1
Orbital     1  is num     4  type =   1  name - A1    1
Set    5  has degeneracy     1
Orbital     1  is num     5  type =   4  name - B2    1
Set    6  has degeneracy     1
Orbital     1  is num     6  type =   1  name - A1    1
Set    7  has degeneracy     1
Orbital     1  is num     7  type =   4  name - B2    1
Set    8  has degeneracy     1
Orbital     1  is num     8  type =   1  name - A1    1
Set    9  has degeneracy     1
Orbital     1  is num     9  type =   3  name - B1    1
Set   10  has degeneracy     1
Orbital     1  is num    10  type =   4  name - B2    1
Set   11  has degeneracy     1
Orbital     1  is num    11  type =   2  name - A2    1
Set   12  has degeneracy     1
Orbital     1  is num    12  type =   1  name - A1    1
Orbital occupations by degenerate group
    1  B2       occ = 2
    2  A1       occ = 2
    3  A1       occ = 2
    4  A1       occ = 2
    5  B2       occ = 2
    6  A1       occ = 2
    7  B2       occ = 2
    8  A1       occ = 2
    9  B1       occ = 2
   10  B2       occ = 2
   11  A2       occ = 1
   12  A1       occ = 1
The dimension of each irreducable representation is
    A1    (  1)    A2    (  1)    B1    (  1)    B2    (  1)
Symmetry of the continuum orbital is B1
Symmetry of the total state is B2
Spin degeneracy of the total state is =    2
Symmetry of the target state is A2
Spin degeneracy of the target state is =    3
Symmetry of the initial state is A1
Spin degeneracy of the initial state is =    2
Orbital occupations of initial state by degenerate group
    1  B2       occ = 2
    2  A1       occ = 2
    3  A1       occ = 2
    4  A1       occ = 2
    5  B2       occ = 2
    6  A1       occ = 2
    7  B2       occ = 2
    8  A1       occ = 2
    9  B1       occ = 2
   10  B2       occ = 2
   11  A2       occ = 2
   12  A1       occ = 1
Open shell symmetry types
    1  A2     iele =    1
    2  A1     iele =    1
Use only configuration of type A2
MS2 =    2  SDGN =    3
NumAlpha =    2
List of determinants found
    1:   1.00000   0.00000    1    3
Spin adapted configurations
Configuration    1
    1:   1.00000   0.00000    1    3
 Each irreducable representation is present the number of times indicated
    A2    (  1)

 representation A2     component     1  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1    3
Open shell symmetry types
    1  A2     iele =    1
    2  A1     iele =    1
    3  B1     iele =    1
Use only configuration of type B2
 Each irreducable representation is present the number of times indicated
    B2    (  1)

 representation B2     component     1  fun    1
Symmeterized Function from AddNewShell
    1:  -0.81650   0.00000    1    3    6
    2:   0.40825   0.00000    1    4    5
    3:   0.40825   0.00000    2    3    5
Open shell symmetry types
    1  A2     iele =    1
    2  A1     iele =    1
Use only configuration of type A2
MS2 =    2  SDGN =    3
NumAlpha =    2
List of determinants found
    1:   1.00000   0.00000    1    3
Spin adapted configurations
Configuration    1
    1:   1.00000   0.00000    1    3
 Each irreducable representation is present the number of times indicated
    A2    (  1)

 representation A2     component     1  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1    3
Direct product basis set
Direct product basis function
    1:  -0.81650   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   18   19   20
                             21   23   26
    2:   0.40825   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   18   19   20
                             21   24   25
    3:   0.40825   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   18   19   20
                             22   23   25
Open shell symmetry types
    1  A1     iele =    1
Use only configuration of type A1
MS2 =    1  SDGN =    2
NumAlpha =    1
List of determinants found
    1:   1.00000   0.00000    1
Spin adapted configurations
Configuration    1
    1:   1.00000   0.00000    1
 Each irreducable representation is present the number of times indicated
    A1    (  1)

 representation A1     component     1  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1
Time Now =         4.2417  Delta time =         0.0018 End SymProd

----------------------------------------------------------------------
MatEle - Program to compute Matrix Elements over Determinants
----------------------------------------------------------------------

Configuration     1
    1:  -0.81650   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   18   19   20
                             21   23   26
    2:   0.40825   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   18   19   20
                             21   24   25
    3:   0.40825   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   18   19   20
                             22   23   25
Direct product Configuration Cont sym =    1  Targ sym =    1
    1:  -0.81650   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   18   19   20
                             21   23   26
    2:   0.40825   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   18   19   20
                             21   24   25
    3:   0.40825   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   18   19   20
                             22   23   25
Overlap of Direct Product expansion and Symmeterized states
Symmetry of Continuum =    3
Symmetry of target =    2
Symmetry of total states =    4

Total symmetry component =    1

Cont      Target Component
Comp        1
   1   0.10000000E+01
Initial State Configuration
    1:   1.00000   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   18   19   20
                             21   22   23
One electron matrix elements between initial and final states
    1:    1.224744871    0.000000000  <   21|   25>

Reduced formula list
    1   11    1  0.1224744871E+01
Time Now =         4.2422  Delta time =         0.0004 End MatEle

+ Command DipoleOp
+

----------------------------------------------------------------------
DipoleOp - Dipole Operator Program
----------------------------------------------------------------------

Number of orbitals in formula for the dipole operator (NOrbSel) =    1
Symmetry of the continuum orbital (iContSym) =     3 or B1
Symmetry of total final state (iTotalSym) =     4 or B2
Symmetry of the initial state (iInitSym) =     1 or A1
Symmetry of the ionized target state (iTargSym) =     2 or A2
List of unique symmetry types
In the product of the symmetry types A1    A1
 Each irreducable representation is present the number of times indicated
    A1    (  1)
In the product of the symmetry types A1    A1
 Each irreducable representation is present the number of times indicated
    A1    (  1)
In the product of the symmetry types A1    A2
 Each irreducable representation is present the number of times indicated
    A2    (  1)
Unique dipole matrix type     1 Dipole symmetry type =A1
     Final state symmetry type = A1     Target sym =A2
     Continuum type =A2
In the product of the symmetry types A1    B1
 Each irreducable representation is present the number of times indicated
    B1    (  1)
In the product of the symmetry types A1    B2
 Each irreducable representation is present the number of times indicated
    B2    (  1)
In the product of the symmetry types B1    A1
 Each irreducable representation is present the number of times indicated
    B1    (  1)
In the product of the symmetry types B1    A1
 Each irreducable representation is present the number of times indicated
    B1    (  1)
In the product of the symmetry types B1    A2
 Each irreducable representation is present the number of times indicated
    B2    (  1)
In the product of the symmetry types B1    B1
 Each irreducable representation is present the number of times indicated
    A1    (  1)
In the product of the symmetry types B1    B2
 Each irreducable representation is present the number of times indicated
    A2    (  1)
Unique dipole matrix type     2 Dipole symmetry type =B1
     Final state symmetry type = B1     Target sym =A2
     Continuum type =B2
In the product of the symmetry types B2    A1
 Each irreducable representation is present the number of times indicated
    B2    (  1)
In the product of the symmetry types B2    A1
 Each irreducable representation is present the number of times indicated
    B2    (  1)
In the product of the symmetry types B2    A2
 Each irreducable representation is present the number of times indicated
    B1    (  1)
In the product of the symmetry types B2    B1
 Each irreducable representation is present the number of times indicated
    A2    (  1)
Unique dipole matrix type     3 Dipole symmetry type =B2
     Final state symmetry type = B2     Target sym =A2
     Continuum type =B1
In the product of the symmetry types B2    B2
 Each irreducable representation is present the number of times indicated
    A1    (  1)
In the product of the symmetry types A1    A1
 Each irreducable representation is present the number of times indicated
    A1    (  1)
In the product of the symmetry types B1    A1
 Each irreducable representation is present the number of times indicated
    B1    (  1)
In the product of the symmetry types B2    A1
 Each irreducable representation is present the number of times indicated
    B2    (  1)
Irreducible representation containing the dipole operator is B2
Number of different dipole operators in this representation is     1
In the product of the symmetry types B2    A1
 Each irreducable representation is present the number of times indicated
    B2    (  1)
Vector of the total symmetry
ie =    1  ij =    1
    1 (  0.10000000E+01, -0.00000000E+00)
Component Dipole Op Sym =  1 goes to Total Sym component   1 phase = 1.0

Dipole operator types by symmetry components (x=1, y=2, z=3)
sym comp =  1
  coefficients =  0.00000000  1.00000000  0.00000000

Formula for dipole operator

Dipole operator sym comp 1  index =    1
  1  Cont comp  1  Orb 11  Coef =   1.2247448710
Symmetry type to write out (SymTyp) =B1
Time Now =        15.4524  Delta time =        11.2103 End DipoleOp

+ Command GetPot
+

----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------

Total density =     22.00000000
Time Now =        15.5103  Delta time =         0.0579 End Den

----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------

 vasymp =  0.22000000E+02 facnorm =  0.10000000E+01
Time Now =        15.5927  Delta time =         0.0824 Electronic part
Time Now =        15.5961  Delta time =         0.0033 End StPot

+ Command PhIon
+ 5.0 10.0

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.16300000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =        15.6931  Delta time =         0.0970 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =B1    1
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =     T
Maximum l for computed scattering solutions (LMaxK) =   11
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    63
Number of partial waves (np) =    56
Number of asymptotic solutions on the right (NAsymR) =    36
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   11
Number of partial waves in the asymptotic region (npasym) =   36
Number of orthogonality constraints (NOrthUse) =    1
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  144
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =   11
Highest l used at large r (lpasym) =   11
Higest l used in the asymptotic potential (lpzb) =   22
Maximum L used in the homogeneous solution (LMaxHomo) =   11
Number of partial waves in the homogeneous solution (npHomo) =   36
Time Now =        15.7108  Delta time =         0.0177 Energy independent setup

Compute solution for E =    5.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.18873791E-14
 i =  2  lval =   2  stpote = -0.73380783E-03
 i =  3  lval =   3  stpote =  0.12100103E-02
 i =  4  lval =   3  stpote =  0.19955957E-02
For potential     2
 i =  1  exps = -0.44334166E+02 -0.20000000E+01  stpote =  0.97379797E-18
 i =  2  exps = -0.44334166E+02 -0.20000000E+01  stpote =  0.92917470E-18
 i =  3  exps = -0.44334166E+02 -0.20000000E+01  stpote =  0.84515319E-18
 i =  4  exps = -0.44334166E+02 -0.20000000E+01  stpote =  0.73131073E-18
For potential     3
Number of asymptotic regions =     366
Final point in integration =   0.80698858E+03 Angstroms
Time Now =        49.8493  Delta time =        34.1385 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.84388418 rmsk=     0.10826178
iL =   1 Iter =   2 c.s. =      1.05085868 rmsk=     0.05584055
iL =   1 Iter =   3 c.s. =      0.92808097 rmsk=     0.01693965
iL =   1 Iter =   4 c.s. =      0.94818840 rmsk=     0.00982966
iL =   1 Iter =   5 c.s. =      0.94820623 rmsk=     0.00003232
iL =   1 Iter =   6 c.s. =      0.94820669 rmsk=     0.00000044
iL =   1 Iter =   7 c.s. =      0.94820701 rmsk=     0.00000002
iL =   1 Iter =   8 c.s. =      0.94820700 rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =      1.34530901 rmsk=     0.07426510
iL =   2 Iter =   2 c.s. =      1.35417300 rmsk=     0.02000480
iL =   2 Iter =   3 c.s. =      1.34368615 rmsk=     0.00377079
iL =   2 Iter =   4 c.s. =      1.34299309 rmsk=     0.00069784
iL =   2 Iter =   5 c.s. =      1.34298590 rmsk=     0.00000979
iL =   2 Iter =   6 c.s. =      1.34298577 rmsk=     0.00000013
iL =   2 Iter =   7 c.s. =      1.34298574 rmsk=     0.00000001
      Final k matrix
     ROW  1
  (-0.11850852E+00,-0.17586974E+00) ( 0.88659188E+00,-0.98915420E-01)
  (-0.19749854E+00, 0.25173862E+00) (-0.22918548E-01, 0.30480574E-01)
  ( 0.48383768E-02, 0.88069806E-02) ( 0.12422458E-01, 0.15194942E-02)
  ( 0.50883528E-01,-0.15209779E-01) ( 0.20122839E-01,-0.61532556E-02)
  ( 0.59771351E-02,-0.18241058E-02) (-0.22983684E-02,-0.25237190E-04)
  (-0.17017143E-02, 0.15811940E-03) (-0.57309159E-03, 0.98761016E-04)
  (-0.13395911E-02, 0.37650945E-03) (-0.54587027E-03, 0.20602651E-03)
  (-0.24346799E-03, 0.10911945E-03) (-0.69307134E-04, 0.34301147E-04)
  ( 0.47773603E-04,-0.84417167E-05) ( 0.36273448E-04,-0.10538897E-04)
  ( 0.21181505E-04,-0.80189837E-05) ( 0.69119860E-05,-0.28851081E-05)
  ( 0.14701224E-04,-0.41634071E-05) ( 0.57866977E-05,-0.24597124E-05)
  ( 0.26862997E-05,-0.14227212E-05) ( 0.12026017E-05,-0.70513662E-06)
  ( 0.34578018E-06,-0.20750803E-06) (-0.41648166E-06, 0.13684022E-06)
  (-0.30320545E-06, 0.15977357E-06) (-0.18796363E-06, 0.13592258E-06)
  (-0.99156644E-07, 0.87985406E-07) (-0.30660455E-07, 0.30233944E-07)
  (-0.91017278E-07, 0.24554983E-07) (-0.34692879E-07, 0.14533690E-07)
  (-0.16225294E-07, 0.79581932E-08) (-0.81221114E-08, 0.37199183E-08)
  (-0.39519636E-08, 0.14239636E-08) (-0.12029971E-08, 0.34170021E-09)
     ROW  2
  (-0.91595392E-01,-0.75735527E-01) ( 0.54554312E+00,-0.90825314E-01)
  (-0.23311006E+00, 0.13089027E+00) (-0.34821904E-01, 0.11816288E-01)
  ( 0.82190795E-02, 0.76500003E-02) ( 0.10592481E-01, 0.12863211E-02)
  ( 0.37230431E-01,-0.91489858E-02) ( 0.14479382E-01,-0.40545982E-02)
  ( 0.43693338E-02,-0.12619499E-02) (-0.16234667E-02,-0.14121700E-04)
  (-0.11914884E-02, 0.12840166E-03) (-0.39437690E-03, 0.76954371E-04)
  (-0.92567467E-03, 0.23958881E-03) (-0.37699739E-03, 0.13830884E-03)
  (-0.16904490E-03, 0.74543193E-04) (-0.47924996E-04, 0.23687547E-04)
  ( 0.31758357E-04,-0.60315521E-05) ( 0.23964697E-04,-0.76986575E-05)
  ( 0.13899472E-04,-0.58981344E-05) ( 0.45358700E-05,-0.21234089E-05)
  ( 0.98990895E-05,-0.26986313E-05) ( 0.39231759E-05,-0.16470750E-05)
  ( 0.18411800E-05,-0.96233837E-06) ( 0.83383364E-06,-0.47980300E-06)
  ( 0.24231933E-06,-0.14115879E-06) (-0.27063155E-06, 0.94698441E-07)
  (-0.19609119E-06, 0.11167781E-06) (-0.12065165E-06, 0.95361424E-07)
  (-0.63157175E-07, 0.61818640E-07) (-0.19406477E-07, 0.21273786E-07)
  (-0.60416717E-07, 0.16078165E-07) (-0.23321700E-07, 0.97418258E-08)
  (-0.11097128E-07, 0.53977473E-08) (-0.56656039E-08, 0.25591928E-08)
  (-0.28024481E-08, 0.99983738E-09) (-0.86001325E-09, 0.24591420E-09)
MaxIter =   8 c.s. =      1.34298574 rmsk=     0.00000001
Time Now =        77.8890  Delta time =        28.0397 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.16300000E+02  eV
 Do E =  0.10000000E+02 eV (  0.36749326E+00 AU)
Time Now =        77.9791  Delta time =         0.0900 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =B1    1
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =     T
Maximum l for computed scattering solutions (LMaxK) =   11
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    63
Number of partial waves (np) =    56
Number of asymptotic solutions on the right (NAsymR) =    36
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   11
Number of partial waves in the asymptotic region (npasym) =   36
Number of orthogonality constraints (NOrthUse) =    1
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  144
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =   11
Highest l used at large r (lpasym) =   11
Higest l used in the asymptotic potential (lpzb) =   22
Maximum L used in the homogeneous solution (LMaxHomo) =   11
Number of partial waves in the homogeneous solution (npHomo) =   36
Time Now =        77.9967  Delta time =         0.0176 Energy independent setup

Compute solution for E =   10.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.18873791E-14
 i =  2  lval =   2  stpote = -0.73380783E-03
 i =  3  lval =   3  stpote =  0.12100103E-02
 i =  4  lval =   3  stpote =  0.19955957E-02
For potential     2
 i =  1  exps = -0.44334166E+02 -0.20000000E+01  stpote = -0.14492707E-17
 i =  2  exps = -0.44334166E+02 -0.20000000E+01  stpote = -0.14677736E-17
 i =  3  exps = -0.44334166E+02 -0.20000000E+01  stpote = -0.15031358E-17
 i =  4  exps = -0.44334166E+02 -0.20000000E+01  stpote = -0.15522627E-17
For potential     3
Number of asymptotic regions =     363
Final point in integration =   0.56752112E+03 Angstroms
Time Now =       112.3239  Delta time =        34.3272 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.75945026 rmsk=     0.10270307
iL =   1 Iter =   2 c.s. =      0.64701035 rmsk=     0.03491386
iL =   1 Iter =   3 c.s. =      0.60404881 rmsk=     0.01151989
iL =   1 Iter =   4 c.s. =      0.62353419 rmsk=     0.00540421
iL =   1 Iter =   5 c.s. =      0.62357231 rmsk=     0.00001474
iL =   1 Iter =   6 c.s. =      0.62357116 rmsk=     0.00000018
iL =   1 Iter =   7 c.s. =      0.62357116 rmsk=     0.00000001
iL =   1 Iter =   8 c.s. =      0.62357116 rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =      1.07721981 rmsk=     0.07937680
iL =   2 Iter =   2 c.s. =      1.01964969 rmsk=     0.01488700
iL =   2 Iter =   3 c.s. =      1.01841307 rmsk=     0.00274144
iL =   2 Iter =   4 c.s. =      1.01842220 rmsk=     0.00029876
iL =   2 Iter =   5 c.s. =      1.01842729 rmsk=     0.00000518
iL =   2 Iter =   6 c.s. =      1.01842678 rmsk=     0.00000007
iL =   2 Iter =   7 c.s. =      1.01842675 rmsk=     0.00000001
      Final k matrix
     ROW  1
  (-0.19711601E+00,-0.12184865E+00) ( 0.61329635E+00,-0.24355753E+00)
  (-0.28679366E+00, 0.16831425E+00) (-0.51234320E-01,-0.32108750E-02)
  ( 0.36853058E-01, 0.21504405E-01) ( 0.23174536E-01, 0.86146553E-03)
  ( 0.12315549E+00,-0.28412394E-01) ( 0.48165945E-01,-0.12447625E-01)
  ( 0.14106218E-01,-0.41027824E-02) (-0.91227038E-02, 0.15560531E-03)
  (-0.61535424E-02, 0.65389429E-03) (-0.20513303E-02, 0.30087340E-03)
  (-0.63226440E-02, 0.14935225E-02) (-0.26010280E-02, 0.81333093E-03)
  (-0.11891653E-02, 0.43046867E-03) (-0.34656982E-03, 0.13321237E-03)
  ( 0.34922093E-03,-0.62448994E-04) ( 0.25667732E-03,-0.70735873E-04)
  ( 0.14872260E-03,-0.51137901E-04) ( 0.48419369E-04,-0.18304598E-04)
  ( 0.13658643E-03,-0.33517798E-04) ( 0.54975854E-04,-0.19040171E-04)
  ( 0.26633849E-04,-0.10938271E-04) ( 0.12483466E-04,-0.54875353E-05)
  ( 0.36942260E-05,-0.16480344E-05) (-0.59627105E-05, 0.17820759E-05)
  (-0.43707351E-05, 0.19646444E-05) (-0.27743147E-05, 0.16243609E-05)
  (-0.15029219E-05, 0.10393695E-05) (-0.47269288E-06, 0.35512258E-06)
  (-0.16673895E-05, 0.40485448E-06) (-0.65313122E-06, 0.22480470E-06)
  (-0.31996521E-06, 0.12197188E-06) (-0.16772184E-06, 0.58914840E-07)
  (-0.84008607E-07, 0.24280397E-07) (-0.25849500E-07, 0.62937731E-08)
     ROW  2
  (-0.16565353E+00,-0.83535291E-01) ( 0.46616749E+00,-0.20451721E+00)
  (-0.27420283E+00, 0.10814026E+00) (-0.44168710E-01,-0.84945818E-02)
  ( 0.28458878E-01, 0.18779272E-01) ( 0.19534069E-01, 0.10260562E-02)
  ( 0.93580204E-01,-0.20855076E-01) ( 0.36589938E-01,-0.94582810E-02)
  ( 0.10990578E-01,-0.31757596E-02) (-0.66822328E-02, 0.57628564E-04)
  (-0.45652668E-02, 0.48586840E-03) (-0.15037421E-02, 0.23159252E-03)
  (-0.46218852E-02, 0.11221115E-02) (-0.19216999E-02, 0.61840606E-03)
  (-0.88709994E-03, 0.32922597E-03) (-0.25785278E-03, 0.10272046E-03)
  ( 0.24992253E-03,-0.45771629E-04) ( 0.18605674E-03,-0.52785789E-04)
  ( 0.10863642E-03,-0.38527227E-04) ( 0.35636909E-04,-0.13799245E-04)
  ( 0.97647005E-04,-0.25283288E-04) ( 0.39839824E-04,-0.14391170E-04)
  ( 0.19518526E-04,-0.83078148E-05) ( 0.92169657E-05,-0.41927380E-05)
  ( 0.27442453E-05,-0.12599914E-05) (-0.42227199E-05, 0.13062930E-05)
  (-0.31507286E-05, 0.14472348E-05) (-0.20304441E-05, 0.12031504E-05)
  (-0.11128325E-05, 0.77294238E-06) (-0.35196726E-06, 0.26491004E-06)
  (-0.11751228E-05, 0.30611224E-06) (-0.46670770E-06, 0.16971192E-06)
  (-0.23057296E-06, 0.92985391E-07) (-0.12111146E-06, 0.45697513E-07)
  (-0.60533585E-07, 0.19264820E-07) (-0.18570685E-07, 0.51052976E-08)
MaxIter =   8 c.s. =      1.01842675 rmsk=     0.00000001
Time Now =       140.1897  Delta time =        27.8658 End ScatStab

+ Command GetCro
+

----------------------------------------------------------------------
CnvIdy - read in and convert dynamical matrix elements and convert to raw form
----------------------------------------------------------------------

Time Now =       140.1927  Delta time =         0.0030 End CnvIdy
Found     2 energies :
     5.00000    10.00000
List of matrix element types found   Number =    1
    1  Cont Sym B1     Targ Sym A2     Total Sym B2
Keeping     2 energies :
     5.00000    10.00000
Time Now =       140.1927  Delta time =         0.0000 End SelIdy

----------------------------------------------------------------------
CrossSection - compute photoionization cross section
----------------------------------------------------------------------

Ionization potential (IPot) =     13.5920 eV
Label -
Cross section by partial wave      F
Cross Sections for

     Sigma LENGTH   at all energies
      Eng
    18.5920  0.11090850E+01
    23.5920  0.92552116E+00

     Sigma MIXED    at all energies
      Eng
    18.5920  0.10264847E+01
    23.5920  0.84548122E+00

     Sigma VELOCITY at all energies
      Eng
    18.5920  0.98915524E+00
    23.5920  0.77966914E+00

     Beta LENGTH   at all energies
      Eng
    18.5920 -0.39415329E+00
    23.5920 -0.26675825E+00

     Beta MIXED    at all energies
      Eng
    18.5920 -0.35353009E+00
    23.5920 -0.24787837E+00

     Beta VELOCITY at all energies
      Eng
    18.5920 -0.30524669E+00
    23.5920 -0.22618206E+00

          COMPOSITE CROSS SECTIONS AT ALL ENERGIES
         Energy  SIGMA LEN  SIGMA MIX  SIGMA VEL   BETA LEN   BETA MIX   BETA VEL
EPhi     18.5920     1.1091     1.0265     0.9892    -0.3942    -0.3535    -0.3052
EPhi     23.5920     0.9255     0.8455     0.7797    -0.2668    -0.2479    -0.2262
Time Now =       140.2153  Delta time =         0.0226 End CrossSection
Time Now =       140.2170  Delta time =         0.0017 Finalize