----------------------------------------------------------------------
ePolyScat Version E2
----------------------------------------------------------------------

Authors: R. R. Lucchese, N. Sanna, A. P. P. Natalense, and F. A. Gianturco
http://www.chem.tamu.edu/rgroup/lucchese/ePolyScat.E2.manual/manual.html
Please cite the following two papers when reporting results obtained with  this program
F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 100, 6464 (1994).
A. P. P. Natalense and R. R. Lucchese, J. Chem. Phys. 111, 5344 (1999).

----------------------------------------------------------------------

Starting at 2009-03-13  11:43:04.496 (GMT -0500)
Using    16 processors

----------------------------------------------------------------------


+ Start of Input Records
#
# input file for test21
#
# electron scattering from C6F3H3
#
 LMax   25     # maximum l to be used for wave functions
 EMax  60.0    # EMax, maximum asymptotic energy in eV
 EngForm       # Energy formulas
   0 0         # charge, formula type
  VCorr 'PZ'
 ScatEng 30.   # list of scattering energies
 FegeEng 9.5    # Energy correction used in the fege potential
 ScatContSym 'A1PP'  # Scattering symmetry
 LMaxK   10      # Maximum l in the K matirx

Convert '/scratch/rrl581a/ePolyScat.E2/tests/test21.g03' 'g03'
GetBlms
ExpOrb
GetPot
Scat
+ End of input reached
+ Data Record LMax - 25
+ Data Record EMax - 60.0
+ Data Record EngForm - 0 0
+ Data Record VCorr - 'PZ'
+ Data Record ScatEng - 30.
+ Data Record FegeEng - 9.5
+ Data Record ScatContSym - 'A1PP'
+ Data Record LMaxK - 10

+ Command Convert
+ '/scratch/rrl581a/ePolyScat.E2/tests/test21.g03' 'g03'

----------------------------------------------------------------------
g03cnv - read input from G03 output
----------------------------------------------------------------------

Expansion center is (in Angstroms) -
     0.0000000000   0.0000000000   0.0000000000
CardFlag =    T
Normal Mode flag =    F
Selecting orbitals
from     1  to    33  number already selected     0
Number of orbitals selected is    33
Highest orbital read in is =   33
Time Now =         0.0533  Delta time =         0.0533 End g03cnv

Atoms found   12  Coordinates in Angstroms
Z =  6 ZS =  6 r =   0.0000000000   0.8611300000   0.0000000000
Z =  9 ZS =  9 r =   0.0000000000   1.5593300000   0.0000000000
Z =  6 ZS =  6 r =   0.7457600000   0.4305650000   0.0000000000
Z =  1 ZS =  1 r =   1.2539960000   0.7239950000   0.0000000000
Z =  6 ZS =  6 r =   0.7457600000  -0.4305650000   0.0000000000
Z =  9 ZS =  9 r =   1.3504190000  -0.7796650000   0.0000000000
Z =  6 ZS =  6 r =   0.0000000000  -0.8611300000   0.0000000000
Z =  1 ZS =  1 r =   0.0000000000  -1.4479900000   0.0000000000
Z =  6 ZS =  6 r =  -0.7457600000  -0.4305650000   0.0000000000
Z =  9 ZS =  9 r =  -1.3504190000  -0.7796650000   0.0000000000
Z =  6 ZS =  6 r =  -0.7457600000   0.4305650000   0.0000000000
Z =  1 ZS =  1 r =  -1.2539960000   0.7239950000   0.0000000000
Maximum distance from expansion center is    1.5593300000

+ Command GetBlms
+

----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------

Found point group  D3h
Reduce angular grid using nthd =  2  nphid =  1
Found point group for abelian subgroup C2v
Time Now =         0.0576  Delta time =         0.0042 End GetPGroup
List of unique axes
  N  Vector                      Z   R
  1  0.00000  0.00000  1.00000
  2  0.00000  1.00000  0.00000   6  1.62730   9  2.94671   6  1.62730   1  2.73630
  3  0.86603  0.50000  0.00000   6  1.62730   1  2.73630   6  1.62730   9  2.94671
  4  0.86603 -0.50000  0.00000   6  1.62730   9  2.94671   6  1.62730   1  2.73630
List of corresponding x axes
  N  Vector
  1  1.00000 -0.00000 -0.00000
  2  1.00000 -0.00000 -0.00000
  3  0.50000 -0.86603 -0.00000
  4  0.50000  0.86603 -0.00000
Computed default value of LMaxA =   14
Determineing angular grid in GetAxMax  LMax =   25  LMaxA =   14  LMaxAb =   50
MMax =    3  MMaxAbFlag =    1
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1
For axis     2  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3   3   3   3
   3   3   3   3   3   3
For axis     3  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3   3   3   3
   3   3   3   3   3   3
For axis     4  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3   3   3   3
   3   3   3   3   3   3
On the double L grid used for products
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19
  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39
  40  41  42  43  44  45  46  47  48  49  50
For axis     2  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
For axis     3  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
For axis     4  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is D3h
LMax = =   25
 The dimension of each irreducable representation is
    A1P   (  1)    A2P   (  1)    EP    (  2)    A1PP  (  1)    A2PP  (  1)
    EPP   (  2)
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     2     3     6
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A1P       1         1         46       1  1  1
 A2P       1         2         38       1 -1 -1
 EP        1         3         84       1 -1 -1
 EP        2         4         84       1  1  1
 A1PP      1         5         25      -1 -1  1
 A2PP      1         6         43      -1  1 -1
 EPP       1         7         68      -1 -1  1
 EPP       2         8         68      -1  1 -1
Time Now =         1.7842  Delta time =         1.7266 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
A1P   1    0(   1)    1(   1)    2(   2)    3(   3)    4(   4)    5(   5)    6(   7)    7(   8)    8(  10)    9(  12)
          10(  14)   11(  16)   12(  19)   13(  21)   14(  24)
A2P   1    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   2)    6(   3)    7(   4)    8(   5)    9(   7)
          10(   8)   11(  10)   12(  12)   13(  14)   14(  16)
EP    1    0(   0)    1(   1)    2(   2)    3(   3)    4(   5)    5(   7)    6(   9)    7(  12)    8(  15)    9(  18)
          10(  22)   11(  26)   12(  30)   13(  35)   14(  40)
EP    2    0(   0)    1(   1)    2(   2)    3(   3)    4(   5)    5(   7)    6(   9)    7(  12)    8(  15)    9(  18)
          10(  22)   11(  26)   12(  30)   13(  35)   14(  40)
A1PP  1    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   1)    6(   2)    7(   3)    8(   4)    9(   5)
          10(   7)   11(   8)   12(  10)   13(  12)   14(  14)
A2PP  1    0(   0)    1(   1)    2(   1)    3(   2)    4(   3)    5(   4)    6(   5)    7(   7)    8(   8)    9(  10)
          10(  12)   11(  14)   12(  16)   13(  19)   14(  21)
EPP   1    0(   0)    1(   0)    2(   1)    3(   2)    4(   3)    5(   5)    6(   7)    7(   9)    8(  12)    9(  15)
          10(  18)   11(  22)   12(  26)   13(  30)   14(  35)
EPP   2    0(   0)    1(   0)    2(   1)    3(   2)    4(   3)    5(   5)    6(   7)    7(   9)    8(  12)    9(  15)
          10(  18)   11(  22)   12(  26)   13(  30)   14(  35)

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is C2v
LMax = =   50
 The dimension of each irreducable representation is
    A1    (  1)    A2    (  1)    B1    (  1)    B2    (  1)
Abelian axes
    1      -0.500000       0.866025       0.000000
    2       0.000000      -0.000000       1.000000
    3       0.866025       0.500000       0.000000
Symmetry operation directions
  1       0.000000       0.000000       1.000000 ang =  0  1 type = 0 axis = 3
  2       0.000000       0.000000       1.000000 ang =  0  1 type = 1 axis = 2
  3      -0.500000       0.866025       0.000000 ang =  0  1 type = 1 axis = 1
  4       0.866025       0.500000       0.000000 ang =  1  2 type = 2 axis = 3
irep =    1  sym =A1    1  eigs =   1   1   1   1
irep =    2  sym =A2    1  eigs =   1  -1  -1   1
irep =    3  sym =B1    1  eigs =   1   1  -1  -1
irep =    4  sym =B2    1  eigs =   1  -1   1  -1
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     2     3     4
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A1        1         1        676       1  1  1
 A2        1         2        625      -1 -1  1
 B1        1         3        650       1 -1 -1
 B2        1         4        650      -1  1 -1
Time Now =         3.8973  Delta time =         2.1131 End SymGen

+ Command ExpOrb
+
In GetRMax, RMaxEps =  0.10000000E-05  RMax =    6.8697539181 Angs

----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------

Maximum R in the grid (RMax) =     6.86975 Angs
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) =   10.0
In regions controlled by the wave length (HFacWave) =   10.0
Factor used to control the minimum exponent at each center (MinExpFac) =  300.0
Maximum asymptotic kinetic energy (EMAx) =  60.00000 eV
Maximum step size (MaxStep) =   6.86975 Angs
Factor to increase grid by (GridFac) =     1

    1  Center at =     0.00000 Angs  Alpha Max = 0.10000E+01
    2  Center at =     0.86113 Angs  Alpha Max = 0.10800E+05
    3  Center at =     1.44799 Angs  Alpha Max = 0.30000E+03
    4  Center at =     1.55933 Angs  Alpha Max = 0.24300E+05

Generated Grid

  irg  nin  ntot      step Angs     R end Angs
    1    8     8    0.30125E-02     0.02410
    2    8    16    0.41772E-02     0.05752
    3    8    24    0.66970E-02     0.11109
    4    8    32    0.89664E-02     0.18283
    5    8    40    0.10464E-01     0.26653
    6    8    48    0.10692E-01     0.35207
    7    8    56    0.98666E-02     0.43100
    8    8    64    0.87947E-02     0.50136
    9    8    72    0.76510E-02     0.56257
   10    8    80    0.71286E-02     0.61960
   11    8    88    0.74722E-02     0.67938
   12    8    96    0.81931E-02     0.74492
   13    8   104    0.52927E-02     0.78726
   14    8   112    0.33642E-02     0.81418
   15    8   120    0.21384E-02     0.83129
   16    8   128    0.13593E-02     0.84216
   17    8   136    0.86401E-03     0.84907
   18    8   144    0.61511E-03     0.85399
   19    8   152    0.52578E-03     0.85820
   20    8   160    0.36640E-03     0.86113
   21    8   168    0.50920E-03     0.86520
   22    8   176    0.54286E-03     0.86955
   23    8   184    0.66917E-03     0.87490
   24    8   192    0.10153E-02     0.88302
   25    8   200    0.16142E-02     0.89594
   26    8   208    0.25663E-02     0.91647
   27    8   216    0.40801E-02     0.94911
   28    8   224    0.64868E-02     1.00100
   29    8   232    0.10313E-01     1.08351
   30    8   240    0.13067E-01     1.18804
   31    8   248    0.11826E-01     1.28265
   32    8   256    0.75304E-02     1.34289
   33    8   264    0.47986E-02     1.38128
   34    8   272    0.35539E-02     1.40971
   35    8   280    0.31123E-02     1.43461
   36    8   288    0.16721E-02     1.44799
   37    8   296    0.30552E-02     1.47243
   38    8   304    0.32571E-02     1.49849
   39    8   312    0.27711E-02     1.52066
   40    8   320    0.17613E-02     1.53475
   41    8   328    0.11196E-02     1.54370
   42    8   336    0.71165E-03     1.54940
   43    8   344    0.46675E-03     1.55313
   44    8   352    0.37056E-03     1.55610
   45    8   360    0.34021E-03     1.55882
   46    8   368    0.63981E-04     1.55933
   47    8   376    0.33947E-03     1.56205
   48    8   384    0.36190E-03     1.56494
   49    8   392    0.44612E-03     1.56851
   50    8   400    0.67686E-03     1.57392
   51    8   408    0.10761E-02     1.58253
   52    8   416    0.17109E-02     1.59622
   53    8   424    0.27201E-02     1.61798
   54    8   432    0.43245E-02     1.65258
   55    8   440    0.68754E-02     1.70758
   56    8   448    0.10931E-01     1.79503
   57    8   456    0.17379E-01     1.93406
   58    8   464    0.19059E-01     2.08653
   59    8   472    0.19577E-01     2.24315
   60    8   480    0.21591E-01     2.41588
   61    8   488    0.23517E-01     2.60402
   62    8   496    0.25351E-01     2.80682
   63    8   504    0.27105E-01     3.02367
   64    8   512    0.28788E-01     3.25397
   65    8   520    0.30404E-01     3.49720
   66    8   528    0.31956E-01     3.75285
   67    8   536    0.33448E-01     4.02043
   68    8   544    0.34882E-01     4.29949
   69    8   552    0.36259E-01     4.58956
   70    8   560    0.37582E-01     4.89022
   71    8   568    0.38852E-01     5.20103
   72    8   576    0.40072E-01     5.52161
   73    8   584    0.41242E-01     5.85154
   74    8   592    0.42365E-01     6.19046
   75    8   600    0.43442E-01     6.53800
   76    8   608    0.41469E-01     6.86975
Time Now =         4.0473  Delta time =         0.1500 End GenGrid

----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------

Maximum scattering l (lmax) =   25
Maximum scattering m (mmaxs) =   25
Maximum numerical integration l (lmaxi) =   50
Maximum numerical integration m (mmaxi) =   50
Maximum l to include in the asymptotic region (lmasym) =   14
Parameter used to determine the cutoff points (PCutRd) =  0.10000000E-07 au
Maximum E used to determine grid (in eV) =       60.00000
Print flag (iprnfg) =    0
lmasymtyts =   14
 Actual value of lmasym found =     14
Number of regions of the same l expansion (NAngReg) =    9
Angular regions
    1 L =    2  from (    1)         0.00301  to (    7)         0.02109
    2 L =    6  from (    8)         0.02410  to (   15)         0.05334
    3 L =    9  from (   16)         0.05752  to (   23)         0.10440
    4 L =   13  from (   24)         0.11109  to (   31)         0.17386
    5 L =   14  from (   32)         0.18283  to (   55)         0.42114
    6 L =   22  from (   56)         0.43100  to (   71)         0.55492
    7 L =   25  from (   72)         0.56257  to (  472)         2.24315
    8 L =   22  from (  473)         2.26474  to (  496)         2.80682
    9 L =   14  from (  497)         2.83393  to (  608)         6.86975
Angular regions for computing spherical harmonics
    1 lval =   14
    2 lval =   25
Last grid points by processor WorkExp =     1.500
Proc id =   -1  Last grid point =       1
Proc id =    0  Last grid point =      80
Proc id =    1  Last grid point =     112
Proc id =    2  Last grid point =     136
Proc id =    3  Last grid point =     168
Proc id =    4  Last grid point =     200
Proc id =    5  Last grid point =     232
Proc id =    6  Last grid point =     264
Proc id =    7  Last grid point =     296
Proc id =    8  Last grid point =     328
Proc id =    9  Last grid point =     360
Proc id =   10  Last grid point =     384
Proc id =   11  Last grid point =     416
Proc id =   12  Last grid point =     448
Proc id =   13  Last grid point =     480
Proc id =   14  Last grid point =     536
Proc id =   15  Last grid point =     608
Time Now =         4.9248  Delta time =         0.8775 End AngGCt

----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------


 R of maximum density
     1  EP    1 at max irg =   46  r =   1.55933
     2  EP    2 at max irg =   46  r =   1.55933
     3  A1P   1 at max irg =   46  r =   1.55933
     4  A1P   1 at max irg =   21  r =   0.86520
     5  EP    1 at max irg =   21  r =   0.86520
     6  EP    2 at max irg =   21  r =   0.86520
     7  EP    1 at max irg =   21  r =   0.86520
     8  EP    2 at max irg =   21  r =   0.86520
     9  A1P   1 at max irg =   21  r =   0.86520
    10  A1P   1 at max irg =   32  r =   1.34289
    11  EP    1 at max irg =   32  r =   1.34289
    12  EP    2 at max irg =   32  r =   1.34289
    13  A1P   1 at max irg =    9  r =   0.56257
    14  EP    1 at max irg =   38  r =   1.49849
    15  EP    2 at max irg =   38  r =   1.49849
    16  A2P   1 at max irg =   40  r =   1.53475
    17  A2PP  1 at max irg =   41  r =   1.54370
    18  EPP   1 at max irg =   48  r =   1.56494
    19  EPP   2 at max irg =   48  r =   1.56494
    20  A1P   1 at max irg =   56  r =   1.79503
    21  EP    1 at max irg =   56  r =   1.79503
    22  EP    2 at max irg =   56  r =   1.79503
    23  EP    1 at max irg =   11  r =   0.67938
    24  EP    2 at max irg =   11  r =   0.67938
    25  A1P   1 at max irg =   33  r =   1.38128
    26  EP    1 at max irg =   38  r =   1.49849
    27  EP    2 at max irg =   38  r =   1.49849
    28  A2PP  1 at max irg =   52  r =   1.59622
    29  EP    1 at max irg =   24  r =   0.88302
    30  EP    2 at max irg =   24  r =   0.88302
    31  A2P   1 at max irg =   53  r =   1.61798
    32  EPP   1 at max irg =   28  r =   1.00100
    33  EPP   2 at max irg =   28  r =   1.00100

Rotation coefficients for orbital     1  grp =    1 EP    1
     1  0.8660254038    2 -0.5000000000

Rotation coefficients for orbital     2  grp =    1 EP    2
     1  0.5000000000    2  0.8660254038

Rotation coefficients for orbital     3  grp =    2 A1P   1
     3  1.0000000000

Rotation coefficients for orbital     4  grp =    3 A1P   1
     4  1.0000000000

Rotation coefficients for orbital     5  grp =    4 EP    1
     5  0.8660254038    6 -0.5000000000

Rotation coefficients for orbital     6  grp =    4 EP    2
     5  0.5000000000    6  0.8660254038

Rotation coefficients for orbital     7  grp =    5 EP    1
     7 -0.8660254038    8 -0.5000000000

Rotation coefficients for orbital     8  grp =    5 EP    2
     7 -0.5000000000    8  0.8660254038

Rotation coefficients for orbital     9  grp =    6 A1P   1
     9  1.0000000000

Rotation coefficients for orbital    10  grp =    7 A1P   1
    10  1.0000000000

Rotation coefficients for orbital    11  grp =    8 EP    1
    11  0.8660254038   12  0.5000000000

Rotation coefficients for orbital    12  grp =    8 EP    2
    11  0.5000000000   12 -0.8660254038

Rotation coefficients for orbital    13  grp =    9 A1P   1
    13  1.0000000000

Rotation coefficients for orbital    14  grp =   10 EP    1
    14  0.8660254038   15  0.5000000000

Rotation coefficients for orbital    15  grp =   10 EP    2
    14  0.5000000000   15 -0.8660254038

Rotation coefficients for orbital    16  grp =   11 A2P   1
    16  1.0000000000

Rotation coefficients for orbital    17  grp =   12 A2PP  1
    17  1.0000000000

Rotation coefficients for orbital    18  grp =   13 EPP   1
    18  0.8660254038   19 -0.5000000000

Rotation coefficients for orbital    19  grp =   13 EPP   2
    18  0.5000000000   19  0.8660254038

Rotation coefficients for orbital    20  grp =   14 A1P   1
    20  1.0000000000

Rotation coefficients for orbital    21  grp =   15 EP    1
    21  0.8660254038   22 -0.5000000000

Rotation coefficients for orbital    22  grp =   15 EP    2
    21  0.5000000000   22  0.8660254038

Rotation coefficients for orbital    23  grp =   16 EP    1
    23 -0.8660254038   24 -0.5000000000

Rotation coefficients for orbital    24  grp =   16 EP    2
    23 -0.5000000000   24  0.8660254038

Rotation coefficients for orbital    25  grp =   17 A1P   1
    25  1.0000000000

Rotation coefficients for orbital    26  grp =   18 EP    1
    26 -0.5000000000   27  0.8660254038

Rotation coefficients for orbital    27  grp =   18 EP    2
    26  0.8660254038   27  0.5000000000

Rotation coefficients for orbital    28  grp =   19 A2PP  1
    28  1.0000000000

Rotation coefficients for orbital    29  grp =   20 EP    1
    29  0.8660254038   30  0.5000000000

Rotation coefficients for orbital    30  grp =   20 EP    2
    29  0.5000000000   30 -0.8660254038

Rotation coefficients for orbital    31  grp =   21 A2P   1
    31  1.0000000000

Rotation coefficients for orbital    32  grp =   22 EPP   1
    32 -0.8660254038   33 -0.5000000000

Rotation coefficients for orbital    33  grp =   22 EPP   2
    32 -0.5000000000   33  0.8660254038
Number of orbital groups and degeneracis are        22
  2  1  1  2  2  1  1  2  1  2  1  1  2  1  2  2  1  2  1  2
  1  2
Number of orbital groups and number of electrons when fully occupied
        22
  4  2  2  4  4  2  2  4  2  4  2  2  4  2  4  4  2  4  2  4
  2  4
Time Now =         8.1136  Delta time =         3.1888 End RotOrb

----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------

 First orbital group to expand (mofr) =    1
 Last orbital group to expand (moto) =   22
Orbital     1 of  EP    1 symmetry normalization integral =  0.83308924
Orbital     2 of  A1P   1 symmetry normalization integral =  0.83229642
Orbital     3 of  A1P   1 symmetry normalization integral =  0.99525539
Orbital     4 of  EP    1 symmetry normalization integral =  0.99537170
Orbital     5 of  EP    1 symmetry normalization integral =  0.99526069
Orbital     6 of  A1P   1 symmetry normalization integral =  0.99530939
Orbital     7 of  A1P   1 symmetry normalization integral =  0.98647677
Orbital     8 of  EP    1 symmetry normalization integral =  0.98643928
Orbital     9 of  A1P   1 symmetry normalization integral =  0.99929887
Orbital    10 of  EP    1 symmetry normalization integral =  0.99909692
Orbital    11 of  A2P   1 symmetry normalization integral =  0.99919788
Orbital    12 of  A2PP  1 symmetry normalization integral =  0.99927376
Orbital    13 of  EPP   1 symmetry normalization integral =  0.99877256
Orbital    14 of  A1P   1 symmetry normalization integral =  0.99709429
Orbital    15 of  EP    1 symmetry normalization integral =  0.99706394
Orbital    16 of  EP    1 symmetry normalization integral =  0.99917468
Orbital    17 of  A1P   1 symmetry normalization integral =  0.99941292
Orbital    18 of  EP    1 symmetry normalization integral =  0.99953154
Orbital    19 of  A2PP  1 symmetry normalization integral =  0.99881384
Orbital    20 of  EP    1 symmetry normalization integral =  0.99867874
Orbital    21 of  A2P   1 symmetry normalization integral =  0.99861264
Orbital    22 of  EPP   1 symmetry normalization integral =  0.99954966
Time Now =        20.2746  Delta time =        12.1611 End ExpOrb

+ Command GetPot
+

----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------

Total density =     66.00000000
Time Now =        20.3734  Delta time =         0.0988 End Den

----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------

 vasymp =  0.66000000E+02 facnorm =  0.10000000E+01
Time Now =        20.6943  Delta time =         0.3209 Electronic part
Time Now =        21.3277  Delta time =         0.6335 End StPot

----------------------------------------------------------------------
vcppol - VCP polarization potential program
----------------------------------------------------------------------

Time Now =        21.6185  Delta time =         0.2907 End VcpPol

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.95000000E+01  eV
 Do E =  0.30000000E+02 eV (  0.11024798E+01 AU)
Time Now =        21.8862  Delta time =         0.2678 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A1PP  1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    76
Number of partial waves (np) =    25
Number of asymptotic solutions on the right (NAsymR) =     7
Number of asymptotic solutions on the left (NAsymL) =     7
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     7
Maximum in the asymptotic region (lpasym) =   14
Number of partial waves in the asymptotic region (npasym) =   14
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  225
Found polarization potential
Maximum l used in usual function (lmax) =   25
Maximum m used in usual function (LMax) =   25
Maxamum l used in expanding static potential (lpotct) =   50
Maximum l used in exapnding the exchange potential (lmaxab) =   50
Higest l included in the expansion of the wave function (lnp) =   25
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   14
Higest l used in the asymptotic potential (lpzb) =   28
Maximum L used in the homogeneous solution (LMaxHomo) =   14
Number of partial waves in the homogeneous solution (npHomo) =   14
Time Now =        21.9355  Delta time =         0.0492 Energy independent setup

Compute solution for E =   30.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.95377514E-14
 i =  2  lval =   2  stpote =  0.50007714E-16
 i =  3  lval =   3  stpote =  0.17388601E-02
 i =  4  lval =   3  stpote =  0.10039780E-02
For potential     2
 i =  1  exps = -0.51927814E+02 -0.20000000E+01  stpote = -0.38941403E-18
 i =  2  exps = -0.51927814E+02 -0.20000000E+01  stpote = -0.40515353E-18
 i =  3  exps = -0.51927814E+02 -0.20000000E+01  stpote = -0.42691600E-18
 i =  4  exps = -0.51927814E+02 -0.20000000E+01  stpote = -0.44758365E-18
For potential     3
 i =  1  exps = -0.26787517E+01 -0.77054054E-01  stpote = -0.68663342E-08
 i =  2  exps = -0.26773767E+01 -0.76973793E-01  stpote = -0.69147276E-08
 i =  3  exps = -0.26761896E+01 -0.76903772E-01  stpote = -0.69567823E-08
 i =  4  exps = -0.26752886E+01 -0.76850169E-01  stpote = -0.69888731E-08
Number of asymptotic regions =     165
Final point in integration =   0.15457376E+03 Angstroms
Time Now =        37.5592  Delta time =        15.6237 End SolveHomo
iL =   1 Iter =   1 c.s. =      1.30034694 angs^2  rmsk=     0.27074357
iL =   1 Iter =   2 c.s. =      1.50232029 angs^2  rmsk=     0.17137135
iL =   1 Iter =   3 c.s. =      1.50511817 angs^2  rmsk=     0.00428632
iL =   1 Iter =   4 c.s. =      1.50513472 angs^2  rmsk=     0.00002630
iL =   1 Iter =   5 c.s. =      1.50513254 angs^2  rmsk=     0.00000344
iL =   1 Iter =   6 c.s. =      1.50513254 angs^2  rmsk=     0.00000001
iL =   1 Iter =   7 c.s. =      1.50513254 angs^2  rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =      1.50513254 angs^2  rmsk=     0.04238421
iL =   2 Iter =   2 c.s. =      1.50435960 angs^2  rmsk=     0.02456682
iL =   2 Iter =   3 c.s. =      1.50478090 angs^2  rmsk=     0.00076063
iL =   2 Iter =   4 c.s. =      1.50478364 angs^2  rmsk=     0.00001242
iL =   2 Iter =   5 c.s. =      1.50478355 angs^2  rmsk=     0.00000018
iL =   2 Iter =   6 c.s. =      1.50478355 angs^2  rmsk=     0.00000000
iL =   3 Iter =   1 c.s. =      1.50478355 angs^2  rmsk=     0.01778723
iL =   3 Iter =   2 c.s. =      1.50528444 angs^2  rmsk=     0.00812712
iL =   3 Iter =   3 c.s. =      1.50538023 angs^2  rmsk=     0.00025761
iL =   3 Iter =   4 c.s. =      1.50538089 angs^2  rmsk=     0.00000277
iL =   3 Iter =   5 c.s. =      1.50538025 angs^2  rmsk=     0.00000035
iL =   3 Iter =   6 c.s. =      1.50538025 angs^2  rmsk=     0.00000000
iL =   3 Iter =   7 c.s. =      1.50538025 angs^2  rmsk=     0.00000000
iL =   4 Iter =   1 c.s. =      1.50538025 angs^2  rmsk=     0.00866107
iL =   4 Iter =   2 c.s. =      1.50538060 angs^2  rmsk=     0.00212211
iL =   4 Iter =   3 c.s. =      1.50538420 angs^2  rmsk=     0.00008085
iL =   4 Iter =   4 c.s. =      1.50538419 angs^2  rmsk=     0.00000126
iL =   4 Iter =   5 c.s. =      1.50538419 angs^2  rmsk=     0.00000001
iL =   4 Iter =   6 c.s. =      1.50538419 angs^2  rmsk=     0.00000000
iL =   5 Iter =   1 c.s. =      1.50538419 angs^2  rmsk=     0.00509877
iL =   5 Iter =   2 c.s. =      1.50538599 angs^2  rmsk=     0.00073583
iL =   5 Iter =   3 c.s. =      1.50538588 angs^2  rmsk=     0.00002879
iL =   5 Iter =   4 c.s. =      1.50538588 angs^2  rmsk=     0.00000043
iL =   5 Iter =   5 c.s. =      1.50538588 angs^2  rmsk=     0.00000002
iL =   5 Iter =   6 c.s. =      1.50538588 angs^2  rmsk=     0.00000000
iL =   6 Iter =   1 c.s. =      1.50538588 angs^2  rmsk=     0.00229237
iL =   6 Iter =   2 c.s. =      1.50538500 angs^2  rmsk=     0.00026572
iL =   6 Iter =   3 c.s. =      1.50538505 angs^2  rmsk=     0.00001046
iL =   6 Iter =   4 c.s. =      1.50538505 angs^2  rmsk=     0.00000013
iL =   6 Iter =   5 c.s. =      1.50538505 angs^2  rmsk=     0.00000000
iL =   7 Iter =   1 c.s. =      1.50538505 angs^2  rmsk=     0.00334113
iL =   7 Iter =   2 c.s. =      1.50538436 angs^2  rmsk=     0.00011467
iL =   7 Iter =   3 c.s. =      1.50538444 angs^2  rmsk=     0.00000553
iL =   7 Iter =   4 c.s. =      1.50538444 angs^2  rmsk=     0.00000006
iL =   7 Iter =   5 c.s. =      1.50538444 angs^2  rmsk=     0.00000000
     REAL PART -  Final k matrix
     ROW  1
  0.30651325E+01-0.41251446E+00-0.13235193E+00 0.32999563E-01 0.10150791E-01
 -0.36098894E-02-0.15992208E-02
     ROW  2
 -0.41251446E+00 0.20476060E+00 0.31182650E-01-0.11783105E-01-0.43823386E-02
  0.94249587E-03 0.29827283E-03
     ROW  3
 -0.13235193E+00 0.31182650E-01 0.10251584E+00-0.24544192E-02-0.28950235E-02
  0.12341913E-02 0.88993665E-04
     ROW  4
  0.32999563E-01-0.11783105E-01-0.24544192E-02 0.57406320E-01 0.11468605E-03
 -0.53723486E-03-0.20485003E-02
     ROW  5
  0.10150791E-01-0.43823386E-02-0.28950235E-02 0.11468605E-03 0.35100767E-01
  0.10563609E-02 0.91128690E-03
     ROW  6
 -0.36098894E-02 0.94249584E-03 0.12341913E-02-0.53723486E-03 0.10563609E-02
  0.15848906E-01 0.14072056E-03
     ROW  7
 -0.15992208E-02 0.29827282E-03 0.88993663E-04-0.20485003E-02 0.91128691E-03
  0.14072056E-03 0.23260101E-01
 eigenphases
  0.1575887E-01  0.2306331E-01  0.3503071E-01  0.5654141E-01  0.9337823E-01
  0.1488687E+00  0.1261550E+01
 eigenphase sum 0.163419E+01  scattering length=  10.60873
 eps+pi 0.477578E+01  eps+2*pi 0.791738E+01

MaxIter =   7 c.s. =      1.50538444 angs^2  rmsk=     0.00000000
Time Now =       202.6161  Delta time =       165.0569 End ScatStab
Time Now =       202.6204  Delta time =         0.0043 Finalize