----------------------------------------------------------------------
ePolyScat Version E2
----------------------------------------------------------------------

Authors: R. R. Lucchese, N. Sanna, A. P. P. Natalense, and F. A. Gianturco
http://www.chem.tamu.edu/rgroup/lucchese/ePolyScat.E2.manual/manual.html
Please cite the following two papers when reporting results obtained with  this program
F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 100, 6464 (1994).
A. P. P. Natalense and R. R. Lucchese, J. Chem. Phys. 111, 5344 (1999).

----------------------------------------------------------------------

Starting at 2009-03-13  11:55:16.790 (GMT -0500)
Using    16 processors

----------------------------------------------------------------------


+ Start of Input Records
#
# input file for test22
#
# C2H6 staggered conformation, electron scattering
#
 LMax   25     # maximum l to be used for wave functions
 EMax  60.0    # EMax, maximum asymptotic energy in eV
 EngForm       # Energy formulas
   0 0         # charge, formula type
  VCorr 'PZ'
 ScatEng 0.1 30.   # list of scattering energies
 FegeEng 9.5    # Energy correction used in the fege potential
 ScatContSym 'EU'  # Scattering symmetry
 LMaxK   10      # Maximum l in the K matirx

Convert '/scratch/rrl581a/ePolyScat.E2/tests/test22.g03' 'g03'
GetBlms
ExpOrb
GetPot
Scat
+ End of input reached
+ Data Record LMax - 25
+ Data Record EMax - 60.0
+ Data Record EngForm - 0 0
+ Data Record VCorr - 'PZ'
+ Data Record ScatEng - 0.1 30.
+ Data Record FegeEng - 9.5
+ Data Record ScatContSym - 'EU'
+ Data Record LMaxK - 10

+ Command Convert
+ '/scratch/rrl581a/ePolyScat.E2/tests/test22.g03' 'g03'

----------------------------------------------------------------------
g03cnv - read input from G03 output
----------------------------------------------------------------------

Expansion center is (in Angstroms) -
     0.0000000000   0.0000000000   0.0000000000
CardFlag =    T
Normal Mode flag =    F
Selecting orbitals
from     1  to     9  number already selected     0
Number of orbitals selected is     9
Highest orbital read in is =    9
Time Now =         0.0542  Delta time =         0.0542 End g03cnv

Atoms found    8  Coordinates in Angstroms
Z =  6 ZS =  6 r =   0.0000000000   0.0000000000   0.7680000000
Z =  6 ZS =  6 r =   0.0000000000   0.0000000000  -0.7680000000
Z =  1 ZS =  1 r =   0.0000000000   1.0320820000   1.1683180000
Z =  1 ZS =  1 r =  -0.8938100000  -0.5160410000   1.1683180000
Z =  1 ZS =  1 r =   0.8938100000  -0.5160410000   1.1683180000
Z =  1 ZS =  1 r =   0.0000000000  -1.0320820000  -1.1683180000
Z =  1 ZS =  1 r =  -0.8938100000   0.5160410000  -1.1683180000
Z =  1 ZS =  1 r =   0.8938100000   0.5160410000  -1.1683180000
Maximum distance from expansion center is    1.5588975524

+ Command GetBlms
+

----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------

Found point group  D3d
Reduce angular grid using nthd =  2  nphid =  1
Found point group for abelian subgroup C2h
Time Now =         0.0570  Delta time =         0.0028 End GetPGroup
List of unique axes
  N  Vector                      Z   R
  1  0.00000  0.00000  1.00000   6  1.45131   6  1.45131
  2  0.00000  0.66206  0.74945   1  2.94589   1  2.94589
  3 -0.57336 -0.33103  0.74945   1  2.94589   1  2.94589
  4  0.57336 -0.33103  0.74945   1  2.94589   1  2.94589
List of corresponding x axes
  N  Vector
  1  1.00000 -0.00000 -0.00000
  2  1.00000 -0.00000 -0.00000
  3  0.81930 -0.23166  0.52448
  4  0.81930  0.23166 -0.52448
Computed default value of LMaxA =   14
Determineing angular grid in GetAxMax  LMax =   25  LMaxA =   14  LMaxAb =   50
MMax =    3  MMaxAbFlag =    1
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14   3   3   3   3   3
   3   3   3   3   3   3
For axis     2  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3   3   3   3
   3   3   3   2   2   2
For axis     3  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3   3   3   3
   3   3   3   2   2   2
For axis     4  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3   3   3   3
   3   3   3   2   2   2
On the double L grid used for products
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19
  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39
  40  41  42  43  44  45  46  47  48  49  50
For axis     2  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
For axis     3  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
For axis     4  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is D3d
LMax = =   25
 The dimension of each irreducable representation is
    A1G   (  1)    A2G   (  1)    EG    (  2)    A1U   (  1)    A2U   (  1)
    EU    (  2)
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     2     3     6
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A1G       1         1         53       1  1  1
 A2G       1         2         35       1 -1 -1
 EG        1         3         83       1 -1 -1
 EG        2         4         83       1  1  1
 A1U       1         5         36      -1 -1  1
 A2U       1         6         55      -1  1 -1
 EU        1         7         85      -1 -1  1
 EU        2         8         85      -1  1 -1
Time Now =         1.9789  Delta time =         1.9219 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
A1G   1    0(   1)    1(   1)    2(   2)    3(   2)    4(   4)    5(   4)    6(   7)    7(   7)    8(  10)    9(  10)
          10(  14)   11(  14)   12(  19)   13(  19)   14(  24)
A2G   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   1)    6(   3)    7(   3)    8(   5)    9(   5)
          10(   8)   11(   8)   12(  12)   13(  12)   14(  16)
EG    1    0(   0)    1(   0)    2(   2)    3(   2)    4(   5)    5(   5)    6(   9)    7(   9)    8(  15)    9(  15)
          10(  22)   11(  22)   12(  30)   13(  30)   14(  40)
EG    2    0(   0)    1(   0)    2(   2)    3(   2)    4(   5)    5(   5)    6(   9)    7(   9)    8(  15)    9(  15)
          10(  22)   11(  22)   12(  30)   13(  30)   14(  40)
A1U   1    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   2)    6(   2)    7(   4)    8(   4)    9(   7)
          10(   7)   11(  10)   12(  10)   13(  14)   14(  14)
A2U   1    0(   0)    1(   1)    2(   1)    3(   3)    4(   3)    5(   5)    6(   5)    7(   8)    8(   8)    9(  12)
          10(  12)   11(  16)   12(  16)   13(  21)   14(  21)
EU    1    0(   0)    1(   1)    2(   1)    3(   3)    4(   3)    5(   7)    6(   7)    7(  12)    8(  12)    9(  18)
          10(  18)   11(  26)   12(  26)   13(  35)   14(  35)
EU    2    0(   0)    1(   1)    2(   1)    3(   3)    4(   3)    5(   7)    6(   7)    7(  12)    8(  12)    9(  18)
          10(  18)   11(  26)   12(  26)   13(  35)   14(  35)

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is C2h
LMax = =   50
 The dimension of each irreducable representation is
    AG    (  1)    BG    (  1)    AU    (  1)    BU    (  1)
Abelian axes
    1       0.000000       1.000000       0.000000
    2       0.000000       0.000000       1.000000
    3       1.000000       0.000000       0.000000
Symmetry operation directions
  1       0.000000       0.000000       1.000000 ang =  0  1 type = 0 axis = 3
  2       0.000000       0.000000       1.000000 ang =  1  2 type = 3 axis = 3
  3       1.000000       0.000000       0.000000 ang =  0  1 type = 1 axis = 3
  4      -1.000000      -0.000000      -0.000000 ang =  1  2 type = 2 axis = 3
irep =    1  sym =AG    1  eigs =   1   1   1   1
irep =    2  sym =BG    1  eigs =   1   1  -1  -1
irep =    3  sym =AU    1  eigs =   1  -1  -1   1
irep =    4  sym =BU    1  eigs =   1  -1   1  -1
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     2     3     4
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 AG        1         1        676       1  1  1
 BG        1         2        650       1 -1 -1
 AU        1         3        625      -1 -1  1
 BU        1         4        650      -1  1 -1
Time Now =         4.1230  Delta time =         2.1441 End SymGen

+ Command ExpOrb
+
In GetRMax, RMaxEps =  0.10000000E-05  RMax =    7.2069836465 Angs

----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------

Maximum R in the grid (RMax) =     7.20698 Angs
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) =   10.0
In regions controlled by the wave length (HFacWave) =   10.0
Factor used to control the minimum exponent at each center (MinExpFac) =  300.0
Maximum asymptotic kinetic energy (EMAx) =  60.00000 eV
Maximum step size (MaxStep) =   7.20698 Angs
Factor to increase grid by (GridFac) =     1

    1  Center at =     0.00000 Angs  Alpha Max = 0.10000E+01
    2  Center at =     0.76800 Angs  Alpha Max = 0.10800E+05
    3  Center at =     1.55890 Angs  Alpha Max = 0.30000E+03

Generated Grid

  irg  nin  ntot      step Angs     R end Angs
    1    8     8    0.26867E-02     0.02149
    2    8    16    0.37255E-02     0.05130
    3    8    24    0.59728E-02     0.09908
    4    8    32    0.79967E-02     0.16305
    5    8    40    0.93321E-02     0.23771
    6    8    48    0.95358E-02     0.31400
    7    8    56    0.87995E-02     0.38439
    8    8    64    0.78436E-02     0.44714
    9    8    72    0.68236E-02     0.50173
   10    8    80    0.63576E-02     0.55259
   11    8    88    0.66641E-02     0.60590
   12    8    96    0.73071E-02     0.66436
   13    8   104    0.47203E-02     0.70212
   14    8   112    0.30004E-02     0.72613
   15    8   120    0.19072E-02     0.74138
   16    8   128    0.12123E-02     0.75108
   17    8   136    0.77538E-03     0.75728
   18    8   144    0.58340E-03     0.76195
   19    8   152    0.51623E-03     0.76608
   20    8   160    0.23984E-03     0.76800
   21    8   168    0.50920E-03     0.77207
   22    8   176    0.54286E-03     0.77642
   23    8   184    0.66917E-03     0.78177
   24    8   192    0.10153E-02     0.78989
   25    8   200    0.16142E-02     0.80281
   26    8   208    0.25663E-02     0.82334
   27    8   216    0.40801E-02     0.85598
   28    8   224    0.64868E-02     0.90787
   29    8   232    0.10313E-01     0.99038
   30    8   240    0.11944E-01     1.08593
   31    8   248    0.13096E-01     1.19069
   32    8   256    0.14360E-01     1.30557
   33    8   264    0.11537E-01     1.39786
   34    8   272    0.73343E-02     1.45654
   35    8   280    0.46865E-02     1.49403
   36    8   288    0.35128E-02     1.52213
   37    8   296    0.31008E-02     1.54694
   38    8   304    0.14948E-02     1.55890
   39    8   312    0.30552E-02     1.58334
   40    8   320    0.32571E-02     1.60940
   41    8   328    0.40150E-02     1.64152
   42    8   336    0.60918E-02     1.69025
   43    8   344    0.96851E-02     1.76773
   44    8   352    0.15398E-01     1.89091
   45    8   360    0.22804E-01     2.07335
   46    8   368    0.25004E-01     2.27338
   47    8   376    0.27416E-01     2.49271
   48    8   384    0.34257E-01     2.76677
   49    8   392    0.44585E-01     3.12345
   50    8   400    0.47865E-01     3.50637
   51    8   408    0.50675E-01     3.91177
   52    8   416    0.53100E-01     4.33657
   53    8   424    0.55205E-01     4.77821
   54    8   432    0.57043E-01     5.23455
   55    8   440    0.58655E-01     5.70380
   56    8   448    0.60078E-01     6.18442
   57    8   456    0.61338E-01     6.67512
   58    8   464    0.62460E-01     7.17480
   59    8   472    0.40234E-02     7.20698
Time Now =         4.1717  Delta time =         0.0488 End GenGrid

----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------

Maximum scattering l (lmax) =   25
Maximum scattering m (mmaxs) =   25
Maximum numerical integration l (lmaxi) =   50
Maximum numerical integration m (mmaxi) =   50
Maximum l to include in the asymptotic region (lmasym) =   14
Parameter used to determine the cutoff points (PCutRd) =  0.10000000E-07 au
Maximum E used to determine grid (in eV) =       60.00000
Print flag (iprnfg) =    0
lmasymtyts =   14
 Actual value of lmasym found =     14
Number of regions of the same l expansion (NAngReg) =   11
Angular regions
    1 L =    2  from (    1)         0.00269  to (    7)         0.01881
    2 L =    4  from (    8)         0.02149  to (   15)         0.04757
    3 L =    6  from (   16)         0.05130  to (   23)         0.09311
    4 L =    8  from (   24)         0.09908  to (   31)         0.15506
    5 L =   10  from (   32)         0.16305  to (   39)         0.22838
    6 L =   13  from (   40)         0.23771  to (   47)         0.30446
    7 L =   14  from (   48)         0.31400  to (   55)         0.37559
    8 L =   22  from (   56)         0.38439  to (   71)         0.49491
    9 L =   25  from (   72)         0.50173  to (  360)         2.07335
   10 L =   22  from (  361)         2.09835  to (  384)         2.76677
   11 L =   14  from (  385)         2.81135  to (  472)         7.20698
Angular regions for computing spherical harmonics
    1 lval =   14
    2 lval =   25
Last grid points by processor WorkExp =     1.500
Proc id =   -1  Last grid point =       1
Proc id =    0  Last grid point =      72
Proc id =    1  Last grid point =      96
Proc id =    2  Last grid point =     120
Proc id =    3  Last grid point =     144
Proc id =    4  Last grid point =     168
Proc id =    5  Last grid point =     192
Proc id =    6  Last grid point =     216
Proc id =    7  Last grid point =     232
Proc id =    8  Last grid point =     256
Proc id =    9  Last grid point =     280
Proc id =   10  Last grid point =     304
Proc id =   11  Last grid point =     328
Proc id =   12  Last grid point =     352
Proc id =   13  Last grid point =     376
Proc id =   14  Last grid point =     424
Proc id =   15  Last grid point =     472
Time Now =         4.5440  Delta time =         0.3723 End AngGCt

----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------


 R of maximum density
     1  A1G   1 at max irg =   21  r =   0.77207
     2  A2U   1 at max irg =   21  r =   0.77207
     3  A1G   1 at max irg =   22  r =   0.77642
     4  A2U   1 at max irg =   32  r =   1.30557
     5  EU    1 at max irg =   33  r =   1.39786
     6  EU    2 at max irg =   33  r =   1.39786
     7  A1G   1 at max irg =   10  r =   0.55259
     8  EG    1 at max irg =   36  r =   1.52213
     9  EG    2 at max irg =   36  r =   1.52213

Rotation coefficients for orbital     1  grp =    1 A1G   1
     1  1.0000000000

Rotation coefficients for orbital     2  grp =    2 A2U   1
     2  1.0000000000

Rotation coefficients for orbital     3  grp =    3 A1G   1
     3  1.0000000000

Rotation coefficients for orbital     4  grp =    4 A2U   1
     4  1.0000000000

Rotation coefficients for orbital     5  grp =    5 EU    1
     5  1.0000000000    6 -0.0000000000

Rotation coefficients for orbital     6  grp =    5 EU    2
     5  0.0000000000    6  1.0000000000

Rotation coefficients for orbital     7  grp =    6 A1G   1
     7  1.0000000000

Rotation coefficients for orbital     8  grp =    7 EG    1
     8  1.0000000000    9 -0.0000000000

Rotation coefficients for orbital     9  grp =    7 EG    2
     8  0.0000000000    9  1.0000000000
Number of orbital groups and degeneracis are         7
  1  1  1  1  2  1  2
Number of orbital groups and number of electrons when fully occupied
         7
  2  2  2  2  4  2  4
Time Now =         5.1748  Delta time =         0.6308 End RotOrb

----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------

 First orbital group to expand (mofr) =    1
 Last orbital group to expand (moto) =    7
Orbital     1 of  A1G   1 symmetry normalization integral =  0.99687018
Orbital     2 of  A2U   1 symmetry normalization integral =  0.99734507
Orbital     3 of  A1G   1 symmetry normalization integral =  0.99985464
Orbital     4 of  A2U   1 symmetry normalization integral =  0.99990155
Orbital     5 of  EU    1 symmetry normalization integral =  0.99998727
Orbital     6 of  A1G   1 symmetry normalization integral =  0.99999127
Orbital     7 of  EG    1 symmetry normalization integral =  0.99997926
Time Now =         8.2890  Delta time =         3.1142 End ExpOrb

+ Command GetPot
+

----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------

Total density =     18.00000000
Time Now =         8.3201  Delta time =         0.0311 End Den

----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------

 vasymp =  0.18000000E+02 facnorm =  0.10000000E+01
Time Now =         8.5515  Delta time =         0.2314 Electronic part
Time Now =         8.8133  Delta time =         0.2618 End StPot

----------------------------------------------------------------------
vcppol - VCP polarization potential program
----------------------------------------------------------------------

Time Now =         9.0113  Delta time =         0.1980 End VcpPol

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.95000000E+01  eV
 Do E =  0.10000000E+00 eV (  0.36749326E-02 AU)
Time Now =         9.2225  Delta time =         0.2112 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =EU    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    59
Number of partial waves (np) =    85
Number of asymptotic solutions on the right (NAsymR) =    18
Number of asymptotic solutions on the left (NAsymL) =    18
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =    18
Maximum in the asymptotic region (lpasym) =   14
Number of partial waves in the asymptotic region (npasym) =   35
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  225
Found polarization potential
Maximum l used in usual function (lmax) =   25
Maximum m used in usual function (LMax) =   25
Maxamum l used in expanding static potential (lpotct) =   50
Maximum l used in exapnding the exchange potential (lmaxab) =   50
Higest l included in the expansion of the wave function (lnp) =   25
Higest l included in the K matrix (lna) =    9
Highest l used at large r (lpasym) =   14
Higest l used in the asymptotic potential (lpzb) =   28
Maximum L used in the homogeneous solution (LMaxHomo) =   14
Number of partial waves in the homogeneous solution (npHomo) =   35
Time Now =         9.2587  Delta time =         0.0362 Energy independent setup

Compute solution for E =    0.1000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.27498856E-14
 i =  2  lval =   3  stpote = -0.25107462E-03
 i =  3  lval =   3  stpote = -0.14497033E-03
 i =  4  lval =   3  stpote = -0.43732773E-17
For potential     2
 i =  1  exps = -0.54476901E+02 -0.20000000E+01  stpote = -0.53191484E-15
 i =  2  exps = -0.54476901E+02 -0.20000000E+01  stpote = -0.53185936E-15
 i =  3  exps = -0.54476901E+02 -0.20000000E+01  stpote = -0.53181818E-15
 i =  4  exps = -0.54476901E+02 -0.20000000E+01  stpote = -0.53179587E-15
For potential     3
 i =  1  exps = -0.18005928E+01 -0.85750139E-01  stpote = -0.35524150E-05
 i =  2  exps = -0.18005932E+01 -0.85745509E-01  stpote = -0.35524239E-05
 i =  3  exps = -0.18005935E+01 -0.85741485E-01  stpote = -0.35524316E-05
 i =  4  exps = -0.18005938E+01 -0.85738414E-01  stpote = -0.35524375E-05
Number of asymptotic regions =      30
Final point in integration =   0.45223903E+03 Angstroms
Time Now =        26.2059  Delta time =        16.9472 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.03334853 angs^2  rmsk=     0.00046368
iL =   1 Iter =   2 c.s. =      0.04798293 angs^2  rmsk=     0.00009376
iL =   1 Iter =   3 c.s. =      0.05062093 angs^2  rmsk=     0.00001525
iL =   1 Iter =   4 c.s. =      0.05037330 angs^2  rmsk=     0.00000141
iL =   1 Iter =   5 c.s. =      0.05037925 angs^2  rmsk=     0.00000003
iL =   1 Iter =   6 c.s. =      0.05037922 angs^2  rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =      0.05037922 angs^2  rmsk=     0.00001198
iL =   2 Iter =   2 c.s. =      0.05037946 angs^2  rmsk=     0.00000017
iL =   2 Iter =   3 c.s. =      0.05037956 angs^2  rmsk=     0.00000006
iL =   2 Iter =   4 c.s. =      0.05037955 angs^2  rmsk=     0.00000000
iL =   2 Iter =   5 c.s. =      0.05037956 angs^2  rmsk=     0.00000000
iL =   3 Iter =   1 c.s. =      0.05037956 angs^2  rmsk=     0.00005281
iL =   3 Iter =   2 c.s. =      0.05037623 angs^2  rmsk=     0.00000030
iL =   3 Iter =   3 c.s. =      0.05037516 angs^2  rmsk=     0.00000010
iL =   3 Iter =   4 c.s. =      0.05037518 angs^2  rmsk=     0.00000000
iL =   3 Iter =   5 c.s. =      0.05037517 angs^2  rmsk=     0.00000000
iL =   4 Iter =   1 c.s. =      0.05037517 angs^2  rmsk=     0.00002817
iL =   4 Iter =   2 c.s. =      0.05037517 angs^2  rmsk=     0.00000000
iL =   4 Iter =   3 c.s. =      0.05037517 angs^2  rmsk=     0.00000000
iL =   5 Iter =   1 c.s. =      0.05037517 angs^2  rmsk=     0.00001204
iL =   5 Iter =   2 c.s. =      0.05037517 angs^2  rmsk=     0.00000000
iL =   5 Iter =   3 c.s. =      0.05037517 angs^2  rmsk=     0.00000000
iL =   6 Iter =   1 c.s. =      0.05037517 angs^2  rmsk=     0.00001688
iL =   6 Iter =   2 c.s. =      0.05037517 angs^2  rmsk=     0.00000000
iL =   6 Iter =   3 c.s. =      0.05037517 angs^2  rmsk=     0.00000000
iL =   7 Iter =   1 c.s. =      0.05037517 angs^2  rmsk=     0.00002254
iL =   7 Iter =   2 c.s. =      0.05037517 angs^2  rmsk=     0.00000000
iL =   7 Iter =   3 c.s. =      0.05037517 angs^2  rmsk=     0.00000000
iL =   8 Iter =   1 c.s. =      0.05037517 angs^2  rmsk=     0.00001611
iL =   8 Iter =   2 c.s. =      0.05037517 angs^2  rmsk=     0.00000000
iL =   8 Iter =   3 c.s. =      0.05037517 angs^2  rmsk=     0.00000000
iL =   9 Iter =   1 c.s. =      0.05037517 angs^2  rmsk=     0.00000493
iL =   9 Iter =   2 c.s. =      0.05037517 angs^2  rmsk=     0.00000000
iL =   9 Iter =   3 c.s. =      0.05037517 angs^2  rmsk=     0.00000000
iL =  10 Iter =   1 c.s. =      0.05037517 angs^2  rmsk=     0.00000525
iL =  10 Iter =   2 c.s. =      0.05037517 angs^2  rmsk=     0.00000000
iL =  10 Iter =   3 c.s. =      0.05037517 angs^2  rmsk=     0.00000000
iL =  11 Iter =   1 c.s. =      0.05037517 angs^2  rmsk=     0.00001052
iL =  11 Iter =   2 c.s. =      0.05037517 angs^2  rmsk=     0.00000000
iL =  11 Iter =   3 c.s. =      0.05037517 angs^2  rmsk=     0.00000000
iL =  12 Iter =   1 c.s. =      0.05037517 angs^2  rmsk=     0.00001207
iL =  12 Iter =   2 c.s. =      0.05037517 angs^2  rmsk=     0.00000000
iL =  12 Iter =   3 c.s. =      0.05037517 angs^2  rmsk=     0.00000000
iL =  13 Iter =   1 c.s. =      0.05037517 angs^2  rmsk=     0.00000693
iL =  13 Iter =   2 c.s. =      0.05037517 angs^2  rmsk=     0.00000000
iL =  13 Iter =   3 c.s. =      0.05037517 angs^2  rmsk=     0.00000000
iL =  14 Iter =   1 c.s. =      0.05037517 angs^2  rmsk=     0.00000405
iL =  14 Iter =   2 c.s. =      0.05037517 angs^2  rmsk=     0.00000000
iL =  14 Iter =   3 c.s. =      0.05037517 angs^2  rmsk=     0.00000000
iL =  15 Iter =   1 c.s. =      0.05037517 angs^2  rmsk=     0.00000272
iL =  15 Iter =   2 c.s. =      0.05037517 angs^2  rmsk=     0.00000000
iL =  15 Iter =   3 c.s. =      0.05037517 angs^2  rmsk=     0.00000000
iL =  16 Iter =   1 c.s. =      0.05037517 angs^2  rmsk=     0.00000416
iL =  16 Iter =   2 c.s. =      0.05037517 angs^2  rmsk=     0.00000000
iL =  16 Iter =   3 c.s. =      0.05037517 angs^2  rmsk=     0.00000000
iL =  17 Iter =   1 c.s. =      0.05037517 angs^2  rmsk=     0.00000646
iL =  17 Iter =   2 c.s. =      0.05037517 angs^2  rmsk=     0.00000000
iL =  17 Iter =   3 c.s. =      0.05037517 angs^2  rmsk=     0.00000000
iL =  18 Iter =   1 c.s. =      0.05037517 angs^2  rmsk=     0.00000706
iL =  18 Iter =   2 c.s. =      0.05037517 angs^2  rmsk=     0.00000000
iL =  18 Iter =   3 c.s. =      0.05037517 angs^2  rmsk=     0.00000000
     REAL PART -  Final k matrix
     ROW  1
  0.10152491E-01-0.84878748E-04-0.63380524E-03-0.15090409E-07-0.22126321E-05
  0.57615702E-06-0.12793096E-05-0.16904470E-09 0.54135930E-11-0.75477270E-09
  0.31719929E-09-0.22148918E-10 0.27874126E-15-0.13243015E-12 0.27665802E-13
  0.98619963E-14-0.27247903E-14 0.89704160E-13
     ROW  2
 -0.84878774E-04 0.16112014E-04-0.86835895E-05 0.36545028E-05 0.10740141E-07
 -0.19906126E-03 0.27761829E-05 0.25351481E-14 0.28438491E-06-0.91409655E-10
 -0.15664175E-06-0.48024215E-07-0.90084256E-11 0.36370680E-15 0.57818412E-10
  0.31203334E-12-0.17893450E-11-0.15255181E-10
     ROW  3
 -0.63380522E-03-0.86835895E-05-0.65947187E-03 0.32090481E-08-0.75406307E-06
 -0.29712908E-05-0.24050736E-03 0.28760132E-09-0.18315238E-09-0.22530952E-06
  0.94637160E-07-0.20245944E-06-0.64489071E-16-0.48320015E-11 0.94597732E-12
 -0.54701555E-10 0.28352256E-10-0.20980234E-11
     ROW  4
 -0.15090773E-07 0.36545028E-05 0.32090469E-08 0.50502048E-03 0.76955733E-11
 -0.17275141E-05-0.52286750E-09 0.46996585E-08-0.45801655E-04-0.16972239E-11
  0.16826758E-06 0.38703776E-10-0.75638530E-07 0.42614775E-12-0.15077634E-07
  0.30846596E-13-0.17464342E-08-0.94786618E-12
     ROW  5
 -0.22126376E-05 0.10740138E-07-0.75406307E-06 0.76955733E-11 0.20399790E-03
 -0.83360228E-08 0.20726144E-05 0.79845262E-06 0.96587353E-12-0.72864633E-04
  0.41932915E-09-0.33418924E-06 0.25214104E-16 0.82304242E-07-0.16480239E-12
 -0.28512187E-07-0.27863618E-11 0.47535645E-08
     ROW  6
  0.57615112E-06-0.19906126E-03-0.29712908E-05-0.17275141E-05-0.83360228E-08
 -0.20233926E-03-0.60057566E-06-0.15021587E-14 0.97978334E-07 0.29178029E-08
 -0.10850693E-03 0.58975920E-06 0.36615791E-10 0.33338425E-15 0.63900460E-07
 -0.10970711E-10-0.51290755E-07-0.16702039E-07
     ROW  7
 -0.12793118E-05 0.27761829E-05-0.24050736E-03-0.52286750E-09 0.20726144E-05
 -0.60057566E-06-0.30480231E-03-0.14967246E-09 0.23918459E-09 0.25573285E-06
 -0.60117488E-06-0.11743952E-03-0.33651401E-16 0.33337353E-10-0.18515052E-10
 -0.50473673E-07 0.26037596E-07-0.57875679E-07
     ROW  8
 -0.16904482E-09 0.25349991E-14 0.28760132E-09 0.46996585E-08 0.79845262E-06
 -0.15021588E-14-0.14967246E-09 0.28922370E-03-0.19315431E-08-0.34977789E-06
  0.12366955E-14 0.31750084E-10-0.88071100E-12-0.21235093E-04 0.50239832E-10
  0.31338685E-07-0.12977574E-15-0.26591502E-11
     ROW  9
  0.54142451E-11 0.28438491E-06-0.18315237E-09-0.45801655E-04 0.96587353E-12
  0.97978334E-07 0.23918459E-09-0.19315431E-08 0.60924259E-04-0.42073042E-12
 -0.54851542E-06-0.94550145E-10-0.21612625E-06 0.21726543E-08-0.45529862E-04
 -0.68312488E-12 0.10596788E-06 0.12742966E-10
     ROW 10
 -0.75477449E-09-0.91409659E-10-0.22530952E-06-0.16972239E-11-0.72864633E-04
  0.29178029E-08 0.25573285E-06-0.34977789E-06-0.42073042E-12-0.25119411E-04
 -0.48765536E-08 0.48023020E-06 0.25583003E-16 0.12372151E-06-0.24862470E-12
 -0.54523441E-04 0.31935152E-09-0.14444732E-06
     ROW 11
  0.31719854E-09-0.15664175E-06 0.94637160E-07 0.16826758E-06 0.41932915E-09
 -0.10850693E-03-0.60117488E-06 0.12366949E-14-0.54851542E-06-0.48765536E-08
 -0.14021048E-03-0.11476105E-06-0.29970139E-10-0.12223439E-15-0.64699816E-07
  0.13968531E-08-0.66518006E-04 0.19531479E-06
     ROW 12
 -0.22147465E-10-0.48024215E-07-0.20245944E-06 0.38703776E-10-0.33418924E-06
  0.58975920E-06-0.11743952E-03 0.31750084E-10-0.94550145E-10 0.48023020E-06
 -0.11476105E-06-0.16904296E-03 0.22812986E-16-0.37905484E-10 0.39657939E-10
  0.13279161E-06-0.19690992E-06-0.69520960E-04
     ROW 13
  0.27867214E-15-0.90084256E-11-0.64489088E-16-0.75638530E-07 0.25214200E-16
  0.36615791E-10-0.33651430E-16-0.88071100E-12-0.21612625E-06 0.25582970E-16
 -0.29970139E-10 0.22813298E-16 0.12470097E-03-0.57349248E-12 0.16200664E-06
 -0.26265432E-16 0.85240463E-11-0.67002365E-17
     ROW 14
 -0.13243040E-12 0.36370671E-15-0.48320015E-11 0.42614775E-12 0.82304242E-07
  0.33338428E-15 0.33337353E-10-0.21235093E-04 0.21726543E-08 0.12372151E-06
 -0.12223447E-15-0.37905484E-10-0.57349248E-12 0.69810422E-04-0.20898562E-08
 -0.19680044E-06 0.48319874E-15 0.13761642E-10
     ROW 15
  0.27666258E-13 0.57818411E-10 0.94597732E-12-0.15077634E-07-0.16480239E-12
  0.63900460E-07-0.18515052E-10 0.50239832E-10-0.45529862E-04-0.24862470E-12
 -0.64699816E-07 0.39657939E-10 0.16200664E-06-0.20898562E-08-0.18208801E-04
 -0.47763344E-12-0.18904857E-06-0.23186926E-10
     ROW 16
  0.98616518E-14 0.31203334E-12-0.54701555E-10 0.30846596E-13-0.28512187E-07
 -0.10970711E-10-0.50473673E-07 0.31338685E-07-0.68312488E-12-0.54523441E-04
  0.13968531E-08 0.13279161E-06-0.26265262E-16-0.19680044E-06-0.47763344E-12
 -0.51277685E-04-0.31810664E-08 0.15144492E-06
     ROW 17
 -0.27249703E-14-0.17893442E-11 0.28352256E-10-0.17464342E-08-0.27863618E-11
 -0.51290755E-07 0.26037596E-07-0.12977567E-15 0.10596788E-06 0.31935152E-09
 -0.66518006E-04-0.19690992E-06 0.85240463E-11 0.48319852E-15-0.18904857E-06
 -0.31810664E-08-0.95421868E-04-0.33686247E-07
     ROW 18
  0.47492068E-13-0.15255181E-10-0.20980227E-11-0.94786618E-12 0.47535645E-08
 -0.16702039E-07-0.57875679E-07-0.26591502E-11 0.12742966E-10-0.14444732E-06
  0.19531479E-06-0.69520960E-04-0.66998834E-17 0.13761642E-10-0.23186926E-10
  0.15144492E-06-0.33686247E-07-0.10646375E-03
 eigenphases
 -0.8148729E-03 -0.3638648E-03 -0.2961216E-03 -0.1619653E-03 -0.1347396E-03
 -0.1015892E-03 -0.4255137E-04 -0.3963536E-04 -0.3115412E-04  0.3123545E-05
  0.6777493E-04  0.7764242E-04  0.1247025E-03  0.1458170E-03  0.2260741E-03
  0.2912713E-03  0.5097788E-03  0.1018988E-01
 eigenphase sum 0.964957E-02  scattering length=  -0.11256
 eps+pi 0.315124E+01  eps+2*pi 0.629283E+01

MaxIter =   6 c.s. =      0.05037517 angs^2  rmsk=     0.00000000
Time Now =        87.7191  Delta time =        61.5132 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.95000000E+01  eV
 Do E =  0.30000000E+02 eV (  0.11024798E+01 AU)
Time Now =        87.9298  Delta time =         0.2108 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =EU    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    59
Number of partial waves (np) =    85
Number of asymptotic solutions on the right (NAsymR) =    18
Number of asymptotic solutions on the left (NAsymL) =    18
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =    18
Maximum in the asymptotic region (lpasym) =   14
Number of partial waves in the asymptotic region (npasym) =   35
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  225
Found polarization potential
Maximum l used in usual function (lmax) =   25
Maximum m used in usual function (LMax) =   25
Maxamum l used in expanding static potential (lpotct) =   50
Maximum l used in exapnding the exchange potential (lmaxab) =   50
Higest l included in the expansion of the wave function (lnp) =   25
Higest l included in the K matrix (lna) =    9
Highest l used at large r (lpasym) =   14
Higest l used in the asymptotic potential (lpzb) =   28
Maximum L used in the homogeneous solution (LMaxHomo) =   14
Number of partial waves in the homogeneous solution (npHomo) =   35
Time Now =        87.9658  Delta time =         0.0360 Energy independent setup

Compute solution for E =   30.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.27498856E-14
 i =  2  lval =   3  stpote = -0.25107462E-03
 i =  3  lval =   3  stpote = -0.14497033E-03
 i =  4  lval =   3  stpote = -0.43732773E-17
For potential     2
 i =  1  exps = -0.54476901E+02 -0.20000000E+01  stpote = -0.12371176E-15
 i =  2  exps = -0.54476901E+02 -0.20000000E+01  stpote = -0.12358427E-15
 i =  3  exps = -0.54476901E+02 -0.20000000E+01  stpote = -0.12348297E-15
 i =  4  exps = -0.54476901E+02 -0.20000000E+01  stpote = -0.12341131E-15
For potential     3
 i =  1  exps = -0.18005928E+01 -0.85750139E-01  stpote = -0.35524150E-05
 i =  2  exps = -0.18005932E+01 -0.85745509E-01  stpote = -0.35524239E-05
 i =  3  exps = -0.18005935E+01 -0.85741485E-01  stpote = -0.35524316E-05
 i =  4  exps = -0.18005938E+01 -0.85738414E-01  stpote = -0.35524375E-05
Number of asymptotic regions =      68
Final point in integration =   0.67533023E+02 Angstroms
Time Now =       110.1747  Delta time =        22.2089 End SolveHomo
iL =   1 Iter =   1 c.s. =      4.24533304 angs^2  rmsk=     0.81167034
iL =   1 Iter =   2 c.s. =     33.39825667 angs^2  rmsk=     0.75826936
iL =   1 Iter =   3 c.s. =      4.46258848 angs^2  rmsk=     0.30339557
iL =   1 Iter =   4 c.s. =      4.50601597 angs^2  rmsk=     0.02353918
iL =   1 Iter =   5 c.s. =      4.50632641 angs^2  rmsk=     0.00031630
iL =   1 Iter =   6 c.s. =      4.50628173 angs^2  rmsk=     0.00001255
iL =   1 Iter =   7 c.s. =      4.50628286 angs^2  rmsk=     0.00000050
iL =   1 Iter =   8 c.s. =      4.50628281 angs^2  rmsk=     0.00000001
iL =   2 Iter =   1 c.s. =      4.50628281 angs^2  rmsk=     0.49678774
iL =   2 Iter =   2 c.s. =      6.36338821 angs^2  rmsk=     1.66054557
iL =   2 Iter =   3 c.s. =     26.48280944 angs^2  rmsk=     0.17086383
iL =   2 Iter =   4 c.s. =     31.85158142 angs^2  rmsk=     0.00771413
iL =   2 Iter =   5 c.s. =     31.87093072 angs^2  rmsk=     0.00001834
iL =   2 Iter =   6 c.s. =     31.85400368 angs^2  rmsk=     0.00001194
iL =   2 Iter =   7 c.s. =     31.85416111 angs^2  rmsk=     0.00000049
iL =   2 Iter =   8 c.s. =     31.85414685 angs^2  rmsk=     0.00000001
iL =   3 Iter =   1 c.s. =     31.85414685 angs^2  rmsk=     0.58426182
iL =   3 Iter =   2 c.s. =      4.91932290 angs^2  rmsk=     1.94620785
iL =   3 Iter =   3 c.s. =      4.55611650 angs^2  rmsk=     0.19643545
iL =   3 Iter =   4 c.s. =      4.57360040 angs^2  rmsk=     0.01189180
iL =   3 Iter =   5 c.s. =      4.57245694 angs^2  rmsk=     0.00412534
iL =   3 Iter =   6 c.s. =      4.57244873 angs^2  rmsk=     0.00001383
iL =   3 Iter =   7 c.s. =      4.57245198 angs^2  rmsk=     0.00000075
iL =   3 Iter =   8 c.s. =      4.57245151 angs^2  rmsk=     0.00000029
iL =   4 Iter =   1 c.s. =      4.57245151 angs^2  rmsk=     0.01251570
iL =   4 Iter =   2 c.s. =      4.56546555 angs^2  rmsk=     0.03149978
iL =   4 Iter =   3 c.s. =      4.57233081 angs^2  rmsk=     0.00780619
iL =   4 Iter =   4 c.s. =      4.57234817 angs^2  rmsk=     0.00033165
iL =   4 Iter =   5 c.s. =      4.57234845 angs^2  rmsk=     0.00000382
iL =   4 Iter =   6 c.s. =      4.57234840 angs^2  rmsk=     0.00000091
iL =   4 Iter =   7 c.s. =      4.57234840 angs^2  rmsk=     0.00000001
iL =   4 Iter =   8 c.s. =      4.57234840 angs^2  rmsk=     0.00000000
iL =   5 Iter =   1 c.s. =      4.57234840 angs^2  rmsk=     0.05550978
iL =   5 Iter =   2 c.s. =      4.51382962 angs^2  rmsk=     0.16543870
iL =   5 Iter =   3 c.s. =      4.55792742 angs^2  rmsk=     0.01612909
iL =   5 Iter =   4 c.s. =      4.56061116 angs^2  rmsk=     0.00171464
iL =   5 Iter =   5 c.s. =      4.56057206 angs^2  rmsk=     0.00007539
iL =   5 Iter =   6 c.s. =      4.56057157 angs^2  rmsk=     0.00000343
iL =   5 Iter =   7 c.s. =      4.56057163 angs^2  rmsk=     0.00000004
iL =   5 Iter =   8 c.s. =      4.56057162 angs^2  rmsk=     0.00000002
iL =   6 Iter =   1 c.s. =      4.56057162 angs^2  rmsk=     0.13007984
iL =   6 Iter =   2 c.s. =      4.42764054 angs^2  rmsk=     0.42358870
iL =   6 Iter =   3 c.s. =      4.47886111 angs^2  rmsk=     0.04137670
iL =   6 Iter =   4 c.s. =      4.48349742 angs^2  rmsk=     0.00189002
iL =   6 Iter =   5 c.s. =      4.48351171 angs^2  rmsk=     0.00000967
iL =   6 Iter =   6 c.s. =      4.48350270 angs^2  rmsk=     0.00000337
iL =   6 Iter =   7 c.s. =      4.48350273 angs^2  rmsk=     0.00000003
iL =   6 Iter =   8 c.s. =      4.48350273 angs^2  rmsk=     0.00000000
iL =   7 Iter =   1 c.s. =      4.48350273 angs^2  rmsk=     0.03041036
iL =   7 Iter =   2 c.s. =     11.66918003 angs^2  rmsk=     0.26708777
iL =   7 Iter =   3 c.s. =      4.49473301 angs^2  rmsk=     0.24223449
iL =   7 Iter =   4 c.s. =      4.49313889 angs^2  rmsk=     0.00273151
iL =   7 Iter =   5 c.s. =      4.49750054 angs^2  rmsk=     0.00374300
iL =   7 Iter =   6 c.s. =      4.49750426 angs^2  rmsk=     0.00000216
iL =   7 Iter =   7 c.s. =      4.49750517 angs^2  rmsk=     0.00000022
iL =   7 Iter =   8 c.s. =      4.49750517 angs^2  rmsk=     0.00000000
iL =   8 Iter =   1 c.s. =      4.49750517 angs^2  rmsk=     0.00334894
iL =   8 Iter =   2 c.s. =      4.49744859 angs^2  rmsk=     0.00212125
iL =   8 Iter =   3 c.s. =      4.49761520 angs^2  rmsk=     0.00059424
iL =   8 Iter =   4 c.s. =      4.49750444 angs^2  rmsk=     0.00051826
iL =   8 Iter =   5 c.s. =      4.49750446 angs^2  rmsk=     0.00000130
iL =   8 Iter =   6 c.s. =      4.49750446 angs^2  rmsk=     0.00000006
iL =   8 Iter =   7 c.s. =      4.49750446 angs^2  rmsk=     0.00000000
iL =   9 Iter =   1 c.s. =      4.49750446 angs^2  rmsk=     0.00702379
iL =   9 Iter =   2 c.s. =      4.51285795 angs^2  rmsk=     0.01514292
iL =   9 Iter =   3 c.s. =      4.49753120 angs^2  rmsk=     0.00608283
iL =   9 Iter =   4 c.s. =      4.49753893 angs^2  rmsk=     0.00016756
iL =   9 Iter =   5 c.s. =      4.49753907 angs^2  rmsk=     0.00000218
iL =   9 Iter =   6 c.s. =      4.49753907 angs^2  rmsk=     0.00000037
iL =   9 Iter =   7 c.s. =      4.49753907 angs^2  rmsk=     0.00000001
iL =  10 Iter =   1 c.s. =      4.49753907 angs^2  rmsk=     0.01100445
iL =  10 Iter =   2 c.s. =      4.49275431 angs^2  rmsk=     0.02767168
iL =  10 Iter =   3 c.s. =      4.49727018 angs^2  rmsk=     0.00340309
iL =  10 Iter =   4 c.s. =      4.49738925 angs^2  rmsk=     0.00043508
iL =  10 Iter =   5 c.s. =      4.49738782 angs^2  rmsk=     0.00003372
iL =  10 Iter =   6 c.s. =      4.49738739 angs^2  rmsk=     0.00000086
iL =  10 Iter =   7 c.s. =      4.49738739 angs^2  rmsk=     0.00000001
iL =  10 Iter =   8 c.s. =      4.49738739 angs^2  rmsk=     0.00000000
iL =  11 Iter =   1 c.s. =      4.49738739 angs^2  rmsk=     0.00581150
iL =  11 Iter =   2 c.s. =      4.51558884 angs^2  rmsk=     0.01241260
iL =  11 Iter =   3 c.s. =      4.49775783 angs^2  rmsk=     0.00632236
iL =  11 Iter =   4 c.s. =      4.49775446 angs^2  rmsk=     0.00016220
iL =  11 Iter =   5 c.s. =      4.49775349 angs^2  rmsk=     0.00000767
iL =  11 Iter =   6 c.s. =      4.49775344 angs^2  rmsk=     0.00000028
iL =  11 Iter =   7 c.s. =      4.49775345 angs^2  rmsk=     0.00000001
iL =  12 Iter =   1 c.s. =      4.49775345 angs^2  rmsk=     0.00899252
iL =  12 Iter =   2 c.s. =      4.49178414 angs^2  rmsk=     0.02074538
iL =  12 Iter =   3 c.s. =      4.49769294 angs^2  rmsk=     0.00297516
iL =  12 Iter =   4 c.s. =      4.49771482 angs^2  rmsk=     0.00018896
iL =  12 Iter =   5 c.s. =      4.49771968 angs^2  rmsk=     0.00004114
iL =  12 Iter =   6 c.s. =      4.49771936 angs^2  rmsk=     0.00000082
iL =  12 Iter =   7 c.s. =      4.49771935 angs^2  rmsk=     0.00000001
iL =  12 Iter =   8 c.s. =      4.49771935 angs^2  rmsk=     0.00000000
iL =  13 Iter =   1 c.s. =      4.49771935 angs^2  rmsk=     0.00178777
iL =  13 Iter =   2 c.s. =      4.49771830 angs^2  rmsk=     0.00002782
iL =  13 Iter =   3 c.s. =      4.49771836 angs^2  rmsk=     0.00001042
iL =  13 Iter =   4 c.s. =      4.49771836 angs^2  rmsk=     0.00001140
iL =  13 Iter =   5 c.s. =      4.49771836 angs^2  rmsk=     0.00000005
iL =  13 Iter =   6 c.s. =      4.49771836 angs^2  rmsk=     0.00000001
iL =  14 Iter =   1 c.s. =      4.49771836 angs^2  rmsk=     0.00202912
iL =  14 Iter =   2 c.s. =      4.49781588 angs^2  rmsk=     0.00064437
iL =  14 Iter =   3 c.s. =      4.49789885 angs^2  rmsk=     0.00135022
iL =  14 Iter =   4 c.s. =      4.49771771 angs^2  rmsk=     0.00122928
iL =  14 Iter =   5 c.s. =      4.49771771 angs^2  rmsk=     0.00000102
iL =  14 Iter =   6 c.s. =      4.49771771 angs^2  rmsk=     0.00000003
iL =  14 Iter =   7 c.s. =      4.49771771 angs^2  rmsk=     0.00000000
iL =  15 Iter =   1 c.s. =      4.49771771 angs^2  rmsk=     0.00223272
iL =  15 Iter =   2 c.s. =      4.49772584 angs^2  rmsk=     0.00097630
iL =  15 Iter =   3 c.s. =      4.49771805 angs^2  rmsk=     0.00016126
iL =  15 Iter =   4 c.s. =      4.49771840 angs^2  rmsk=     0.00001974
iL =  15 Iter =   5 c.s. =      4.49771840 angs^2  rmsk=     0.00000017
iL =  15 Iter =   6 c.s. =      4.49771840 angs^2  rmsk=     0.00000003
iL =  16 Iter =   1 c.s. =      4.49771840 angs^2  rmsk=     0.00223323
iL =  16 Iter =   2 c.s. =      4.49795922 angs^2  rmsk=     0.00135688
iL =  16 Iter =   3 c.s. =      4.49771803 angs^2  rmsk=     0.00061630
iL =  16 Iter =   4 c.s. =      4.49775281 angs^2  rmsk=     0.00077843
iL =  16 Iter =   5 c.s. =      4.49771840 angs^2  rmsk=     0.00078251
iL =  16 Iter =   6 c.s. =      4.49771840 angs^2  rmsk=     0.00000002
iL =  16 Iter =   7 c.s. =      4.49771840 angs^2  rmsk=     0.00000000
iL =  17 Iter =   1 c.s. =      4.49771840 angs^2  rmsk=     0.00211229
iL =  17 Iter =   2 c.s. =      4.49771799 angs^2  rmsk=     0.00015329
iL =  17 Iter =   3 c.s. =      4.49772019 angs^2  rmsk=     0.00013971
iL =  17 Iter =   4 c.s. =      4.49771841 angs^2  rmsk=     0.00008670
iL =  17 Iter =   5 c.s. =      4.49771842 angs^2  rmsk=     0.00000071
iL =  17 Iter =   6 c.s. =      4.49771842 angs^2  rmsk=     0.00000006
iL =  17 Iter =   7 c.s. =      4.49771842 angs^2  rmsk=     0.00000000
iL =  18 Iter =   1 c.s. =      4.49771842 angs^2  rmsk=     0.00207769
iL =  18 Iter =   2 c.s. =      4.49774248 angs^2  rmsk=     0.00038357
iL =  18 Iter =   3 c.s. =      4.49771826 angs^2  rmsk=     0.00027216
iL =  18 Iter =   4 c.s. =      4.49771831 angs^2  rmsk=     0.00000851
iL =  18 Iter =   5 c.s. =      4.49771831 angs^2  rmsk=     0.00000032
iL =  18 Iter =   6 c.s. =      4.49771831 angs^2  rmsk=     0.00000002
     REAL PART -  Final k matrix
     ROW  1
 -0.34259604E+01-0.54411855E+01 0.40804883E+01-0.10724650E+00-0.59065594E+00
 -0.13484000E+01-0.10925369E+00-0.77175671E-02-0.48904872E-01-0.10662346E+00
 -0.22835854E-01-0.94493588E-01-0.58372852E-04-0.16774754E-02-0.37414221E-02
 -0.49077201E-02 0.15490380E-02-0.18900466E-02
     ROW  2
 -0.54411855E+01-0.10676296E+02 0.13874502E+02-0.18366577E+00-0.11954652E+01
 -0.27996561E+01 0.64381429E+00-0.15601428E-01-0.88207181E-01-0.19631785E+00
 -0.72630372E-01-0.13843894E+00-0.33162983E-03-0.29498304E-02-0.60562153E-02
 -0.83435636E-02 0.70008408E-03-0.15229424E-02
     ROW  3
  0.40804883E+01 0.13874502E+02-0.16431008E+02 0.24535852E+00 0.12673679E+01
  0.34676317E+01-0.77918757E+00 0.16212925E-01 0.10761571E+00 0.19972461E+00
  0.96213084E-01 0.14804544E+00 0.29788498E-03 0.28227100E-02 0.73202007E-02
  0.81447637E-02 0.43468094E-04 0.12730065E-02
     ROW  4
 -0.10724650E+00-0.18366577E+00 0.24535852E+00 0.12144297E+00-0.20827770E-01
 -0.61223554E-01 0.14895708E-01-0.26775599E-03 0.14402171E-01-0.35191246E-02
 -0.36533812E-02-0.26043717E-02-0.14962114E-03-0.48091297E-04 0.57949778E-03
 -0.17118599E-03 0.19726440E-04-0.10830105E-03
     ROW  5
 -0.59065594E+00-0.11954652E+01 0.12673679E+01-0.20827770E-01 0.10809875E+00
 -0.30549203E+00 0.98745110E-01 0.65740611E-02-0.90583535E-02 0.85894521E-02
 -0.10568587E-01-0.11623665E-01-0.32412945E-04 0.83708891E-03-0.66151411E-03
 -0.19917742E-03 0.63519168E-05-0.66565144E-03
     ROW  6
 -0.13484000E+01-0.27996561E+01 0.34676317E+01-0.61223554E-01-0.30549203E+00
 -0.43687635E+00 0.12169041E+00-0.40882780E-02-0.15035566E-01-0.45902917E-01
  0.13792511E-02-0.21260479E-01-0.58822167E-04-0.74295623E-03 0.14699508E-03
 -0.15374381E-02-0.43139958E-03 0.50642943E-03
     ROW  7
 -0.10925370E+00 0.64381429E+00-0.77918757E+00 0.14895708E-01 0.98745110E-01
  0.12169041E+00 0.23397725E+00 0.14626085E-02 0.76269723E-02 0.13963582E-01
 -0.14094392E-01 0.20778788E-01-0.35538757E-04 0.51906325E-03 0.37558026E-03
 -0.49045029E-03-0.38159789E-03-0.66410078E-03
     ROW  8
 -0.77175670E-02-0.15601429E-01 0.16212919E-01-0.26775599E-03 0.65740611E-02
 -0.40882780E-02 0.14626087E-02 0.58015498E-01-0.12129680E-03-0.26374900E-02
 -0.15972864E-03-0.12186053E-03-0.97956084E-06 0.54696207E-02-0.85851103E-05
  0.17928844E-03 0.11903841E-04-0.56290601E-04
     ROW  9
 -0.48904877E-01-0.88207181E-01 0.10761571E+00 0.14402171E-01-0.90583533E-02
 -0.15035566E-01 0.76269720E-02-0.12129680E-03 0.87564763E-01-0.13219485E-02
 -0.96242333E-02-0.71147572E-03-0.32480798E-02-0.23603393E-04 0.72535638E-02
 -0.80340947E-04 0.73432626E-03-0.55828391E-04
     ROW 10
 -0.10662346E+00-0.19631785E+00 0.19972461E+00-0.35191246E-02 0.85894522E-02
 -0.45902917E-01 0.13963582E-01-0.26374900E-02-0.13219485E-02 0.90425690E-01
 -0.19843834E-02 0.80393240E-02-0.48109432E-05 0.26164716E-02-0.41617959E-04
  0.64185277E-02-0.82108840E-04-0.16315871E-02
     ROW 11
 -0.22835853E-01-0.72630373E-01 0.96213089E-01-0.36533812E-02-0.10568588E-01
  0.13792513E-02-0.14094392E-01-0.15972864E-03-0.96242333E-02-0.19843833E-02
  0.89133901E-01-0.37169216E-02 0.23117881E-04-0.63231067E-04-0.86906299E-03
  0.72635883E-04 0.43279131E-02 0.34207191E-02
     ROW 12
 -0.94493588E-01-0.13843893E+00 0.14804544E+00-0.26043717E-02-0.11623665E-01
 -0.21260479E-01 0.20778788E-01-0.12186053E-03-0.71147568E-03 0.80393240E-02
 -0.37169216E-02 0.85834659E-01 0.10134834E-04-0.45155949E-04 0.14080456E-03
  0.23987941E-02-0.37986330E-02 0.36180691E-02
     ROW 13
 -0.58373934E-04-0.33162949E-03 0.29788527E-03-0.14962113E-03-0.32412900E-04
 -0.58822130E-04-0.35538569E-04-0.97955964E-06-0.32480798E-02-0.48109268E-05
  0.23117874E-04 0.10134844E-04 0.31959442E-01-0.71947084E-06 0.17126868E-02
 -0.15168213E-05 0.24181602E-04 0.36073144E-05
     ROW 14
 -0.16774755E-02-0.29498306E-02 0.28227100E-02-0.48091296E-04 0.83708893E-03
 -0.74295623E-03 0.51906329E-03 0.54696207E-02-0.23603393E-04 0.26164716E-02
 -0.63231067E-04-0.45155904E-04-0.71947406E-06 0.35794861E-01-0.18613166E-05
 -0.25101525E-02 0.25683238E-05 0.35584896E-04
     ROW 15
 -0.37414013E-02-0.60562182E-02 0.73201884E-02 0.57949771E-03-0.66151391E-03
  0.14699504E-03 0.37559187E-03-0.85851103E-05 0.72535637E-02-0.41618198E-04
 -0.86906306E-03 0.14080461E-03 0.17126868E-02-0.18613192E-05 0.38703033E-01
  0.97016989E-05-0.31476612E-02-0.65706888E-04
     ROW 16
 -0.49077216E-02-0.83435637E-02 0.81447636E-02-0.17118598E-03-0.19917739E-03
 -0.15374381E-02-0.49045028E-03 0.17928844E-03-0.80340947E-04 0.64185278E-02
  0.72635884E-04 0.23987941E-02-0.15168216E-05-0.25101525E-02 0.97015605E-05
  0.38570446E-01-0.60849666E-04 0.27418040E-02
     ROW 17
  0.15490383E-02 0.70008354E-03 0.43468212E-04 0.19726442E-04 0.63519077E-05
 -0.43139957E-03-0.38159798E-03 0.11903841E-04 0.73432626E-03-0.82108822E-04
  0.43279131E-02-0.37986330E-02 0.24181603E-04 0.25683238E-05-0.31476612E-02
 -0.60849666E-04 0.37340725E-01-0.67067307E-03
     ROW 18
 -0.18900455E-02-0.15229422E-02 0.12730043E-02-0.10830086E-03-0.66564342E-03
  0.50642946E-03-0.66409962E-03-0.56288539E-04-0.55828362E-04-0.16315871E-02
  0.34207192E-02 0.36180692E-02 0.36073144E-05 0.35584901E-04-0.65706888E-04
  0.27418040E-02-0.67067307E-03 0.36842372E-01
 eigenphases
 -0.1537791E+01 -0.1204258E+01  0.3079777E-01  0.3204797E-01  0.3440669E-01
  0.3573424E-01  0.4052480E-01  0.4079567E-01  0.5848900E-01  0.7503227E-01
  0.7824706E-01  0.9228402E-01  0.9747756E-01  0.1297488E+00  0.1884808E+00
  0.2630892E+00  0.3300198E+00  0.9721513E+00
 eigenphase sum-0.242722E+00  scattering length=   0.16675
 eps+pi 0.289887E+01  eps+2*pi 0.604046E+01

MaxIter =   8 c.s. =      4.49771831 angs^2  rmsk=     0.00000002
Time Now =       301.4147  Delta time =       191.2400 End ScatStab
Time Now =       301.4189  Delta time =         0.0042 Finalize