----------------------------------------------------------------------
ePolyScat Version E2
----------------------------------------------------------------------

Authors: R. R. Lucchese, N. Sanna, A. P. P. Natalense, and F. A. Gianturco
http://www.chem.tamu.edu/rgroup/lucchese/ePolyScat.E2.manual/manual.html
Please cite the following two papers when reporting results obtained with  this program
F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 100, 6464 (1994).
A. P. P. Natalense and R. R. Lucchese, J. Chem. Phys. 111, 5344 (1999).

----------------------------------------------------------------------

Starting at 2009-03-13  11:49:21.252 (GMT -0500)
Using    16 processors

----------------------------------------------------------------------


+ Start of Input Records
#
# inpute file for test25
#
# Photoinization of SiF4 in a D2d geometry
#
 LMax   25         # maximum l
 EMax   50.0       # maximum E
 OrbOccInit
  2  4  2  2  2  4  2  2  2  4  2  2  4  2  2  2  4  2  4
 OrbOcc
  2  4  2  2  2  4  2  2  2  4  2  2  4  2  2  2  4  2  3
 Convert '/scratch/rrl581a/ePolyScat.E2/tests/test25.g03' 'g03'
 ScatSym     'E' # Scattering symmetry of total final state
 ScatContSym 'A1' # Scattering symmetry of continuum electron
 SpinDeg 1         # Spin degeneracy of the total scattering state (=1 singlet)
 TargSym 'E'      # Symmetry of the target state
 TargSpinDeg 2     # Target spin degeneracy
 InitSym 'A1'      # Initial state symmetry
 InitSpinDeg 1     # Initial state spin degeneracy
 ScatEng 0.8 4.8  # list of scattering energies
 FegeEng 15.2  # Energy correction used in the fege potential
 IPot 15.2    # IPot, ionization potential
GetBlms
ExpOrb
GenFormPhIon
DipoleOp
GetPot
FileName 'MatrixElements' 'test25.idy' 'REWIND'
PhIon
GetCro
GrnType 1
FileName 'MatrixElements' 'test25.tmt' 'REWIND'
Scat
+ End of input reached
+ Data Record LMax - 25
+ Data Record EMax - 50.0
+ Data Record OrbOccInit - 2  4  2  2  2  4  2  2  2  4  2  2  4  2  2  2  4  2  4
+ Data Record OrbOcc - 2  4  2  2  2  4  2  2  2  4  2  2  4  2  2  2  4  2  3

+ Command Convert
+ '/scratch/rrl581a/ePolyScat.E2/tests/test25.g03' 'g03'

----------------------------------------------------------------------
g03cnv - read input from G03 output
----------------------------------------------------------------------

Expansion center is (in Angstroms) -
     0.0000000000   0.0000000000   0.0000000000
CardFlag =    F
Normal Mode flag =    F
Selecting orbitals
from     1  to    25  number already selected     0
Number of orbitals selected is    25
Highest orbital read in is =   25
Time Now =         0.0905  Delta time =         0.0905 End g03cnv

Atoms found    5  Coordinates in Angstroms
Z = 14 ZS = 14 r =   0.0000000000   0.0000000000   0.0000000000
Z =  9 ZS =  9 r =   0.8410300000   0.8410300000   1.0096200000
Z =  9 ZS =  9 r =  -0.8410300000  -0.8410300000   1.0096200000
Z =  9 ZS =  9 r =   0.8410300000  -0.8410300000  -1.0096200000
Z =  9 ZS =  9 r =  -0.8410300000   0.8410300000  -1.0096200000
Maximum distance from expansion center is    1.5601267468
+ Data Record ScatSym - 'E'
+ Data Record ScatContSym - 'A1'
+ Data Record SpinDeg - 1
+ Data Record TargSym - 'E'
+ Data Record TargSpinDeg - 2
+ Data Record InitSym - 'A1'
+ Data Record InitSpinDeg - 1
+ Data Record ScatEng - 0.8 4.8
+ Data Record FegeEng - 15.2
+ Data Record IPot - 15.2

+ Command GetBlms
+

----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------

Found point group  D2d
Reduce angular grid using nthd =  1  nphid =  4
Found point group for abelian subgroup D2
Time Now =         0.0923  Delta time =         0.0018 End GetPGroup
List of unique axes
  N  Vector                      Z   R
  1  0.00000  0.00000  1.00000
  2  0.53908  0.53908  0.64714   9  2.94821
  3 -0.53908 -0.53908  0.64714   9  2.94821
  4  0.53908 -0.53908 -0.64714   9  2.94821
  5 -0.53908  0.53908 -0.64714   9  2.94821
List of corresponding x axes
  N  Vector
  1  1.00000 -0.00000 -0.00000
  2  0.84226 -0.34503 -0.41420
  3  0.84226 -0.34503  0.41420
  4  0.84226  0.34503  0.41420
  5  0.84226  0.34503 -0.41420
Computed default value of LMaxA =   12
Determineing angular grid in GetAxMax  LMax =   25  LMaxA =   12  LMaxAb =   50
MMax =    3  MMaxAbFlag =    1
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11  12  13  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1
For axis     2  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3   3   3   3   3
   3   3   3   3   3   3
For axis     3  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3   3   3   3   3
   3   3   3   3   3   3
For axis     4  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3   3   3   3   3
   3   3   3   3   3   3
For axis     5  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3   3   3   3   3
   3   3   3   3   3   3
On the double L grid used for products
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19
  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39
  40  41  42  43  44  45  46  47  48  49  50
For axis     2  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
For axis     3  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
For axis     4  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
For axis     5  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is D2d
LMax = =   25
 The dimension of each irreducable representation is
    A1    (  1)    A2    (  1)    B1    (  1)    B2    (  1)    E     (  2)
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     4     7     8
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A1        1         1         76       1  1  1
 A2        1         2         57       1 -1 -1
 B1        1         3         57       1  1  1
 B2        1         4         76       1 -1 -1
 E         1         5        133      -1 -1  1
 E         2         6        133      -1  1 -1
Time Now =         1.2856  Delta time =         1.1933 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
A1    1    0(   1)    1(   1)    2(   2)    3(   3)    4(   5)    5(   6)    6(   8)    7(  10)    8(  13)    9(  15)
          10(  18)   11(  21)   12(  25)
A2    1    0(   0)    1(   0)    2(   0)    3(   1)    4(   2)    5(   3)    6(   4)    7(   6)    8(   8)    9(  10)
          10(  12)   11(  15)   12(  18)
B1    1    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   3)    6(   5)    7(   6)    8(   8)    9(  10)
          10(  13)   11(  15)   12(  18)
B2    1    0(   0)    1(   1)    2(   2)    3(   3)    4(   4)    5(   6)    6(   8)    7(  10)    8(  12)    9(  15)
          10(  18)   11(  21)   12(  24)
E     1    0(   0)    1(   1)    2(   2)    3(   4)    4(   6)    5(   9)    6(  12)    7(  16)    8(  20)    9(  25)
          10(  30)   11(  36)   12(  42)
E     2    0(   0)    1(   1)    2(   2)    3(   4)    4(   6)    5(   9)    6(  12)    7(  16)    8(  20)    9(  25)
          10(  30)   11(  36)   12(  42)

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is D2
LMax = =   50
 The dimension of each irreducable representation is
    A     (  1)    B1    (  1)    B2    (  1)    B3    (  1)
Abelian axes
    1       1.000000      -0.000000      -0.000000
    2       0.000000       1.000000      -0.000000
    3       0.000000       0.000000       1.000000
Symmetry operation directions
  1       0.000000       0.000000       1.000000 ang =  0  1 type = 0 axis = 3
  2       0.000000       0.000000       1.000000 ang =  1  2 type = 2 axis = 3
  3       1.000000      -0.000000      -0.000000 ang =  1  2 type = 2 axis = 1
  4       0.000000       1.000000       0.000000 ang =  1  2 type = 2 axis = 2
irep =    1  sym =A     1  eigs =   1   1   1   1
irep =    2  sym =B1    1  eigs =   1   1  -1  -1
irep =    3  sym =B2    1  eigs =   1  -1  -1   1
irep =    4  sym =B3    1  eigs =   1  -1   1  -1
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     2     3     4
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A         1         1        651       1  1  1
 B1        1         2        650       1 -1 -1
 B2        1         3        650      -1 -1  1
 B3        1         4        650      -1  1 -1
Time Now =         1.3468  Delta time =         0.0613 End SymGen

+ Command ExpOrb
+
In GetRMax, RMaxEps =  0.10000000E-05  RMax =   12.3238849482 Angs

----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------

Maximum R in the grid (RMax) =    12.32388 Angs
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) =   10.0
In regions controlled by the wave length (HFacWave) =   10.0
Factor used to control the minimum exponent at each center (MinExpFac) =  300.0
Maximum asymptotic kinetic energy (EMAx) =  50.00000 eV
Maximum step size (MaxStep) =  12.32388 Angs
Factor to increase grid by (GridFac) =     1

    1  Center at =     0.00000 Angs  Alpha Max = 0.25490E+06
    2  Center at =     1.56013 Angs  Alpha Max = 0.24300E+05

Generated Grid

  irg  nin  ntot      step Angs     R end Angs
    1    8     8    0.10481E-03     0.00084
    2    8    16    0.11174E-03     0.00173
    3    8    24    0.13774E-03     0.00283
    4    8    32    0.20899E-03     0.00451
    5    8    40    0.33226E-03     0.00716
    6    8    48    0.52825E-03     0.01139
    7    8    56    0.83984E-03     0.01811
    8    8    64    0.13352E-02     0.02879
    9    8    72    0.21228E-02     0.04577
   10    8    80    0.33750E-02     0.07277
   11    8    88    0.53658E-02     0.11570
   12    8    96    0.85310E-02     0.18395
   13    8   104    0.13563E-01     0.29245
   14    8   112    0.18869E-01     0.44340
   15    8   120    0.20080E-01     0.60404
   16    8   128    0.18660E-01     0.75332
   17    8   136    0.16678E-01     0.88674
   18    8   144    0.14514E-01     1.00285
   19    8   152    0.13038E-01     1.10716
   20    8   160    0.13352E-01     1.21397
   21    8   168    0.14640E-01     1.33110
   22    8   176    0.10431E-01     1.41455
   23    8   184    0.66305E-02     1.46759
   24    8   192    0.42146E-02     1.50131
   25    8   200    0.26790E-02     1.52274
   26    8   208    0.17029E-02     1.53636
   27    8   216    0.10824E-02     1.54502
   28    8   224    0.68802E-03     1.55052
   29    8   232    0.45571E-03     1.55417
   30    8   240    0.36652E-03     1.55710
   31    8   248    0.33973E-03     1.55982
   32    8   256    0.38304E-04     1.56013
   33    8   264    0.33947E-03     1.56284
   34    8   272    0.36190E-03     1.56574
   35    8   280    0.44612E-03     1.56931
   36    8   288    0.67686E-03     1.57472
   37    8   296    0.10761E-02     1.58333
   38    8   304    0.17109E-02     1.59702
   39    8   312    0.27201E-02     1.61878
   40    8   320    0.43245E-02     1.65337
   41    8   328    0.68754E-02     1.70838
   42    8   336    0.10931E-01     1.79583
   43    8   344    0.17379E-01     1.93486
   44    8   352    0.21137E-01     2.10395
   45    8   360    0.21430E-01     2.27539
   46    8   368    0.24258E-01     2.46946
   47    8   376    0.26976E-01     2.68527
   48    8   384    0.29579E-01     2.92190
   49    8   392    0.32062E-01     3.17840
   50    8   400    0.34427E-01     3.45381
   51    8   408    0.36673E-01     3.74720
   52    8   416    0.38805E-01     4.05764
   53    8   424    0.40824E-01     4.38422
   54    8   432    0.42734E-01     4.72610
   55    8   440    0.44541E-01     5.08243
   56    8   448    0.46249E-01     5.45242
   57    8   456    0.47862E-01     5.83532
   58    8   464    0.49385E-01     6.23040
   59    8   472    0.50824E-01     6.63699
   60    8   480    0.52182E-01     7.05445
   61    8   488    0.53465E-01     7.48216
   62    8   496    0.54677E-01     7.91958
   63    8   504    0.55822E-01     8.36616
   64    8   512    0.56905E-01     8.82139
   65    8   520    0.57929E-01     9.28483
   66    8   528    0.58898E-01     9.75601
   67    8   536    0.59816E-01    10.23453
   68    8   544    0.60685E-01    10.72001
   69    8   552    0.61509E-01    11.21209
   70    8   560    0.62291E-01    11.71042
   71    8   568    0.63034E-01    12.21469
   72    8   576    0.13650E-01    12.32388
Time Now =         1.7102  Delta time =         0.3634 End GenGrid

----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------

Maximum scattering l (lmax) =   25
Maximum scattering m (mmaxs) =   25
Maximum numerical integration l (lmaxi) =   50
Maximum numerical integration m (mmaxi) =   50
Maximum l to include in the asymptotic region (lmasym) =   12
Parameter used to determine the cutoff points (PCutRd) =  0.10000000E-07 au
Maximum E used to determine grid (in eV) =       50.00000
Print flag (iprnfg) =    0
lmasymtyts =   12
 Actual value of lmasym found =     12
Number of regions of the same l expansion (NAngReg) =   13
Angular regions
    1 L =    2  from (    1)         0.00010  to (    7)         0.00073
    2 L =    4  from (    8)         0.00084  to (   15)         0.00162
    3 L =    5  from (   16)         0.00173  to (   31)         0.00430
    4 L =    6  from (   32)         0.00451  to (   47)         0.01086
    5 L =    7  from (   48)         0.01139  to (   55)         0.01727
    6 L =    8  from (   56)         0.01811  to (   63)         0.02746
    7 L =    9  from (   64)         0.02879  to (   71)         0.04365
    8 L =   11  from (   72)         0.04577  to (   79)         0.06940
    9 L =   12  from (   80)         0.07277  to (  127)         0.73466
   10 L =   20  from (  128)         0.75332  to (  143)         0.98834
   11 L =   25  from (  144)         1.00285  to (  368)         2.46946
   12 L =   20  from (  369)         2.49643  to (  384)         2.92190
   13 L =   12  from (  385)         2.95396  to (  576)        12.32388
Angular regions for computing spherical harmonics
    1 lval =   12
    2 lval =   25
Last grid points by processor WorkExp =     1.500
Proc id =   -1  Last grid point =       1
Proc id =    0  Last grid point =     112
Proc id =    1  Last grid point =     152
Proc id =    2  Last grid point =     176
Proc id =    3  Last grid point =     192
Proc id =    4  Last grid point =     216
Proc id =    5  Last grid point =     240
Proc id =    6  Last grid point =     256
Proc id =    7  Last grid point =     280
Proc id =    8  Last grid point =     296
Proc id =    9  Last grid point =     320
Proc id =   10  Last grid point =     344
Proc id =   11  Last grid point =     360
Proc id =   12  Last grid point =     392
Proc id =   13  Last grid point =     456
Proc id =   14  Last grid point =     520
Proc id =   15  Last grid point =     576
Time Now =         1.8140  Delta time =         0.1038 End AngGCt

----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------


 R of maximum density
     1  A1    1 at max irg =    9  r =   0.04577
     2  E     1 at max irg =   32  r =   1.56013
     3  E     2 at max irg =   32  r =   1.56013
     4  B2    1 at max irg =   32  r =   1.56013
     5  A1    1 at max irg =   32  r =   1.56013
     6  A1    1 at max irg =   13  r =   0.29245
     7  E     1 at max irg =   12  r =   0.18395
     8  E     2 at max irg =   12  r =   0.18395
     9  B2    1 at max irg =   12  r =   0.18395
    10  A1    1 at max irg =   32  r =   1.56013
    11  B2    1 at max irg =   32  r =   1.56013
    12  E     1 at max irg =   32  r =   1.56013
    13  E     2 at max irg =   32  r =   1.56013
    14  A1    1 at max irg =   42  r =   1.79583
    15  B2    1 at max irg =   42  r =   1.79583
    16  E     1 at max irg =   42  r =   1.79583
    17  E     2 at max irg =   42  r =   1.79583
    18  A1    1 at max irg =   37  r =   1.58333
    19  B1    1 at max irg =   37  r =   1.58333
    20  B2    1 at max irg =   40  r =   1.65337
    21  E     1 at max irg =   40  r =   1.65337
    22  E     2 at max irg =   40  r =   1.65337
    23  A2    1 at max irg =   37  r =   1.58333
    24  E     1 at max irg =   37  r =   1.58333
    25  E     2 at max irg =   37  r =   1.58333

Rotation coefficients for orbital     1  grp =    1 A1    1
     1  1.0000000000

Rotation coefficients for orbital     2  grp =    2 E     1
     2  1.0000000000    3 -0.0000000000

Rotation coefficients for orbital     3  grp =    2 E     2
     2  0.0000000000    3  1.0000000000

Rotation coefficients for orbital     4  grp =    3 B2    1
     4  1.0000000000

Rotation coefficients for orbital     5  grp =    4 A1    1
     5  1.0000000000

Rotation coefficients for orbital     6  grp =    5 A1    1
     6  1.0000000000

Rotation coefficients for orbital     7  grp =    6 E     1
     7  0.0000000000    8  1.0000000000

Rotation coefficients for orbital     8  grp =    6 E     2
     7  1.0000000000    8 -0.0000000000

Rotation coefficients for orbital     9  grp =    7 B2    1
     9  1.0000000000

Rotation coefficients for orbital    10  grp =    8 A1    1
    10  1.0000000000

Rotation coefficients for orbital    11  grp =    9 B2    1
    11  1.0000000000

Rotation coefficients for orbital    12  grp =   10 E     1
    12  1.0000000000   13  0.0000000000

Rotation coefficients for orbital    13  grp =   10 E     2
    12 -0.0000000000   13  1.0000000000

Rotation coefficients for orbital    14  grp =   11 A1    1
    14  1.0000000000

Rotation coefficients for orbital    15  grp =   12 B2    1
    15  1.0000000000

Rotation coefficients for orbital    16  grp =   13 E     1
    16  0.0000000000   17 -1.0000000000

Rotation coefficients for orbital    17  grp =   13 E     2
    16 -1.0000000000   17 -0.0000000000

Rotation coefficients for orbital    18  grp =   14 A1    1
    18  1.0000000000

Rotation coefficients for orbital    19  grp =   15 B1    1
    19  1.0000000000

Rotation coefficients for orbital    20  grp =   16 B2    1
    20  1.0000000000

Rotation coefficients for orbital    21  grp =   17 E     1
    21 -1.0000000000   22 -0.0000000000

Rotation coefficients for orbital    22  grp =   17 E     2
    21  0.0000000000   22 -1.0000000000

Rotation coefficients for orbital    23  grp =   18 A2    1
    23  1.0000000000

Rotation coefficients for orbital    24  grp =   19 E     1
    24 -0.0000000000   25 -1.0000000000

Rotation coefficients for orbital    25  grp =   19 E     2
    24 -1.0000000000   25  0.0000000000
Number of orbital groups and degeneracis are        19
  1  2  1  1  1  2  1  1  1  2  1  1  2  1  1  1  2  1  2
Number of orbital groups and number of electrons when fully occupied
        19
  2  4  2  2  2  4  2  2  2  4  2  2  4  2  2  2  4  2  4
Time Now =         5.2452  Delta time =         3.4312 End RotOrb

----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------

 First orbital group to expand (mofr) =    1
 Last orbital group to expand (moto) =   19
Orbital     1 of  A1    1 symmetry normalization integral =  1.00000542
Orbital     2 of  E     1 symmetry normalization integral =  0.83436752
Orbital     3 of  B2    1 symmetry normalization integral =  0.83263216
Orbital     4 of  A1    1 symmetry normalization integral =  0.83782100
Orbital     5 of  A1    1 symmetry normalization integral =  1.00000098
Orbital     6 of  E     1 symmetry normalization integral =  1.00001364
Orbital     7 of  B2    1 symmetry normalization integral =  0.99999964
Orbital     8 of  A1    1 symmetry normalization integral =  0.98781169
Orbital     9 of  B2    1 symmetry normalization integral =  0.98650343
Orbital    10 of  E     1 symmetry normalization integral =  0.98642303
Orbital    11 of  A1    1 symmetry normalization integral =  0.99877735
Orbital    12 of  B2    1 symmetry normalization integral =  0.99888615
Orbital    13 of  E     1 symmetry normalization integral =  0.99890457
Orbital    14 of  A1    1 symmetry normalization integral =  0.99826808
Orbital    15 of  B1    1 symmetry normalization integral =  0.99813400
Orbital    16 of  B2    1 symmetry normalization integral =  0.99863001
Orbital    17 of  E     1 symmetry normalization integral =  0.99862590
Orbital    18 of  A2    1 symmetry normalization integral =  0.99809966
Orbital    19 of  E     1 symmetry normalization integral =  0.99812746
Time Now =        14.0600  Delta time =         8.8147 End ExpOrb

+ Command GenFormPhIon
+

----------------------------------------------------------------------
SymProd - Construct products of symmetry types
----------------------------------------------------------------------

Number of sets of degenerate orbitals =   19
Set    1  has degeneracy     1
Orbital     1  is num     1  type =   1  name - A1    1
Set    2  has degeneracy     2
Orbital     1  is num     2  type =   5  name - E     1
Orbital     2  is num     3  type =   6  name - E     2
Set    3  has degeneracy     1
Orbital     1  is num     4  type =   4  name - B2    1
Set    4  has degeneracy     1
Orbital     1  is num     5  type =   1  name - A1    1
Set    5  has degeneracy     1
Orbital     1  is num     6  type =   1  name - A1    1
Set    6  has degeneracy     2
Orbital     1  is num     7  type =   5  name - E     1
Orbital     2  is num     8  type =   6  name - E     2
Set    7  has degeneracy     1
Orbital     1  is num     9  type =   4  name - B2    1
Set    8  has degeneracy     1
Orbital     1  is num    10  type =   1  name - A1    1
Set    9  has degeneracy     1
Orbital     1  is num    11  type =   4  name - B2    1
Set   10  has degeneracy     2
Orbital     1  is num    12  type =   5  name - E     1
Orbital     2  is num    13  type =   6  name - E     2
Set   11  has degeneracy     1
Orbital     1  is num    14  type =   1  name - A1    1
Set   12  has degeneracy     1
Orbital     1  is num    15  type =   4  name - B2    1
Set   13  has degeneracy     2
Orbital     1  is num    16  type =   5  name - E     1
Orbital     2  is num    17  type =   6  name - E     2
Set   14  has degeneracy     1
Orbital     1  is num    18  type =   1  name - A1    1
Set   15  has degeneracy     1
Orbital     1  is num    19  type =   3  name - B1    1
Set   16  has degeneracy     1
Orbital     1  is num    20  type =   4  name - B2    1
Set   17  has degeneracy     2
Orbital     1  is num    21  type =   5  name - E     1
Orbital     2  is num    22  type =   6  name - E     2
Set   18  has degeneracy     1
Orbital     1  is num    23  type =   2  name - A2    1
Set   19  has degeneracy     2
Orbital     1  is num    24  type =   5  name - E     1
Orbital     2  is num    25  type =   6  name - E     2
Orbital occupations by degenerate group
    1  A1       occ = 2
    2  E        occ = 4
    3  B2       occ = 2
    4  A1       occ = 2
    5  A1       occ = 2
    6  E        occ = 4
    7  B2       occ = 2
    8  A1       occ = 2
    9  B2       occ = 2
   10  E        occ = 4
   11  A1       occ = 2
   12  B2       occ = 2
   13  E        occ = 4
   14  A1       occ = 2
   15  B1       occ = 2
   16  B2       occ = 2
   17  E        occ = 4
   18  A2       occ = 2
   19  E        occ = 3
The dimension of each irreducable representation is
    A1    (  1)    A2    (  1)    B1    (  1)    B2    (  1)    E     (  2)
Symmetry of the continuum orbital is A1
Symmetry of the total state is E
Spin degeneracy of the total state is =    1
Symmetry of the target state is E
Spin degeneracy of the target state is =    2
Symmetry of the initial state is A1
Spin degeneracy of the initial state is =    1
Orbital occupations of initial state by degenerate group
    1  A1       occ = 2
    2  E        occ = 4
    3  B2       occ = 2
    4  A1       occ = 2
    5  A1       occ = 2
    6  E        occ = 4
    7  B2       occ = 2
    8  A1       occ = 2
    9  B2       occ = 2
   10  E        occ = 4
   11  A1       occ = 2
   12  B2       occ = 2
   13  E        occ = 4
   14  A1       occ = 2
   15  B1       occ = 2
   16  B2       occ = 2
   17  E        occ = 4
   18  A2       occ = 2
   19  E        occ = 4
Open shell symmetry types
    1  E      iele =    3
Use only configuration of type E
MS2 =    1  SDGN =    2
NumAlpha =    2
List of determinants found
    1:   1.00000   0.00000    1    2    3
    2:   1.00000   0.00000    1    2    4
Spin adapted configurations
Configuration    1
    1:   1.00000   0.00000    1    2    3
Configuration    2
    1:   1.00000   0.00000    1    2    4
 Each irreducable representation is present the number of times indicated
    E     (  1)

 representation E      component     1  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1    2    4

 representation E      component     2  fun    1
Symmeterized Function
    1:  -1.00000   0.00000    1    2    3
Open shell symmetry types
    1  E      iele =    3
    2  A1     iele =    1
Use only configuration of type E
 Each irreducable representation is present the number of times indicated
    E     (  1)

 representation E      component     1  fun    1
Symmeterized Function from AddNewShell
    1:  -0.70711   0.00000    1    2    4    6
    2:  -0.70711   0.00000    2    3    4    5

 representation E      component     2  fun    1
Symmeterized Function from AddNewShell
    1:   0.70711   0.00000    1    2    3    6
    2:   0.70711   0.00000    1    3    4    5
Open shell symmetry types
    1  E      iele =    3
Use only configuration of type E
MS2 =    1  SDGN =    2
NumAlpha =    2
List of determinants found
    1:   1.00000   0.00000    1    2    3
    2:   1.00000   0.00000    1    2    4
Spin adapted configurations
Configuration    1
    1:   1.00000   0.00000    1    2    3
Configuration    2
    1:   1.00000   0.00000    1    2    4
 Each irreducable representation is present the number of times indicated
    E     (  1)

 representation E      component     1  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1    2    4

 representation E      component     2  fun    1
Symmeterized Function
    1:  -1.00000   0.00000    1    2    3
Direct product basis set
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   18   19   20
                             21   22   23   24   25   26   27   28   29   30
                             31   32   33   34   35   36   37   38   39   40
                             41   42   43   44   45   46   47   48   50   52
    2:  -0.70711  -0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   18   19   20
                             21   22   23   24   25   26   27   28   29   30
                             31   32   33   34   35   36   37   38   39   40
                             41   42   43   44   45   46   48   49   50   51
Direct product basis function
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   18   19   20
                             21   22   23   24   25   26   27   28   29   30
                             31   32   33   34   35   36   37   38   39   40
                             41   42   43   44   45   46   47   48   49   52
    2:   0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   18   19   20
                             21   22   23   24   25   26   27   28   29   30
                             31   32   33   34   35   36   37   38   39   40
                             41   42   43   44   45   46   47   49   50   51
Closed shell target
Time Now =        14.0631  Delta time =         0.0032 End SymProd

----------------------------------------------------------------------
MatEle - Program to compute Matrix Elements over Determinants
----------------------------------------------------------------------

Configuration     1
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   18   19   20
                             21   22   23   24   25   26   27   28   29   30
                             31   32   33   34   35   36   37   38   39   40
                             41   42   43   44   45   46   47   48   50   52
    2:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   18   19   20
                             21   22   23   24   25   26   27   28   29   30
                             31   32   33   34   35   36   37   38   39   40
                             41   42   43   44   45   46   48   49   50   51
Configuration     2
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   18   19   20
                             21   22   23   24   25   26   27   28   29   30
                             31   32   33   34   35   36   37   38   39   40
                             41   42   43   44   45   46   47   48   49   52
    2:   0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   18   19   20
                             21   22   23   24   25   26   27   28   29   30
                             31   32   33   34   35   36   37   38   39   40
                             41   42   43   44   45   46   47   49   50   51
Direct product Configuration Cont sym =    1  Targ sym =    1
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   18   19   20
                             21   22   23   24   25   26   27   28   29   30
                             31   32   33   34   35   36   37   38   39   40
                             41   42   43   44   45   46   47   48   50   52
    2:  -0.70711  -0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   18   19   20
                             21   22   23   24   25   26   27   28   29   30
                             31   32   33   34   35   36   37   38   39   40
                             41   42   43   44   45   46   48   49   50   51
Direct product Configuration Cont sym =    1  Targ sym =    2
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   18   19   20
                             21   22   23   24   25   26   27   28   29   30
                             31   32   33   34   35   36   37   38   39   40
                             41   42   43   44   45   46   47   48   49   52
    2:   0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   18   19   20
                             21   22   23   24   25   26   27   28   29   30
                             31   32   33   34   35   36   37   38   39   40
                             41   42   43   44   45   46   47   49   50   51
Overlap of Direct Product expansion and Symmeterized states
Symmetry of Continuum =    1
Symmetry of target =    5
Symmetry of total states =    5

Total symmetry component =    1

Cont      Target Component
Comp        1               2
   1   0.10000000E+01  0.00000000E+00

Total symmetry component =    2

Cont      Target Component
Comp        1               2
   1   0.00000000E+00  0.10000000E+01
Initial State Configuration
    1:   1.00000   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   18   19   20
                             21   22   23   24   25   26   27   28   29   30
                             31   32   33   34   35   36   37   38   39   40
                             41   42   43   44   45   46   47   48   49   50
One electron matrix elements between initial and final states
    1:    1.414213562   -0.000000000  <   47|   51>

Reduced formula list
    1   19    1  0.1414213562E+01
Time Now =        14.0639  Delta time =         0.0008 End MatEle

+ Command DipoleOp
+

----------------------------------------------------------------------
DipoleOp - Dipole Operator Program
----------------------------------------------------------------------

Number of orbitals in formula for the dipole operator (NOrbSel) =    1
Symmetry of the continuum orbital (iContSym) =     1 or A1
Symmetry of total final state (iTotalSym) =     5 or E
Symmetry of the initial state (iInitSym) =     1 or A1
Symmetry of the ionized target state (iTargSym) =     5 or E
List of unique symmetry types
In the product of the symmetry types B2    A1
 Each irreducable representation is present the number of times indicated
    B2    (  1)
In the product of the symmetry types B2    A1
 Each irreducable representation is present the number of times indicated
    B2    (  1)
In the product of the symmetry types B2    A2
 Each irreducable representation is present the number of times indicated
    B1    (  1)
In the product of the symmetry types B2    B1
 Each irreducable representation is present the number of times indicated
    A2    (  1)
In the product of the symmetry types B2    B2
 Each irreducable representation is present the number of times indicated
    A1    (  1)
In the product of the symmetry types B2    E
 Each irreducable representation is present the number of times indicated
    E     (  1)
Unique dipole matrix type     1 Dipole symmetry type =B2
     Final state symmetry type = B2     Target sym =E
     Continuum type =E
In the product of the symmetry types E     A1
 Each irreducable representation is present the number of times indicated
    E     (  1)
In the product of the symmetry types E     A1
 Each irreducable representation is present the number of times indicated
    E     (  1)
Unique dipole matrix type     2 Dipole symmetry type =E
     Final state symmetry type = E      Target sym =E
     Continuum type =A1
In the product of the symmetry types E     A2
 Each irreducable representation is present the number of times indicated
    E     (  1)
Unique dipole matrix type     3 Dipole symmetry type =E
     Final state symmetry type = E      Target sym =E
     Continuum type =A2
In the product of the symmetry types E     B1
 Each irreducable representation is present the number of times indicated
    E     (  1)
Unique dipole matrix type     4 Dipole symmetry type =E
     Final state symmetry type = E      Target sym =E
     Continuum type =B1
In the product of the symmetry types E     B2
 Each irreducable representation is present the number of times indicated
    E     (  1)
Unique dipole matrix type     5 Dipole symmetry type =E
     Final state symmetry type = E      Target sym =E
     Continuum type =B2
In the product of the symmetry types E     E
 Each irreducable representation is present the number of times indicated
    A1    (  1)
    A2    (  1)
    B1    (  1)
    B2    (  1)
In the product of the symmetry types B2    A1
 Each irreducable representation is present the number of times indicated
    B2    (  1)
In the product of the symmetry types E     A1
 Each irreducable representation is present the number of times indicated
    E     (  1)
In the product of the symmetry types E     A1
 Each irreducable representation is present the number of times indicated
    E     (  1)
Irreducible representation containing the dipole operator is E
Number of different dipole operators in this representation is     1
In the product of the symmetry types E     A1
 Each irreducable representation is present the number of times indicated
    E     (  1)
Vector of the total symmetry
ie =    1  ij =    1
    1 (  0.10000000E+01, -0.00000000E+00)
    2 (  0.00000000E+00, -0.00000000E+00)
Vector of the total symmetry
ie =    2  ij =    1
    1 (  0.00000000E+00,  0.00000000E+00)
    2 (  0.10000000E+01,  0.00000000E+00)
Component Dipole Op Sym =  1 goes to Total Sym component   1 phase = 1.0
Component Dipole Op Sym =  2 goes to Total Sym component   2 phase = 1.0

Dipole operator types by symmetry components (x=1, y=2, z=3)
sym comp =  1
  coefficients =  0.00000000  1.00000000  0.00000000
sym comp =  2
  coefficients =  1.00000000  0.00000000  0.00000000

Formula for dipole operator

Dipole operator sym comp 1  index =    1
  1  Cont comp  1  Orb 24  Coef =   1.4142135620
Symmetry type to write out (SymTyp) =A1
Time Now =        43.1726  Delta time =        29.1086 End DipoleOp

+ Command GetPot
+

----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------

Total density =     49.00000000
Time Now =        43.4273  Delta time =         0.2548 End Den

----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------

 vasymp =  0.49000000E+02 facnorm =  0.10000000E+01
Time Now =        43.6311  Delta time =         0.2037 Electronic part
Time Now =        43.6344  Delta time =         0.0033 End StPot

+ Command FileName
+ 'MatrixElements' 'test25.idy' 'REWIND'
Opening file test25.idy at position REWIND

+ Command PhIon
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.15200000E+02  eV
 Do E =  0.80000000E+00 eV (  0.29399461E-01 AU)
Time Now =        43.7587  Delta time =         0.1243 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A1    1
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =     T
Maximum l for computed scattering solutions (LMaxK) =   12
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    72
Number of partial waves (np) =    76
Number of asymptotic solutions on the right (NAsymR) =    25
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   12
Number of partial waves in the asymptotic region (npasym) =   25
Number of orthogonality constraints (NOrthUse) =    6
Number of different asymptotic potentials =    5
Maximum number of asymptotic partial waves =  157
Maximum l used in usual function (lmax) =   25
Maximum m used in usual function (LMax) =   25
Maxamum l used in expanding static potential (lpotct) =   50
Maximum l used in exapnding the exchange potential (lmaxab) =   50
Higest l included in the expansion of the wave function (lnp) =   25
Higest l included in the K matrix (lna) =   12
Highest l used at large r (lpasym) =   12
Higest l used in the asymptotic potential (lpzb) =   24
Maximum L used in the homogeneous solution (LMaxHomo) =   12
Number of partial waves in the homogeneous solution (npHomo) =   25
Time Now =        43.7966  Delta time =         0.0379 Energy independent setup

Compute solution for E =    0.8000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.11379786E-14
 i =  2  lval =   3  stpote =  0.74001199E-18
 i =  3  lval =   3  stpote =  0.46848145E-04
 i =  4  lval =   4  stpote =  0.20440211E-04
For potential     2
 i =  1  exps = -0.93155070E+02 -0.20000000E+01  stpote = -0.54288574E-16
 i =  2  exps = -0.93155070E+02 -0.20000000E+01  stpote = -0.53991654E-16
 i =  3  exps = -0.93155070E+02 -0.20000000E+01  stpote = -0.53701087E-16
 i =  4  exps = -0.93155070E+02 -0.20000000E+01  stpote = -0.53430279E-16
For potential     3
For potential     4
 i =  1  lval =   4  stpote = -0.76107671E-01
 i =  2  lval =   3  stpote = -0.15407536E-04
 i =  3  lval =   3  stpote = -0.60564917E-04
 i =  4  lval =   4  stpote = -0.38950223E-04
For potential     5
 i =  1  lval =   4  stpote =  0.76107671E-01
 i =  2  lval =   3  stpote = -0.15407536E-04
 i =  3  lval =   3  stpote =  0.60564917E-04
 i =  4  lval =   4  stpote =  0.38950223E-04
Number of asymptotic regions =      37
Final point in integration =   0.21102140E+03 Angstroms
Time Now =        63.6842  Delta time =        19.8876 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.10962160 rmsk=     0.04682341
iL =   1 Iter =   2 c.s. =      0.10947197 rmsk=     0.00120718
iL =   1 Iter =   3 c.s. =      0.09499694 rmsk=     0.01837251
iL =   1 Iter =   4 c.s. =      0.11927106 rmsk=     0.01519891
iL =   1 Iter =   5 c.s. =      0.12094338 rmsk=     0.00414701
iL =   1 Iter =   6 c.s. =      0.12643719 rmsk=     0.00236313
iL =   1 Iter =   7 c.s. =      0.12701935 rmsk=     0.00078752
iL =   1 Iter =   8 c.s. =      0.12712868 rmsk=     0.00009281
iL =   1 Iter =   9 c.s. =      0.12712843 rmsk=     0.00000297
iL =   1 Iter =  10 c.s. =      0.12712807 rmsk=     0.00000014
iL =   1 Iter =  11 c.s. =      0.12712807 rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =      0.16260505 rmsk=     0.02663718
iL =   2 Iter =   2 c.s. =      0.16318767 rmsk=     0.00068251
iL =   2 Iter =   3 c.s. =      0.15929683 rmsk=     0.02106159
iL =   2 Iter =   4 c.s. =      0.17442948 rmsk=     0.02008172
iL =   2 Iter =   5 c.s. =      0.17562811 rmsk=     0.00322548
iL =   2 Iter =   6 c.s. =      0.17691454 rmsk=     0.00169807
iL =   2 Iter =   7 c.s. =      0.17745247 rmsk=     0.00082471
iL =   2 Iter =   8 c.s. =      0.17746367 rmsk=     0.00005479
iL =   2 Iter =   9 c.s. =      0.17746118 rmsk=     0.00000172
iL =   2 Iter =  10 c.s. =      0.17746109 rmsk=     0.00000009
iL =   2 Iter =  11 c.s. =      0.17746108 rmsk=     0.00000001
      Final k matrix
     ROW  1
  (-0.13493792E+00, 0.19303488E+00) ( 0.47406105E-01, 0.54566749E-01)
  (-0.13165482E+00,-0.31794217E-02) ( 0.17341984E+00, 0.19474477E-02)
  (-0.13322798E+00, 0.10148423E-01) ( 0.33923796E-01,-0.14285143E-02)
  ( 0.94071734E-03, 0.28287607E-03) (-0.21375261E-02,-0.17240128E-04)
  ( 0.25737097E-03, 0.10650056E-04) (-0.10357147E-03, 0.18864804E-04)
  (-0.60546656E-05,-0.77863837E-07) (-0.19481000E-04, 0.58913686E-06)
  ( 0.15256344E-04,-0.86376778E-06) ( 0.25145057E-06, 0.11329501E-06)
  (-0.12473353E-05,-0.46398620E-08) (-0.43816701E-07,-0.35019035E-08)
  ( 0.31542091E-08,-0.32626723E-08) ( 0.19607219E-07, 0.15611108E-08)
  (-0.92483047E-09, 0.75845454E-11) (-0.19450404E-08,-0.85536962E-12)
  ( 0.14516610E-08,-0.92464507E-10) ( 0.73423746E-11,-0.10918919E-11)
  (-0.13764965E-10,-0.92233322E-11) ( 0.90595001E-10, 0.23094126E-11)
  (-0.71627186E-10, 0.61670608E-13)
     ROW  2
  (-0.10713464E+00, 0.14429321E+00) ( 0.36066319E-01, 0.44298795E-01)
  (-0.43964264E-01, 0.72497917E-02) ( 0.87418293E-01, 0.12681395E-02)
  (-0.69309706E-01, 0.73756625E-02) ( 0.16772634E-01,-0.12461739E-02)
  ( 0.47661857E-03, 0.21971782E-03) (-0.10499470E-02, 0.63587592E-05)
  ( 0.12104838E-03, 0.82841227E-05) (-0.40503737E-04, 0.14237167E-04)
  (-0.27572612E-05,-0.78573211E-07) (-0.88912753E-05, 0.59935362E-06)
  ( 0.66198572E-05,-0.71541334E-06) ( 0.13533573E-06, 0.81675991E-07)
  (-0.56293873E-06, 0.10937853E-07) (-0.20036014E-07,-0.23157368E-08)
  (-0.19468213E-09,-0.23999572E-08) ( 0.94950684E-08, 0.81955995E-09)
  (-0.41075588E-09,-0.40535706E-11) (-0.84469159E-09, 0.31352981E-10)
  ( 0.56581758E-09,-0.84474226E-10) ( 0.32066000E-11,-0.44580677E-12)
  (-0.80837511E-11,-0.60739358E-11) ( 0.38873712E-10,-0.12540022E-12)
  (-0.29887468E-10, 0.11604622E-11)
MaxIter =  11 c.s. =      0.17746108 rmsk=     0.00000001
Time Now =       165.9564  Delta time =       102.2722 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.15200000E+02  eV
 Do E =  0.48000000E+01 eV (  0.17639676E+00 AU)
Time Now =       166.1335  Delta time =         0.1772 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A1    1
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =     T
Maximum l for computed scattering solutions (LMaxK) =   12
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    72
Number of partial waves (np) =    76
Number of asymptotic solutions on the right (NAsymR) =    25
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   12
Number of partial waves in the asymptotic region (npasym) =   25
Number of orthogonality constraints (NOrthUse) =    6
Number of different asymptotic potentials =    5
Maximum number of asymptotic partial waves =  157
Maximum l used in usual function (lmax) =   25
Maximum m used in usual function (LMax) =   25
Maxamum l used in expanding static potential (lpotct) =   50
Maximum l used in exapnding the exchange potential (lmaxab) =   50
Higest l included in the expansion of the wave function (lnp) =   25
Higest l included in the K matrix (lna) =   12
Highest l used at large r (lpasym) =   12
Higest l used in the asymptotic potential (lpzb) =   24
Maximum L used in the homogeneous solution (LMaxHomo) =   12
Number of partial waves in the homogeneous solution (npHomo) =   25
Time Now =       166.1715  Delta time =         0.0379 Energy independent setup

Compute solution for E =    4.8000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.11379786E-14
 i =  2  lval =   3  stpote =  0.74001199E-18
 i =  3  lval =   3  stpote =  0.46848145E-04
 i =  4  lval =   4  stpote =  0.20440211E-04
For potential     2
 i =  1  exps = -0.93155070E+02 -0.20000000E+01  stpote = -0.41687846E-16
 i =  2  exps = -0.93155070E+02 -0.20000000E+01  stpote = -0.41742689E-16
 i =  3  exps = -0.93155070E+02 -0.20000000E+01  stpote = -0.41816733E-16
 i =  4  exps = -0.93155070E+02 -0.20000000E+01  stpote = -0.41902396E-16
For potential     3
For potential     4
 i =  1  lval =   4  stpote = -0.76107671E-01
 i =  2  lval =   3  stpote = -0.15407536E-04
 i =  3  lval =   3  stpote = -0.60564917E-04
 i =  4  lval =   4  stpote = -0.38950223E-04
For potential     5
 i =  1  lval =   4  stpote =  0.76107671E-01
 i =  2  lval =   3  stpote = -0.15407536E-04
 i =  3  lval =   3  stpote =  0.60564917E-04
 i =  4  lval =   4  stpote =  0.38950223E-04
Number of asymptotic regions =      47
Final point in integration =   0.11633484E+03 Angstroms
Time Now =       185.8730  Delta time =        19.7015 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.66450401 rmsk=     0.11528261
iL =   1 Iter =   2 c.s. =      0.91013396 rmsk=     0.06615682
iL =   1 Iter =   3 c.s. =      0.47192153 rmsk=     0.09198863
iL =   1 Iter =   4 c.s. =      0.82025375 rmsk=     0.06951091
iL =   1 Iter =   5 c.s. =      0.53368391 rmsk=     0.10275663
iL =   1 Iter =   6 c.s. =      0.53370510 rmsk=     0.00241122
iL =   1 Iter =   7 c.s. =      0.53295181 rmsk=     0.00055906
iL =   1 Iter =   8 c.s. =      0.53299368 rmsk=     0.00003698
iL =   1 Iter =   9 c.s. =      0.53299338 rmsk=     0.00000072
iL =   1 Iter =  10 c.s. =      0.53299347 rmsk=     0.00000002
iL =   2 Iter =   1 c.s. =      0.92532257 rmsk=     0.08858093
iL =   2 Iter =   2 c.s. =      1.20958936 rmsk=     0.08036531
iL =   2 Iter =   3 c.s. =      0.74987681 rmsk=     0.09269473
iL =   2 Iter =   4 c.s. =      1.03424385 rmsk=     0.05999756
iL =   2 Iter =   5 c.s. =      0.76933518 rmsk=     0.08639597
iL =   2 Iter =   6 c.s. =      0.76855865 rmsk=     0.00235347
iL =   2 Iter =   7 c.s. =      0.76906130 rmsk=     0.00043406
iL =   2 Iter =   8 c.s. =      0.76909777 rmsk=     0.00001804
iL =   2 Iter =   9 c.s. =      0.76909834 rmsk=     0.00000109
iL =   2 Iter =  10 c.s. =      0.76909844 rmsk=     0.00000013
      Final k matrix
     ROW  1
  (-0.14445996E-01, 0.16473157E+00) (-0.14181991E+00,-0.13296448E+00)
  (-0.15403575E+00,-0.14556785E+00) ( 0.51951246E+00,-0.21326337E-01)
  (-0.32721589E+00, 0.57008145E-01) ( 0.20181577E+00,-0.18762046E-01)
  ( 0.17137330E-01, 0.17901701E-02) (-0.28909239E-01, 0.12107879E-02)
  ( 0.71632180E-02,-0.20061564E-03) (-0.12077884E-02, 0.43069387E-03)
  (-0.37812552E-03, 0.21030668E-04) (-0.10965207E-02, 0.73772078E-04)
  ( 0.75231472E-03,-0.68262364E-04) ( 0.50070493E-04, 0.61333819E-05)
  (-0.16235679E-03, 0.77675128E-05) (-0.13995166E-04, 0.34817639E-06)
  (-0.16859925E-05,-0.51536831E-06) ( 0.71837491E-05,-0.80915551E-07)
  (-0.69583385E-06, 0.55650442E-07) (-0.12858137E-05, 0.84432297E-07)
  ( 0.70758133E-06,-0.79492734E-07) ( 0.13807878E-07,-0.21001764E-08)
  (-0.35411651E-07,-0.55245758E-08) ( 0.13924902E-06,-0.70226208E-08)
  (-0.10217608E-06, 0.62391306E-08)
     ROW  2
  (-0.11778471E-02, 0.10767273E+00) (-0.83148432E-01,-0.71400562E-01)
  (-0.88710919E-01,-0.91442308E-01) ( 0.35628534E+00,-0.13927761E-01)
  (-0.22209352E+00, 0.36764409E-01) ( 0.13331267E+00,-0.11776669E-01)
  ( 0.12289490E-01, 0.12242134E-02) (-0.19230876E-01, 0.72819737E-03)
  ( 0.46791754E-02,-0.12050511E-03) (-0.43238171E-03, 0.29474319E-03)
  (-0.24103617E-03, 0.13701700E-04) (-0.68051056E-03, 0.48320375E-04)
  ( 0.43986242E-03,-0.45943805E-04) ( 0.37213943E-04, 0.43174447E-05)
  (-0.10115182E-03, 0.51393848E-05) (-0.90470114E-05, 0.22592365E-06)
  (-0.17847199E-05,-0.37667122E-06) ( 0.47951404E-05,-0.41576538E-07)
  (-0.43948633E-06, 0.36508420E-07) (-0.77403356E-06, 0.58636173E-07)
  ( 0.35895740E-06,-0.56717364E-07) ( 0.86456643E-08,-0.13428525E-08)
  (-0.27740780E-07,-0.37482997E-08) ( 0.83814835E-07,-0.49465132E-08)
  (-0.59423781E-07, 0.43795219E-08)
MaxIter =  10 c.s. =      0.76909844 rmsk=     0.00000013
Time Now =       274.1157  Delta time =        88.2427 End ScatStab

+ Command GetCro
+

----------------------------------------------------------------------
CnvIdy - read in and convert dynamical matrix elements and convert to raw form
----------------------------------------------------------------------

Time Now =       274.1178  Delta time =         0.0022 End CnvIdy
Found     2 energies :
     0.80000     4.80000
List of matrix element types found   Number =    1
    1  Cont Sym A1     Targ Sym E      Total Sym E
Keeping     2 energies :
     0.80000     4.80000
Time Now =       274.1179  Delta time =         0.0000 End SelIdy

----------------------------------------------------------------------
CrossSection - compute photoionization cross section
----------------------------------------------------------------------

Ionization potential (IPot) =     15.2000 eV
Label -
Cross section by partial wave      F
Cross Sections for

     Sigma LENGTH   at all energies
      Eng
    16.0000  0.25593343E+00
    20.0000  0.13412738E+01

     Sigma MIXED    at all energies
      Eng
    16.0000  0.26448355E+00
    20.0000  0.12124111E+01

     Sigma VELOCITY at all energies
      Eng
    16.0000  0.29308914E+00
    20.0000  0.10998715E+01

     Beta LENGTH   at all energies
      Eng
    16.0000  0.44967370E-01
    20.0000  0.12042445E+00

     Beta MIXED    at all energies
      Eng
    16.0000  0.43318731E-01
    20.0000  0.12928261E+00

     Beta VELOCITY at all energies
      Eng
    16.0000  0.44379750E-01
    20.0000  0.13633136E+00

          COMPOSITE CROSS SECTIONS AT ALL ENERGIES
         Energy  SIGMA LEN  SIGMA MIX  SIGMA VEL   BETA LEN   BETA MIX   BETA VEL
EPhi     16.0000     0.2559     0.2645     0.2931     0.0450     0.0433     0.0444
EPhi     20.0000     1.3413     1.2124     1.0999     0.1204     0.1293     0.1363
Time Now =       274.1739  Delta time =         0.0561 End CrossSection
+ Data Record GrnType - 1

+ Command FileName
+ 'MatrixElements' 'test25.tmt' 'REWIND'
Opening file test25.tmt at position REWIND

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.15200000E+02  eV
 Do E =  0.80000000E+00 eV (  0.29399461E-01 AU)
Time Now =       274.2923  Delta time =         0.1184 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A1    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   12
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    72
Number of partial waves (np) =    76
Number of asymptotic solutions on the right (NAsymR) =    25
Number of asymptotic solutions on the left (NAsymL) =    25
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =    25
Maximum in the asymptotic region (lpasym) =   12
Number of partial waves in the asymptotic region (npasym) =   25
Number of orthogonality constraints (NOrthUse) =    6
Number of different asymptotic potentials =    5
Maximum number of asymptotic partial waves =  157
Maximum l used in usual function (lmax) =   25
Maximum m used in usual function (LMax) =   25
Maxamum l used in expanding static potential (lpotct) =   50
Maximum l used in exapnding the exchange potential (lmaxab) =   50
Higest l included in the expansion of the wave function (lnp) =   25
Higest l included in the K matrix (lna) =   12
Highest l used at large r (lpasym) =   12
Higest l used in the asymptotic potential (lpzb) =   24
Maximum L used in the homogeneous solution (LMaxHomo) =   12
Number of partial waves in the homogeneous solution (npHomo) =   25
Time Now =       274.3303  Delta time =         0.0380 Energy independent setup

Compute solution for E =    0.8000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.11379786E-14
 i =  2  lval =   3  stpote =  0.74001199E-18
 i =  3  lval =   3  stpote =  0.46848145E-04
 i =  4  lval =   4  stpote =  0.20440211E-04
For potential     2
 i =  1  exps = -0.93155070E+02 -0.20000000E+01  stpote = -0.54288574E-16
 i =  2  exps = -0.93155070E+02 -0.20000000E+01  stpote = -0.53991654E-16
 i =  3  exps = -0.93155070E+02 -0.20000000E+01  stpote = -0.53701087E-16
 i =  4  exps = -0.93155070E+02 -0.20000000E+01  stpote = -0.53430279E-16
For potential     3
For potential     4
 i =  1  lval =   4  stpote = -0.76107671E-01
 i =  2  lval =   3  stpote = -0.15407536E-04
 i =  3  lval =   3  stpote = -0.60564917E-04
 i =  4  lval =   4  stpote = -0.38950223E-04
For potential     5
 i =  1  lval =   4  stpote =  0.76107671E-01
 i =  2  lval =   3  stpote = -0.15407536E-04
 i =  3  lval =   3  stpote =  0.60564917E-04
 i =  4  lval =   4  stpote =  0.38950223E-04
Number of asymptotic regions =      37
Final point in integration =   0.21102140E+03 Angstroms
Time Now =       293.9951  Delta time =        19.6648 End SolveHomo
iL =   1 Iter =   1 c.s. =     54.53395057 angs^2  rmsk=     0.03818318
iL =   1 Iter =   2 c.s. =     38.63686916 angs^2  rmsk=     0.01950311
iL =   1 Iter =   3 c.s. =     43.26974761 angs^2  rmsk=     0.00691621
iL =   1 Iter =   4 c.s. =     69.00789418 angs^2  rmsk=     0.02336660
iL =   1 Iter =   5 c.s. =     60.54802414 angs^2  rmsk=     0.00850186
iL =   1 Iter =   6 c.s. =     71.86503800 angs^2  rmsk=     0.01039338
iL =   1 Iter =   7 c.s. =     71.88609834 angs^2  rmsk=     0.00014247
iL =   1 Iter =   8 c.s. =     71.89612160 angs^2  rmsk=     0.00000706
iL =   1 Iter =   9 c.s. =     71.89883520 angs^2  rmsk=     0.00000252
iL =   1 Iter =  10 c.s. =     71.89890393 angs^2  rmsk=     0.00000011
iL =   1 Iter =  11 c.s. =     71.89890597 angs^2  rmsk=     0.00000000
iL =   1 Iter =  12 c.s. =     71.89890595 angs^2  rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =     71.89890595 angs^2  rmsk=     0.02631914
iL =   2 Iter =   2 c.s. =     71.82088903 angs^2  rmsk=     0.00141120
iL =   2 Iter =   3 c.s. =     66.54247338 angs^2  rmsk=     0.00412647
iL =   2 Iter =   4 c.s. =     66.51993617 angs^2  rmsk=     0.00634477
iL =   2 Iter =   5 c.s. =     66.09474019 angs^2  rmsk=     0.00193207
iL =   2 Iter =   6 c.s. =     66.59957864 angs^2  rmsk=     0.00059891
iL =   2 Iter =   7 c.s. =     66.50708045 angs^2  rmsk=     0.00023296
iL =   2 Iter =   8 c.s. =     66.53254022 angs^2  rmsk=     0.00002093
iL =   2 Iter =   9 c.s. =     66.53296080 angs^2  rmsk=     0.00000120
iL =   2 Iter =  10 c.s. =     66.53296067 angs^2  rmsk=     0.00000003
iL =   2 Iter =  11 c.s. =     66.53296101 angs^2  rmsk=     0.00000000
iL =   3 Iter =   1 c.s. =     66.53296101 angs^2  rmsk=     0.01433121
iL =   3 Iter =   2 c.s. =     64.27608068 angs^2  rmsk=     0.00847777
iL =   3 Iter =   3 c.s. =     64.71285945 angs^2  rmsk=     0.00097695
iL =   3 Iter =   4 c.s. =     61.90168719 angs^2  rmsk=     0.00869606
iL =   3 Iter =   5 c.s. =     60.98987225 angs^2  rmsk=     0.00209655
iL =   3 Iter =   6 c.s. =     60.79398776 angs^2  rmsk=     0.00081886
iL =   3 Iter =   7 c.s. =     60.81190196 angs^2  rmsk=     0.00014074
iL =   3 Iter =   8 c.s. =     60.81576173 angs^2  rmsk=     0.00001894
iL =   3 Iter =   9 c.s. =     60.81482188 angs^2  rmsk=     0.00000316
iL =   3 Iter =  10 c.s. =     60.81484343 angs^2  rmsk=     0.00000008
iL =   3 Iter =  11 c.s. =     60.81484347 angs^2  rmsk=     0.00000000
iL =   3 Iter =  12 c.s. =     60.81484347 angs^2  rmsk=     0.00000000
iL =   4 Iter =   1 c.s. =     60.81484347 angs^2  rmsk=     0.00104413
iL =   4 Iter =   2 c.s. =     60.79319501 angs^2  rmsk=     0.00049976
iL =   4 Iter =   3 c.s. =     60.79744759 angs^2  rmsk=     0.00020286
iL =   4 Iter =   4 c.s. =     60.79119459 angs^2  rmsk=     0.00033707
iL =   4 Iter =   5 c.s. =     60.78990705 angs^2  rmsk=     0.00018359
iL =   4 Iter =   6 c.s. =     60.79040248 angs^2  rmsk=     0.00003649
iL =   4 Iter =   7 c.s. =     60.79046301 angs^2  rmsk=     0.00000676
iL =   4 Iter =   8 c.s. =     60.79048914 angs^2  rmsk=     0.00000096
iL =   4 Iter =   9 c.s. =     60.79048819 angs^2  rmsk=     0.00000029
iL =   4 Iter =  10 c.s. =     60.79048825 angs^2  rmsk=     0.00000000
iL =   4 Iter =  11 c.s. =     60.79048825 angs^2  rmsk=     0.00000000
iL =   5 Iter =   1 c.s. =     60.79048825 angs^2  rmsk=     0.00108499
iL =   5 Iter =   2 c.s. =     60.77197142 angs^2  rmsk=     0.00090140
iL =   5 Iter =   3 c.s. =     60.78387676 angs^2  rmsk=     0.00025810
iL =   5 Iter =   4 c.s. =     60.83641508 angs^2  rmsk=     0.00093333
iL =   5 Iter =   5 c.s. =     60.84596582 angs^2  rmsk=     0.00014925
iL =   5 Iter =   6 c.s. =     60.85001273 angs^2  rmsk=     0.00004857
iL =   5 Iter =   7 c.s. =     60.84982971 angs^2  rmsk=     0.00001228
iL =   5 Iter =   8 c.s. =     60.84987507 angs^2  rmsk=     0.00000237
iL =   5 Iter =   9 c.s. =     60.84987189 angs^2  rmsk=     0.00000051
iL =   5 Iter =  10 c.s. =     60.84987108 angs^2  rmsk=     0.00000001
iL =   5 Iter =  11 c.s. =     60.84987109 angs^2  rmsk=     0.00000000
iL =   6 Iter =   1 c.s. =     60.84987109 angs^2  rmsk=     0.00018629
iL =   6 Iter =   2 c.s. =     60.85033637 angs^2  rmsk=     0.00010545
iL =   6 Iter =   3 c.s. =     60.85244239 angs^2  rmsk=     0.00013883
iL =   6 Iter =   4 c.s. =     60.85358612 angs^2  rmsk=     0.00016453
iL =   6 Iter =   5 c.s. =     60.85391576 angs^2  rmsk=     0.00003575
iL =   6 Iter =   6 c.s. =     60.85395892 angs^2  rmsk=     0.00001137
iL =   6 Iter =   7 c.s. =     60.85397981 angs^2  rmsk=     0.00000303
iL =   6 Iter =   8 c.s. =     60.85397236 angs^2  rmsk=     0.00000059
iL =   6 Iter =   9 c.s. =     60.85397344 angs^2  rmsk=     0.00000011
iL =   6 Iter =  10 c.s. =     60.85397343 angs^2  rmsk=     0.00000000
iL =   6 Iter =  11 c.s. =     60.85397343 angs^2  rmsk=     0.00000000
iL =   7 Iter =   1 c.s. =     60.85397343 angs^2  rmsk=     0.00002671
iL =   7 Iter =   2 c.s. =     60.85397669 angs^2  rmsk=     0.00001810
iL =   7 Iter =   3 c.s. =     60.85399405 angs^2  rmsk=     0.00001425
iL =   7 Iter =   4 c.s. =     60.85403648 angs^2  rmsk=     0.00002792
iL =   7 Iter =   5 c.s. =     60.85404718 angs^2  rmsk=     0.00001091
iL =   7 Iter =   6 c.s. =     60.85404804 angs^2  rmsk=     0.00000046
iL =   7 Iter =   7 c.s. =     60.85404814 angs^2  rmsk=     0.00000017
iL =   7 Iter =   8 c.s. =     60.85404815 angs^2  rmsk=     0.00000002
iL =   7 Iter =   9 c.s. =     60.85404816 angs^2  rmsk=     0.00000001
iL =   8 Iter =   1 c.s. =     60.85404816 angs^2  rmsk=     0.00006113
iL =   8 Iter =   2 c.s. =     60.85406069 angs^2  rmsk=     0.00001599
iL =   8 Iter =   3 c.s. =     60.85405451 angs^2  rmsk=     0.00002791
iL =   8 Iter =   4 c.s. =     60.85404895 angs^2  rmsk=     0.00000984
iL =   8 Iter =   5 c.s. =     60.85404876 angs^2  rmsk=     0.00000090
iL =   8 Iter =   6 c.s. =     60.85404871 angs^2  rmsk=     0.00000082
iL =   8 Iter =   7 c.s. =     60.85404871 angs^2  rmsk=     0.00000019
iL =   8 Iter =   8 c.s. =     60.85404870 angs^2  rmsk=     0.00000001
iL =   8 Iter =   9 c.s. =     60.85404870 angs^2  rmsk=     0.00000000
iL =   9 Iter =   1 c.s. =     60.85404870 angs^2  rmsk=     0.00003588
iL =   9 Iter =   2 c.s. =     60.85404870 angs^2  rmsk=     0.00000054
iL =   9 Iter =   3 c.s. =     60.85404872 angs^2  rmsk=     0.00000072
iL =   9 Iter =   4 c.s. =     60.85404881 angs^2  rmsk=     0.00000129
iL =   9 Iter =   5 c.s. =     60.85404879 angs^2  rmsk=     0.00000078
iL =   9 Iter =   6 c.s. =     60.85404879 angs^2  rmsk=     0.00000005
iL =   9 Iter =   7 c.s. =     60.85404879 angs^2  rmsk=     0.00000001
iL =   9 Iter =   8 c.s. =     60.85404879 angs^2  rmsk=     0.00000000
iL =  10 Iter =   1 c.s. =     60.85404879 angs^2  rmsk=     0.00003196
iL =  10 Iter =   2 c.s. =     60.85404880 angs^2  rmsk=     0.00000120
iL =  10 Iter =   3 c.s. =     60.85404887 angs^2  rmsk=     0.00000077
iL =  10 Iter =   4 c.s. =     60.85404906 angs^2  rmsk=     0.00000168
iL =  10 Iter =   5 c.s. =     60.85404908 angs^2  rmsk=     0.00000045
iL =  10 Iter =   6 c.s. =     60.85404908 angs^2  rmsk=     0.00000003
iL =  10 Iter =   7 c.s. =     60.85404908 angs^2  rmsk=     0.00000002
iL =  11 Iter =   1 c.s. =     60.85404908 angs^2  rmsk=     0.00004305
iL =  11 Iter =   2 c.s. =     60.85404908 angs^2  rmsk=     0.00000001
iL =  11 Iter =   3 c.s. =     60.85404908 angs^2  rmsk=     0.00000001
iL =  12 Iter =   1 c.s. =     60.85404908 angs^2  rmsk=     0.00001236
iL =  12 Iter =   2 c.s. =     60.85404908 angs^2  rmsk=     0.00000005
iL =  12 Iter =   3 c.s. =     60.85404909 angs^2  rmsk=     0.00000010
iL =  12 Iter =   4 c.s. =     60.85404909 angs^2  rmsk=     0.00000008
iL =  12 Iter =   5 c.s. =     60.85404909 angs^2  rmsk=     0.00000002
iL =  12 Iter =   6 c.s. =     60.85404909 angs^2  rmsk=     0.00000000
iL =  13 Iter =   1 c.s. =     60.85404909 angs^2  rmsk=     0.00002759
iL =  13 Iter =   2 c.s. =     60.85404909 angs^2  rmsk=     0.00000005
iL =  13 Iter =   3 c.s. =     60.85404909 angs^2  rmsk=     0.00000006
iL =  13 Iter =   4 c.s. =     60.85404909 angs^2  rmsk=     0.00000008
iL =  13 Iter =   5 c.s. =     60.85404909 angs^2  rmsk=     0.00000002
iL =  13 Iter =   6 c.s. =     60.85404909 angs^2  rmsk=     0.00000000
iL =  14 Iter =   1 c.s. =     60.85404909 angs^2  rmsk=     0.00000710
iL =  14 Iter =   2 c.s. =     60.85404909 angs^2  rmsk=     0.00000000
iL =  14 Iter =   3 c.s. =     60.85404909 angs^2  rmsk=     0.00000001
iL =  15 Iter =   1 c.s. =     60.85404909 angs^2  rmsk=     0.00001819
iL =  15 Iter =   2 c.s. =     60.85404909 angs^2  rmsk=     0.00000000
iL =  15 Iter =   3 c.s. =     60.85404909 angs^2  rmsk=     0.00000000
iL =  16 Iter =   1 c.s. =     60.85404909 angs^2  rmsk=     0.00001166
iL =  16 Iter =   2 c.s. =     60.85404909 angs^2  rmsk=     0.00000000
iL =  16 Iter =   3 c.s. =     60.85404909 angs^2  rmsk=     0.00000000
iL =  17 Iter =   1 c.s. =     60.85404909 angs^2  rmsk=     0.00000987
iL =  17 Iter =   2 c.s. =     60.85404909 angs^2  rmsk=     0.00000000
iL =  17 Iter =   3 c.s. =     60.85404909 angs^2  rmsk=     0.00000000
iL =  18 Iter =   1 c.s. =     60.85404909 angs^2  rmsk=     0.00001589
iL =  18 Iter =   2 c.s. =     60.85404909 angs^2  rmsk=     0.00000000
iL =  18 Iter =   3 c.s. =     60.85404909 angs^2  rmsk=     0.00000000
iL =  19 Iter =   1 c.s. =     60.85404909 angs^2  rmsk=     0.00001501
iL =  19 Iter =   2 c.s. =     60.85404909 angs^2  rmsk=     0.00000000
iL =  19 Iter =   3 c.s. =     60.85404909 angs^2  rmsk=     0.00000000
iL =  20 Iter =   1 c.s. =     60.85404909 angs^2  rmsk=     0.00000394
iL =  20 Iter =   2 c.s. =     60.85404909 angs^2  rmsk=     0.00000000
iL =  20 Iter =   3 c.s. =     60.85404909 angs^2  rmsk=     0.00000000
iL =  21 Iter =   1 c.s. =     60.85404909 angs^2  rmsk=     0.00001139
iL =  21 Iter =   2 c.s. =     60.85404909 angs^2  rmsk=     0.00000000
iL =  21 Iter =   3 c.s. =     60.85404909 angs^2  rmsk=     0.00000000
iL =  22 Iter =   1 c.s. =     60.85404909 angs^2  rmsk=     0.00001679
iL =  22 Iter =   2 c.s. =     60.85404909 angs^2  rmsk=     0.00000000
iL =  22 Iter =   3 c.s. =     60.85404909 angs^2  rmsk=     0.00000000
iL =  23 Iter =   1 c.s. =     60.85404909 angs^2  rmsk=     0.00000294
iL =  23 Iter =   2 c.s. =     60.85404909 angs^2  rmsk=     0.00000000
iL =  23 Iter =   3 c.s. =     60.85404909 angs^2  rmsk=     0.00000000
iL =  24 Iter =   1 c.s. =     60.85404909 angs^2  rmsk=     0.00000719
iL =  24 Iter =   2 c.s. =     60.85404909 angs^2  rmsk=     0.00000000
iL =  24 Iter =   3 c.s. =     60.85404909 angs^2  rmsk=     0.00000000
iL =  25 Iter =   1 c.s. =     60.85404909 angs^2  rmsk=     0.00001003
iL =  25 Iter =   2 c.s. =     60.85404909 angs^2  rmsk=     0.00000000
iL =  25 Iter =   3 c.s. =     60.85404909 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.46596296E+00, 0.63863116E+00) ( 0.83360026E-01, 0.23213190E-01)
  ( 0.50550230E-01, 0.43186791E-01) ( 0.35136143E-02, 0.46559480E-02)
  ( 0.23492940E-01, 0.32997670E-01) (-0.51126092E-02,-0.70339505E-02)
  ( 0.68899312E-03, 0.89947366E-03) ( 0.15578228E-03, 0.19186305E-03)
  ( 0.24851683E-04, 0.29385354E-04) ( 0.42011090E-04, 0.55065285E-04)
  (-0.33209900E-06,-0.35533263E-06) ( 0.28582244E-05, 0.34098412E-05)
  (-0.25329430E-05,-0.31829298E-05) ( 0.22591297E-06, 0.27012374E-06)
  ( 0.11031309E-06, 0.13102551E-06) (-0.53508681E-08,-0.65429639E-08)
  (-0.64763289E-08,-0.80321392E-08) ( 0.61657057E-09, 0.97261222E-09)
  (-0.57886023E-10,-0.78367449E-10) ( 0.24845775E-09, 0.26326825E-09)
  (-0.31736100E-09,-0.37717443E-09) ( 0.28999834E-12, 0.47034698E-12)
  (-0.13782286E-10,-0.16508741E-10) (-0.85314331E-11,-0.93177986E-11)
  ( 0.84647651E-11, 0.98007555E-11)
     ROW  2
  ( 0.83360027E-01, 0.23213190E-01) (-0.46415558E+00, 0.34327478E+00)
  (-0.30175315E-01, 0.38357106E-01) (-0.69909598E-02, 0.49507526E-02)
  ( 0.66687205E-02,-0.74393823E-03) (-0.28009676E-02, 0.97430447E-03)
  ( 0.21244480E-04, 0.12208482E-03) ( 0.13062181E-03,-0.64324851E-04)
  (-0.54895028E-05, 0.89941081E-05) ( 0.12060633E-05, 0.83060854E-05)
  ( 0.10837425E-06,-0.14640345E-06) ( 0.74793008E-06,-0.10318305E-07)
  (-0.36091524E-06,-0.25365825E-06) ( 0.42897883E-08, 0.44703201E-07)
  ( 0.34563676E-07,-0.43025467E-08) ( 0.68833937E-09,-0.16536443E-08)
  ( 0.95456729E-10,-0.15224863E-08) (-0.52165740E-09, 0.56967154E-09)
  ( 0.15444929E-10,-0.22194342E-10) ( 0.54336392E-10, 0.86949540E-11)
  (-0.20171753E-10,-0.51227238E-10) (-0.12435340E-12, 0.12401048E-12)
  (-0.32265917E-12,-0.28386066E-11) (-0.17421390E-11,-0.40502177E-12)
  ( 0.10907701E-11, 0.87133277E-12)
     ROW  3
  ( 0.50550229E-01, 0.43186791E-01) (-0.30175315E-01, 0.38357106E-01)
  (-0.15745439E+00, 0.32819304E-01) ( 0.10275345E-01,-0.78929418E-03)
  ( 0.60013084E-02, 0.14878470E-02) ( 0.17353733E-02,-0.74678002E-03)
  (-0.19999015E-03, 0.11351797E-03) (-0.11035704E-03, 0.28209314E-04)
  (-0.12205407E-04, 0.50640746E-05) (-0.17288841E-04, 0.74402017E-05)
  ( 0.28089295E-06,-0.95585193E-07) (-0.12419137E-05, 0.53057457E-06)
  ( 0.11236309E-05,-0.45742444E-06) (-0.10705871E-06, 0.46615323E-07)
  (-0.49947264E-07, 0.21610455E-07) ( 0.28387855E-08,-0.12299667E-08)
  ( 0.34691514E-08,-0.13673932E-08) (-0.43514303E-09, 0.13844136E-09)
  ( 0.40134254E-10,-0.13341200E-10) (-0.10387523E-09, 0.53971192E-10)
  ( 0.15838180E-09,-0.66711532E-10) (-0.31949424E-12, 0.28481813E-13)
  ( 0.64467363E-11,-0.30673006E-11) ( 0.38846178E-11,-0.18329198E-11)
  (-0.39401356E-11, 0.17544826E-11)
     ROW  4
  ( 0.35136143E-02, 0.46559479E-02) (-0.69909598E-02, 0.49507526E-02)
  ( 0.10275345E-01,-0.78929421E-03) ( 0.77290271E-02, 0.27442560E-03)
  (-0.54090513E-03, 0.24211552E-03) (-0.79705090E-03,-0.13657692E-04)
  (-0.11252386E-03, 0.37241713E-05) (-0.15456593E-04,-0.15290161E-05)
  (-0.17996381E-04, 0.33669710E-07) ( 0.47493233E-05, 0.47109066E-06)
  (-0.29099790E-06,-0.81475471E-08) ( 0.39665719E-07, 0.73617646E-08)
  ( 0.26577745E-06, 0.10098061E-08) ( 0.41676792E-07, 0.42701931E-08)
  (-0.13632225E-07,-0.55253050E-09) (-0.19378262E-08,-0.15616936E-09)
  (-0.82889440E-09,-0.11305216E-11) ( 0.55811208E-09,-0.53946066E-10)
  ( 0.14660315E-10, 0.59196365E-11) (-0.10554458E-10,-0.28303223E-11)
  ( 0.20627844E-11,-0.11902367E-11) (-0.97956607E-12, 0.14936218E-13)
  (-0.29675890E-11, 0.28520883E-12) ( 0.67076595E-12,-0.71076366E-13)
  (-0.72047537E-12, 0.55894913E-13)
     ROW  5
  ( 0.23492940E-01, 0.32997670E-01) ( 0.66687205E-02,-0.74393825E-03)
  ( 0.60013083E-02, 0.14878470E-02) (-0.54090513E-03, 0.24211552E-03)
  ( 0.58444204E-03, 0.17279899E-02) ( 0.28318346E-03,-0.36271001E-03)
  ( 0.20152881E-03, 0.45273518E-04) (-0.19309077E-03, 0.10641252E-04)
  ( 0.24727335E-05, 0.14057608E-05) (-0.13013018E-04, 0.25693031E-05)
  ( 0.20186908E-07,-0.14933853E-07) ( 0.73733412E-06, 0.15516085E-06)
  (-0.60381693E-07,-0.13667626E-06) ( 0.81616499E-07, 0.10863745E-07)
  ( 0.12398884E-07, 0.10859405E-07) (-0.12017792E-08,-0.35458309E-09)
  (-0.23153640E-08,-0.53969165E-09) ( 0.80080345E-09, 0.95957092E-10)
  (-0.31875073E-11,-0.44828207E-11) ( 0.93145756E-10, 0.51228519E-11)
  (-0.84670043E-10,-0.20339346E-10) (-0.20740586E-13, 0.12958691E-13)
  (-0.51139291E-11,-0.51177686E-12) (-0.11045500E-11,-0.21978450E-12)
  ( 0.14625240E-11, 0.36792593E-12)
     ROW  6
  (-0.51126092E-02,-0.70339504E-02) (-0.28009676E-02, 0.97430447E-03)
  ( 0.17353733E-02,-0.74678002E-03) (-0.79705090E-03,-0.13657692E-04)
  ( 0.28318346E-03,-0.36271001E-03) (-0.85318756E-03, 0.90237004E-04)
  ( 0.27350849E-03,-0.10304585E-04) ( 0.75041714E-03,-0.44750565E-05)
  ( 0.31220675E-04,-0.40516250E-06) (-0.18784491E-03,-0.27632974E-06)
  (-0.31294447E-06, 0.12862121E-07) ( 0.13826739E-04,-0.75346512E-07)
  (-0.84411224E-05,-0.10238466E-06) (-0.32269789E-06,-0.10873309E-07)
  (-0.10596030E-07, 0.12308964E-07) (-0.51766568E-08, 0.31850435E-09)
  ( 0.33506901E-08,-0.25507423E-08) ( 0.70620129E-08, 0.19420639E-08)
  (-0.17186463E-09,-0.51224949E-11) (-0.97777424E-09,-0.55082382E-10)
  ( 0.14974880E-09, 0.62821986E-10) ( 0.61630652E-12, 0.81560700E-13)
  ( 0.24407694E-10,-0.26242350E-11) ( 0.24738538E-10, 0.75157051E-12)
  (-0.75103648E-11,-0.14021092E-11)
     ROW  7
  ( 0.68899486E-03, 0.89947318E-03) ( 0.21244331E-04, 0.12208544E-03)
  (-0.19999169E-03, 0.11351988E-03) (-0.11252372E-03, 0.37240996E-05)
  ( 0.20152902E-03, 0.45273200E-04) ( 0.27350848E-03,-0.10304565E-04)
  ( 0.15074151E-03, 0.16946964E-05) (-0.77483044E-04, 0.49654901E-06)
  (-0.31627004E-03,-0.25026585E-06) (-0.26435623E-03, 0.14745319E-06)
  ( 0.82728482E-05,-0.52401175E-07) (-0.11653044E-03,-0.23454697E-07)
  ( 0.37339777E-05,-0.53616607E-07) (-0.12049238E-04, 0.24809789E-07)
  ( 0.21613287E-05, 0.45330649E-07) (-0.30525624E-06,-0.45392753E-08)
  ( 0.80585932E-07, 0.79018926E-08) ( 0.52770884E-07, 0.87242102E-09)
  (-0.18060508E-08, 0.19760364E-10) ( 0.29170764E-08, 0.15304789E-08)
  (-0.12708356E-08,-0.42342074E-09) (-0.32992581E-10,-0.21737167E-11)
  (-0.61505911E-09,-0.42102544E-10) (-0.80051737E-11, 0.58613043E-11)
  (-0.15918792E-10,-0.11728446E-10)
     ROW  8
  ( 0.15578186E-03, 0.19186410E-03) ( 0.13062151E-03,-0.64324889E-04)
  (-0.11035674E-03, 0.28208397E-04) (-0.15456560E-04,-0.15290686E-05)
  (-0.19309081E-03, 0.10641367E-04) ( 0.75041713E-03,-0.44750607E-05)
  (-0.77483044E-04, 0.49654901E-06) (-0.12554985E-02, 0.23448130E-05)
  (-0.10513245E-05, 0.57464604E-07) ( 0.20883475E-03,-0.52876528E-06)
  (-0.81669537E-08,-0.12347954E-08) ( 0.19703197E-04,-0.30563504E-09)
  (-0.14958556E-03, 0.31784380E-06) (-0.26398494E-07, 0.11634966E-08)
  (-0.10304916E-04,-0.23693269E-07) ( 0.19983059E-08, 0.78885577E-10)
  ( 0.14018554E-07,-0.92651974E-09) ( 0.14960202E-06, 0.13613585E-07)
  ( 0.39755423E-11, 0.31289073E-12) ( 0.45546182E-08,-0.17309414E-09)
  ( 0.27266554E-08, 0.18091304E-08) ( 0.20758375E-13, 0.53036006E-14)
  (-0.29846058E-10,-0.19564468E-11) (-0.36070472E-09,-0.38877491E-10)
  ( 0.56663968E-10, 0.97654236E-11)
     ROW  9
  ( 0.24848026E-04, 0.29384176E-04) (-0.54917197E-05, 0.89937069E-05)
  (-0.12203405E-04, 0.50670852E-05) (-0.17996107E-04, 0.33602782E-07)
  ( 0.24724467E-05, 0.14056404E-05) ( 0.31220666E-04,-0.40518676E-06)
  (-0.31627003E-03,-0.25027955E-06) (-0.10513245E-05, 0.57464520E-07)
  ( 0.80500217E-03, 0.80620546E-06) (-0.12130419E-04, 0.80186497E-07)
  ( 0.19723320E-03, 0.36632315E-06) ( 0.10649363E-03, 0.10451159E-06)
  ( 0.16264538E-06,-0.60620206E-08) (-0.67865316E-04,-0.70589765E-07)
  ( 0.46944712E-06,-0.95092918E-08) ( 0.88807118E-05,-0.11065738E-08)
  (-0.70157255E-06,-0.13902498E-07) (-0.76114406E-08, 0.25411909E-09)
  (-0.22516511E-06,-0.19679672E-08) ( 0.31406023E-07, 0.33058763E-08)
  ( 0.60393641E-08, 0.13549899E-09) ( 0.16328128E-08,-0.32679091E-10)
  (-0.17473318E-08,-0.74186298E-09) ( 0.43160993E-09, 0.10393574E-09)
  ( 0.68652376E-10,-0.16274627E-12)
     ROW 10
  ( 0.42009729E-04, 0.55057006E-04) ( 0.11767656E-05, 0.83218438E-05)
  (-0.17302075E-04, 0.74506124E-05) ( 0.47497701E-05, 0.46911856E-06)
  (-0.13012221E-04, 0.25686815E-05) (-0.18784501E-03,-0.27664726E-06)
  (-0.26435623E-03, 0.14743279E-06) ( 0.20883475E-03,-0.52876555E-06)
  (-0.12130421E-04, 0.80184898E-07) (-0.65131441E-03, 0.64334337E-06)
  ( 0.11086574E-06,-0.48280894E-08) ( 0.20606414E-04, 0.20855866E-07)
  ( 0.22118608E-03,-0.32276555E-06) ( 0.77640867E-05,-0.68792728E-09)
  (-0.12368778E-03, 0.14322100E-06) (-0.13597518E-07, 0.60658867E-09)
  ( 0.72818452E-05,-0.56571053E-08) (-0.49003599E-05,-0.29342796E-07)
  ( 0.28851725E-09, 0.17644299E-10) (-0.68019507E-07,-0.10002069E-08)
  ( 0.76355029E-07, 0.90355267E-08) (-0.53266502E-12,-0.47602644E-13)
  (-0.11487900E-08, 0.51677828E-10) (-0.81148680E-09,-0.10178721E-08)
  ( 0.17442720E-08, 0.77762503E-09)
     ROW 11
  (-0.24174656E-06,-0.16539991E-06) ( 0.10265610E-06,-0.86042934E-07)
  ( 0.13423310E-06,-0.15956527E-06) (-0.28468112E-06, 0.95219672E-09)
  ( 0.13204678E-07, 0.18639242E-08) (-0.32570433E-06, 0.53344364E-08)
  ( 0.82725869E-05,-0.52624141E-07) (-0.81058427E-08,-0.12500185E-08)
  ( 0.19723319E-03, 0.36632978E-06) ( 0.11085354E-06,-0.48391694E-08)
  ( 0.10568412E-02, 0.11580589E-05) (-0.24129469E-05, 0.20256787E-07)
  ( 0.98942238E-09, 0.14204533E-09) (-0.33724654E-04,-0.54299207E-07)
  (-0.13073381E-07, 0.50645179E-09) (-0.31644561E-04,-0.42380879E-07)
  ( 0.76832123E-07,-0.17566125E-08) (-0.44885548E-10,-0.82908904E-11)
  (-0.54315508E-05,-0.60374615E-08) ( 0.17373266E-06, 0.32320009E-08)
  ( 0.51006797E-09,-0.17583522E-10) (-0.16710989E-06,-0.46654366E-09)
  ( 0.95122676E-08, 0.10406310E-08) ( 0.75647865E-09, 0.20509012E-10)
  ( 0.36639096E-12, 0.18211624E-12)
     ROW 12
  ( 0.28614144E-05, 0.34076680E-05) ( 0.76426387E-06, 0.19378259E-07)
  (-0.12455497E-05, 0.52666756E-06) ( 0.40314656E-07, 0.72206743E-08)
  ( 0.73756904E-06, 0.15554594E-06) ( 0.13826818E-04,-0.75346697E-07)
  (-0.11653044E-03,-0.23453796E-07) ( 0.19703186E-04,-0.30843499E-09)
  ( 0.10649363E-03, 0.10451126E-06) ( 0.20606414E-04, 0.20855985E-07)
  (-0.24129509E-05, 0.20258074E-07) (-0.21401380E-03, 0.95481856E-07)
  (-0.18637975E-04, 0.72562971E-08) (-0.70772456E-04,-0.71225718E-09)
  (-0.10232077E-03, 0.58969278E-07) ( 0.39113812E-05,-0.35065554E-08)
  (-0.88530988E-04, 0.33746250E-07) ( 0.17541625E-05,-0.76567398E-08)
  ( 0.78044890E-08,-0.35960906E-09) (-0.65447678E-05, 0.73256178E-08)
  ( 0.15707975E-05, 0.12645158E-07) ( 0.48822093E-10, 0.38427521E-11)
  (-0.86920576E-07,-0.84055520E-09) ( 0.50897261E-07, 0.54156299E-08)
  ( 0.77649550E-08, 0.17043654E-09)
     ROW 13
  (-0.25343460E-05,-0.31807004E-05) (-0.37355413E-06,-0.25029072E-06)
  ( 0.11269201E-05,-0.45683886E-06) ( 0.26550695E-06, 0.11404835E-08)
  (-0.60583556E-07,-0.13677407E-06) (-0.84411437E-05,-0.10236387E-06)
  ( 0.37339741E-05,-0.53616762E-07) (-0.14958556E-03, 0.31784106E-06)
  ( 0.16264522E-06,-0.60619260E-08) ( 0.22118608E-03,-0.32276565E-06)
  ( 0.99068938E-09, 0.14008515E-09) (-0.18637975E-04, 0.72562971E-08)
  (-0.62104732E-03, 0.47589308E-06) (-0.52491265E-07, 0.28626599E-08)
  ( 0.85348052E-04,-0.11972849E-06) (-0.11508269E-08,-0.87125009E-10)
  ( 0.49765814E-05,-0.52037687E-09) (-0.10536201E-03, 0.10975885E-06)
  (-0.22647255E-11,-0.18829418E-12) (-0.59353558E-08, 0.24726275E-09)
  (-0.57086023E-05,-0.71512569E-08) (-0.68755259E-14,-0.19413825E-14)
  ( 0.15399063E-09, 0.87201808E-11) (-0.15381830E-07,-0.11873926E-09)
  ( 0.71916325E-07, 0.75276520E-08)
     ROW 14
  ( 0.19095496E-06, 0.14022871E-06) ( 0.12070975E-07,-0.58332163E-08)
  (-0.24207211E-07, 0.97809119E-07) ( 0.38740412E-07,-0.21281006E-08)
  ( 0.83250875E-07, 0.19206915E-08) (-0.32349325E-06,-0.97973773E-08)
  (-0.12049171E-04, 0.24649128E-07) (-0.26339180E-07, 0.10972584E-08)
  (-0.67865321E-04,-0.70585164E-07) ( 0.77640827E-05,-0.69078256E-09)
  (-0.33724654E-04,-0.54299207E-07) (-0.70772457E-04,-0.71325605E-09)
  (-0.52490584E-07, 0.28630259E-08) ( 0.89756113E-04, 0.31547333E-07)
  (-0.50989298E-05, 0.72090384E-08) ( 0.72710370E-04, 0.27736580E-07)
  ( 0.57983552E-04, 0.66883466E-09) ( 0.20468076E-07,-0.95680147E-09)
  ( 0.18214510E-05,-0.30292774E-08) (-0.61848545E-04,-0.48611856E-08)
  ( 0.37394171E-06,-0.23453741E-08) (-0.25597481E-08, 0.12120011E-09)
  ( 0.54433570E-05,-0.36633034E-08) (-0.68532945E-06,-0.59026119E-08)
  (-0.17932920E-08, 0.77842897E-10)
     ROW 15
  ( 0.12867809E-06, 0.78478440E-07) ( 0.40298727E-07,-0.26562460E-07)
  (-0.25757203E-07, 0.55489086E-07) (-0.15352725E-07,-0.40622609E-08)
  ( 0.12924856E-07, 0.53832816E-08) (-0.11301622E-07, 0.13475118E-07)
  ( 0.21612668E-05, 0.45123176E-07) (-0.10304864E-04,-0.23740066E-07)
  ( 0.46944009E-06,-0.95164064E-08) (-0.12368779E-03, 0.14320665E-06)
  (-0.13073381E-07, 0.50645179E-09) (-0.10232077E-03, 0.58968383E-07)
  ( 0.85348053E-04,-0.11972772E-06) (-0.50989298E-05, 0.72090384E-08)
  (-0.39727952E-03, 0.20677178E-06) ( 0.16080419E-07,-0.82726646E-09)
  (-0.67979710E-05, 0.15706924E-07) ( 0.89050579E-04,-0.79588310E-07)
  (-0.14191771E-09,-0.12628773E-10) ( 0.24517064E-05, 0.32840707E-09)
  (-0.87993992E-04, 0.61020060E-07) ( 0.20666404E-12, 0.20053335E-13)
  (-0.37610131E-09, 0.29489152E-10) ( 0.40748135E-05,-0.85850533E-09)
  (-0.30519707E-05,-0.87593500E-08)
     ROW 16
  (-0.43661776E-08,-0.36878031E-08) ( 0.47284223E-09,-0.60456329E-09)
  ( 0.10142278E-08,-0.26613687E-08) (-0.18556785E-08, 0.12826772E-11)
  (-0.12178790E-08,-0.19384014E-09) (-0.51617670E-08, 0.23777243E-09)
  (-0.30525591E-06,-0.45381056E-08) ( 0.19966685E-08, 0.81831410E-10)
  ( 0.88807117E-05,-0.11065996E-08) (-0.13597423E-07, 0.60662076E-09)
  (-0.31644561E-04,-0.42380879E-07) ( 0.39113813E-05,-0.35065227E-08)
  (-0.11508582E-08,-0.87148317E-10) ( 0.72710370E-04, 0.27736580E-07)
  ( 0.16080419E-07,-0.82726646E-09) ( 0.26959489E-03, 0.84911515E-07)
  (-0.18885714E-05, 0.41987421E-08) ( 0.25276223E-09, 0.21628487E-10)
  (-0.57447715E-04,-0.36887167E-07) (-0.29943542E-04,-0.11972514E-07)
  (-0.38322020E-08, 0.18605081E-09) ( 0.70970608E-06,-0.15940397E-08)
  (-0.40579872E-04,-0.14286385E-07) ( 0.11108355E-06,-0.82655155E-09)
  (-0.21499768E-10,-0.22366954E-11)
     ROW 17
  (-0.51304556E-08,-0.41363318E-08) (-0.72155640E-09,-0.47771295E-09)
  ( 0.69530699E-09,-0.27393906E-08) (-0.73877352E-09, 0.18658667E-09)
  (-0.23572918E-08,-0.13914992E-09) ( 0.33738135E-08,-0.25797396E-08)
  ( 0.80596058E-07, 0.79006447E-08) ( 0.14016192E-07,-0.92124577E-09)
  (-0.70157256E-06,-0.13902547E-07) ( 0.72818452E-05,-0.56571018E-08)
  ( 0.76832123E-07,-0.17566125E-08) (-0.88530988E-04, 0.33746290E-07)
  ( 0.49765814E-05,-0.52038545E-09) ( 0.57983552E-04, 0.66883466E-09)
  (-0.67979710E-05, 0.15706924E-07) (-0.18885714E-05, 0.41987421E-08)
  (-0.20574651E-03, 0.60907063E-07) (-0.61280742E-05,-0.19442073E-10)
  (-0.48002389E-08, 0.24548261E-09) (-0.17686521E-04,-0.41200512E-09)
  (-0.47612491E-04, 0.22977656E-07) (-0.20234456E-10,-0.19840364E-11)
  ( 0.15771473E-05,-0.23034323E-09) (-0.68022688E-04, 0.24816326E-07)
  ( 0.79924038E-06,-0.17656181E-08)
     ROW 18
  (-0.42648562E-09, 0.41450426E-09) (-0.56948412E-09, 0.39766019E-09)
  ( 0.13916122E-09, 0.92741867E-10) ( 0.52423581E-09,-0.74207132E-10)
  ( 0.81223836E-09, 0.67390723E-11) ( 0.70518171E-08, 0.18896287E-08)
  ( 0.52771636E-07, 0.87076571E-09) ( 0.14960204E-06, 0.13612770E-07)
  (-0.76114347E-08, 0.25402875E-09) (-0.49003598E-05,-0.29342936E-07)
  (-0.44885548E-10,-0.82908904E-11) ( 0.17541626E-05,-0.76567230E-08)
  (-0.10536201E-03, 0.10975886E-06) ( 0.20468076E-07,-0.95680147E-09)
  ( 0.89050579E-04,-0.79588310E-07) ( 0.25276223E-09, 0.21628487E-10)
  (-0.61280742E-05,-0.19442073E-10) (-0.36197198E-03, 0.15778534E-06)
  ( 0.56519391E-12, 0.57655957E-13) (-0.49659551E-08, 0.28175030E-09)
  ( 0.41962030E-04,-0.36381167E-07) ( 0.12302581E-14, 0.39793921E-15)
  (-0.15199619E-09,-0.11601336E-10) ( 0.17603229E-05,-0.29391437E-09)
  (-0.76823451E-04, 0.47370761E-07)
     ROW 19
  (-0.50973873E-10,-0.49012240E-10) ( 0.10922263E-10,-0.11020551E-10)
  ( 0.37044987E-10,-0.24153425E-10) ( 0.15531636E-10, 0.78409121E-11)
  (-0.41902503E-11,-0.25032198E-11) (-0.17234480E-09,-0.61919005E-11)
  (-0.18060377E-08, 0.19749778E-10) ( 0.39513049E-11, 0.34915979E-12)
  (-0.22516511E-06,-0.19679678E-08) ( 0.28852144E-09, 0.17642803E-10)
  (-0.54315508E-05,-0.60374615E-08) ( 0.78044894E-08,-0.35960863E-09)
  (-0.22651324E-11,-0.18848331E-12) ( 0.18214510E-05,-0.30292774E-08)
  (-0.14191771E-09,-0.12628773E-10) (-0.57447715E-04,-0.36887167E-07)
  (-0.48002389E-08, 0.24548261E-09) ( 0.56519456E-12, 0.57655957E-13)
  ( 0.36879551E-03, 0.14086359E-06) (-0.64326139E-06, 0.17647673E-08)
  ( 0.27067756E-10, 0.25840325E-11) ( 0.36456611E-04, 0.28644776E-07)
  ( 0.13814289E-04, 0.81487580E-08) ( 0.84903493E-09,-0.42399237E-10)
  (-0.72161143E-13,-0.80587746E-14)
     ROW 20
  ( 0.24240066E-09, 0.15780196E-09) ( 0.50220173E-10,-0.57055779E-10)
  (-0.28586527E-10, 0.11848737E-09) (-0.16326750E-10,-0.72817307E-11)
  ( 0.86669739E-10,-0.61031803E-11) (-0.97807302E-09,-0.54562119E-10)
  ( 0.29167988E-08, 0.15301433E-08) ( 0.45547029E-08,-0.17321023E-09)
  ( 0.31406014E-07, 0.33058750E-08) (-0.68019525E-07,-0.10002193E-08)
  ( 0.17373266E-06, 0.32320009E-08) (-0.65447678E-05, 0.73256161E-08)
  (-0.59353550E-08, 0.24726391E-09) (-0.61848545E-04,-0.48611856E-08)
  ( 0.24517064E-05, 0.32840707E-09) (-0.29943542E-04,-0.11972514E-07)
  (-0.17686521E-04,-0.41200512E-09) (-0.49659551E-08, 0.28175030E-09)
  (-0.64326139E-06, 0.17647673E-08) (-0.53882438E-04, 0.97020455E-08)
  (-0.21780457E-05, 0.10125880E-08) ( 0.10546847E-08,-0.48803619E-10)
  ( 0.26107438E-04, 0.79298201E-09) ( 0.32068988E-04,-0.57115855E-08)
  ( 0.36805410E-08,-0.19777863E-09)
     ROW 21
  (-0.26850782E-09,-0.20293051E-09) (-0.72043341E-10, 0.31117087E-10)
  ( 0.30635984E-10,-0.13900064E-09) ( 0.52115128E-11, 0.70091948E-11)
  (-0.80332193E-10,-0.19206993E-10) ( 0.15059276E-09, 0.58347252E-10)
  (-0.12704781E-08,-0.42336513E-09) ( 0.27265607E-08, 0.18092792E-08)
  ( 0.60393684E-08, 0.13549498E-09) ( 0.76355023E-07, 0.90355335E-08)
  ( 0.51006797E-09,-0.17583522E-10) ( 0.15707975E-05, 0.12645159E-07)
  (-0.57086023E-05,-0.71512576E-08) ( 0.37394171E-06,-0.23453741E-08)
  (-0.87993992E-04, 0.61020060E-07) (-0.38322020E-08, 0.18605081E-09)
  (-0.47612491E-04, 0.22977656E-07) ( 0.41962030E-04,-0.36381167E-07)
  ( 0.27067756E-10, 0.25840325E-11) (-0.21780457E-05, 0.10125880E-08)
  (-0.25947852E-03, 0.81107564E-07) (-0.41286098E-13,-0.45420037E-14)
  ( 0.26415456E-08,-0.12172556E-09) (-0.82025355E-05, 0.62395227E-08)
  ( 0.43594948E-04,-0.24511937E-07)
     ROW 22
  ( 0.33906322E-12, 0.27221360E-12) (-0.82875992E-13, 0.65707784E-13)
  (-0.20931264E-12, 0.20108035E-13) (-0.98346513E-12, 0.38111933E-14)
  (-0.34997528E-13, 0.90301941E-14) ( 0.61789716E-12, 0.89670084E-13)
  (-0.32993094E-10,-0.21734274E-11) ( 0.20926039E-13, 0.51728377E-14)
  ( 0.16328128E-08,-0.32679080E-10) (-0.53270817E-12,-0.47594679E-13)
  (-0.16710989E-06,-0.46654366E-09) ( 0.48822091E-10, 0.38427481E-11)
  (-0.68725134E-14,-0.19387178E-14) (-0.25597481E-08, 0.12120011E-09)
  ( 0.20666396E-12, 0.20053335E-13) ( 0.70970608E-06,-0.15940397E-08)
  (-0.20234455E-10,-0.19840364E-11) ( 0.12304551E-14, 0.39793921E-15)
  ( 0.36456611E-04, 0.28644776E-07) ( 0.10546847E-08,-0.48803619E-10)
  (-0.41286123E-13,-0.45420038E-14) ( 0.41808725E-03, 0.17612663E-06)
  (-0.17677093E-06, 0.39150749E-09) ( 0.33225574E-11, 0.33477428E-12)
  (-0.12970359E-15,-0.45085186E-16)
     ROW 23
  (-0.11660402E-10,-0.10521384E-10) (-0.82519957E-12, 0.61252879E-12)
  ( 0.18604372E-11,-0.73447952E-11) (-0.27923890E-11, 0.69182788E-12)
  (-0.51676408E-11,-0.18874461E-12) ( 0.24308731E-10,-0.27494323E-11)
  (-0.61503503E-09,-0.42082351E-10) (-0.29850342E-10,-0.19470359E-11)
  (-0.17473317E-08,-0.74186313E-09) (-0.11487893E-08, 0.51678014E-10)
  ( 0.95122676E-08, 0.10406310E-08) (-0.86920576E-07,-0.84055513E-09)
  ( 0.15399057E-09, 0.87201294E-11) ( 0.54433570E-05,-0.36633034E-08)
  (-0.37610131E-09, 0.29489152E-10) (-0.40579872E-04,-0.14286385E-07)
  ( 0.15771473E-05,-0.23034323E-09) (-0.15199619E-09,-0.11601336E-10)
  ( 0.13814289E-04, 0.81487580E-08) ( 0.26107438E-04, 0.79298201E-09)
  ( 0.26415456E-08,-0.12172556E-09) (-0.17677093E-06, 0.39150749E-09)
  ( 0.53297829E-04, 0.53930970E-08) (-0.10595953E-05, 0.83788892E-09)
  ( 0.51222257E-10, 0.41285291E-11)
     ROW 24
  (-0.85901378E-11,-0.56460149E-11) (-0.13658327E-11, 0.13163398E-11)
  ( 0.12797470E-11,-0.41935476E-11) ( 0.77105352E-12, 0.20344605E-12)
  (-0.90278913E-12, 0.97860513E-13) ( 0.24737162E-10, 0.63529017E-12)
  (-0.79968988E-11, 0.58718229E-11) (-0.36070419E-09,-0.38879068E-10)
  ( 0.43161025E-09, 0.10393580E-09) (-0.81148634E-09,-0.10178718E-08)
  ( 0.75647865E-09, 0.20509012E-10) ( 0.50897261E-07, 0.54156299E-08)
  (-0.15381830E-07,-0.11873930E-09) (-0.68532945E-06,-0.59026119E-08)
  ( 0.40748135E-05,-0.85850533E-09) ( 0.11108355E-06,-0.82655155E-09)
  (-0.68022688E-04, 0.24816326E-07) ( 0.17603229E-05,-0.29391437E-09)
  ( 0.84903493E-09,-0.42399237E-10) ( 0.32068988E-04,-0.57115855E-08)
  (-0.82025355E-05, 0.62395227E-08) ( 0.33225575E-11, 0.33477428E-12)
  (-0.10595953E-05, 0.83788892E-09) (-0.16294920E-03, 0.32302858E-07)
  (-0.25130130E-05, 0.43951818E-09)
     ROW 25
  ( 0.78817605E-11, 0.56887579E-11) ( 0.10184386E-11,-0.11200146E-11)
  (-0.10004473E-11, 0.39981866E-11) (-0.82153327E-12,-0.41869899E-14)
  ( 0.13474946E-11, 0.25129361E-12) (-0.74971421E-11,-0.12826794E-11)
  (-0.15928656E-10,-0.11734466E-10) ( 0.56666917E-10, 0.97611333E-11)
  ( 0.68652111E-10,-0.16271248E-12) ( 0.17442716E-08, 0.77762487E-09)
  ( 0.36639086E-12, 0.18211624E-12) ( 0.77649550E-08, 0.17043649E-09)
  ( 0.71916326E-07, 0.75276521E-08) (-0.17932920E-08, 0.77842897E-10)
  (-0.30519707E-05,-0.87593500E-08) (-0.21499768E-10,-0.22366954E-11)
  ( 0.79924038E-06,-0.17656181E-08) (-0.76823451E-04, 0.47370761E-07)
  (-0.72160650E-13,-0.80587745E-14) ( 0.36805410E-08,-0.19777863E-09)
  ( 0.43594948E-04,-0.24511937E-07) (-0.12965611E-15,-0.45085144E-16)
  ( 0.51222257E-10, 0.41285291E-11) (-0.25130130E-05, 0.43951818E-09)
  (-0.23459181E-03, 0.62851962E-07)
 eigenphases
 -0.6281895E+00 -0.1608472E+00 -0.2090123E-02 -0.9475804E-03 -0.6276767E-03
 -0.5304077E-03 -0.4596045E-03 -0.3403135E-03 -0.2964365E-03 -0.2699169E-03
 -0.2190537E-03 -0.1832857E-03 -0.1459174E-03 -0.8781637E-04 -0.6551115E-04
  0.4936957E-04  0.1036524E-03  0.2742089E-03  0.3080164E-03  0.3788546E-03
  0.4434643E-03  0.8421381E-03  0.1200221E-02  0.8554492E-02  0.9332698E+00
 eigenphase sum 0.150124E+00  scattering length=  -0.62380
 eps+pi 0.329172E+01  eps+2*pi 0.643331E+01

MaxIter =  12 c.s. =     60.85404909 angs^2  rmsk=     0.00000000
Time Now =       880.3522  Delta time =       586.3571 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.15200000E+02  eV
 Do E =  0.48000000E+01 eV (  0.17639676E+00 AU)
Time Now =       880.4642  Delta time =         0.1120 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A1    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   12
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    72
Number of partial waves (np) =    76
Number of asymptotic solutions on the right (NAsymR) =    25
Number of asymptotic solutions on the left (NAsymL) =    25
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =    25
Maximum in the asymptotic region (lpasym) =   12
Number of partial waves in the asymptotic region (npasym) =   25
Number of orthogonality constraints (NOrthUse) =    6
Number of different asymptotic potentials =    5
Maximum number of asymptotic partial waves =  157
Maximum l used in usual function (lmax) =   25
Maximum m used in usual function (LMax) =   25
Maxamum l used in expanding static potential (lpotct) =   50
Maximum l used in exapnding the exchange potential (lmaxab) =   50
Higest l included in the expansion of the wave function (lnp) =   25
Higest l included in the K matrix (lna) =   12
Highest l used at large r (lpasym) =   12
Higest l used in the asymptotic potential (lpzb) =   24
Maximum L used in the homogeneous solution (LMaxHomo) =   12
Number of partial waves in the homogeneous solution (npHomo) =   25
Time Now =       880.5020  Delta time =         0.0378 Energy independent setup

Compute solution for E =    4.8000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.11379786E-14
 i =  2  lval =   3  stpote =  0.74001199E-18
 i =  3  lval =   3  stpote =  0.46848145E-04
 i =  4  lval =   4  stpote =  0.20440211E-04
For potential     2
 i =  1  exps = -0.93155070E+02 -0.20000000E+01  stpote = -0.41687846E-16
 i =  2  exps = -0.93155070E+02 -0.20000000E+01  stpote = -0.41742689E-16
 i =  3  exps = -0.93155070E+02 -0.20000000E+01  stpote = -0.41816733E-16
 i =  4  exps = -0.93155070E+02 -0.20000000E+01  stpote = -0.41902396E-16
For potential     3
For potential     4
 i =  1  lval =   4  stpote = -0.76107671E-01
 i =  2  lval =   3  stpote = -0.15407536E-04
 i =  3  lval =   3  stpote = -0.60564917E-04
 i =  4  lval =   4  stpote = -0.38950223E-04
For potential     5
 i =  1  lval =   4  stpote =  0.76107671E-01
 i =  2  lval =   3  stpote = -0.15407536E-04
 i =  3  lval =   3  stpote =  0.60564917E-04
 i =  4  lval =   4  stpote =  0.38950223E-04
Number of asymptotic regions =      47
Final point in integration =   0.11633484E+03 Angstroms
Time Now =       900.2550  Delta time =        19.7530 End SolveHomo
iL =   1 Iter =   1 c.s. =     12.78280308 angs^2  rmsk=     0.04528218
iL =   1 Iter =   2 c.s. =     16.19101501 angs^2  rmsk=     0.02349359
iL =   1 Iter =   3 c.s. =     18.50191322 angs^2  rmsk=     0.01424149
iL =   1 Iter =   4 c.s. =     18.56976182 angs^2  rmsk=     0.00532415
iL =   1 Iter =   5 c.s. =     18.52952055 angs^2  rmsk=     0.00018246
iL =   1 Iter =   6 c.s. =     18.51853982 angs^2  rmsk=     0.00021960
iL =   1 Iter =   7 c.s. =     18.51498796 angs^2  rmsk=     0.00012880
iL =   1 Iter =   8 c.s. =     18.51700985 angs^2  rmsk=     0.00001390
iL =   1 Iter =   9 c.s. =     18.51691752 angs^2  rmsk=     0.00000066
iL =   1 Iter =  10 c.s. =     18.51692211 angs^2  rmsk=     0.00000001
iL =   2 Iter =   1 c.s. =     18.51692211 angs^2  rmsk=     0.03562329
iL =   2 Iter =   2 c.s. =     18.84806735 angs^2  rmsk=     0.01151083
iL =   2 Iter =   3 c.s. =     16.24358883 angs^2  rmsk=     0.00967000
iL =   2 Iter =   4 c.s. =     15.76793501 angs^2  rmsk=     0.00484593
iL =   2 Iter =   5 c.s. =     16.90041008 angs^2  rmsk=     0.00333774
iL =   2 Iter =   6 c.s. =     16.97961530 angs^2  rmsk=     0.00059684
iL =   2 Iter =   7 c.s. =     16.97811499 angs^2  rmsk=     0.00013637
iL =   2 Iter =   8 c.s. =     16.97728106 angs^2  rmsk=     0.00000487
iL =   2 Iter =   9 c.s. =     16.97725981 angs^2  rmsk=     0.00000019
iL =   2 Iter =  10 c.s. =     16.97725999 angs^2  rmsk=     0.00000001
iL =   3 Iter =   1 c.s. =     16.97725999 angs^2  rmsk=     0.02394362
iL =   3 Iter =   2 c.s. =     16.79164015 angs^2  rmsk=     0.02624326
iL =   3 Iter =   3 c.s. =     16.43327761 angs^2  rmsk=     0.00967980
iL =   3 Iter =   4 c.s. =     16.11633069 angs^2  rmsk=     0.00542696
iL =   3 Iter =   5 c.s. =     16.15504674 angs^2  rmsk=     0.00029279
iL =   3 Iter =   6 c.s. =     16.15582543 angs^2  rmsk=     0.00033898
iL =   3 Iter =   7 c.s. =     16.15076990 angs^2  rmsk=     0.00004799
iL =   3 Iter =   8 c.s. =     16.15185224 angs^2  rmsk=     0.00001568
iL =   3 Iter =   9 c.s. =     16.15182036 angs^2  rmsk=     0.00000062
iL =   3 Iter =  10 c.s. =     16.15181993 angs^2  rmsk=     0.00000002
iL =   4 Iter =   1 c.s. =     16.15181993 angs^2  rmsk=     0.00362176
iL =   4 Iter =   2 c.s. =     16.22738466 angs^2  rmsk=     0.00364220
iL =   4 Iter =   3 c.s. =     16.19158706 angs^2  rmsk=     0.00138286
iL =   4 Iter =   4 c.s. =     16.19470421 angs^2  rmsk=     0.00087963
iL =   4 Iter =   5 c.s. =     16.20862173 angs^2  rmsk=     0.00042723
iL =   4 Iter =   6 c.s. =     16.20866219 angs^2  rmsk=     0.00016359
iL =   4 Iter =   7 c.s. =     16.20908002 angs^2  rmsk=     0.00002188
iL =   4 Iter =   8 c.s. =     16.20910877 angs^2  rmsk=     0.00000188
iL =   4 Iter =   9 c.s. =     16.20910733 angs^2  rmsk=     0.00000029
iL =   4 Iter =  10 c.s. =     16.20910719 angs^2  rmsk=     0.00000001
iL =   5 Iter =   1 c.s. =     16.20910719 angs^2  rmsk=     0.00692420
iL =   5 Iter =   2 c.s. =     16.23018337 angs^2  rmsk=     0.00777038
iL =   5 Iter =   3 c.s. =     16.26576492 angs^2  rmsk=     0.00519507
iL =   5 Iter =   4 c.s. =     16.19575400 angs^2  rmsk=     0.00157708
iL =   5 Iter =   5 c.s. =     16.19749261 angs^2  rmsk=     0.00005724
iL =   5 Iter =   6 c.s. =     16.19823355 angs^2  rmsk=     0.00007560
iL =   5 Iter =   7 c.s. =     16.19808618 angs^2  rmsk=     0.00001330
iL =   5 Iter =   8 c.s. =     16.19803246 angs^2  rmsk=     0.00000277
iL =   5 Iter =   9 c.s. =     16.19802446 angs^2  rmsk=     0.00000020
iL =   5 Iter =  10 c.s. =     16.19802384 angs^2  rmsk=     0.00000001
iL =   6 Iter =   1 c.s. =     16.19802384 angs^2  rmsk=     0.00392245
iL =   6 Iter =   2 c.s. =     16.13739650 angs^2  rmsk=     0.00391864
iL =   6 Iter =   3 c.s. =     16.13359030 angs^2  rmsk=     0.00322191
iL =   6 Iter =   4 c.s. =     16.12996749 angs^2  rmsk=     0.00034922
iL =   6 Iter =   5 c.s. =     16.13323682 angs^2  rmsk=     0.00018016
iL =   6 Iter =   6 c.s. =     16.13353476 angs^2  rmsk=     0.00012719
iL =   6 Iter =   7 c.s. =     16.13335827 angs^2  rmsk=     0.00000825
iL =   6 Iter =   8 c.s. =     16.13335276 angs^2  rmsk=     0.00000150
iL =   6 Iter =   9 c.s. =     16.13335733 angs^2  rmsk=     0.00000029
iL =   6 Iter =  10 c.s. =     16.13335727 angs^2  rmsk=     0.00000000
iL =   7 Iter =   1 c.s. =     16.13335727 angs^2  rmsk=     0.00068956
iL =   7 Iter =   2 c.s. =     16.13348170 angs^2  rmsk=     0.00101318
iL =   7 Iter =   3 c.s. =     16.13380656 angs^2  rmsk=     0.00065079
iL =   7 Iter =   4 c.s. =     16.13314805 angs^2  rmsk=     0.00014842
iL =   7 Iter =   5 c.s. =     16.13317219 angs^2  rmsk=     0.00001263
iL =   7 Iter =   6 c.s. =     16.13318302 angs^2  rmsk=     0.00000588
iL =   7 Iter =   7 c.s. =     16.13318312 angs^2  rmsk=     0.00000082
iL =   7 Iter =   8 c.s. =     16.13318228 angs^2  rmsk=     0.00000027
iL =   7 Iter =   9 c.s. =     16.13318237 angs^2  rmsk=     0.00000004
iL =   7 Iter =  10 c.s. =     16.13318236 angs^2  rmsk=     0.00000000
iL =   8 Iter =   1 c.s. =     16.13318236 angs^2  rmsk=     0.00035334
iL =   8 Iter =   2 c.s. =     16.13286049 angs^2  rmsk=     0.00030651
iL =   8 Iter =   3 c.s. =     16.13260440 angs^2  rmsk=     0.00027014
iL =   8 Iter =   4 c.s. =     16.13261446 angs^2  rmsk=     0.00001989
iL =   8 Iter =   5 c.s. =     16.13274661 angs^2  rmsk=     0.00005835
iL =   8 Iter =   6 c.s. =     16.13270756 angs^2  rmsk=     0.00002060
iL =   8 Iter =   7 c.s. =     16.13270722 angs^2  rmsk=     0.00000067
iL =   8 Iter =   8 c.s. =     16.13270727 angs^2  rmsk=     0.00000004
iL =   8 Iter =   9 c.s. =     16.13270728 angs^2  rmsk=     0.00000000
iL =   9 Iter =   1 c.s. =     16.13270728 angs^2  rmsk=     0.00008070
iL =   9 Iter =   2 c.s. =     16.13271793 angs^2  rmsk=     0.00007591
iL =   9 Iter =   3 c.s. =     16.13272237 angs^2  rmsk=     0.00004261
iL =   9 Iter =   4 c.s. =     16.13272074 angs^2  rmsk=     0.00001162
iL =   9 Iter =   5 c.s. =     16.13272190 angs^2  rmsk=     0.00000591
iL =   9 Iter =   6 c.s. =     16.13272223 angs^2  rmsk=     0.00000140
iL =   9 Iter =   7 c.s. =     16.13272222 angs^2  rmsk=     0.00000037
iL =   9 Iter =   8 c.s. =     16.13272221 angs^2  rmsk=     0.00000002
iL =   9 Iter =   9 c.s. =     16.13272221 angs^2  rmsk=     0.00000001
iL =  10 Iter =   1 c.s. =     16.13272221 angs^2  rmsk=     0.00011098
iL =  10 Iter =   2 c.s. =     16.13271805 angs^2  rmsk=     0.00012802
iL =  10 Iter =   3 c.s. =     16.13272752 angs^2  rmsk=     0.00007615
iL =  10 Iter =   4 c.s. =     16.13271644 angs^2  rmsk=     0.00001943
iL =  10 Iter =   5 c.s. =     16.13271662 angs^2  rmsk=     0.00000264
iL =  10 Iter =   6 c.s. =     16.13271674 angs^2  rmsk=     0.00000062
iL =  10 Iter =   7 c.s. =     16.13271679 angs^2  rmsk=     0.00000044
iL =  10 Iter =   8 c.s. =     16.13271674 angs^2  rmsk=     0.00000007
iL =  10 Iter =   9 c.s. =     16.13271675 angs^2  rmsk=     0.00000001
iL =  10 Iter =  10 c.s. =     16.13271675 angs^2  rmsk=     0.00000000
iL =  11 Iter =   1 c.s. =     16.13271675 angs^2  rmsk=     0.00007701
iL =  11 Iter =   2 c.s. =     16.13271676 angs^2  rmsk=     0.00000227
iL =  11 Iter =   3 c.s. =     16.13271677 angs^2  rmsk=     0.00000113
iL =  11 Iter =   4 c.s. =     16.13271677 angs^2  rmsk=     0.00000034
iL =  11 Iter =   5 c.s. =     16.13271677 angs^2  rmsk=     0.00000042
iL =  11 Iter =   6 c.s. =     16.13271677 angs^2  rmsk=     0.00000005
iL =  11 Iter =   7 c.s. =     16.13271677 angs^2  rmsk=     0.00000002
iL =  11 Iter =   8 c.s. =     16.13271677 angs^2  rmsk=     0.00000000
iL =  12 Iter =   1 c.s. =     16.13271677 angs^2  rmsk=     0.00003690
iL =  12 Iter =   2 c.s. =     16.13271567 angs^2  rmsk=     0.00001891
iL =  12 Iter =   3 c.s. =     16.13271570 angs^2  rmsk=     0.00001452
iL =  12 Iter =   4 c.s. =     16.13271559 angs^2  rmsk=     0.00000173
iL =  12 Iter =   5 c.s. =     16.13271564 angs^2  rmsk=     0.00000111
iL =  12 Iter =   6 c.s. =     16.13271564 angs^2  rmsk=     0.00000094
iL =  12 Iter =   7 c.s. =     16.13271564 angs^2  rmsk=     0.00000005
iL =  12 Iter =   8 c.s. =     16.13271564 angs^2  rmsk=     0.00000000
iL =  12 Iter =   9 c.s. =     16.13271564 angs^2  rmsk=     0.00000000
iL =  13 Iter =   1 c.s. =     16.13271564 angs^2  rmsk=     0.00005635
iL =  13 Iter =   2 c.s. =     16.13271522 angs^2  rmsk=     0.00001745
iL =  13 Iter =   3 c.s. =     16.13271519 angs^2  rmsk=     0.00001198
iL =  13 Iter =   4 c.s. =     16.13271505 angs^2  rmsk=     0.00000206
iL =  13 Iter =   5 c.s. =     16.13271505 angs^2  rmsk=     0.00000016
iL =  13 Iter =   6 c.s. =     16.13271506 angs^2  rmsk=     0.00000021
iL =  13 Iter =   7 c.s. =     16.13271506 angs^2  rmsk=     0.00000004
iL =  13 Iter =   8 c.s. =     16.13271506 angs^2  rmsk=     0.00000000
iL =  14 Iter =   1 c.s. =     16.13271506 angs^2  rmsk=     0.00002166
iL =  14 Iter =   2 c.s. =     16.13271505 angs^2  rmsk=     0.00000338
iL =  14 Iter =   3 c.s. =     16.13271505 angs^2  rmsk=     0.00000228
iL =  14 Iter =   4 c.s. =     16.13271505 angs^2  rmsk=     0.00000038
iL =  14 Iter =   5 c.s. =     16.13271505 angs^2  rmsk=     0.00000004
iL =  14 Iter =   6 c.s. =     16.13271505 angs^2  rmsk=     0.00000001
iL =  15 Iter =   1 c.s. =     16.13271505 angs^2  rmsk=     0.00003813
iL =  15 Iter =   2 c.s. =     16.13271504 angs^2  rmsk=     0.00000164
iL =  15 Iter =   3 c.s. =     16.13271504 angs^2  rmsk=     0.00000126
iL =  15 Iter =   4 c.s. =     16.13271504 angs^2  rmsk=     0.00000014
iL =  15 Iter =   5 c.s. =     16.13271504 angs^2  rmsk=     0.00000025
iL =  15 Iter =   6 c.s. =     16.13271504 angs^2  rmsk=     0.00000014
iL =  15 Iter =   7 c.s. =     16.13271504 angs^2  rmsk=     0.00000000
iL =  15 Iter =   8 c.s. =     16.13271504 angs^2  rmsk=     0.00000000
iL =  16 Iter =   1 c.s. =     16.13271504 angs^2  rmsk=     0.00002447
iL =  16 Iter =   2 c.s. =     16.13271504 angs^2  rmsk=     0.00000018
iL =  16 Iter =   3 c.s. =     16.13271504 angs^2  rmsk=     0.00000012
iL =  16 Iter =   4 c.s. =     16.13271504 angs^2  rmsk=     0.00000002
iL =  16 Iter =   5 c.s. =     16.13271504 angs^2  rmsk=     0.00000001
iL =  17 Iter =   1 c.s. =     16.13271504 angs^2  rmsk=     0.00002254
iL =  17 Iter =   2 c.s. =     16.13271504 angs^2  rmsk=     0.00000022
iL =  17 Iter =   3 c.s. =     16.13271504 angs^2  rmsk=     0.00000013
iL =  17 Iter =   4 c.s. =     16.13271504 angs^2  rmsk=     0.00000003
iL =  17 Iter =   5 c.s. =     16.13271504 angs^2  rmsk=     0.00000001
iL =  18 Iter =   1 c.s. =     16.13271504 angs^2  rmsk=     0.00003223
iL =  18 Iter =   2 c.s. =     16.13271504 angs^2  rmsk=     0.00000005
iL =  18 Iter =   3 c.s. =     16.13271504 angs^2  rmsk=     0.00000003
iL =  18 Iter =   4 c.s. =     16.13271504 angs^2  rmsk=     0.00000001
iL =  19 Iter =   1 c.s. =     16.13271504 angs^2  rmsk=     0.00002892
iL =  19 Iter =   2 c.s. =     16.13271504 angs^2  rmsk=     0.00000001
iL =  19 Iter =   3 c.s. =     16.13271504 angs^2  rmsk=     0.00000000
iL =  20 Iter =   1 c.s. =     16.13271504 angs^2  rmsk=     0.00001178
iL =  20 Iter =   2 c.s. =     16.13271504 angs^2  rmsk=     0.00000002
iL =  20 Iter =   3 c.s. =     16.13271504 angs^2  rmsk=     0.00000001
iL =  21 Iter =   1 c.s. =     16.13271504 angs^2  rmsk=     0.00002361
iL =  21 Iter =   2 c.s. =     16.13271504 angs^2  rmsk=     0.00000002
iL =  21 Iter =   3 c.s. =     16.13271504 angs^2  rmsk=     0.00000002
iL =  22 Iter =   1 c.s. =     16.13271504 angs^2  rmsk=     0.00003194
iL =  22 Iter =   2 c.s. =     16.13271504 angs^2  rmsk=     0.00000000
iL =  22 Iter =   3 c.s. =     16.13271504 angs^2  rmsk=     0.00000000
iL =  23 Iter =   1 c.s. =     16.13271504 angs^2  rmsk=     0.00000763
iL =  23 Iter =   2 c.s. =     16.13271504 angs^2  rmsk=     0.00000000
iL =  23 Iter =   3 c.s. =     16.13271504 angs^2  rmsk=     0.00000000
iL =  24 Iter =   1 c.s. =     16.13271504 angs^2  rmsk=     0.00001510
iL =  24 Iter =   2 c.s. =     16.13271504 angs^2  rmsk=     0.00000000
iL =  24 Iter =   3 c.s. =     16.13271504 angs^2  rmsk=     0.00000000
iL =  25 Iter =   1 c.s. =     16.13271504 angs^2  rmsk=     0.00002021
iL =  25 Iter =   2 c.s. =     16.13271504 angs^2  rmsk=     0.00000000
iL =  25 Iter =   3 c.s. =     16.13271504 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  (-0.23909500E+00, 0.65679974E+00) (-0.37342722E-01,-0.43654056E-01)
  ( 0.16063010E-01,-0.37435138E+00) (-0.17370782E-01, 0.64897774E-01)
  (-0.33786898E-01, 0.13236430E+00) ( 0.11661914E-01,-0.31951379E-01)
  (-0.61779213E-02, 0.13202577E-01) ( 0.12967891E-03, 0.28468714E-03)
  (-0.57086782E-03, 0.10727543E-02) (-0.86080422E-03, 0.16936997E-02)
  ( 0.19084082E-04,-0.31671296E-04) (-0.70672006E-04, 0.15702515E-03)
  ( 0.89911185E-04,-0.18029831E-03) (-0.20673506E-04, 0.37107019E-04)
  (-0.48605090E-05, 0.11667513E-04) ( 0.14052211E-05,-0.22262574E-05)
  ( 0.16287253E-05,-0.27048958E-05) (-0.48479745E-06, 0.64118183E-06)
  ( 0.44928626E-07,-0.61826441E-07) (-0.75517239E-07, 0.15364772E-06)
  ( 0.16335619E-06,-0.27534582E-06) (-0.68854960E-09, 0.81551922E-09)
  ( 0.17581597E-07,-0.27479973E-07) ( 0.62234593E-08,-0.12575967E-07)
  (-0.83678572E-08, 0.14874803E-07)
     ROW  2
  (-0.37342739E-01,-0.43654081E-01) (-0.46814688E+00, 0.63877711E+00)
  ( 0.18145558E-01, 0.34091160E-01) (-0.47667318E-01, 0.47701958E-01)
  ( 0.66360717E-02,-0.26376295E-01) (-0.21426568E-01, 0.31819260E-01)
  (-0.19968802E-02, 0.67024811E-03) ( 0.29562979E-02,-0.38853519E-02)
  (-0.48479296E-03, 0.44142277E-03) (-0.25929075E-03, 0.14968104E-03)
  ( 0.21482728E-04,-0.19731127E-04) ( 0.60724690E-04,-0.97284613E-04)
  (-0.11911939E-04, 0.35404218E-04) (-0.53471022E-05, 0.24214996E-05)
  ( 0.85324827E-05,-0.12042155E-04) ( 0.84456272E-06,-0.68744579E-06)
  ( 0.58175968E-06,-0.45650369E-06) (-0.59432159E-06, 0.67724518E-06)
  ( 0.36744879E-07,-0.28529258E-07) ( 0.59722238E-07,-0.82208377E-07)
  ( 0.20361689E-07, 0.10436615E-08) (-0.67888067E-09, 0.46359173E-09)
  ( 0.36502347E-08,-0.16010708E-08) (-0.54042275E-08, 0.73352098E-08)
  ( 0.21816444E-08,-0.39922842E-08)
     ROW  3
  ( 0.16062911E-01,-0.37435166E+00) ( 0.18145373E-01, 0.34091480E-01)
  (-0.21679424E+00, 0.27555571E+00) ( 0.25704421E-01,-0.41840416E-01)
  ( 0.30852402E-01,-0.83588868E-01) ( 0.59535979E-02, 0.17289401E-01)
  (-0.15943303E-02,-0.68704271E-02) (-0.87525128E-03,-0.63601123E-04)
  (-0.23377051E-03,-0.51179675E-03) (-0.25439436E-03,-0.86373631E-03)
  ( 0.86169267E-05, 0.13476646E-04) (-0.57000392E-04,-0.73530971E-04)
  ( 0.40326868E-04, 0.88811809E-04) (-0.11903245E-04,-0.16667871E-04)
  (-0.37244994E-05,-0.56925418E-05) ( 0.66131573E-06, 0.98475087E-06)
  ( 0.79273262E-06, 0.12164094E-05) (-0.16124024E-06,-0.27428463E-06)
  ( 0.16519390E-07, 0.28748830E-07) (-0.66220124E-07,-0.65913244E-07)
  ( 0.83188309E-07, 0.12324923E-06) (-0.22725883E-09,-0.43358129E-09)
  ( 0.96531957E-08, 0.12037124E-07) ( 0.45772090E-08, 0.57354202E-08)
  (-0.44055375E-08,-0.68451862E-08)
     ROW  4
  (-0.17370759E-01, 0.64897721E-01) (-0.47667331E-01, 0.47701930E-01)
  ( 0.25704434E-01,-0.41840413E-01) ( 0.42528674E-01, 0.13941605E-01)
  (-0.16552391E-01, 0.11464721E-01) ( 0.74646136E-02,-0.69158383E-04)
  ( 0.79171421E-03, 0.14372404E-02) (-0.13881166E-02,-0.37439979E-03)
  ( 0.32058926E-03, 0.16234861E-03) ( 0.63424360E-04, 0.17651201E-03)
  (-0.36928772E-04,-0.65255071E-05) (-0.48632136E-04, 0.38246427E-05)
  ( 0.27728247E-04,-0.12344780E-04) ( 0.75469201E-05, 0.38048178E-05)
  (-0.71699538E-05,-0.25388537E-06) (-0.13521766E-05,-0.32244683E-06)
  (-0.39095485E-06,-0.28515010E-06) ( 0.38420443E-06, 0.12432121E-06)
  (-0.52608749E-07,-0.11520544E-07) (-0.62570534E-07, 0.23160339E-08)
  ( 0.90213749E-08,-0.23463927E-07) ( 0.40120914E-09, 0.28493730E-09)
  (-0.64349078E-08,-0.25016208E-08) ( 0.57843863E-08,-0.20852105E-09)
  (-0.33025448E-08, 0.83753903E-09)
     ROW  5
  (-0.33786723E-01, 0.13236425E+00) ( 0.66361003E-02,-0.26376303E-01)
  ( 0.30852310E-01,-0.83588814E-01) (-0.16552368E-01, 0.11464739E-01)
  ( 0.14484137E-01, 0.28854193E-01) ( 0.26901272E-02,-0.71656412E-02)
  (-0.39877158E-03, 0.25293157E-02) (-0.70543100E-03, 0.15098351E-03)
  (-0.18342962E-03, 0.18242663E-03) ( 0.87728378E-04, 0.32268237E-03)
  ( 0.97657603E-05,-0.46504961E-05) ( 0.51366503E-05, 0.32626084E-04)
  (-0.35284040E-04,-0.36089355E-04) (-0.61511356E-07, 0.67235845E-05)
  ( 0.24906251E-05, 0.26616315E-05) ( 0.27597348E-06,-0.38148887E-06)
  (-0.68235797E-06,-0.49470233E-06) ( 0.26449434E-06, 0.10650293E-06)
  ( 0.15188043E-07,-0.95490620E-08) ( 0.49595779E-08, 0.29827904E-07)
  (-0.94966982E-07,-0.51835510E-07) (-0.28751365E-09, 0.95185728E-10)
  ( 0.56041047E-09,-0.49219635E-08) (-0.26453820E-08,-0.23828117E-08)
  ( 0.57227873E-08, 0.28543606E-08)
     ROW  6
  ( 0.11662020E-01,-0.31951379E-01) (-0.21426565E-01, 0.31819258E-01)
  ( 0.59536103E-02, 0.17289404E-01) ( 0.74646102E-02,-0.69210662E-04)
  ( 0.26901784E-02,-0.71656194E-02) ( 0.65786819E-02, 0.31328020E-02)
  ( 0.12185906E-02,-0.56507451E-03) ( 0.63416116E-03,-0.21233304E-03)
  ( 0.32782219E-03,-0.24754335E-04) (-0.46753131E-03,-0.75425195E-04)
  (-0.15435052E-04, 0.33548267E-06) ( 0.56512686E-04,-0.12380503E-04)
  (-0.60313078E-04, 0.94274805E-05) (-0.76978494E-05,-0.18673708E-05)
  (-0.93251514E-05,-0.11363087E-05) (-0.56232222E-06, 0.73072217E-07)
  (-0.26766994E-06, 0.58794280E-07) ( 0.99730931E-06, 0.47854838E-07)
  (-0.37944727E-07,-0.20831987E-09) (-0.22315976E-06,-0.13608660E-07)
  ( 0.26043508E-07, 0.18530112E-07) ( 0.60185972E-09, 0.63354327E-10)
  ( 0.85989678E-08, 0.80284391E-09) ( 0.15246221E-07, 0.94321698E-09)
  (-0.70012080E-08,-0.10620006E-08)
     ROW  7
  (-0.61778933E-02, 0.13202567E-01) (-0.19968772E-02, 0.67025225E-03)
  (-0.15943448E-02,-0.68704130E-02) ( 0.79171593E-03, 0.14372402E-02)
  (-0.39876699E-03, 0.25293175E-02) ( 0.12185839E-02,-0.56507879E-03)
  ( 0.41935841E-03, 0.27964792E-03) (-0.43236744E-03,-0.38217974E-05)
  (-0.88823924E-03, 0.22726911E-04) (-0.74812180E-03, 0.35291107E-04)
  ( 0.31519339E-04,-0.12599032E-05) (-0.36976104E-03, 0.26218424E-05)
  ( 0.12520865E-05,-0.40115492E-05) (-0.93054616E-04, 0.96141563E-06)
  ( 0.17621594E-04, 0.63071763E-06) (-0.75084221E-05,-0.15566446E-06)
  ( 0.13860210E-05,-0.21160148E-07) ( 0.17449903E-05, 0.45757694E-07)
  (-0.14914716E-06, 0.14018503E-08) ( 0.17249568E-06, 0.37969419E-07)
  (-0.11537836E-06,-0.15596061E-07) (-0.34930332E-08,-0.22006232E-09)
  (-0.88860688E-07,-0.24834245E-08) (-0.43817880E-09, 0.22886005E-09)
  (-0.62304173E-09,-0.68364778E-09)
     ROW  8
  ( 0.12968933E-03, 0.28468257E-03) ( 0.29562978E-02,-0.38853504E-02)
  (-0.87525557E-03,-0.63599153E-04) (-0.13881159E-02,-0.37439944E-03)
  (-0.70543339E-03, 0.15098167E-03) ( 0.63416062E-03,-0.21233571E-03)
  (-0.43236769E-03,-0.38218700E-05) (-0.13890859E-02, 0.30398643E-04)
  (-0.48595299E-04,-0.23977895E-05) ( 0.57066176E-03,-0.23709203E-05)
  ( 0.75407282E-06, 0.11808388E-06) ( 0.15033445E-03, 0.74329316E-06)
  (-0.43093377E-03, 0.10813458E-05) (-0.11555846E-05, 0.32004939E-07)
  (-0.80266776E-04,-0.14784301E-06) ( 0.24929739E-06, 0.85442693E-08)
  ( 0.14050207E-05,-0.21949473E-07) ( 0.29039140E-05, 0.67154251E-07)
  ( 0.41849491E-08, 0.50258390E-09) ( 0.34531672E-06,-0.93771979E-08)
  ( 0.15049472E-06, 0.39859966E-07) (-0.17077926E-10,-0.74623126E-11)
  (-0.46796321E-08,-0.28808968E-09) (-0.52360549E-07,-0.23312126E-08)
  ( 0.94420929E-08, 0.74848925E-09)
     ROW  9
  (-0.57086821E-03, 0.10727542E-02) (-0.48479353E-03, 0.44142224E-03)
  (-0.23377060E-03,-0.51179703E-03) ( 0.32058923E-03, 0.16234875E-03)
  (-0.18343038E-03, 0.18242640E-03) ( 0.32782177E-03,-0.24754465E-04)
  (-0.88823931E-03, 0.22726888E-04) (-0.48595308E-04,-0.23978214E-05)
  ( 0.12902122E-02, 0.55673889E-05) (-0.38221735E-04, 0.35785883E-05)
  ( 0.64099233E-03, 0.18806788E-05) ( 0.34725926E-03, 0.88317426E-06)
  ( 0.52841805E-05,-0.33629197E-06) (-0.21427816E-03,-0.29895542E-06)
  (-0.15516220E-05,-0.10649521E-06) ( 0.67982994E-04, 0.13004197E-07)
  (-0.63452770E-05,-0.14709329E-06) (-0.25158029E-06, 0.30315058E-08)
  (-0.46839052E-05,-0.52520307E-07) ( 0.59065478E-06, 0.15388772E-07)
  ( 0.21455495E-06, 0.47552506E-08) ( 0.11843544E-06,-0.18210427E-08)
  (-0.10376277E-06,-0.16899826E-07) ( 0.30338771E-07, 0.26919454E-08)
  ( 0.36315400E-09, 0.27410616E-09)
     ROW 10
  (-0.86079835E-03, 0.16936982E-02) (-0.25929042E-03, 0.14968168E-03)
  (-0.25439699E-03,-0.86373394E-03) ( 0.63424656E-04, 0.17651174E-03)
  ( 0.87729737E-04, 0.32268327E-03) (-0.46753222E-03,-0.75425830E-04)
  (-0.74812175E-03, 0.35291164E-04) ( 0.57066171E-03,-0.23709573E-05)
  (-0.38221720E-04, 0.35785930E-05) (-0.86391438E-03, 0.71505760E-05)
  ( 0.31809615E-05,-0.14117118E-06) ( 0.62767116E-04, 0.64879106E-06)
  ( 0.69926161E-03,-0.21031867E-05) ( 0.58145641E-04, 0.14696345E-06)
  (-0.36627817E-03, 0.68477074E-06) (-0.73949568E-06, 0.12874057E-07)
  ( 0.54080329E-04,-0.39944181E-07) (-0.37987257E-04,-0.25918580E-06)
  ( 0.26902058E-07, 0.90065523E-09) (-0.13015743E-05,-0.22525172E-07)
  ( 0.10025929E-05, 0.43516629E-07) (-0.35101592E-09,-0.16626600E-10)
  (-0.94815030E-07, 0.28832995E-08) (-0.16351041E-07,-0.21312243E-07)
  ( 0.10022869E-06, 0.17083811E-07)
     ROW 11
  ( 0.19082492E-04,-0.31671077E-04) ( 0.21482347E-04,-0.19730787E-04)
  ( 0.86178247E-05, 0.13479152E-04) (-0.36928865E-04,-0.65251674E-05)
  ( 0.97670935E-05,-0.46504711E-05) (-0.15435037E-04, 0.33548911E-06)
  ( 0.31519234E-04,-0.12598670E-05) ( 0.75407343E-06, 0.11807122E-06)
  ( 0.64099232E-03, 0.18806855E-05) ( 0.31809565E-05,-0.14116899E-06)
  ( 0.18074053E-02, 0.37084167E-05) (-0.61173634E-05, 0.22424636E-06)
  (-0.35164944E-07, 0.13972803E-07) (-0.11878712E-03,-0.39806267E-06)
  (-0.41488268E-06, 0.37312367E-08) (-0.98766747E-04,-0.20367672E-06)
  (-0.31756242E-06,-0.26322172E-07) ( 0.37345115E-08,-0.58760414E-09)
  (-0.40741484E-04,-0.84731596E-07) ( 0.15511505E-05, 0.35377192E-07)
  ( 0.17732817E-07, 0.68288696E-10) (-0.27696937E-05,-0.13346163E-07)
  ( 0.17584240E-06, 0.49321332E-08) ( 0.29078531E-07, 0.87259757E-09)
  (-0.29384320E-09, 0.18400153E-10)
     ROW 12
  (-0.70672390E-04, 0.15702531E-03) ( 0.60724593E-04,-0.97284660E-04)
  (-0.57000443E-04,-0.73531330E-04) (-0.48631988E-04, 0.38248943E-05)
  ( 0.51363923E-05, 0.32626070E-04) ( 0.56512741E-04,-0.12380527E-04)
  (-0.36976107E-03, 0.26218330E-05) ( 0.15033444E-03, 0.74328352E-06)
  ( 0.34725926E-03, 0.88317424E-06) ( 0.62767111E-04, 0.64878916E-06)
  (-0.61173635E-05, 0.22424624E-06) (-0.37518095E-03, 0.73734761E-06)
  (-0.11281401E-03,-0.29364162E-07) (-0.23743574E-03, 0.32353663E-08)
  (-0.34491125E-03, 0.29021208E-06) ( 0.28283663E-04,-0.24339149E-07)
  (-0.25113209E-03, 0.14164224E-06) ( 0.91313704E-05,-0.75913602E-07)
  ( 0.43102007E-06,-0.10168114E-07) (-0.47439065E-04, 0.70279080E-07)
  ( 0.11797699E-04, 0.12526547E-06) ( 0.38306017E-08, 0.29552943E-09)
  (-0.18219910E-05,-0.19927035E-07) ( 0.93850443E-06, 0.30418314E-07)
  ( 0.42019466E-06, 0.57879258E-08)
     ROW 13
  ( 0.89914745E-04,-0.18027672E-03) (-0.11913568E-04, 0.35403074E-04)
  ( 0.40335151E-04, 0.88810698E-04) ( 0.27729750E-04,-0.12345147E-04)
  (-0.35282682E-04,-0.36085209E-04) (-0.60312881E-04, 0.94264849E-05)
  ( 0.12517835E-05,-0.40117811E-05) (-0.43093379E-03, 0.10814223E-05)
  ( 0.52841683E-05,-0.33629205E-06) ( 0.69926158E-03,-0.21031829E-05)
  (-0.35164944E-07, 0.13972766E-07) (-0.11281402E-03,-0.29363523E-07)
  (-0.10056211E-02, 0.19259426E-05) (-0.23123816E-05, 0.57953316E-07)
  ( 0.28780158E-03,-0.73943474E-06) (-0.96685654E-07,-0.35564178E-08)
  ( 0.39206130E-04, 0.24754675E-07) (-0.28705591E-03, 0.52328280E-06)
  (-0.15078290E-08,-0.56172366E-10) (-0.33671759E-06, 0.91337650E-08)
  (-0.41788448E-04,-0.61178048E-07) (-0.21104375E-12,-0.59882174E-12)
  ( 0.22086872E-07, 0.52839059E-09) ( 0.93551490E-07,-0.21786240E-08)
  ( 0.13658681E-05, 0.43011501E-07)
     ROW 14
  (-0.20663113E-04, 0.37101959E-04) (-0.52962739E-05, 0.24148172E-05)
  (-0.11939220E-04,-0.16671789E-04) ( 0.75394497E-05, 0.37866837E-05)
  (-0.56165156E-07, 0.67318865E-05) (-0.76944629E-05,-0.18831102E-05)
  (-0.93054746E-04, 0.96075125E-06) (-0.11521091E-05, 0.28370847E-07)
  (-0.21427827E-03,-0.29913158E-06) ( 0.58145580E-04, 0.14683756E-06)
  (-0.11878711E-03,-0.39805571E-06) (-0.23743570E-03, 0.32778472E-08)
  (-0.23123905E-05, 0.57940933E-07) ( 0.13500947E-03, 0.29245258E-06)
  (-0.29890930E-04, 0.65616964E-07) ( 0.25882186E-03, 0.15761685E-06)
  ( 0.20793709E-03, 0.25829464E-07) ( 0.97644980E-06,-0.22483839E-07)
  ( 0.12785703E-04,-0.36834137E-07) (-0.17478400E-03,-0.34585586E-07)
  ( 0.15796342E-05,-0.29622233E-07) (-0.14925912E-06, 0.31964806E-08)
  ( 0.38425574E-04,-0.34323928E-07) (-0.52237543E-05,-0.59963882E-07)
  (-0.99819887E-07, 0.18949520E-08)
     ROW 15
  (-0.48604677E-05, 0.11667394E-04) ( 0.85326324E-05,-0.12042052E-04)
  (-0.37246669E-05,-0.56927337E-05) (-0.71700332E-05,-0.25385799E-06)
  ( 0.24906592E-05, 0.26614813E-05) (-0.93252098E-05,-0.11362497E-05)
  ( 0.17621596E-04, 0.63071361E-06) (-0.80266773E-04,-0.14783910E-06)
  (-0.15516225E-05,-0.10649457E-06) (-0.36627817E-03, 0.68477044E-06)
  (-0.41488268E-06, 0.37312389E-08) (-0.34491125E-03, 0.29021201E-06)
  ( 0.28780158E-03,-0.73943474E-06) (-0.29890935E-04, 0.65609446E-07)
  (-0.63383478E-03, 0.90740861E-06) ( 0.76825668E-06,-0.19573177E-07)
  (-0.24526284E-04, 0.11894740E-06) ( 0.31590752E-03,-0.50369370E-06)
  (-0.10521445E-07,-0.75361740E-09) ( 0.20461377E-04, 0.15572624E-07)
  (-0.24364841E-03, 0.29606820E-06) ( 0.14061343E-09, 0.77347998E-11)
  (-0.30273434E-07, 0.90673445E-09) ( 0.28564791E-04,-0.69932871E-08)
  (-0.21934301E-04,-0.81799659E-07)
     ROW 16
  ( 0.14052647E-05,-0.22230582E-05) ( 0.83364157E-06,-0.62830823E-06)
  ( 0.67298668E-06, 0.98183125E-06) (-0.13449748E-05,-0.31660475E-06)
  ( 0.27320498E-06,-0.38219186E-06) (-0.56049917E-06, 0.79497454E-07)
  (-0.75082551E-05,-0.15536835E-06) ( 0.24885775E-06, 0.94632738E-08)
  ( 0.67983076E-04, 0.13071392E-07) (-0.73944659E-06, 0.12910281E-07)
  (-0.98766750E-04,-0.20367896E-06) ( 0.28283649E-04,-0.24365536E-07)
  (-0.96681179E-07,-0.35525628E-08) ( 0.25882186E-03, 0.15761730E-06)
  ( 0.76825845E-06,-0.19580214E-07) ( 0.46914138E-03, 0.37421464E-06)
  (-0.10737392E-04, 0.50982112E-07) ( 0.17715012E-07, 0.12476199E-08)
  (-0.21459764E-03,-0.24292939E-06) (-0.11260786E-03,-0.97617657E-07)
  (-0.19626249E-06, 0.41864480E-08) ( 0.49001706E-05,-0.23908646E-07)
  (-0.11407792E-03,-0.77290932E-07) ( 0.39991334E-06,-0.12354482E-07)
  (-0.97798877E-09,-0.16224852E-09)
     ROW 17
  ( 0.16298841E-05,-0.27018049E-05) ( 0.58593128E-06,-0.41319735E-06)
  ( 0.80153607E-06, 0.12125084E-05) (-0.38432835E-06,-0.28072115E-06)
  (-0.68446046E-06,-0.49552970E-06) (-0.26495572E-06, 0.61291351E-07)
  ( 0.13862075E-05,-0.20955642E-07) ( 0.14039175E-05,-0.21701682E-07)
  (-0.63451982E-05,-0.14705681E-06) ( 0.54080376E-04,-0.39919143E-07)
  (-0.31756620E-06,-0.26323469E-07) (-0.25113211E-03, 0.14162758E-06)
  ( 0.39206134E-04, 0.24756588E-07) ( 0.20793709E-03, 0.25829745E-07)
  (-0.24526288E-04, 0.11894331E-06) (-0.10737392E-04, 0.50982112E-07)
  (-0.36780216E-03, 0.31747171E-06) (-0.43345644E-04,-0.11093784E-07)
  (-0.24723946E-06, 0.57713188E-08) (-0.65031503E-04,-0.11549244E-07)
  (-0.17640267E-03, 0.14702927E-06) (-0.13559405E-08,-0.13738402E-09)
  ( 0.13337050E-04, 0.83658025E-09) (-0.18225178E-03, 0.11678538E-06)
  ( 0.56527267E-05,-0.21220957E-07)
     ROW 18
  (-0.47520698E-06, 0.64052655E-06) (-0.46289289E-06, 0.35992454E-06)
  (-0.17474706E-06,-0.28378197E-06) ( 0.36551472E-06, 0.11106593E-06)
  ( 0.26812066E-06, 0.11376886E-06) ( 0.98585882E-06, 0.40430940E-07)
  ( 0.17433725E-05, 0.46542137E-07) ( 0.29040609E-05, 0.66338003E-07)
  (-0.25186739E-06, 0.29235257E-08) (-0.37987521E-04,-0.25915048E-06)
  ( 0.37488177E-08,-0.58214344E-09) ( 0.91314319E-05,-0.75894756E-07)
  (-0.28705593E-03, 0.52327043E-06) ( 0.97644665E-06,-0.22483668E-07)
  ( 0.31590753E-03,-0.50369167E-06) ( 0.17715527E-07, 0.12477772E-08)
  (-0.43345644E-04,-0.11093825E-07) (-0.63132695E-03, 0.64943606E-06)
  ( 0.38951885E-09, 0.21026090E-10) (-0.28521540E-06, 0.84263707E-08)
  ( 0.15532620E-03,-0.25954976E-06) (-0.13231017E-12, 0.10415200E-12)
  (-0.19050439E-07,-0.67993186E-09) ( 0.14998763E-04, 0.19439674E-08)
  (-0.20221464E-03, 0.23291109E-06)
     ROW 19
  ( 0.37558037E-07,-0.63257313E-07) ( 0.28832504E-07,-0.12568764E-07)
  ( 0.18688358E-07, 0.38078865E-07) (-0.50517468E-07,-0.10842951E-07)
  ( 0.14589229E-07,-0.12384272E-07) (-0.38072617E-07, 0.23220370E-08)
  (-0.14902481E-06, 0.13714321E-08) ( 0.40654804E-08, 0.36430350E-09)
  (-0.46839607E-05,-0.52425284E-07) ( 0.27038457E-07, 0.64493934E-09)
  (-0.40741484E-04,-0.84734630E-07) ( 0.43095586E-06,-0.10141426E-07)
  (-0.15187525E-08,-0.18858822E-10) ( 0.12785697E-04,-0.36829476E-07)
  (-0.10525417E-07,-0.76061225E-09) (-0.21459764E-03,-0.24292962E-06)
  (-0.24723912E-06, 0.57710336E-08) ( 0.38955743E-09, 0.21049420E-10)
  ( 0.67205553E-03, 0.52256999E-06) (-0.36250679E-05, 0.25228493E-07)
  ( 0.16414144E-08, 0.17604255E-09) ( 0.14170367E-03, 0.20557954E-06)
  ( 0.54038830E-04, 0.65802264E-07) ( 0.46521122E-07,-0.95064078E-09)
  (-0.54884574E-10,-0.32758145E-11)
     ROW 20
  (-0.63804865E-07, 0.16851399E-06) ( 0.27605605E-07,-0.56958300E-07)
  (-0.62549776E-07,-0.10042501E-06) (-0.55829373E-07, 0.57884702E-08)
  (-0.33186378E-08, 0.43988807E-07) (-0.21622745E-06,-0.18677135E-07)
  ( 0.17132892E-06, 0.40517340E-07) ( 0.34538809E-06,-0.10125950E-07)
  ( 0.59077033E-06, 0.15377031E-07) (-0.13017784E-05,-0.21215531E-07)
  ( 0.15511387E-05, 0.35387312E-07) (-0.47438897E-04, 0.70191916E-07)
  (-0.33677599E-06, 0.91874501E-08) (-0.17478401E-03,-0.34546652E-07)
  ( 0.20461394E-04, 0.15565919E-07) (-0.11260787E-03,-0.97616837E-07)
  (-0.65031505E-04,-0.11548340E-07) (-0.28521549E-06, 0.84261961E-08)
  (-0.36250679E-05, 0.25228493E-07) (-0.10464083E-03, 0.86682615E-07)
  (-0.15554912E-04, 0.10409951E-07) ( 0.58316107E-07,-0.11049173E-08)
  ( 0.10013757E-03, 0.30526226E-08) ( 0.12376249E-03,-0.37391274E-07)
  ( 0.22661271E-06,-0.59316133E-08)
     ROW 21
  ( 0.12980879E-06,-0.29059434E-06) ( 0.27014190E-07, 0.17798910E-07)
  ( 0.89166127E-07, 0.18355929E-06) ( 0.12922041E-07,-0.33665914E-07)
  (-0.80683579E-07,-0.89410138E-07) ( 0.22968158E-07, 0.24024718E-07)
  (-0.11328599E-06,-0.19567316E-07) ( 0.15043799E-06, 0.39909445E-07)
  ( 0.21482385E-06, 0.41083615E-08) ( 0.10026876E-05, 0.43410119E-07)
  ( 0.17712477E-07, 0.12317668E-09) ( 0.11797583E-04, 0.12535458E-06)
  (-0.41788305E-04,-0.61267095E-07) ( 0.15796461E-05,-0.29643834E-07)
  (-0.24364843E-03, 0.29607713E-06) (-0.19625993E-06, 0.41853050E-08)
  (-0.17640266E-03, 0.14702814E-06) ( 0.15532620E-03,-0.25954962E-06)
  ( 0.16414144E-08, 0.17604255E-09) (-0.15554912E-04, 0.10409951E-07)
  (-0.45008900E-03, 0.34834154E-06) (-0.30520049E-10,-0.18252206E-11)
  ( 0.16214109E-06,-0.36619373E-08) (-0.31627903E-04, 0.46083682E-07)
  ( 0.16739473E-03,-0.17394525E-06)
     ROW 22
  (-0.60079060E-09, 0.83389719E-09) (-0.52078679E-09, 0.18880051E-09)
  (-0.24757347E-09,-0.53483283E-09) ( 0.35114496E-09, 0.25950339E-09)
  (-0.28425427E-09, 0.13750238E-09) ( 0.61341466E-09, 0.98841395E-12)
  (-0.32596120E-08,-0.13403097E-09) (-0.14076256E-10,-0.62546696E-11)
  ( 0.11843613E-06,-0.18225349E-08) (-0.33923137E-09,-0.21000883E-10)
  (-0.27696937E-05,-0.13346119E-07) ( 0.38314812E-08, 0.29511159E-09)
  (-0.33912510E-13,-0.10417037E-11) (-0.14925905E-06, 0.31964154E-08)
  ( 0.14066255E-09, 0.77091021E-11) ( 0.49001706E-05,-0.23908643E-07)
  (-0.13559445E-08,-0.13737991E-09) (-0.13285898E-12, 0.10386121E-12)
  ( 0.14170367E-03, 0.20557954E-06) ( 0.58316107E-07,-0.11049173E-08)
  (-0.30520050E-10,-0.18252206E-11) ( 0.78574136E-03, 0.63750261E-06)
  (-0.10081422E-05, 0.62121207E-08) ( 0.18055516E-09, 0.24471363E-10)
  ( 0.77805131E-13,-0.74162848E-14)
     ROW 23
  ( 0.14615224E-07,-0.28474599E-07) ( 0.39491734E-08, 0.57469837E-09)
  ( 0.98108450E-08, 0.17240670E-07) (-0.48983040E-08,-0.32682741E-08)
  ( 0.91649869E-09,-0.64673193E-08) ( 0.85440437E-08, 0.10214062E-08)
  (-0.88759006E-07,-0.26197222E-08) (-0.46981620E-08,-0.27347936E-09)
  (-0.10390757E-06,-0.16827334E-07) (-0.94853439E-07, 0.29211226E-08)
  ( 0.17584398E-06, 0.49301396E-08) (-0.18220074E-05,-0.19916613E-07)
  ( 0.22095710E-07, 0.52124194E-09) ( 0.38425570E-04,-0.34322017E-07)
  (-0.30274105E-07, 0.90730158E-09) (-0.11407792E-03,-0.77291041E-07)
  ( 0.13337051E-04, 0.83646214E-09) (-0.19050425E-07,-0.67991377E-09)
  ( 0.54038830E-04, 0.65802264E-07) ( 0.10013757E-03, 0.30526226E-08)
  ( 0.16214109E-06,-0.36619373E-08) (-0.10081422E-05, 0.62121207E-08)
  ( 0.93079852E-04, 0.36341875E-07) (-0.75945590E-05, 0.11300186E-07)
  ( 0.59844735E-08, 0.27330581E-09)
     ROW 24
  ( 0.53053666E-08,-0.13930404E-07) (-0.24827256E-08, 0.49197842E-08)
  ( 0.42756653E-08, 0.86099142E-08) ( 0.51173078E-08,-0.99889386E-10)
  (-0.16833597E-08,-0.39682763E-08) ( 0.14230489E-07, 0.24464175E-08)
  (-0.34328090E-09,-0.18517093E-11) (-0.52343379E-07,-0.22820178E-08)
  ( 0.30316372E-07, 0.27055425E-08) (-0.16357939E-07,-0.21306057E-07)
  ( 0.29079393E-07, 0.87197001E-09) ( 0.93847712E-06, 0.30415542E-07)
  ( 0.93577640E-07,-0.21645823E-08) (-0.52237572E-05,-0.59962956E-07)
  ( 0.28564790E-04,-0.69929260E-08) ( 0.39991346E-06,-0.12354541E-07)
  (-0.18225178E-03, 0.11678531E-06) ( 0.14998763E-04, 0.19439821E-08)
  ( 0.46521122E-07,-0.95064078E-09) ( 0.12376249E-03,-0.37391274E-07)
  (-0.31627903E-04, 0.46083682E-07) ( 0.18055516E-09, 0.24471363E-10)
  (-0.75945590E-05, 0.11300186E-07) (-0.30237993E-03, 0.14248419E-06)
  (-0.19758558E-04, 0.45310553E-08)
     ROW 25
  (-0.68768552E-08, 0.16017572E-07) ( 0.39157749E-09,-0.32348628E-08)
  (-0.44788666E-08,-0.10139051E-07) (-0.28597295E-08, 0.10548255E-08)
  ( 0.44710155E-08, 0.55540041E-08) (-0.62826092E-08,-0.20750554E-08)
  (-0.74356300E-09,-0.42779074E-09) ( 0.97352443E-08, 0.11362372E-08)
  ( 0.35734535E-09, 0.29709168E-09) ( 0.10041050E-06, 0.17249620E-07)
  (-0.29419246E-09, 0.18583323E-10) ( 0.42019244E-06, 0.57888361E-08)
  ( 0.13658592E-05, 0.43016679E-07) (-0.99814890E-07, 0.18960581E-08)
  (-0.21934300E-04,-0.81800099E-07) (-0.97814116E-09,-0.16219133E-09)
  ( 0.56527266E-05,-0.21220891E-07) (-0.20221464E-03, 0.23291108E-06)
  (-0.54884574E-10,-0.32758144E-11) ( 0.22661271E-06,-0.59316133E-08)
  ( 0.16739473E-03,-0.17394525E-06) ( 0.77807574E-13,-0.74162805E-14)
  ( 0.59844735E-08, 0.27330581E-09) (-0.19758558E-04, 0.45310553E-08)
  (-0.43077597E-03, 0.25538543E-06)
 eigenphases
 -0.1309158E+01 -0.9214176E+00 -0.2170015E+00 -0.2447006E-02 -0.1449573E-02
 -0.1041775E-02 -0.8626949E-03 -0.6000911E-03 -0.5519161E-03 -0.3785444E-03
 -0.3237601E-03 -0.2067919E-03 -0.1401894E-03 -0.2560835E-04  0.8264210E-04
  0.2093910E-03  0.4148479E-03  0.5372015E-03  0.7460093E-03  0.9389394E-03
  0.1561705E-02  0.2474796E-02  0.5683804E-02  0.1967568E-01  0.5622456E-01
 eigenphase sum-0.236706E+01  scattering length=  -1.64742
 eps+pi 0.774537E+00  eps+2*pi 0.391613E+01

MaxIter =  10 c.s. =     16.13271504 angs^2  rmsk=     0.00000000
Time Now =      1569.0508  Delta time =       668.7959 End ScatStab
Time Now =      1569.0556  Delta time =         0.0048 Finalize