----------------------------------------------------------------------
ePolyScat Version E2
----------------------------------------------------------------------

Authors: R. R. Lucchese, N. Sanna, A. P. P. Natalense, and F. A. Gianturco
http://www.chem.tamu.edu/rgroup/lucchese/ePolyScat.E2.manual/manual.html
Please cite the following two papers when reporting results obtained with  this program
F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 100, 6464 (1994).
A. P. P. Natalense and R. R. Lucchese, J. Chem. Phys. 111, 5344 (1999).

----------------------------------------------------------------------

Starting at 2009-03-13  11:39:41.824 (GMT -0500)
Using    16 processors

----------------------------------------------------------------------


+ Start of Input Records
#
# input file for test19
#
# electron scattering from CH4 using only local potential
#
  LMax   20     # maximum l to be used for wave functions
  EMax  50.0    # EMax, maximum asymptotic energy in eV
  EngForm      # Energy formulas
   0 2         # charge, formula type
   3           # number of terms in the formulas
   2.0 -1.0 1  # orbital occupation and coefficient for the K operators
   2.0 -1.0 1
   2.0 -1.0 1
  VCorr 'PZ'
  AsyPol
   0.25  # SwitchD, distance where switching function is down to 0.1
   1     # nterm, number of terms needed to define asymptotic potential
   1     # center for polarization term 1 is for C atom
   1     # ittyp type of polarization term, = 1 for spherically symmetric
         # = 2 for reading in the full tensor
   17.50 # value of the spherical polarizability
   3     # icrtyp, flag to determine where r match is, 3 for second crossing
         # or at nearest approach
   0     # ilntyp, flag to determine what matching line is used, 0 - use
         # l = 0 radial function as matching function
  FegeEng 13.0   # Energy correction (in eV) used in the fege potential
  LMaxK   10     # Maximum l in the K matirx
 ScatEng     # list of scattering energies
  0.1 0.5 2.0 10.0 20.0

 IterMax -1

Convert '/scratch/rrl581a/ePolyScat.E2/tests/test19.g03' 'g03'
GetBlms
ExpOrb
GetPot

 ScatContSym 'A1'  # Scattering symmetry
Scat
#
 ScatContSym 'A2'  # Scattering symmetry
Scat
#
 ScatContSym 'E'  # Scattering symmetry
Scat
#
 ScatContSym 'T1'  # Scattering symmetry
Scat
#
 ScatContSym 'T2'  # Scattering symmetry
Scat
TotalCrossSection
+ End of input reached
+ Data Record LMax - 20
+ Data Record EMax - 50.0
+ Data Record EngForm
+ 0 2 / 3 / 2.0 -1.0 1 / 2.0 -1.0 1 / 2.0 -1.0 1
+ Data Record VCorr - 'PZ'
+ Data Record AsyPol
+ 0.25 / 1 / 1 / 1 / 17.50 / 3 / 0
+ Data Record FegeEng - 13.0
+ Data Record LMaxK - 10
+ Data Record ScatEng - 0.1 0.5 2.0 10.0 20.0
+ Data Record IterMax - -1

+ Command Convert
+ '/scratch/rrl581a/ePolyScat.E2/tests/test19.g03' 'g03'

----------------------------------------------------------------------
g03cnv - read input from G03 output
----------------------------------------------------------------------

Expansion center is (in Angstroms) -
     0.0000000000   0.0000000000   0.0000000000
CardFlag =    T
Normal Mode flag =    F
Selecting orbitals
from     1  to     5  number already selected     0
Number of orbitals selected is     5
Highest orbital read in is =    5
Time Now =         0.0776  Delta time =         0.0776 End g03cnv

Atoms found    5  Coordinates in Angstroms
Z =  6 ZS =  6 r =   0.0000000000   0.0000000000   0.0000000000
Z =  1 ZS =  1 r =   0.6254700000   0.6254700000   0.6254700000
Z =  1 ZS =  1 r =  -0.6254700000  -0.6254700000   0.6254700000
Z =  1 ZS =  1 r =   0.6254700000  -0.6254700000  -0.6254700000
Z =  1 ZS =  1 r =  -0.6254700000   0.6254700000  -0.6254700000
Maximum distance from expansion center is    1.0833458186

+ Command GetBlms
+

----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------

Found point group  Td
Reduce angular grid using nthd =  1  nphid =  4
Found point group for abelian subgroup D2
Time Now =         0.0819  Delta time =         0.0043 End GetPGroup
List of unique axes
  N  Vector                      Z   R
  1  0.00000  0.00000  1.00000
  2  0.57735  0.57735  0.57735   1  2.04723
  3 -0.57735 -0.57735  0.57735   1  2.04723
  4  0.57735 -0.57735 -0.57735   1  2.04723
  5 -0.57735  0.57735 -0.57735   1  2.04723
List of corresponding x axes
  N  Vector
  1  1.00000 -0.00000 -0.00000
  2  0.81650 -0.40825 -0.40825
  3  0.81650 -0.40825  0.40825
  4  0.81650  0.40825  0.40825
  5  0.81650  0.40825 -0.40825
Computed default value of LMaxA =   11
Determineing angular grid in GetAxMax  LMax =   20  LMaxA =   11  LMaxAb =   40
MMax =    3  MMaxAbFlag =    1
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11  12  13  -1  -1  -1  -1  -1  -1
  -1
For axis     2  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3   3   2   2   2
   2
For axis     3  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3   3   2   2   2
   2
For axis     4  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3   3   2   2   2
   2
For axis     5  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3   3   2   2   2
   2
On the double L grid used for products
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19
  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39
  40
For axis     2  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1
For axis     3  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1
For axis     4  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1
For axis     5  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is Td
LMax = =   20
 The dimension of each irreducable representation is
    A1    (  1)    A2    (  1)    E     (  2)    T1    (  3)    T2    (  3)
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     8    11    14
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A1        1         1         21       1  1  1
 A2        1         2          8       1  1  1
 E         1         3         30       1  1  1
 E         2         4         30       1  1  1
 T1        1         5         38      -1 -1  1
 T1        2         6         38      -1  1 -1
 T1        3         7         38       1 -1 -1
 T2        1         8         52      -1 -1  1
 T2        2         9         52      -1  1 -1
 T2        3        10         52       1 -1 -1
Time Now =         1.4826  Delta time =         1.4007 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
A1    1    0(   1)    1(   1)    2(   1)    3(   2)    4(   3)    5(   3)    6(   4)    7(   5)    8(   6)    9(   7)
          10(   8)   11(   9)
A2    1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   1)    7(   1)    8(   1)    9(   2)
          10(   3)   11(   3)
E     1    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   3)    6(   4)    7(   5)    8(   7)    9(   8)
          10(  10)   11(  12)
E     2    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   3)    6(   4)    7(   5)    8(   7)    9(   8)
          10(  10)   11(  12)
T1    1    0(   0)    1(   0)    2(   0)    3(   1)    4(   2)    5(   3)    6(   4)    7(   6)    8(   8)    9(  10)
          10(  12)   11(  15)
T1    2    0(   0)    1(   0)    2(   0)    3(   1)    4(   2)    5(   3)    6(   4)    7(   6)    8(   8)    9(  10)
          10(  12)   11(  15)
T1    3    0(   0)    1(   0)    2(   0)    3(   1)    4(   2)    5(   3)    6(   4)    7(   6)    8(   8)    9(  10)
          10(  12)   11(  15)
T2    1    0(   0)    1(   1)    2(   2)    3(   3)    4(   4)    5(   6)    6(   8)    7(  10)    8(  12)    9(  15)
          10(  18)   11(  21)
T2    2    0(   0)    1(   1)    2(   2)    3(   3)    4(   4)    5(   6)    6(   8)    7(  10)    8(  12)    9(  15)
          10(  18)   11(  21)
T2    3    0(   0)    1(   1)    2(   2)    3(   3)    4(   4)    5(   6)    6(   8)    7(  10)    8(  12)    9(  15)
          10(  18)   11(  21)

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is D2
LMax = =   40
 The dimension of each irreducable representation is
    A     (  1)    B1    (  1)    B2    (  1)    B3    (  1)
Abelian axes
    1       1.000000       0.000000       0.000000
    2       0.000000       1.000000       0.000000
    3       0.000000       0.000000       1.000000
Symmetry operation directions
  1       0.000000       0.000000       1.000000 ang =  0  1 type = 0 axis = 3
  2       0.000000       0.000000       1.000000 ang =  1  2 type = 2 axis = 3
  3       1.000000       0.000000       0.000000 ang =  1  2 type = 2 axis = 1
  4       0.000000       1.000000       0.000000 ang =  1  2 type = 2 axis = 2
irep =    1  sym =A     1  eigs =   1   1   1   1
irep =    2  sym =B1    1  eigs =   1   1  -1  -1
irep =    3  sym =B2    1  eigs =   1  -1  -1   1
irep =    4  sym =B3    1  eigs =   1  -1   1  -1
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     2     3     4
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A         1         1        421       1  1  1
 B1        1         2        420       1 -1 -1
 B2        1         3        420      -1 -1  1
 B3        1         4        420      -1  1 -1
Time Now =         1.5222  Delta time =         0.0396 End SymGen

+ Command ExpOrb
+
In GetRMax, RMaxEps =  0.10000000E-05  RMax =   12.5505943826 Angs

----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------

Maximum R in the grid (RMax) =    12.55059 Angs
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) =   10.0
In regions controlled by the wave length (HFacWave) =   10.0
Factor used to control the minimum exponent at each center (MinExpFac) =  300.0
Maximum asymptotic kinetic energy (EMAx) =  50.00000 eV
Maximum step size (MaxStep) =   0.01058 Angs
Factor to increase grid by (GridFac) =     1

    1  Center at =     0.00000 Angs  Alpha Max = 0.33980E+05
    2  Center at =     1.08335 Angs  Alpha Max = 0.30000E+03

Generated Grid

  irg  nin  ntot      step Angs     R end Angs
    1    8     8    0.28707E-03     0.00230
    2    8    16    0.30604E-03     0.00474
    3    8    24    0.37726E-03     0.00776
    4    8    32    0.57239E-03     0.01234
    5    8    40    0.91002E-03     0.01962
    6    8    48    0.14468E-02     0.03120
    7    8    56    0.23002E-02     0.04960
    8    8    64    0.36571E-02     0.07886
    9    8    72    0.58142E-02     0.12537
   10    8    80    0.92438E-02     0.19932
   11   32   112    0.10584E-01     0.53799
   12    8   120    0.10220E-01     0.61975
   13    8   128    0.99060E-02     0.69900
   14   16   144    0.10584E-01     0.86834
   15    8   152    0.97241E-02     0.94613
   16    8   160    0.62495E-02     0.99613
   17    8   168    0.41277E-02     1.02915
   18    8   176    0.33083E-02     1.05561
   19    8   184    0.30585E-02     1.08008
   20    8   192    0.40782E-03     1.08335
   21    8   200    0.30552E-02     1.10779
   22    8   208    0.32571E-02     1.13384
   23    8   216    0.40150E-02     1.16596
   24    8   224    0.60918E-02     1.21470
   25    8   232    0.96851E-02     1.29218
   26   64   296    0.10584E-01     1.96953
   27   64   360    0.10584E-01     2.64687
   28   64   424    0.10584E-01     3.32422
   29   64   488    0.10584E-01     4.00157
   30   64   552    0.10584E-01     4.67891
   31   64   616    0.10584E-01     5.35626
   32   64   680    0.10584E-01     6.03361
   33   64   744    0.10584E-01     6.71095
   34   64   808    0.10584E-01     7.38830
   35   64   872    0.10584E-01     8.06565
   36   64   936    0.10584E-01     8.74299
   37   64  1000    0.10584E-01     9.42034
   38   64  1064    0.10584E-01    10.09769
   39   64  1128    0.10584E-01    10.77503
   40   64  1192    0.10584E-01    11.45238
   41   64  1256    0.10584E-01    12.12973
   42   32  1288    0.10584E-01    12.46840
   43    8  1296    0.10274E-01    12.55059
Time Now =         1.6836  Delta time =         0.1614 End GenGrid

----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------

Maximum scattering l (lmax) =   20
Maximum scattering m (mmaxs) =   20
Maximum numerical integration l (lmaxi) =   40
Maximum numerical integration m (mmaxi) =   40
Maximum l to include in the asymptotic region (lmasym) =   11
Parameter used to determine the cutoff points (PCutRd) =  0.10000000E-07 au
Maximum E used to determine grid (in eV) =       50.00000
Print flag (iprnfg) =    0
lmasymtyts =   11
 Actual value of lmasym found =     11
Number of regions of the same l expansion (NAngReg) =   12
Angular regions
    1 L =    2  from (    1)         0.00029  to (    7)         0.00201
    2 L =    4  from (    8)         0.00230  to (   15)         0.00444
    3 L =    5  from (   16)         0.00474  to (   31)         0.01177
    4 L =    6  from (   32)         0.01234  to (   47)         0.02975
    5 L =    7  from (   48)         0.03120  to (   55)         0.04730
    6 L =    8  from (   56)         0.04960  to (   63)         0.07520
    7 L =    9  from (   64)         0.07886  to (   71)         0.11955
    8 L =   11  from (   72)         0.12537  to (  119)         0.60953
    9 L =   19  from (  120)         0.61975  to (  135)         0.77309
   10 L =   20  from (  136)         0.78367  to (  248)         1.46152
   11 L =   19  from (  249)         1.47210  to (  304)         2.05419
   12 L =   11  from (  305)         2.06478  to ( 1296)        12.55059
Angular regions for computing spherical harmonics
    1 lval =   11
    2 lval =   20
Last grid points by processor WorkExp =     1.500
Proc id =   -1  Last grid point =       1
Proc id =    0  Last grid point =     128
Proc id =    1  Last grid point =     168
Proc id =    2  Last grid point =     208
Proc id =    3  Last grid point =     248
Proc id =    4  Last grid point =     288
Proc id =    5  Last grid point =     352
Proc id =    6  Last grid point =     448
Proc id =    7  Last grid point =     544
Proc id =    8  Last grid point =     640
Proc id =    9  Last grid point =     736
Proc id =   10  Last grid point =     824
Proc id =   11  Last grid point =     920
Proc id =   12  Last grid point =    1016
Proc id =   13  Last grid point =    1112
Proc id =   14  Last grid point =    1208
Proc id =   15  Last grid point =    1296
Time Now =         1.8152  Delta time =         0.1316 End AngGCt

----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------


 R of maximum density
     1  A1    1 at max irg =    8  r =   0.07886
     2  A1    1 at max irg =   17  r =   0.78367
     3  T2    1 at max irg =   21  r =   1.02915
     4  T2    2 at max irg =   21  r =   1.02915
     5  T2    3 at max irg =   21  r =   1.02915

Rotation coefficients for orbital     1  grp =    1 A1    1
     1  1.0000000000

Rotation coefficients for orbital     2  grp =    2 A1    1
     2  1.0000000000

Rotation coefficients for orbital     3  grp =    3 T2    1
     3 -0.0000000000    4  1.0000000000    5 -0.0000000000

Rotation coefficients for orbital     4  grp =    3 T2    2
     3  1.0000000000    4  0.0000000000    5  0.0000000000

Rotation coefficients for orbital     5  grp =    3 T2    3
     3 -0.0000000000    4  0.0000000000    5  1.0000000000
Number of orbital groups and degeneracis are         3
  1  1  3
Number of orbital groups and number of electrons when fully occupied
         3
  2  2  6
Time Now =         2.8470  Delta time =         1.0319 End RotOrb

----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------

 First orbital group to expand (mofr) =    1
 Last orbital group to expand (moto) =    3
Orbital     1 of  A1    1 symmetry normalization integral =  0.99999999
Orbital     2 of  A1    1 symmetry normalization integral =  0.99999556
Orbital     3 of  T2    1 symmetry normalization integral =  0.99999258
Time Now =         9.5832  Delta time =         6.7361 End ExpOrb

+ Command GetPot
+

----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------

Total density =     10.00000000
Time Now =         9.5994  Delta time =         0.0162 End Den

----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------

 vasymp =  0.10000000E+02 facnorm =  0.10000000E+01
Time Now =         9.7717  Delta time =         0.1723 Electronic part
Time Now =         9.7821  Delta time =         0.0104 End StPot

----------------------------------------------------------------------
vcppol - VCP polarization potential program
----------------------------------------------------------------------

Time Now =         9.8695  Delta time =         0.0874 End VcpPol

----------------------------------------------------------------------
AsyPol - Program to match polarization potential to asymptotic form
----------------------------------------------------------------------

Switching distance (SwitchD) =     0.25000
Number of terms in the asymptotic polarization potential (nterm) =    1
Term =    1  At center =    1
Explicit coordinates =  0.00000000E+00  0.00000000E+00  0.00000000E+00
Type =    1
Polarizability =  0.17500000E+02 au
Last center is at (RCenterX) =   0.00000 Angs
 Radial matching parameter (icrtyp) =    3
 Matching line type (ilntyp) =    0
 Matching point is at r =   2.2208154450
Matching uses curve crossing (iMatchType = 1)
First nonzero weight at R =        1.46152 Angs
Last point of the switching region R=        2.98555 Angs
Total asymptotic potential is   0.17500000E+02 a.u.
Time Now =         9.9314  Delta time =         0.0619 End AsyPol
+ Data Record ScatContSym - 'A1'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.10000000E+00 eV (  0.36749326E-02 AU)
Time Now =        10.0179  Delta time =         0.0864 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A1    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.17500000E+02  au
Number of integration regions used =    51
Number of partial waves (np) =    21
Number of asymptotic solutions on the right (NAsymR) =     8
Number of asymptotic solutions on the left (NAsymL) =     8
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     8
Maximum in the asymptotic region (lpasym) =   11
Number of partial waves in the asymptotic region (npasym) =    9
Number of orthogonality constraints (NOrthUse) =    2
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  133
Found polarization potential
Maximum l used in usual function (lmax) =   20
Maximum m used in usual function (LMax) =   20
Maxamum l used in expanding static potential (lpotct) =   40
Maximum l used in exapnding the exchange potential (lmaxab) =   40
Higest l included in the expansion of the wave function (lnp) =   20
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   11
Higest l used in the asymptotic potential (lpzb) =   22
Maximum L used in the homogeneous solution (LMaxHomo) =   20
Number of partial waves in the homogeneous solution (npHomo) =   21
Time Now =        10.0511  Delta time =         0.0332 Energy independent setup

Compute solution for E =    0.1000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.17500000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.10465319E-15
 i =  2  lval =   3  stpote = -0.36496507E-19
 i =  3  lval =   3  stpote = -0.41025463E-18
 i =  4  lval =   4  stpote = -0.15743972E-04
For potential     2
 i =  1  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.25916614E-16
 i =  2  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.25786305E-16
 i =  3  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.25679173E-16
 i =  4  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.25599205E-16
For potential     3
 i =  1  lvals =   6   6  stpote =  0.13552527E-19  second term =  0.00000000E+00
 i =  2  lvals =   6   6  stpote = -0.10344762E-19  second term =  0.00000000E+00
 i =  3  lvals =   6   6  stpote =  0.66979938E-20  second term =  0.00000000E+00
 i =  4  lvals =   7   9  stpote = -0.60833368E-07  second term = -0.60833368E-07
Number of asymptotic regions =       4
Final point in integration =   0.22255445E+03 Angstroms
Time Now =        22.6624  Delta time =        12.6113 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.05880286 angs^2  rmsk=     0.00138538
iL =   2 Iter =   1 c.s. =      0.05880286 angs^2  rmsk=     0.00016508
iL =   3 Iter =   1 c.s. =      0.05880286 angs^2  rmsk=     0.00007356
iL =   4 Iter =   1 c.s. =      0.05880286 angs^2  rmsk=     0.00002363
iL =   5 Iter =   1 c.s. =      0.05880286 angs^2  rmsk=     0.00001531
iL =   6 Iter =   1 c.s. =      0.05880286 angs^2  rmsk=     0.00001040
iL =   7 Iter =   1 c.s. =      0.05880286 angs^2  rmsk=     0.00000742
iL =   8 Iter =   1 c.s. =      0.05880286 angs^2  rmsk=     0.00000547
     REAL PART -  Final k matrix
     ROW  1
  0.10982658E-01 0.24752809E-03-0.52581557E-05-0.15774470E-08-0.19151327E-10
  0.72366718E-13-0.29461204E-14 0.42449514E-16
     ROW  2
  0.24752809E-03 0.12937001E-02-0.95791009E-04-0.81998309E-05-0.83741446E-07
  0.75459641E-12-0.12896059E-10 0.96938838E-13
     ROW  3
 -0.52581557E-05-0.95791009E-04 0.58057770E-03 0.72302194E-06 0.38058361E-05
 -0.49144541E-07 0.82234409E-12-0.37561006E-11
     ROW  4
 -0.15774470E-08-0.81998309E-05 0.72302194E-06 0.18838475E-03 0.13013214E-04
  0.94314811E-07 0.19091610E-05-0.12055887E-07
     ROW  5
 -0.19151327E-10-0.83741446E-07 0.38058361E-05 0.13013214E-04 0.12143855E-03
 -0.77738382E-05 0.10286140E-06-0.12149135E-05
     ROW  6
  0.72366721E-13 0.75459642E-12-0.49144541E-07 0.94314811E-07-0.77738382E-05
  0.82811837E-04 0.19681745E-05 0.54253606E-07
     ROW  7
 -0.29461206E-14-0.12896059E-10 0.82234409E-12 0.19091610E-05 0.10286140E-06
  0.19681745E-05 0.59174511E-04-0.39181564E-05
     ROW  8
  0.42449540E-16 0.96938840E-13-0.37561006E-11-0.12055887E-07-0.12149135E-05
  0.54253606E-07-0.39181564E-05 0.43590225E-04
 eigenphases
  0.4263705E-04  0.5990726E-04  0.8141078E-04  0.1205432E-03  0.1908085E-03
  0.5678950E-03  0.1300150E-02  0.1098854E-01
 eigenphase sum 0.133519E-01  scattering length=  -0.15575
 eps+pi 0.315494E+01  eps+2*pi 0.629654E+01

MaxIter =   1 c.s. =      0.05880286 angs^2  rmsk=     0.00000547
Time Now =        22.6723  Delta time =         0.0100 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+00 eV (  0.18374663E-01 AU)
Time Now =        22.8176  Delta time =         0.1453 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A1    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.17500000E+02  au
Number of integration regions used =    51
Number of partial waves (np) =    21
Number of asymptotic solutions on the right (NAsymR) =     8
Number of asymptotic solutions on the left (NAsymL) =     8
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     8
Maximum in the asymptotic region (lpasym) =   11
Number of partial waves in the asymptotic region (npasym) =    9
Number of orthogonality constraints (NOrthUse) =    2
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  133
Found polarization potential
Maximum l used in usual function (lmax) =   20
Maximum m used in usual function (LMax) =   20
Maxamum l used in expanding static potential (lpotct) =   40
Maximum l used in exapnding the exchange potential (lmaxab) =   40
Higest l included in the expansion of the wave function (lnp) =   20
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   11
Higest l used in the asymptotic potential (lpzb) =   22
Maximum L used in the homogeneous solution (LMaxHomo) =   20
Number of partial waves in the homogeneous solution (npHomo) =   21
Time Now =        22.8509  Delta time =         0.0333 Energy independent setup

Compute solution for E =    0.5000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.17500000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.10465319E-15
 i =  2  lval =   3  stpote = -0.36496507E-19
 i =  3  lval =   3  stpote = -0.41025463E-18
 i =  4  lval =   4  stpote = -0.15743972E-04
For potential     2
 i =  1  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.24706871E-16
 i =  2  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.24818625E-16
 i =  3  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.24888866E-16
 i =  4  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.24925158E-16
For potential     3
 i =  1  lvals =   6   6  stpote =  0.13552527E-19  second term =  0.00000000E+00
 i =  2  lvals =   6   6  stpote = -0.10344762E-19  second term =  0.00000000E+00
 i =  3  lvals =   6   6  stpote =  0.66979938E-20  second term =  0.00000000E+00
 i =  4  lvals =   7   9  stpote = -0.60833368E-07  second term = -0.60833368E-07
Number of asymptotic regions =       5
Final point in integration =   0.14885034E+03 Angstroms
Time Now =        35.4501  Delta time =        12.5992 End SolveHomo
iL =   1 Iter =   1 c.s. =      1.97631117 angs^2  rmsk=     0.01814518
iL =   2 Iter =   1 c.s. =      1.97631117 angs^2  rmsk=     0.00084721
iL =   3 Iter =   1 c.s. =      1.97631117 angs^2  rmsk=     0.00036701
iL =   4 Iter =   1 c.s. =      1.97631117 angs^2  rmsk=     0.00011870
iL =   5 Iter =   1 c.s. =      1.97631117 angs^2  rmsk=     0.00007678
iL =   6 Iter =   1 c.s. =      1.97631117 angs^2  rmsk=     0.00005208
iL =   7 Iter =   1 c.s. =      1.97631117 angs^2  rmsk=     0.00003739
iL =   8 Iter =   1 c.s. =      1.97631117 angs^2  rmsk=     0.00002759
     REAL PART -  Final k matrix
     ROW  1
 -0.14495920E+00 0.15907661E-02-0.69335832E-04-0.95286222E-07-0.25946881E-08
  0.21447310E-10-0.13467936E-11 0.35357822E-13
     ROW  2
  0.15907661E-02 0.65703690E-02-0.48481212E-03-0.41152748E-04-0.95542068E-06
  0.31649976E-09-0.73070586E-09 0.12547490E-10
     ROW  3
 -0.69335832E-04-0.48481212E-03 0.28948722E-02 0.81334845E-05 0.19011146E-04
 -0.54859645E-06 0.13524447E-09-0.21444919E-09
     ROW  4
 -0.95286223E-07-0.41152748E-04 0.81334845E-05 0.94641530E-03 0.65177154E-04
  0.10462757E-05 0.94599490E-05-0.13655090E-06
     ROW  5
 -0.25946882E-08-0.95542068E-06 0.19011146E-04 0.65177154E-04 0.60918038E-03
 -0.38927814E-04 0.11495572E-05-0.59737330E-05
     ROW  6
  0.21447310E-10 0.31649976E-09-0.54859645E-06 0.10462757E-05-0.38927814E-04
  0.41472097E-03 0.98552538E-05 0.60577583E-06
     ROW  7
 -0.13467936E-11-0.73070587E-09 0.13524447E-09 0.94599490E-05 0.11495572E-05
  0.98552538E-05 0.29813845E-03-0.19642884E-04
     ROW  8
  0.35357822E-13 0.12547491E-10-0.21444920E-09-0.13655090E-06-0.59737330E-05
  0.60577583E-06-0.19642884E-04 0.21972208E-03
 eigenphases
 -0.1439728E+00  0.2149599E-03  0.3017823E-03  0.4077460E-03  0.6047624E-03
  0.9584526E-03  0.2832280E-02  0.6650055E-02
 eigenphase sum-0.132003E+00  scattering length=   0.69261
 eps+pi 0.300959E+01  eps+2*pi 0.615118E+01

MaxIter =   1 c.s. =      1.97631117 angs^2  rmsk=     0.00002759
Time Now =        35.4510  Delta time =         0.0009 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.20000000E+01 eV (  0.73498652E-01 AU)
Time Now =        35.5485  Delta time =         0.0975 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A1    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.17500000E+02  au
Number of integration regions used =    51
Number of partial waves (np) =    21
Number of asymptotic solutions on the right (NAsymR) =     8
Number of asymptotic solutions on the left (NAsymL) =     8
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     8
Maximum in the asymptotic region (lpasym) =   11
Number of partial waves in the asymptotic region (npasym) =    9
Number of orthogonality constraints (NOrthUse) =    2
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  133
Found polarization potential
Maximum l used in usual function (lmax) =   20
Maximum m used in usual function (LMax) =   20
Maxamum l used in expanding static potential (lpotct) =   40
Maximum l used in exapnding the exchange potential (lmaxab) =   40
Higest l included in the expansion of the wave function (lnp) =   20
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   11
Higest l used in the asymptotic potential (lpzb) =   22
Maximum L used in the homogeneous solution (LMaxHomo) =   20
Number of partial waves in the homogeneous solution (npHomo) =   21
Time Now =        35.5817  Delta time =         0.0332 Energy independent setup

Compute solution for E =    2.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.17500000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.10465319E-15
 i =  2  lval =   3  stpote = -0.36496507E-19
 i =  3  lval =   3  stpote = -0.41025463E-18
 i =  4  lval =   4  stpote = -0.15743972E-04
For potential     2
 i =  1  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.21704717E-16
 i =  2  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.21124799E-16
 i =  3  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.20618596E-16
 i =  4  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.20214528E-16
For potential     3
 i =  1  lvals =   6   6  stpote =  0.13552527E-19  second term =  0.00000000E+00
 i =  2  lvals =   6   6  stpote = -0.10344762E-19  second term =  0.00000000E+00
 i =  3  lvals =   6   6  stpote =  0.66979938E-20  second term =  0.00000000E+00
 i =  4  lvals =   7   9  stpote = -0.60833368E-07  second term = -0.60833368E-07
Number of asymptotic regions =       7
Final point in integration =   0.10527008E+03 Angstroms
Time Now =        48.1373  Delta time =        12.5556 End SolveHomo
iL =   1 Iter =   1 c.s. =      6.12385112 angs^2  rmsk=     0.07320572
iL =   2 Iter =   1 c.s. =      6.12385112 angs^2  rmsk=     0.00376148
iL =   3 Iter =   1 c.s. =      6.12385112 angs^2  rmsk=     0.00147371
iL =   4 Iter =   1 c.s. =      6.12385112 angs^2  rmsk=     0.00047814
iL =   5 Iter =   1 c.s. =      6.12385112 angs^2  rmsk=     0.00030771
iL =   6 Iter =   1 c.s. =      6.12385112 angs^2  rmsk=     0.00020783
iL =   7 Iter =   1 c.s. =      6.12385112 angs^2  rmsk=     0.00015028
iL =   8 Iter =   1 c.s. =      6.12385112 angs^2  rmsk=     0.00011071
     REAL PART -  Final k matrix
     ROW  1
 -0.58462349E+00 0.11193212E-01-0.89144529E-03-0.47366918E-05-0.25541488E-06
  0.41381160E-08-0.44867164E-09 0.21010465E-10
     ROW  2
  0.11193212E-01 0.27850683E-01-0.21306561E-02-0.17355830E-03-0.83312377E-05
  0.25954275E-07-0.22813980E-07 0.82583685E-09
     ROW  3
 -0.89144529E-03-0.21306561E-02 0.11560738E-01 0.67168286E-04 0.77863878E-04
 -0.43431048E-05 0.95449245E-08-0.68645753E-08
     ROW  4
 -0.47366918E-05-0.17355830E-03 0.67168286E-04 0.38113751E-02 0.26284402E-03
  0.81623590E-05 0.38119165E-04-0.11240702E-05
     ROW  5
 -0.25541488E-06-0.83312377E-05 0.77863878E-04 0.26284402E-03 0.24412363E-02
 -0.15648556E-03 0.92469714E-05-0.23980770E-04
     ROW  6
  0.41381160E-08 0.25954275E-07-0.43431048E-05 0.81623590E-05-0.15648556E-03
  0.16547723E-02 0.39556125E-04 0.48620970E-05
     ROW  7
 -0.44867164E-09-0.22813980E-07 0.95449245E-08 0.38119165E-04 0.92469714E-05
  0.39556125E-04 0.11983248E-02-0.78780007E-04
     ROW  8
  0.21010465E-10 0.82583685E-09-0.68645753E-08-0.11240702E-05-0.23980770E-04
  0.48620970E-05-0.78780007E-04 0.88183412E-03
 eigenphases
 -0.5291898E+00  0.8628074E-03  0.1212670E-02  0.1626916E-02  0.2423790E-02
  0.3859032E-02  0.1128763E-01  0.2832374E-01
 eigenphase sum-0.479593E+00  scattering length=   1.35652
 eps+pi 0.266200E+01  eps+2*pi 0.580359E+01

MaxIter =   1 c.s. =      6.12385112 angs^2  rmsk=     0.00011071
Time Now =        48.1381  Delta time =         0.0009 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.10000000E+02 eV (  0.36749326E+00 AU)
Time Now =        48.2351  Delta time =         0.0970 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A1    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.17500000E+02  au
Number of integration regions used =    51
Number of partial waves (np) =    21
Number of asymptotic solutions on the right (NAsymR) =     8
Number of asymptotic solutions on the left (NAsymL) =     8
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     8
Maximum in the asymptotic region (lpasym) =   11
Number of partial waves in the asymptotic region (npasym) =    9
Number of orthogonality constraints (NOrthUse) =    2
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  133
Found polarization potential
Maximum l used in usual function (lmax) =   20
Maximum m used in usual function (LMax) =   20
Maxamum l used in expanding static potential (lpotct) =   40
Maximum l used in exapnding the exchange potential (lmaxab) =   40
Higest l included in the expansion of the wave function (lnp) =   20
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   11
Higest l used in the asymptotic potential (lpzb) =   22
Maximum L used in the homogeneous solution (LMaxHomo) =   20
Number of partial waves in the homogeneous solution (npHomo) =   21
Time Now =        48.2684  Delta time =         0.0332 Energy independent setup

Compute solution for E =   10.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.17500000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.10465319E-15
 i =  2  lval =   3  stpote = -0.36496507E-19
 i =  3  lval =   3  stpote = -0.41025463E-18
 i =  4  lval =   4  stpote = -0.15743972E-04
For potential     2
 i =  1  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.17427622E-16
 i =  2  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.17277668E-16
 i =  3  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.17196103E-16
 i =  4  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.17166923E-16
For potential     3
 i =  1  lvals =   6   6  stpote =  0.13552527E-19  second term =  0.00000000E+00
 i =  2  lvals =   6   6  stpote = -0.10344762E-19  second term =  0.00000000E+00
 i =  3  lvals =   6   6  stpote =  0.66979938E-20  second term =  0.00000000E+00
 i =  4  lvals =   7   9  stpote = -0.60833368E-07  second term = -0.60833368E-07
Number of asymptotic regions =      10
Final point in integration =   0.70417590E+02 Angstroms
Time Now =        60.9050  Delta time =        12.6366 End SolveHomo
iL =   1 Iter =   1 c.s. =      4.87946621 angs^2  rmsk=     0.63940151
iL =   2 Iter =   1 c.s. =      4.87946621 angs^2  rmsk=     0.07316855
iL =   3 Iter =   1 c.s. =      4.87946621 angs^2  rmsk=     0.01421443
iL =   4 Iter =   1 c.s. =      4.87946621 angs^2  rmsk=     0.00248676
iL =   5 Iter =   1 c.s. =      4.87946621 angs^2  rmsk=     0.00155291
iL =   6 Iter =   1 c.s. =      4.87946621 angs^2  rmsk=     0.00103204
iL =   7 Iter =   1 c.s. =      4.87946621 angs^2  rmsk=     0.00075888
iL =   8 Iter =   1 c.s. =      4.87946621 angs^2  rmsk=     0.00055636
     REAL PART -  Final k matrix
     ROW  1
 -0.50484600E+01 0.55979879E+00-0.93941018E-01-0.28073135E-02-0.32946084E-03
  0.11728247E-04-0.25736451E-05 0.25847195E-06
     ROW  2
  0.55979879E+00 0.16975074E+00-0.20958402E-01-0.18564844E-02-0.20017576E-03
  0.46660832E-05-0.18425978E-05 0.18918445E-06
     ROW  3
 -0.93941018E-01-0.20958402E-01 0.60544817E-01 0.10245542E-02 0.55871772E-03
 -0.54518249E-04 0.15133967E-05-0.43123854E-06
     ROW  4
 -0.28073135E-02-0.18564844E-02 0.10245542E-02 0.19525970E-01 0.14423783E-02
  0.81165762E-04 0.21406535E-03-0.14825124E-04
     ROW  5
 -0.32946084E-03-0.20017576E-03 0.55871772E-03 0.14423783E-02 0.12291878E-01
 -0.82282277E-03 0.10811444E-03-0.12981721E-03
     ROW  6
  0.11728247E-04 0.46660832E-05-0.54518249E-04 0.81165762E-04-0.82282277E-03
  0.82119109E-02 0.20405778E-03 0.55906082E-04
     ROW  7
 -0.25736451E-05-0.18425978E-05 0.15133967E-05 0.21406535E-03 0.10811444E-03
  0.20405778E-03 0.60493551E-02-0.40430998E-03
     ROW  8
  0.25847195E-06 0.18918445E-06-0.43123854E-06-0.14825124E-04-0.12981721E-03
  0.55906082E-04-0.40430998E-03 0.44302139E-02
 eigenphases
 -0.1377524E+01  0.4331218E-02  0.6118975E-02  0.8063509E-02  0.1218404E-01
  0.1976538E-01  0.5663092E-01  0.2304665E+00
 eigenphase sum-0.103996E+01  scattering length=   1.98699
 eps+pi 0.210163E+01  eps+2*pi 0.524322E+01

MaxIter =   1 c.s. =      4.87946621 angs^2  rmsk=     0.00055636
Time Now =        60.9058  Delta time =         0.0009 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.20000000E+02 eV (  0.73498652E+00 AU)
Time Now =        61.0032  Delta time =         0.0974 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A1    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.17500000E+02  au
Number of integration regions used =    51
Number of partial waves (np) =    21
Number of asymptotic solutions on the right (NAsymR) =     8
Number of asymptotic solutions on the left (NAsymL) =     8
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     8
Maximum in the asymptotic region (lpasym) =   11
Number of partial waves in the asymptotic region (npasym) =    9
Number of orthogonality constraints (NOrthUse) =    2
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  133
Found polarization potential
Maximum l used in usual function (lmax) =   20
Maximum m used in usual function (LMax) =   20
Maxamum l used in expanding static potential (lpotct) =   40
Maximum l used in exapnding the exchange potential (lmaxab) =   40
Higest l included in the expansion of the wave function (lnp) =   20
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   11
Higest l used in the asymptotic potential (lpzb) =   22
Maximum L used in the homogeneous solution (LMaxHomo) =   20
Number of partial waves in the homogeneous solution (npHomo) =   21
Time Now =        61.0367  Delta time =         0.0335 Energy independent setup

Compute solution for E =   20.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.17500000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.10465319E-15
 i =  2  lval =   3  stpote = -0.36496507E-19
 i =  3  lval =   3  stpote = -0.41025463E-18
 i =  4  lval =   4  stpote = -0.15743972E-04
For potential     2
 i =  1  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.68700479E-17
 i =  2  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.55721542E-17
 i =  3  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.43550934E-17
 i =  4  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.33234086E-17
For potential     3
 i =  1  lvals =   6   6  stpote =  0.13552527E-19  second term =  0.00000000E+00
 i =  2  lvals =   6   6  stpote = -0.10344762E-19  second term =  0.00000000E+00
 i =  3  lvals =   6   6  stpote =  0.66979938E-20  second term =  0.00000000E+00
 i =  4  lvals =   7   9  stpote = -0.60833368E-07  second term = -0.60833368E-07
Number of asymptotic regions =      11
Final point in integration =   0.59223160E+02 Angstroms
Time Now =        73.5370  Delta time =        12.5003 End SolveHomo
iL =   1 Iter =   1 c.s. =      3.14880867 angs^2  rmsk=     0.94357725
iL =   2 Iter =   1 c.s. =      3.14880867 angs^2  rmsk=     0.39377589
iL =   3 Iter =   1 c.s. =      3.14880867 angs^2  rmsk=     0.09260360
iL =   4 Iter =   1 c.s. =      3.14880867 angs^2  rmsk=     0.00765382
iL =   5 Iter =   1 c.s. =      3.14880867 angs^2  rmsk=     0.00332155
iL =   6 Iter =   1 c.s. =      3.14880867 angs^2  rmsk=     0.00206247
iL =   7 Iter =   1 c.s. =      3.14880867 angs^2  rmsk=     0.00153277
iL =   8 Iter =   1 c.s. =      3.14880867 angs^2  rmsk=     0.00111846
     REAL PART -  Final k matrix
     ROW  1
  0.62977391E+01-0.25483709E+01 0.58914710E+00 0.34704492E-01 0.57862528E-02
 -0.29399303E-03 0.93840025E-04-0.13264837E-04
     ROW  2
 -0.25483709E+01 0.18076450E+01-0.40156435E+00-0.27498877E-01-0.45110065E-02
  0.21841191E-03-0.76789048E-04 0.10906631E-04
     ROW  3
  0.58914710E+00-0.40156435E+00 0.20096987E+00 0.90518070E-02 0.28511492E-02
 -0.27012375E-03 0.30401322E-04-0.62424970E-05
     ROW  4
  0.34704492E-01-0.27498877E-01 0.90518070E-02 0.41147366E-01 0.36322336E-02
  0.20320618E-03 0.55765047E-03-0.55310938E-04
     ROW  5
  0.57862528E-02-0.45110065E-02 0.28511492E-02 0.36322336E-02 0.25047188E-01
 -0.18361667E-02 0.33483239E-03-0.30824397E-03
     ROW  6
 -0.29399303E-03 0.21841191E-03-0.27012375E-03 0.20320618E-03-0.18361667E-02
  0.16383104E-01 0.43316487E-03 0.16624754E-03
     ROW  7
  0.93840024E-04-0.76789048E-04 0.30401322E-04 0.55765047E-03 0.33483239E-03
  0.43316487E-03 0.12206919E-01-0.85214113E-03
     ROW  8
 -0.13264837E-04 0.10906631E-04-0.62424970E-05-0.55310938E-04-0.30824397E-03
  0.16624754E-03-0.85214113E-03 0.88999047E-02
 eigenphases
  0.8682042E-02  0.1234466E-01  0.1603106E-01  0.2465779E-01  0.4132721E-01
  0.1058734E+00  0.5999571E+00  0.1438534E+01
 eigenphase sum 0.224741E+01  scattering length=   1.02705
 eps+pi 0.538900E+01  eps+2*pi 0.853059E+01

MaxIter =   1 c.s. =      3.14880867 angs^2  rmsk=     0.00111846
Time Now =        73.5379  Delta time =         0.0009 End ScatStab
+ Data Record ScatContSym - 'A2'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.10000000E+00 eV (  0.36749326E-02 AU)
Time Now =        73.6386  Delta time =         0.1007 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A2    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.17500000E+02  au
Number of integration regions used =    51
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     3
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     3
Maximum in the asymptotic region (lpasym) =   11
Number of partial waves in the asymptotic region (npasym) =    3
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  133
Found polarization potential
Maximum l used in usual function (lmax) =   20
Maximum m used in usual function (LMax) =   20
Maxamum l used in expanding static potential (lpotct) =   40
Maximum l used in exapnding the exchange potential (lmaxab) =   40
Higest l included in the expansion of the wave function (lnp) =   16
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   11
Higest l used in the asymptotic potential (lpzb) =   22
Maximum L used in the homogeneous solution (LMaxHomo) =   20
Number of partial waves in the homogeneous solution (npHomo) =    8
Time Now =        73.6717  Delta time =         0.0331 Energy independent setup

Compute solution for E =    0.1000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.17500000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.10465319E-15
 i =  2  lval =   3  stpote = -0.36496507E-19
 i =  3  lval =   3  stpote = -0.41025463E-18
 i =  4  lval =   4  stpote = -0.15743972E-04
For potential     2
 i =  1  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.25916614E-16
 i =  2  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.25786305E-16
 i =  3  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.25679173E-16
 i =  4  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.25599205E-16
For potential     3
 i =  1  lvals =   6   6  stpote =  0.13552527E-19  second term =  0.00000000E+00
 i =  2  lvals =   6   6  stpote = -0.10344762E-19  second term =  0.00000000E+00
 i =  3  lvals =   6   6  stpote =  0.66979938E-20  second term =  0.00000000E+00
 i =  4  lvals =   7   9  stpote = -0.60833368E-07  second term = -0.60833368E-07
Number of asymptotic regions =       4
Final point in integration =   0.22255445E+03 Angstroms
Time Now =        77.7699  Delta time =         4.0982 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00001946 angs^2  rmsk=     0.00006721
iL =   2 Iter =   1 c.s. =      0.00001946 angs^2  rmsk=     0.00001974
iL =   3 Iter =   1 c.s. =      0.00001946 angs^2  rmsk=     0.00001454
     REAL PART -  Final k matrix
     ROW  1
  0.18772249E-03 0.15782226E-05-0.14775344E-07
     ROW  2
  0.15782226E-05 0.59126617E-04-0.29983485E-05
     ROW  3
 -0.14775344E-07-0.29983485E-05 0.43505601E-04
 eigenphases
  0.4294934E-04  0.5966349E-04  0.1877419E-03
 eigenphase sum 0.290355E-03  scattering length=  -0.00339
 eps+pi 0.314188E+01  eps+2*pi 0.628348E+01

MaxIter =   1 c.s. =      0.00001946 angs^2  rmsk=     0.00001454
Time Now =        77.7703  Delta time =         0.0004 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+00 eV (  0.18374663E-01 AU)
Time Now =        78.0426  Delta time =         0.2723 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A2    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.17500000E+02  au
Number of integration regions used =    51
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     3
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     3
Maximum in the asymptotic region (lpasym) =   11
Number of partial waves in the asymptotic region (npasym) =    3
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  133
Found polarization potential
Maximum l used in usual function (lmax) =   20
Maximum m used in usual function (LMax) =   20
Maxamum l used in expanding static potential (lpotct) =   40
Maximum l used in exapnding the exchange potential (lmaxab) =   40
Higest l included in the expansion of the wave function (lnp) =   16
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   11
Higest l used in the asymptotic potential (lpzb) =   22
Maximum L used in the homogeneous solution (LMaxHomo) =   20
Number of partial waves in the homogeneous solution (npHomo) =    8
Time Now =        78.0757  Delta time =         0.0332 Energy independent setup

Compute solution for E =    0.5000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.17500000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.10465319E-15
 i =  2  lval =   3  stpote = -0.36496507E-19
 i =  3  lval =   3  stpote = -0.41025463E-18
 i =  4  lval =   4  stpote = -0.15743972E-04
For potential     2
 i =  1  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.24706871E-16
 i =  2  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.24818625E-16
 i =  3  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.24888866E-16
 i =  4  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.24925158E-16
For potential     3
 i =  1  lvals =   6   6  stpote =  0.13552527E-19  second term =  0.00000000E+00
 i =  2  lvals =   6   6  stpote = -0.10344762E-19  second term =  0.00000000E+00
 i =  3  lvals =   6   6  stpote =  0.66979938E-20  second term =  0.00000000E+00
 i =  4  lvals =   7   9  stpote = -0.60833368E-07  second term = -0.60833368E-07
Number of asymptotic regions =       5
Final point in integration =   0.14885034E+03 Angstroms
Time Now =        82.1480  Delta time =         4.0723 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00009754 angs^2  rmsk=     0.00033643
iL =   2 Iter =   1 c.s. =      0.00009754 angs^2  rmsk=     0.00009936
iL =   3 Iter =   1 c.s. =      0.00009754 angs^2  rmsk=     0.00007310
     REAL PART -  Final k matrix
     ROW  1
  0.93897806E-03 0.78199044E-05-0.16576129E-06
     ROW  2
  0.78199044E-05 0.29760119E-03-0.15031571E-04
     ROW  3
 -0.16576129E-06-0.15031571E-04 0.21877257E-03
 eigenphases
  0.2160013E-03  0.3002769E-03  0.9390733E-03
 eigenphase sum 0.145535E-02  scattering length=  -0.00759
 eps+pi 0.314305E+01  eps+2*pi 0.628464E+01

MaxIter =   1 c.s. =      0.00009754 angs^2  rmsk=     0.00007310
Time Now =        82.1484  Delta time =         0.0004 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.20000000E+01 eV (  0.73498652E-01 AU)
Time Now =        82.4236  Delta time =         0.2752 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A2    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.17500000E+02  au
Number of integration regions used =    51
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     3
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     3
Maximum in the asymptotic region (lpasym) =   11
Number of partial waves in the asymptotic region (npasym) =    3
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  133
Found polarization potential
Maximum l used in usual function (lmax) =   20
Maximum m used in usual function (LMax) =   20
Maxamum l used in expanding static potential (lpotct) =   40
Maximum l used in exapnding the exchange potential (lmaxab) =   40
Higest l included in the expansion of the wave function (lnp) =   16
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   11
Higest l used in the asymptotic potential (lpzb) =   22
Maximum L used in the homogeneous solution (LMaxHomo) =   20
Number of partial waves in the homogeneous solution (npHomo) =    8
Time Now =        82.4567  Delta time =         0.0331 Energy independent setup

Compute solution for E =    2.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.17500000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.10465319E-15
 i =  2  lval =   3  stpote = -0.36496507E-19
 i =  3  lval =   3  stpote = -0.41025463E-18
 i =  4  lval =   4  stpote = -0.15743972E-04
For potential     2
 i =  1  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.21704717E-16
 i =  2  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.21124799E-16
 i =  3  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.20618596E-16
 i =  4  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.20214528E-16
For potential     3
 i =  1  lvals =   6   6  stpote =  0.13552527E-19  second term =  0.00000000E+00
 i =  2  lvals =   6   6  stpote = -0.10344762E-19  second term =  0.00000000E+00
 i =  3  lvals =   6   6  stpote =  0.66979938E-20  second term =  0.00000000E+00
 i =  4  lvals =   7   9  stpote = -0.60833368E-07  second term = -0.60833368E-07
Number of asymptotic regions =       7
Final point in integration =   0.10527008E+03 Angstroms
Time Now =        86.2540  Delta time =         3.7973 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00038942 angs^2  rmsk=     0.00134444
iL =   2 Iter =   1 c.s. =      0.00038942 angs^2  rmsk=     0.00039864
iL =   3 Iter =   1 c.s. =      0.00038942 angs^2  rmsk=     0.00029209
     REAL PART -  Final k matrix
     ROW  1
  0.37508012E-02 0.31494596E-04-0.13153467E-05
     ROW  2
  0.31494596E-04 0.11939938E-02-0.60283079E-04
     ROW  3
 -0.13153467E-05-0.60283079E-04 0.87419037E-03
 eigenphases
  0.8631976E-03  0.1204596E-02  0.3751173E-02
 eigenphase sum 0.581897E-02  scattering length=  -0.01518
 eps+pi 0.314741E+01  eps+2*pi 0.628900E+01

MaxIter =   1 c.s. =      0.00038942 angs^2  rmsk=     0.00029209
Time Now =        86.2544  Delta time =         0.0004 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.10000000E+02 eV (  0.36749326E+00 AU)
Time Now =        86.5304  Delta time =         0.2760 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A2    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.17500000E+02  au
Number of integration regions used =    51
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     3
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     3
Maximum in the asymptotic region (lpasym) =   11
Number of partial waves in the asymptotic region (npasym) =    3
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  133
Found polarization potential
Maximum l used in usual function (lmax) =   20
Maximum m used in usual function (LMax) =   20
Maxamum l used in expanding static potential (lpotct) =   40
Maximum l used in exapnding the exchange potential (lmaxab) =   40
Higest l included in the expansion of the wave function (lnp) =   16
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   11
Higest l used in the asymptotic potential (lpzb) =   22
Maximum L used in the homogeneous solution (LMaxHomo) =   20
Number of partial waves in the homogeneous solution (npHomo) =    8
Time Now =        86.5635  Delta time =         0.0331 Energy independent setup

Compute solution for E =   10.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.17500000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.10465319E-15
 i =  2  lval =   3  stpote = -0.36496507E-19
 i =  3  lval =   3  stpote = -0.41025463E-18
 i =  4  lval =   4  stpote = -0.15743972E-04
For potential     2
 i =  1  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.17427622E-16
 i =  2  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.17277668E-16
 i =  3  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.17196103E-16
 i =  4  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.17166923E-16
For potential     3
 i =  1  lvals =   6   6  stpote =  0.13552527E-19  second term =  0.00000000E+00
 i =  2  lvals =   6   6  stpote = -0.10344762E-19  second term =  0.00000000E+00
 i =  3  lvals =   6   6  stpote =  0.66979938E-20  second term =  0.00000000E+00
 i =  4  lvals =   7   9  stpote = -0.60833368E-07  second term = -0.60833368E-07
Number of asymptotic regions =      10
Final point in integration =   0.70417590E+02 Angstroms
Time Now =        90.3657  Delta time =         3.8022 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00194612 angs^2  rmsk=     0.00672146
iL =   2 Iter =   1 c.s. =      0.00194612 angs^2  rmsk=     0.00200304
iL =   3 Iter =   1 c.s. =      0.00194612 angs^2  rmsk=     0.00145089
     REAL PART -  Final k matrix
     ROW  1
  0.18748759E-01 0.17468460E-03-0.14493741E-04
     ROW  2
  0.17468460E-03 0.59986272E-02-0.30901004E-03
     ROW  3
 -0.14493741E-04-0.30901004E-03 0.43416776E-02
 eigenphases
  0.4285880E-02  0.6051908E-02  0.1874898E-01
 eigenphase sum 0.290868E-01  scattering length=  -0.03394
 eps+pi 0.317068E+01  eps+2*pi 0.631227E+01

MaxIter =   1 c.s. =      0.00194612 angs^2  rmsk=     0.00145089
Time Now =        90.3660  Delta time =         0.0004 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.20000000E+02 eV (  0.73498652E+00 AU)
Time Now =        90.6436  Delta time =         0.2775 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A2    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.17500000E+02  au
Number of integration regions used =    51
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     3
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     3
Maximum in the asymptotic region (lpasym) =   11
Number of partial waves in the asymptotic region (npasym) =    3
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  133
Found polarization potential
Maximum l used in usual function (lmax) =   20
Maximum m used in usual function (LMax) =   20
Maxamum l used in expanding static potential (lpotct) =   40
Maximum l used in exapnding the exchange potential (lmaxab) =   40
Higest l included in the expansion of the wave function (lnp) =   16
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   11
Higest l used in the asymptotic potential (lpzb) =   22
Maximum L used in the homogeneous solution (LMaxHomo) =   20
Number of partial waves in the homogeneous solution (npHomo) =    8
Time Now =        90.6766  Delta time =         0.0331 Energy independent setup

Compute solution for E =   20.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.17500000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.10465319E-15
 i =  2  lval =   3  stpote = -0.36496507E-19
 i =  3  lval =   3  stpote = -0.41025463E-18
 i =  4  lval =   4  stpote = -0.15743972E-04
For potential     2
 i =  1  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.68700479E-17
 i =  2  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.55721542E-17
 i =  3  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.43550934E-17
 i =  4  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.33234086E-17
For potential     3
 i =  1  lvals =   6   6  stpote =  0.13552527E-19  second term =  0.00000000E+00
 i =  2  lvals =   6   6  stpote = -0.10344762E-19  second term =  0.00000000E+00
 i =  3  lvals =   6   6  stpote =  0.66979938E-20  second term =  0.00000000E+00
 i =  4  lvals =   7   9  stpote = -0.60833368E-07  second term = -0.60833368E-07
Number of asymptotic regions =      11
Final point in integration =   0.59223160E+02 Angstroms
Time Now =        94.4782  Delta time =         3.8016 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00398344 angs^2  rmsk=     0.01360605
iL =   2 Iter =   1 c.s. =      0.00398344 angs^2  rmsk=     0.00402610
iL =   3 Iter =   1 c.s. =      0.00398344 angs^2  rmsk=     0.00288708
     REAL PART -  Final k matrix
     ROW  1
  0.38013473E-01 0.43963102E-03-0.45312015E-04
     ROW  2
  0.43963102E-03 0.12052836E-01-0.64881624E-03
     ROW  3
 -0.45312015E-04-0.64881624E-03 0.86367900E-02
 eigenphases
  0.8517463E-02  0.1216381E-01  0.3800272E-01
 eigenphase sum 0.586840E-01  scattering length=  -0.04846
 eps+pi 0.320028E+01  eps+2*pi 0.634187E+01

MaxIter =   1 c.s. =      0.00398344 angs^2  rmsk=     0.00288708
Time Now =        94.4786  Delta time =         0.0004 End ScatStab
+ Data Record ScatContSym - 'E'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.10000000E+00 eV (  0.36749326E-02 AU)
Time Now =        94.7546  Delta time =         0.2760 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =E     1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.17500000E+02  au
Number of integration regions used =    51
Number of partial waves (np) =    30
Number of asymptotic solutions on the right (NAsymR) =    10
Number of asymptotic solutions on the left (NAsymL) =    10
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =    10
Maximum in the asymptotic region (lpasym) =   11
Number of partial waves in the asymptotic region (npasym) =   12
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  133
Found polarization potential
Maximum l used in usual function (lmax) =   20
Maximum m used in usual function (LMax) =   20
Maxamum l used in expanding static potential (lpotct) =   40
Maximum l used in exapnding the exchange potential (lmaxab) =   40
Higest l included in the expansion of the wave function (lnp) =   20
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   11
Higest l used in the asymptotic potential (lpzb) =   22
Maximum L used in the homogeneous solution (LMaxHomo) =   20
Number of partial waves in the homogeneous solution (npHomo) =   30
Time Now =        94.7878  Delta time =         0.0333 Energy independent setup

Compute solution for E =    0.1000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.17500000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.10465319E-15
 i =  2  lval =   3  stpote = -0.36496507E-19
 i =  3  lval =   3  stpote = -0.41025463E-18
 i =  4  lval =   4  stpote = -0.15743972E-04
For potential     2
 i =  1  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.25916614E-16
 i =  2  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.25786305E-16
 i =  3  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.25679173E-16
 i =  4  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.25599205E-16
For potential     3
 i =  1  lvals =   6   6  stpote =  0.13552527E-19  second term =  0.00000000E+00
 i =  2  lvals =   6   6  stpote = -0.10344762E-19  second term =  0.00000000E+00
 i =  3  lvals =   6   6  stpote =  0.66979938E-20  second term =  0.00000000E+00
 i =  4  lvals =   7   9  stpote = -0.60833368E-07  second term = -0.60833368E-07
Number of asymptotic regions =       4
Final point in integration =   0.22255445E+03 Angstroms
Time Now =       110.5803  Delta time =        15.7925 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00730560 angs^2  rmsk=     0.00039063
iL =   2 Iter =   1 c.s. =      0.00730560 angs^2  rmsk=     0.00005829
iL =   3 Iter =   1 c.s. =      0.00730560 angs^2  rmsk=     0.00003159
iL =   4 Iter =   1 c.s. =      0.00730560 angs^2  rmsk=     0.00001887
iL =   5 Iter =   1 c.s. =      0.00730560 angs^2  rmsk=     0.00001220
iL =   6 Iter =   1 c.s. =      0.00730560 angs^2  rmsk=     0.00000830
iL =   7 Iter =   1 c.s. =      0.00730560 angs^2  rmsk=     0.00000834
iL =   8 Iter =   1 c.s. =      0.00730560 angs^2  rmsk=     0.00000595
iL =   9 Iter =   1 c.s. =      0.00730560 angs^2  rmsk=     0.00000437
iL =  10 Iter =   1 c.s. =      0.00730560 angs^2  rmsk=     0.00000436
     REAL PART -  Final k matrix
     ROW  1
  0.38402572E-02 0.48794559E-05 0.15492568E-04-0.23276964E-06 0.92533592E-11
  0.43570025E-11-0.35560421E-10-0.33914584E-12 0.12572602E-15 0.10463369E-14
     ROW  2
  0.48794559E-05 0.58251545E-03 0.20627685E-04 0.32227720E-06 0.41422668E-05
 -0.39282913E-07-0.21465862E-07 0.16180780E-12-0.43132300E-11-0.44120203E-12
     ROW  3
  0.15492568E-04 0.20627685E-04 0.31414105E-03-0.20521236E-04 0.21006034E-06
  0.33660419E-06-0.27497537E-05-0.22220762E-07-0.16134912E-12 0.10891969E-12
     ROW  4
 -0.23276964E-06 0.32227720E-06-0.20521236E-04 0.18755765E-03 0.45243861E-05
  0.63845887E-08 0.15773159E-06 0.15021197E-05-0.20337994E-08-0.15739614E-07
     ROW  5
  0.92533593E-11 0.41422668E-05 0.21006034E-06 0.45243861E-05 0.12156388E-03
 -0.54761310E-05-0.50236918E-05 0.53675985E-07-0.12819273E-05-0.13106468E-06
     ROW  6
  0.43570025E-11-0.39282913E-07 0.33660419E-06 0.63845887E-08-0.54761310E-05
  0.82835254E-04-0.45605584E-07-0.46690205E-12 0.33219249E-07 0.33963379E-08
     ROW  7
 -0.35560421E-10-0.21465862E-07-0.27497537E-05 0.15773159E-06-0.50236918E-05
 -0.45605584E-07 0.83059554E-04 0.55668404E-05 0.39568410E-07 0.26901697E-07
     ROW  8
 -0.33914585E-12 0.16180780E-12-0.22220762E-07 0.15021197E-05 0.53675985E-07
 -0.46690205E-12 0.55668404E-05 0.59090764E-04-0.13175445E-05-0.34462228E-05
     ROW  9
  0.12572605E-15-0.43132301E-11-0.16134912E-12-0.20337994E-08-0.12819273E-05
  0.33219249E-07 0.39568410E-07-0.13175445E-05 0.43614261E-04 0.57880644E-08
     ROW 10
  0.10463371E-14-0.44120203E-12 0.10891969E-12-0.15739614E-07-0.13106468E-06
  0.33963379E-08 0.26901697E-07-0.34462228E-05 0.57880644E-08 0.43503753E-04
 eigenphases
  0.4264659E-04  0.4358035E-04  0.5867547E-04  0.8180224E-04  0.8393415E-04
  0.1226179E-03  0.1846186E-03  0.3158091E-03  0.5841213E-03  0.3840314E-02
 eigenphase sum 0.535812E-02  scattering length=  -0.06250
 eps+pi 0.314695E+01  eps+2*pi 0.628854E+01

MaxIter =   1 c.s. =      0.00730560 angs^2  rmsk=     0.00000436
Time Now =       110.5815  Delta time =         0.0012 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+00 eV (  0.18374663E-01 AU)
Time Now =       111.3165  Delta time =         0.7350 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =E     1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.17500000E+02  au
Number of integration regions used =    51
Number of partial waves (np) =    30
Number of asymptotic solutions on the right (NAsymR) =    10
Number of asymptotic solutions on the left (NAsymL) =    10
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =    10
Maximum in the asymptotic region (lpasym) =   11
Number of partial waves in the asymptotic region (npasym) =   12
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  133
Found polarization potential
Maximum l used in usual function (lmax) =   20
Maximum m used in usual function (LMax) =   20
Maxamum l used in expanding static potential (lpotct) =   40
Maximum l used in exapnding the exchange potential (lmaxab) =   40
Higest l included in the expansion of the wave function (lnp) =   20
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   11
Higest l used in the asymptotic potential (lpzb) =   22
Maximum L used in the homogeneous solution (LMaxHomo) =   20
Number of partial waves in the homogeneous solution (npHomo) =   30
Time Now =       111.3497  Delta time =         0.0332 Energy independent setup

Compute solution for E =    0.5000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.17500000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.10465319E-15
 i =  2  lval =   3  stpote = -0.36496507E-19
 i =  3  lval =   3  stpote = -0.41025463E-18
 i =  4  lval =   4  stpote = -0.15743972E-04
For potential     2
 i =  1  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.24706871E-16
 i =  2  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.24818625E-16
 i =  3  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.24888866E-16
 i =  4  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.24925158E-16
For potential     3
 i =  1  lvals =   6   6  stpote =  0.13552527E-19  second term =  0.00000000E+00
 i =  2  lvals =   6   6  stpote = -0.10344762E-19  second term =  0.00000000E+00
 i =  3  lvals =   6   6  stpote =  0.66979938E-20  second term =  0.00000000E+00
 i =  4  lvals =   7   9  stpote = -0.60833368E-07  second term = -0.60833368E-07
Number of asymptotic regions =       5
Final point in integration =   0.14885034E+03 Angstroms
Time Now =       127.0369  Delta time =        15.6872 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.03808992 angs^2  rmsk=     0.00199482
iL =   2 Iter =   1 c.s. =      0.03808992 angs^2  rmsk=     0.00029185
iL =   3 Iter =   1 c.s. =      0.03808992 angs^2  rmsk=     0.00015858
iL =   4 Iter =   1 c.s. =      0.03808992 angs^2  rmsk=     0.00009431
iL =   5 Iter =   1 c.s. =      0.03808992 angs^2  rmsk=     0.00006125
iL =   6 Iter =   1 c.s. =      0.03808992 angs^2  rmsk=     0.00004159
iL =   7 Iter =   1 c.s. =      0.03808992 angs^2  rmsk=     0.00004194
iL =   8 Iter =   1 c.s. =      0.03808992 angs^2  rmsk=     0.00002992
iL =   9 Iter =   1 c.s. =      0.03808992 angs^2  rmsk=     0.00002202
iL =  10 Iter =   1 c.s. =      0.03808992 angs^2  rmsk=     0.00002194
     REAL PART -  Final k matrix
     ROW  1
  0.19623732E-01 0.55515599E-04 0.78384115E-04-0.25914886E-05 0.15785913E-08
  0.23199988E-09-0.19955319E-08-0.42851550E-10 0.26591464E-13 0.29612353E-12
     ROW  2
  0.55515599E-04 0.29160850E-02 0.10361105E-03 0.35682694E-05 0.20690721E-04
 -0.43804413E-06-0.24354818E-06 0.87448856E-11-0.24545370E-09-0.25526152E-10
     ROW  3
  0.78384115E-04 0.10361105E-03 0.15770620E-02-0.10284321E-03 0.23468582E-05
  0.16755668E-05-0.13690476E-04-0.25122346E-06-0.24282908E-10 0.28752688E-10
     ROW  4
 -0.25914886E-05 0.35682694E-05-0.10284321E-03 0.93716265E-03 0.22659731E-04
  0.68922662E-07 0.17653154E-05 0.74429931E-05-0.23292138E-07-0.17662705E-06
     ROW  5
  0.15785913E-08 0.20690721E-04 0.23468582E-05 0.22659731E-04 0.61057292E-03
 -0.27422109E-04-0.25156589E-04 0.59786514E-06-0.63031852E-05-0.64448308E-06
     ROW  6
  0.23199988E-09-0.43804413E-06 0.16755668E-05 0.68922662E-07-0.27422109E-04
  0.41498065E-03-0.50865186E-06-0.66282965E-10 0.37137109E-06 0.37968830E-07
     ROW  7
 -0.19955319E-08-0.24354818E-06-0.13690476E-04 0.17653154E-05-0.25156589E-04
 -0.50865186E-06 0.41749428E-03 0.27875202E-04 0.44164206E-06 0.29888776E-06
     ROW  8
 -0.42851550E-10 0.87448856E-11-0.25122346E-06 0.74429931E-05 0.59786514E-06
 -0.66282965E-10 0.27875202E-04 0.29720222E-03-0.66052140E-05-0.17276860E-04
     ROW  9
  0.26591466E-13-0.24545370E-09-0.24282908E-10-0.23292138E-07-0.63031852E-05
  0.37137109E-06 0.44164206E-06-0.66052140E-05 0.21999026E-03 0.65347962E-07
     ROW 10
  0.29612355E-12-0.25526152E-10 0.28752688E-10-0.17662705E-06-0.64448308E-06
  0.37968830E-07 0.29888776E-06-0.17276860E-04 0.65347962E-07 0.21875213E-03
 eigenphases
  0.2145375E-03  0.2197394E-03  0.2951481E-03  0.4098437E-03  0.4218623E-03
  0.6157737E-03  0.9225692E-03  0.1585272E-02  0.2924018E-02  0.1962174E-01
 eigenphase sum 0.272305E-01  scattering length=  -0.14208
 eps+pi 0.316882E+01  eps+2*pi 0.631042E+01

MaxIter =   1 c.s. =      0.03808992 angs^2  rmsk=     0.00002194
Time Now =       127.0381  Delta time =         0.0012 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.20000000E+01 eV (  0.73498652E-01 AU)
Time Now =       127.5762  Delta time =         0.5381 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =E     1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.17500000E+02  au
Number of integration regions used =    51
Number of partial waves (np) =    30
Number of asymptotic solutions on the right (NAsymR) =    10
Number of asymptotic solutions on the left (NAsymL) =    10
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =    10
Maximum in the asymptotic region (lpasym) =   11
Number of partial waves in the asymptotic region (npasym) =   12
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  133
Found polarization potential
Maximum l used in usual function (lmax) =   20
Maximum m used in usual function (LMax) =   20
Maxamum l used in expanding static potential (lpotct) =   40
Maximum l used in exapnding the exchange potential (lmaxab) =   40
Higest l included in the expansion of the wave function (lnp) =   20
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   11
Higest l used in the asymptotic potential (lpzb) =   22
Maximum L used in the homogeneous solution (LMaxHomo) =   20
Number of partial waves in the homogeneous solution (npHomo) =   30
Time Now =       127.6093  Delta time =         0.0332 Energy independent setup

Compute solution for E =    2.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.17500000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.10465319E-15
 i =  2  lval =   3  stpote = -0.36496507E-19
 i =  3  lval =   3  stpote = -0.41025463E-18
 i =  4  lval =   4  stpote = -0.15743972E-04
For potential     2
 i =  1  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.21704717E-16
 i =  2  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.21124799E-16
 i =  3  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.20618596E-16
 i =  4  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.20214528E-16
For potential     3
 i =  1  lvals =   6   6  stpote =  0.13552527E-19  second term =  0.00000000E+00
 i =  2  lvals =   6   6  stpote = -0.10344762E-19  second term =  0.00000000E+00
 i =  3  lvals =   6   6  stpote =  0.66979938E-20  second term =  0.00000000E+00
 i =  4  lvals =   7   9  stpote = -0.60833368E-07  second term = -0.60833368E-07
Number of asymptotic regions =       7
Final point in integration =   0.10527008E+03 Angstroms
Time Now =       143.3958  Delta time =        15.7865 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.18163544 angs^2  rmsk=     0.00874207
iL =   2 Iter =   1 c.s. =      0.18163544 angs^2  rmsk=     0.00117366
iL =   3 Iter =   1 c.s. =      0.18163544 angs^2  rmsk=     0.00063915
iL =   4 Iter =   1 c.s. =      0.18163544 angs^2  rmsk=     0.00037617
iL =   5 Iter =   1 c.s. =      0.18163544 angs^2  rmsk=     0.00024600
iL =   6 Iter =   1 c.s. =      0.18163544 angs^2  rmsk=     0.00016605
iL =   7 Iter =   1 c.s. =      0.18163544 angs^2  rmsk=     0.00016848
iL =   8 Iter =   1 c.s. =      0.18163544 angs^2  rmsk=     0.00011988
iL =   9 Iter =   1 c.s. =      0.18163544 angs^2  rmsk=     0.00008847
iL =  10 Iter =   1 c.s. =      0.18163544 angs^2  rmsk=     0.00008768
     REAL PART -  Final k matrix
     ROW  1
  0.86224118E-01 0.51607592E-03 0.36534197E-03-0.21651567E-04 0.11890129E-06
  0.53917505E-08-0.63396611E-07-0.26499943E-08-0.32075190E-11 0.35358439E-10
     ROW  2
  0.51607592E-03 0.11717138E-01 0.42663115E-03 0.27675589E-04 0.84671488E-04
 -0.34546854E-05-0.20513296E-05 0.12987519E-09-0.77347334E-08-0.86076556E-09
     ROW  3
  0.36534197E-03 0.42663115E-03 0.63528530E-02-0.41702699E-03 0.18831252E-04
  0.67720574E-05-0.55502370E-04-0.20640735E-05-0.16365382E-08 0.22028529E-08
     ROW  4
 -0.21651567E-04 0.27675589E-04-0.41702699E-03 0.37371181E-02 0.91326900E-04
  0.47875202E-06 0.14249784E-04 0.29987541E-04-0.19954256E-06-0.14029701E-05
     ROW  5
  0.11890129E-06 0.84671488E-04 0.18831252E-04 0.91326900E-04 0.24520982E-02
 -0.11024408E-03-0.10114282E-03 0.47480863E-05-0.25299866E-04-0.25896018E-05
     ROW  6
  0.53917505E-08-0.34546854E-05 0.67720574E-05 0.47875202E-06-0.11024408E-03
  0.16567794E-02-0.40216694E-05-0.44358842E-08 0.29945973E-05 0.30614469E-06
     ROW  7
 -0.63396611E-07-0.20513296E-05-0.55502370E-04 0.14249784E-04-0.10114282E-03
 -0.40216694E-05 0.16770206E-02 0.11190434E-03 0.35398717E-05 0.23538347E-05
     ROW  8
 -0.26499943E-08 0.12987519E-09-0.20640735E-05 0.29987541E-04 0.47480863E-05
 -0.44358842E-08 0.11190434E-03 0.11908757E-02-0.26489099E-04-0.69285551E-04
     ROW  9
 -0.32075190E-11-0.77347334E-08-0.16365382E-08-0.19954256E-06-0.25299866E-04
  0.29945973E-05 0.35398717E-05-0.26489099E-04 0.88394692E-03 0.53837253E-06
     ROW 10
  0.35358439E-10-0.86076557E-09 0.22028529E-08-0.14029701E-05-0.25896018E-05
  0.30614469E-06 0.23538347E-05-0.69285551E-04 0.53837253E-06 0.87403488E-03
 eigenphases
  0.8575727E-03  0.8824675E-03  0.1182796E-02  0.1636231E-02  0.1694393E-02
  0.2472481E-02  0.3678432E-02  0.6384403E-02  0.1174716E-01  0.8601663E-01
 eigenphase sum 0.116553E+00  scattering length=  -0.30538
 eps+pi 0.325815E+01  eps+2*pi 0.639974E+01

MaxIter =   1 c.s. =      0.18163544 angs^2  rmsk=     0.00008768
Time Now =       143.3970  Delta time =         0.0012 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.10000000E+02 eV (  0.36749326E+00 AU)
Time Now =       143.9273  Delta time =         0.5303 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =E     1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.17500000E+02  au
Number of integration regions used =    51
Number of partial waves (np) =    30
Number of asymptotic solutions on the right (NAsymR) =    10
Number of asymptotic solutions on the left (NAsymL) =    10
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =    10
Maximum in the asymptotic region (lpasym) =   11
Number of partial waves in the asymptotic region (npasym) =   12
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  133
Found polarization potential
Maximum l used in usual function (lmax) =   20
Maximum m used in usual function (LMax) =   20
Maxamum l used in expanding static potential (lpotct) =   40
Maximum l used in exapnding the exchange potential (lmaxab) =   40
Higest l included in the expansion of the wave function (lnp) =   20
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   11
Higest l used in the asymptotic potential (lpzb) =   22
Maximum L used in the homogeneous solution (LMaxHomo) =   20
Number of partial waves in the homogeneous solution (npHomo) =   30
Time Now =       143.9607  Delta time =         0.0334 Energy independent setup

Compute solution for E =   10.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.17500000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.10465319E-15
 i =  2  lval =   3  stpote = -0.36496507E-19
 i =  3  lval =   3  stpote = -0.41025463E-18
 i =  4  lval =   4  stpote = -0.15743972E-04
For potential     2
 i =  1  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.17427622E-16
 i =  2  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.17277668E-16
 i =  3  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.17196103E-16
 i =  4  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.17166923E-16
For potential     3
 i =  1  lvals =   6   6  stpote =  0.13552527E-19  second term =  0.00000000E+00
 i =  2  lvals =   6   6  stpote = -0.10344762E-19  second term =  0.00000000E+00
 i =  3  lvals =   6   6  stpote =  0.66979938E-20  second term =  0.00000000E+00
 i =  4  lvals =   7   9  stpote = -0.60833368E-07  second term = -0.60833368E-07
Number of asymptotic regions =      10
Final point in integration =   0.70417590E+02 Angstroms
Time Now =       159.7391  Delta time =        15.7784 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.86013552 angs^2  rmsk=     0.04651202
iL =   2 Iter =   1 c.s. =      0.86013552 angs^2  rmsk=     0.00627486
iL =   3 Iter =   1 c.s. =      0.86013552 angs^2  rmsk=     0.00338645
iL =   4 Iter =   1 c.s. =      0.86013552 angs^2  rmsk=     0.00188217
iL =   5 Iter =   1 c.s. =      0.86013552 angs^2  rmsk=     0.00124506
iL =   6 Iter =   1 c.s. =      0.86013552 angs^2  rmsk=     0.00082512
iL =   7 Iter =   1 c.s. =      0.86013552 angs^2  rmsk=     0.00085120
iL =   8 Iter =   1 c.s. =      0.86013552 angs^2  rmsk=     0.00060108
iL =   9 Iter =   1 c.s. =      0.86013552 angs^2  rmsk=     0.00044564
iL =  10 Iter =   1 c.s. =      0.86013552 angs^2  rmsk=     0.00043550
     REAL PART -  Final k matrix
     ROW  1
  0.45868875E+00 0.99882796E-02 0.56913424E-02-0.51720632E-03 0.23666298E-04
 -0.10961232E-06-0.81517738E-05-0.63586419E-06-0.14388489E-07 0.14970904E-07
     ROW  2
  0.99882796E-02 0.61867440E-01 0.31001247E-02 0.28634507E-03 0.59178688E-03
 -0.42764691E-04-0.33733413E-04-0.13581019E-06-0.42503404E-06-0.59553675E-07
     ROW  3
  0.56913424E-02 0.31001247E-02 0.33145184E-01-0.24560876E-02 0.22824061E-03
  0.38400642E-04-0.33670386E-03-0.28000319E-04-0.20648558E-06 0.28939582E-06
     ROW  4
 -0.51720632E-03 0.28634507E-03-0.24560876E-02 0.18643329E-01 0.49335964E-03
  0.11004668E-05 0.17118580E-03 0.16780789E-03-0.30386908E-05-0.15524766E-04
     ROW  5
  0.23666298E-04 0.59178688E-03 0.22824061E-03 0.49335964E-03 0.12398703E-01
 -0.58088338E-03-0.53387157E-03 0.51860146E-04-0.13649714E-03-0.14309024E-04
     ROW  6
 -0.10961232E-06-0.42764691E-04 0.38400642E-04 0.11004668E-05-0.58088338E-03
  0.82303217E-02-0.42511880E-04-0.55421912E-06 0.35257023E-04 0.36005875E-05
     ROW  7
 -0.81517738E-05-0.33733413E-04-0.33670386E-03 0.17118580E-03-0.53387157E-03
 -0.42511880E-04 0.84666557E-02 0.58018072E-03 0.40456689E-04 0.24400090E-04
     ROW  8
 -0.63586419E-06-0.13581019E-06-0.28000319E-04 0.16780789E-03 0.51860146E-04
 -0.55421912E-06 0.58018072E-03 0.59680052E-02-0.13570345E-03-0.35490134E-03
     ROW  9
 -0.14388489E-07-0.42503404E-06-0.20648558E-06-0.30386908E-05-0.13649714E-03
  0.35257023E-04 0.40456689E-04-0.13570345E-03 0.44519465E-02 0.69717342E-05
     ROW 10
  0.14970904E-07-0.59553675E-07 0.28939582E-06-0.15524766E-04-0.14309024E-04
  0.36005875E-05 0.24400090E-04-0.35490134E-03 0.69717342E-05 0.43404188E-02
 eigenphases
  0.4258186E-02  0.4439837E-02  0.5924989E-02  0.8120301E-02  0.8552988E-02
  0.1249731E-01  0.1826997E-01  0.3317627E-01  0.6184776E-01  0.4303286E+00
 eigenphase sum 0.587416E+00  scattering length=  -0.77664
 eps+pi 0.372901E+01  eps+2*pi 0.687060E+01

MaxIter =   1 c.s. =      0.86013552 angs^2  rmsk=     0.00043550
Time Now =       159.7403  Delta time =         0.0012 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.20000000E+02 eV (  0.73498652E+00 AU)
Time Now =       160.2643  Delta time =         0.5240 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =E     1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.17500000E+02  au
Number of integration regions used =    51
Number of partial waves (np) =    30
Number of asymptotic solutions on the right (NAsymR) =    10
Number of asymptotic solutions on the left (NAsymL) =    10
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =    10
Maximum in the asymptotic region (lpasym) =   11
Number of partial waves in the asymptotic region (npasym) =   12
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  133
Found polarization potential
Maximum l used in usual function (lmax) =   20
Maximum m used in usual function (LMax) =   20
Maxamum l used in expanding static potential (lpotct) =   40
Maximum l used in exapnding the exchange potential (lmaxab) =   40
Higest l included in the expansion of the wave function (lnp) =   20
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   11
Higest l used in the asymptotic potential (lpzb) =   22
Maximum L used in the homogeneous solution (LMaxHomo) =   20
Number of partial waves in the homogeneous solution (npHomo) =   30
Time Now =       160.2976  Delta time =         0.0332 Energy independent setup

Compute solution for E =   20.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.17500000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.10465319E-15
 i =  2  lval =   3  stpote = -0.36496507E-19
 i =  3  lval =   3  stpote = -0.41025463E-18
 i =  4  lval =   4  stpote = -0.15743972E-04
For potential     2
 i =  1  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.68700479E-17
 i =  2  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.55721542E-17
 i =  3  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.43550934E-17
 i =  4  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.33234086E-17
For potential     3
 i =  1  lvals =   6   6  stpote =  0.13552527E-19  second term =  0.00000000E+00
 i =  2  lvals =   6   6  stpote = -0.10344762E-19  second term =  0.00000000E+00
 i =  3  lvals =   6   6  stpote =  0.66979938E-20  second term =  0.00000000E+00
 i =  4  lvals =   7   9  stpote = -0.60833368E-07  second term = -0.60833368E-07
Number of asymptotic regions =      11
Final point in integration =   0.59223160E+02 Angstroms
Time Now =       176.0648  Delta time =        15.7673 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.86745397 angs^2  rmsk=     0.07326917
iL =   2 Iter =   1 c.s. =      0.86745397 angs^2  rmsk=     0.01271730
iL =   3 Iter =   1 c.s. =      0.86745397 angs^2  rmsk=     0.00734626
iL =   4 Iter =   1 c.s. =      0.86745397 angs^2  rmsk=     0.00385742
iL =   5 Iter =   1 c.s. =      0.86745397 angs^2  rmsk=     0.00254872
iL =   6 Iter =   1 c.s. =      0.86745397 angs^2  rmsk=     0.00164758
iL =   7 Iter =   1 c.s. =      0.86745397 angs^2  rmsk=     0.00172747
iL =   8 Iter =   1 c.s. =      0.86745397 angs^2  rmsk=     0.00120807
iL =   9 Iter =   1 c.s. =      0.86745397 angs^2  rmsk=     0.00089670
iL =  10 Iter =   1 c.s. =      0.86745397 angs^2  rmsk=     0.00086673
     REAL PART -  Final k matrix
     ROW  1
  0.71511215E+00 0.25360760E-01 0.15080055E-01-0.15856068E-02 0.16771054E-03
 -0.31630928E-05-0.63159878E-04-0.60430025E-05-0.23746344E-06 0.17872465E-06
     ROW  2
  0.25360760E-01 0.12419214E+00 0.10062213E-01 0.71480978E-03 0.20696595E-02
 -0.17760220E-03-0.17555483E-03-0.30367560E-05-0.37282485E-05-0.49795570E-06
     ROW  3
  0.15080055E-01 0.10062213E-01 0.70851025E-01-0.68175780E-02 0.80990775E-03
  0.10163688E-03-0.10341856E-02-0.11716139E-03-0.18829654E-05 0.25548661E-05
     ROW  4
 -0.15856068E-02 0.71480978E-03-0.68175780E-02 0.37902466E-01 0.11664692E-02
 -0.12378462E-04 0.56407030E-03 0.43264685E-03-0.12046484E-04-0.48787667E-04
     ROW  5
  0.16771054E-03 0.20696595E-02 0.80990775E-03 0.11664692E-02 0.25298140E-01
 -0.13021895E-02-0.12037966E-02 0.14752471E-03-0.32098186E-03-0.35494477E-04
     ROW  6
 -0.31630928E-05-0.17760220E-03 0.10163688E-03-0.12378462E-04-0.13021895E-02
  0.16422268E-01-0.11447731E-03-0.43730550E-05 0.10760998E-03 0.10996342E-04
     ROW  7
 -0.63159878E-04-0.17555483E-03-0.10341856E-02 0.56407030E-03-0.12037966E-02
 -0.11447731E-03 0.17144858E-01 0.12511997E-02 0.11975581E-03 0.63611583E-04
     ROW  8
 -0.60430025E-05-0.30367560E-05-0.11716139E-03 0.43264685E-03 0.14752471E-03
 -0.43730550E-05 0.12511997E-02 0.11980021E-01-0.28449795E-03-0.74379641E-03
     ROW  9
 -0.23746344E-06-0.37282485E-05-0.18829654E-05-0.12046484E-04-0.32098186E-03
  0.10760998E-03 0.11975581E-03-0.28449795E-03 0.89552767E-02 0.23208087E-04
     ROW 10
  0.17872465E-06-0.49795570E-06 0.25548661E-05-0.48787667E-04-0.35494477E-04
  0.10996342E-04 0.63611583E-04-0.74379641E-03 0.23208087E-04 0.86348698E-02
 eigenphases
  0.8459820E-02  0.8922311E-02  0.1187399E-01  0.1616420E-01  0.1731061E-01
  0.2547518E-01  0.3659380E-01  0.7019053E-01  0.1241445E+00  0.6217638E+00
 eigenphase sum 0.940899E+00  scattering length=  -1.13147
 eps+pi 0.408249E+01  eps+2*pi 0.722408E+01

MaxIter =   1 c.s. =      0.86745397 angs^2  rmsk=     0.00086673
Time Now =       176.0660  Delta time =         0.0012 End ScatStab
+ Data Record ScatContSym - 'T1'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.10000000E+00 eV (  0.36749326E-02 AU)
Time Now =       176.6129  Delta time =         0.5468 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =T1    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.17500000E+02  au
Number of integration regions used =    51
Number of partial waves (np) =    38
Number of asymptotic solutions on the right (NAsymR) =    12
Number of asymptotic solutions on the left (NAsymL) =    12
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =    12
Maximum in the asymptotic region (lpasym) =   11
Number of partial waves in the asymptotic region (npasym) =   15
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  133
Found polarization potential
Maximum l used in usual function (lmax) =   20
Maximum m used in usual function (LMax) =   20
Maxamum l used in expanding static potential (lpotct) =   40
Maximum l used in exapnding the exchange potential (lmaxab) =   40
Higest l included in the expansion of the wave function (lnp) =   20
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   11
Higest l used in the asymptotic potential (lpzb) =   22
Maximum L used in the homogeneous solution (LMaxHomo) =   20
Number of partial waves in the homogeneous solution (npHomo) =   38
Time Now =       176.6463  Delta time =         0.0335 Energy independent setup

Compute solution for E =    0.1000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.17500000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.10465319E-15
 i =  2  lval =   3  stpote = -0.36496507E-19
 i =  3  lval =   3  stpote = -0.41025463E-18
 i =  4  lval =   4  stpote = -0.15743972E-04
For potential     2
 i =  1  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.25916614E-16
 i =  2  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.25786305E-16
 i =  3  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.25679173E-16
 i =  4  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.25599205E-16
For potential     3
 i =  1  lvals =   6   6  stpote =  0.13552527E-19  second term =  0.00000000E+00
 i =  2  lvals =   6   6  stpote = -0.10344762E-19  second term =  0.00000000E+00
 i =  3  lvals =   6   6  stpote =  0.66979938E-20  second term =  0.00000000E+00
 i =  4  lvals =   7   9  stpote = -0.60833368E-07  second term = -0.60833368E-07
Number of asymptotic regions =       4
Final point in integration =   0.22255445E+03 Angstroms
Time Now =       197.7670  Delta time =        21.1207 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00104717 angs^2  rmsk=     0.00012324
iL =   2 Iter =   1 c.s. =      0.00104717 angs^2  rmsk=     0.00004877
iL =   3 Iter =   1 c.s. =      0.00104717 angs^2  rmsk=     0.00002614
iL =   4 Iter =   1 c.s. =      0.00104717 angs^2  rmsk=     0.00001575
iL =   5 Iter =   1 c.s. =      0.00104717 angs^2  rmsk=     0.00001012
iL =   6 Iter =   1 c.s. =      0.00104717 angs^2  rmsk=     0.00001018
iL =   7 Iter =   1 c.s. =      0.00104717 angs^2  rmsk=     0.00000694
iL =   8 Iter =   1 c.s. =      0.00104717 angs^2  rmsk=     0.00000693
iL =   9 Iter =   1 c.s. =      0.00104717 angs^2  rmsk=     0.00000493
iL =  10 Iter =   1 c.s. =      0.00104717 angs^2  rmsk=     0.00000495
iL =  11 Iter =   1 c.s. =      0.00104717 angs^2  rmsk=     0.00000364
iL =  12 Iter =   1 c.s. =      0.00104717 angs^2  rmsk=     0.00000364
     REAL PART -  Final k matrix
     ROW  1
  0.12854490E-02 0.61832844E-04 0.83514399E-06-0.76702076E-05 0.70781895E-07
  0.56693251E-07-0.93719584E-12-0.43905630E-12 0.18613025E-11-0.11624347E-10
 -0.66128739E-13-0.67647407E-13
     ROW  2
  0.61832844E-04 0.58170806E-03-0.15754594E-04-0.52359082E-06-0.33378651E-06
  0.39915909E-05 0.14583179E-07-0.44298299E-07 0.19258108E-12-0.53198883E-12
  0.56834478E-12-0.40604652E-11
     ROW  3
  0.83514399E-06-0.15754594E-04 0.31314770E-03-0.72553482E-05-0.38693406E-07
 -0.15460017E-06-0.24459005E-05 0.18017124E-11-0.23064606E-07-0.96218678E-08
 -0.72889205E-14 0.10213618E-12
     ROW  4
 -0.76702076E-05-0.52359082E-06-0.72553482E-05 0.18828137E-03-0.78759519E-05
 -0.94182714E-05 0.79857337E-07-0.58665384E-07-0.29458928E-06 0.18397135E-05
  0.88096538E-08 0.89939464E-08
     ROW  5
  0.70781895E-07-0.33378651E-06-0.38693406E-07-0.78759519E-05 0.12123217E-03
 -0.62447104E-07 0.72029347E-06 0.74540796E-12 0.50506208E-08-0.52503435E-07
 -0.10484857E-05-0.19878918E-12
     ROW  6
  0.56693251E-07 0.39915909E-05-0.15460017E-06-0.94182714E-05-0.62447104E-07
  0.12150644E-03 0.36019947E-05-0.66811449E-05-0.54549129E-08-0.79876322E-07
  0.87678511E-07-0.12523040E-05
     ROW  7
 -0.93719584E-12 0.14583179E-07-0.24459005E-05 0.79857337E-07 0.72029347E-06
  0.36019947E-05 0.83020408E-04 0.15850442E-07 0.39054763E-05 0.27099659E-05
 -0.88258511E-08-0.31537412E-07
     ROW  8
 -0.43905631E-12-0.44298299E-07 0.18017124E-11-0.58665384E-07 0.74540796E-12
 -0.66811449E-05 0.15850442E-07 0.82822240E-04 0.13233036E-12-0.12704511E-05
  0.10294619E-08 0.44370588E-07
     ROW  9
  0.18613025E-11 0.19258108E-12-0.23064606E-07-0.29458928E-06 0.50506208E-08
 -0.54549129E-08 0.39054763E-05 0.13233036E-12 0.59007680E-04-0.32687753E-07
 -0.28133690E-06-0.19730860E-12
     ROW 10
 -0.11624347E-10-0.53198883E-12-0.96218678E-08 0.18397135E-05-0.52503435E-07
 -0.79876322E-07 0.27099659E-05-0.12704511E-05-0.32687753E-07 0.59158809E-04
  0.24133900E-05 0.30333691E-05
     ROW 11
 -0.66128740E-13 0.56834478E-12-0.72889205E-14 0.88096538E-08-0.10484857E-05
  0.87678511E-07-0.88258511E-08 0.10294619E-08-0.28133690E-06 0.24133900E-05
  0.43576985E-04-0.14146803E-07
     ROW 12
 -0.67647409E-13-0.40604653E-11 0.10213618E-12 0.89939464E-08-0.19878918E-12
 -0.12523040E-05-0.31537412E-07 0.44370588E-07-0.19730860E-12 0.30333691E-05
 -0.14146803E-07 0.43602110E-04
 eigenphases
  0.4263867E-04  0.4357959E-04  0.5822367E-04  0.5984696E-04  0.8163492E-04
  0.8368563E-04  0.1197707E-03  0.1222595E-03  0.1900294E-03  0.3126559E-03
  0.5772934E-03  0.1290894E-02
 eigenphase sum 0.298251E-02  scattering length=  -0.03479
 eps+pi 0.314458E+01  eps+2*pi 0.628617E+01

MaxIter =   1 c.s. =      0.00104717 angs^2  rmsk=     0.00000364
Time Now =       197.7687  Delta time =         0.0017 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+00 eV (  0.18374663E-01 AU)
Time Now =       198.7386  Delta time =         0.9699 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =T1    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.17500000E+02  au
Number of integration regions used =    51
Number of partial waves (np) =    38
Number of asymptotic solutions on the right (NAsymR) =    12
Number of asymptotic solutions on the left (NAsymL) =    12
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =    12
Maximum in the asymptotic region (lpasym) =   11
Number of partial waves in the asymptotic region (npasym) =   15
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  133
Found polarization potential
Maximum l used in usual function (lmax) =   20
Maximum m used in usual function (LMax) =   20
Maxamum l used in expanding static potential (lpotct) =   40
Maximum l used in exapnding the exchange potential (lmaxab) =   40
Higest l included in the expansion of the wave function (lnp) =   20
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   11
Higest l used in the asymptotic potential (lpzb) =   22
Maximum L used in the homogeneous solution (LMaxHomo) =   20
Number of partial waves in the homogeneous solution (npHomo) =   38
Time Now =       198.7720  Delta time =         0.0334 Energy independent setup

Compute solution for E =    0.5000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.17500000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.10465319E-15
 i =  2  lval =   3  stpote = -0.36496507E-19
 i =  3  lval =   3  stpote = -0.41025463E-18
 i =  4  lval =   4  stpote = -0.15743972E-04
For potential     2
 i =  1  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.24706871E-16
 i =  2  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.24818625E-16
 i =  3  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.24888866E-16
 i =  4  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.24925158E-16
For potential     3
 i =  1  lvals =   6   6  stpote =  0.13552527E-19  second term =  0.00000000E+00
 i =  2  lvals =   6   6  stpote = -0.10344762E-19  second term =  0.00000000E+00
 i =  3  lvals =   6   6  stpote =  0.66979938E-20  second term =  0.00000000E+00
 i =  4  lvals =   7   9  stpote = -0.60833368E-07  second term = -0.60833368E-07
Number of asymptotic regions =       5
Final point in integration =   0.14885034E+03 Angstroms
Time Now =       220.0988  Delta time =        21.3268 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00529115 angs^2  rmsk=     0.00061947
iL =   2 Iter =   1 c.s. =      0.00529115 angs^2  rmsk=     0.00024376
iL =   3 Iter =   1 c.s. =      0.00529115 angs^2  rmsk=     0.00013070
iL =   4 Iter =   1 c.s. =      0.00529115 angs^2  rmsk=     0.00007907
iL =   5 Iter =   1 c.s. =      0.00529115 angs^2  rmsk=     0.00005068
iL =   6 Iter =   1 c.s. =      0.00529115 angs^2  rmsk=     0.00005111
iL =   7 Iter =   1 c.s. =      0.00529115 angs^2  rmsk=     0.00003486
iL =   8 Iter =   1 c.s. =      0.00529115 angs^2  rmsk=     0.00003469
iL =   9 Iter =   1 c.s. =      0.00529115 angs^2  rmsk=     0.00002474
iL =  10 Iter =   1 c.s. =      0.00529115 angs^2  rmsk=     0.00002493
iL =  11 Iter =   1 c.s. =      0.00529115 angs^2  rmsk=     0.00001833
iL =  12 Iter =   1 c.s. =      0.00529115 angs^2  rmsk=     0.00001837
     REAL PART -  Final k matrix
     ROW  1
  0.64710109E-02 0.31282043E-03 0.92555552E-05-0.38487878E-04 0.78756242E-06
  0.64677521E-06-0.11792926E-09-0.18412637E-09 0.10406639E-09-0.65915172E-09
 -0.84290792E-11-0.87552750E-11
     ROW  2
  0.31282043E-03 0.29072445E-02-0.79121650E-04-0.58746707E-05-0.16661566E-05
  0.19938486E-04 0.16545629E-06-0.49450620E-06 0.45285948E-10-0.81585157E-10
  0.31936845E-10-0.23142031E-09
     ROW  3
  0.92555552E-05-0.79121650E-04 0.15658560E-02-0.36360092E-04-0.42764604E-06
 -0.17272149E-05-0.12177136E-04 0.26599680E-09-0.25815724E-06-0.10878068E-06
 -0.34555222E-11 0.14004257E-10
     ROW  4
 -0.38487878E-04-0.58746707E-05-0.36360092E-04 0.94525869E-03-0.39446456E-04
 -0.47171540E-04 0.89078170E-06-0.65079997E-06-0.14596091E-05 0.91158266E-05
  0.99444343E-07 0.10186957E-06
     ROW  5
  0.78756242E-06-0.16661566E-05-0.42764604E-06-0.39446456E-04 0.60685627E-03
 -0.69383864E-06 0.36068217E-05 0.10656410E-09 0.56802613E-07-0.58735308E-06
 -0.51553111E-05-0.24407948E-10
     ROW  6
  0.64677521E-06 0.19938486E-04-0.17272149E-05-0.47171540E-04-0.69383864E-06
  0.60993467E-03 0.18037245E-04-0.33456220E-04-0.59631369E-07-0.89204144E-06
  0.43107581E-06-0.61575565E-05
     ROW  7
 -0.11792926E-09 0.16545629E-06-0.12177136E-04 0.89078170E-06 0.36068217E-05
  0.18037245E-04 0.41705444E-03 0.17545613E-06 0.19556085E-04 0.13569759E-04
 -0.98140980E-07-0.35177413E-06
     ROW  8
 -0.18412637E-09-0.49450620E-06 0.26599680E-09-0.65079997E-06 0.10656410E-09
 -0.33456220E-04 0.17545613E-06 0.41483613E-03 0.18414806E-10-0.63615301E-05
  0.11211771E-07 0.49566328E-06
     ROW  9
  0.10406639E-09 0.45285948E-10-0.25815724E-06-0.14596091E-05 0.56802613E-07
 -0.59631369E-07 0.19556085E-04 0.18414806E-10 0.29626937E-03-0.36542073E-06
 -0.14104340E-05-0.27296481E-10
     ROW 10
 -0.65915172E-09-0.81585158E-10-0.10878068E-06 0.91158266E-05-0.58735308E-06
 -0.89204144E-06 0.13569759E-04-0.63615301E-05-0.36542073E-06 0.29796291E-03
  0.12099033E-04 0.15207169E-04
     ROW 11
 -0.84290794E-11 0.31936846E-10-0.34555222E-11 0.99444343E-07-0.51553111E-05
  0.43107581E-06-0.98140980E-07 0.11211771E-07-0.14104340E-05 0.12099033E-04
  0.21957269E-03-0.15790892E-06
     ROW 12
 -0.87552753E-11-0.23142032E-09 0.14004257E-10 0.10186957E-06-0.24407948E-10
 -0.61575565E-05-0.35177413E-06 0.49566328E-06-0.27296481E-10 0.15207169E-04
 -0.15790892E-06 0.21985475E-03
 eigenphases
  0.2148882E-03  0.2197384E-03  0.2923365E-03  0.3014173E-03  0.4089590E-03
  0.4203424E-03  0.5996618E-03  0.6136076E-03  0.9539149E-03  0.1563330E-02
  0.2884969E-02  0.6498444E-02
 eigenphase sum 0.149716E-01  scattering length=  -0.07810
 eps+pi 0.315656E+01  eps+2*pi 0.629816E+01

MaxIter =   1 c.s. =      0.00529115 angs^2  rmsk=     0.00001837
Time Now =       220.1005  Delta time =         0.0016 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.20000000E+01 eV (  0.73498652E-01 AU)
Time Now =       221.0175  Delta time =         0.9170 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =T1    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.17500000E+02  au
Number of integration regions used =    51
Number of partial waves (np) =    38
Number of asymptotic solutions on the right (NAsymR) =    12
Number of asymptotic solutions on the left (NAsymL) =    12
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =    12
Maximum in the asymptotic region (lpasym) =   11
Number of partial waves in the asymptotic region (npasym) =   15
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  133
Found polarization potential
Maximum l used in usual function (lmax) =   20
Maximum m used in usual function (LMax) =   20
Maxamum l used in expanding static potential (lpotct) =   40
Maximum l used in exapnding the exchange potential (lmaxab) =   40
Higest l included in the expansion of the wave function (lnp) =   20
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   11
Higest l used in the asymptotic potential (lpzb) =   22
Maximum L used in the homogeneous solution (LMaxHomo) =   20
Number of partial waves in the homogeneous solution (npHomo) =   38
Time Now =       221.0507  Delta time =         0.0332 Energy independent setup

Compute solution for E =    2.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.17500000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.10465319E-15
 i =  2  lval =   3  stpote = -0.36496507E-19
 i =  3  lval =   3  stpote = -0.41025463E-18
 i =  4  lval =   4  stpote = -0.15743972E-04
For potential     2
 i =  1  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.21704717E-16
 i =  2  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.21124799E-16
 i =  3  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.20618596E-16
 i =  4  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.20214528E-16
For potential     3
 i =  1  lvals =   6   6  stpote =  0.13552527E-19  second term =  0.00000000E+00
 i =  2  lvals =   6   6  stpote = -0.10344762E-19  second term =  0.00000000E+00
 i =  3  lvals =   6   6  stpote =  0.66979938E-20  second term =  0.00000000E+00
 i =  4  lvals =   7   9  stpote = -0.60833368E-07  second term = -0.60833368E-07
Number of asymptotic regions =       7
Final point in integration =   0.10527008E+03 Angstroms
Time Now =       242.2875  Delta time =        21.2368 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.02215772 angs^2  rmsk=     0.00253603
iL =   2 Iter =   1 c.s. =      0.02215772 angs^2  rmsk=     0.00097794
iL =   3 Iter =   1 c.s. =      0.02215772 angs^2  rmsk=     0.00052255
iL =   4 Iter =   1 c.s. =      0.02215772 angs^2  rmsk=     0.00031808
iL =   5 Iter =   1 c.s. =      0.02215772 angs^2  rmsk=     0.00020229
iL =   6 Iter =   1 c.s. =      0.02215772 angs^2  rmsk=     0.00020507
iL =   7 Iter =   1 c.s. =      0.02215772 angs^2  rmsk=     0.00013988
iL =   8 Iter =   1 c.s. =      0.02215772 angs^2  rmsk=     0.00013844
iL =   9 Iter =   1 c.s. =      0.02215772 angs^2  rmsk=     0.00009883
iL =  10 Iter =   1 c.s. =      0.02215772 angs^2  rmsk=     0.00010013
iL =  11 Iter =   1 c.s. =      0.02215772 angs^2  rmsk=     0.00007352
iL =  12 Iter =   1 c.s. =      0.02215772 angs^2  rmsk=     0.00007378
     REAL PART -  Final k matrix
     ROW  1
  0.26659106E-01 0.13596990E-02 0.73099206E-04-0.16168109E-03 0.62341950E-05
  0.56265482E-05-0.69649346E-08-0.15030741E-07 0.30486471E-08-0.20598130E-07
 -0.51455147E-09-0.57476732E-09
     ROW  2
  0.13596990E-02 0.11651302E-01-0.32488072E-03-0.48036529E-04-0.67426165E-05
  0.81621604E-04 0.13931507E-05-0.39160415E-05 0.34078243E-08-0.55993102E-08
  0.94396119E-09-0.73454133E-08
     ROW  3
  0.73099206E-04-0.32488072E-03 0.62597522E-02-0.14741105E-03-0.32868078E-05
 -0.13855318E-04-0.49331576E-04 0.17888346E-07-0.20402311E-05-0.89341633E-06
 -0.29532734E-09 0.91416672E-09
     ROW  4
 -0.16168109E-03-0.48036529E-04-0.14741105E-03 0.38020874E-02-0.15904171E-03
 -0.19021747E-03 0.71003394E-05-0.50769928E-05-0.58757694E-05 0.36731863E-04
  0.80820128E-06 0.83853638E-06
     ROW  5
  0.62341950E-05-0.67426165E-05-0.32868078E-05-0.15904171E-03 0.24221527E-02
 -0.54112535E-05 0.14493946E-04 0.70749741E-08 0.46781987E-06-0.47422230E-05
 -0.20689006E-04-0.15692048E-08
     ROW  6
  0.56265482E-05 0.81621604E-04-0.13855318E-04-0.19021747E-03-0.54112535E-05
  0.24471199E-02 0.72514890E-04-0.13449757E-03-0.43905905E-06-0.71560559E-05
  0.17279906E-05-0.24717106E-04
     ROW  7
 -0.69649346E-08 0.13931507E-05-0.49331576E-04 0.71003394E-05 0.14493946E-04
  0.72514890E-04 0.16734432E-02 0.13464376E-05 0.78503482E-04 0.54473561E-04
 -0.77540789E-06-0.28125431E-05
     ROW  8
 -0.15030741E-07-0.39160415E-05 0.17888346E-07-0.50769928E-05 0.70749741E-08
 -0.13449757E-03 0.13464376E-05 0.16556559E-02 0.12034680E-08-0.25532791E-04
  0.81384322E-07 0.39855343E-05
     ROW  9
  0.30486471E-08 0.34078243E-08-0.20402311E-05-0.58757694E-05 0.46781987E-06
 -0.43905905E-06 0.78503482E-04 0.12034680E-08 0.11833302E-02-0.29073517E-05
 -0.56572480E-05-0.18182346E-08
     ROW 10
 -0.20598130E-07-0.55993102E-08-0.89341633E-06 0.36731863E-04-0.47422230E-05
 -0.71560559E-05 0.54473561E-04-0.25532791E-04-0.29073517E-05 0.11969281E-02
  0.48523978E-04 0.60989251E-04
     ROW 11
 -0.51455147E-09 0.94396120E-09-0.29532734E-09 0.80820128E-06-0.20689006E-04
  0.17279906E-05-0.77540789E-06 0.81384322E-07-0.56572480E-05 0.48523978E-04
  0.88060616E-03-0.12461130E-05
     ROW 12
 -0.57476732E-09-0.73454133E-08 0.91416672E-09 0.83853638E-06-0.15692048E-08
 -0.24717106E-04-0.28125431E-05 0.39855343E-05-0.18182346E-08 0.60989251E-04
 -0.12461130E-05 0.88288108E-03
 eigenphases
  0.8619175E-03  0.8823660E-03  0.1167509E-02  0.1210785E-02  0.1632378E-02
  0.1686289E-02  0.2393814E-02  0.2461367E-02  0.3836113E-02  0.6248579E-02
  0.1155002E-01  0.2677620E-01
 eigenphase sum 0.607073E-01  scattering length=  -0.15853
 eps+pi 0.320230E+01  eps+2*pi 0.634389E+01

MaxIter =   1 c.s. =      0.02215772 angs^2  rmsk=     0.00007378
Time Now =       242.2892  Delta time =         0.0017 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.10000000E+02 eV (  0.36749326E+00 AU)
Time Now =       243.1785  Delta time =         0.8893 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =T1    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.17500000E+02  au
Number of integration regions used =    51
Number of partial waves (np) =    38
Number of asymptotic solutions on the right (NAsymR) =    12
Number of asymptotic solutions on the left (NAsymL) =    12
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =    12
Maximum in the asymptotic region (lpasym) =   11
Number of partial waves in the asymptotic region (npasym) =   15
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  133
Found polarization potential
Maximum l used in usual function (lmax) =   20
Maximum m used in usual function (LMax) =   20
Maxamum l used in expanding static potential (lpotct) =   40
Maximum l used in exapnding the exchange potential (lmaxab) =   40
Higest l included in the expansion of the wave function (lnp) =   20
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   11
Higest l used in the asymptotic potential (lpzb) =   22
Maximum L used in the homogeneous solution (LMaxHomo) =   20
Number of partial waves in the homogeneous solution (npHomo) =   38
Time Now =       243.2119  Delta time =         0.0334 Energy independent setup

Compute solution for E =   10.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.17500000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.10465319E-15
 i =  2  lval =   3  stpote = -0.36496507E-19
 i =  3  lval =   3  stpote = -0.41025463E-18
 i =  4  lval =   4  stpote = -0.15743972E-04
For potential     2
 i =  1  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.17427622E-16
 i =  2  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.17277668E-16
 i =  3  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.17196103E-16
 i =  4  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.17166923E-16
For potential     3
 i =  1  lvals =   6   6  stpote =  0.13552527E-19  second term =  0.00000000E+00
 i =  2  lvals =   6   6  stpote = -0.10344762E-19  second term =  0.00000000E+00
 i =  3  lvals =   6   6  stpote =  0.66979938E-20  second term =  0.00000000E+00
 i =  4  lvals =   7   9  stpote = -0.60833368E-07  second term = -0.60833368E-07
Number of asymptotic regions =      10
Final point in integration =   0.70417590E+02 Angstroms
Time Now =       264.4282  Delta time =        21.2163 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.14061586 angs^2  rmsk=     0.01442637
iL =   2 Iter =   1 c.s. =      0.14061586 angs^2  rmsk=     0.00525086
iL =   3 Iter =   1 c.s. =      0.14061586 angs^2  rmsk=     0.00265364
iL =   4 Iter =   1 c.s. =      0.14061586 angs^2  rmsk=     0.00163019
iL =   5 Iter =   1 c.s. =      0.14061586 angs^2  rmsk=     0.00100649
iL =   6 Iter =   1 c.s. =      0.14061586 angs^2  rmsk=     0.00103633
iL =   7 Iter =   1 c.s. =      0.14061586 angs^2  rmsk=     0.00070431
iL =   8 Iter =   1 c.s. =      0.14061586 angs^2  rmsk=     0.00068763
iL =   9 Iter =   1 c.s. =      0.14061586 angs^2  rmsk=     0.00049105
iL =  10 Iter =   1 c.s. =      0.14061586 angs^2  rmsk=     0.00050498
iL =  11 Iter =   1 c.s. =      0.14061586 angs^2  rmsk=     0.00036859
iL =  12 Iter =   1 c.s. =      0.14061586 angs^2  rmsk=     0.00037121
     REAL PART -  Final k matrix
     ROW  1
  0.15444656E+00 0.13928382E-01 0.96724608E-03-0.16395973E-02 0.10136109E-03
  0.13223657E-03-0.53447630E-06-0.27401112E-05 0.18005325E-06-0.15767237E-05
 -0.75825828E-07-0.12657573E-06
     ROW  2
  0.13928382E-01 0.61405316E-01-0.22053654E-02-0.70228944E-03-0.35990425E-04
  0.57698573E-03 0.22513044E-04-0.49395903E-04 0.48261512E-06-0.85224721E-06
  0.20802005E-07-0.42932688E-06
     ROW  3
  0.96724608E-03-0.22053654E-02 0.31738963E-01-0.86228002E-03-0.30318200E-04
 -0.16618930E-03-0.29390302E-03 0.22299957E-05-0.22939271E-04-0.11995550E-04
 -0.50177556E-07 0.11260587E-06
     ROW  4
 -0.16395973E-02-0.70228944E-03-0.86228002E-03 0.19413061E-01-0.86720804E-03
 -0.10417854E-02 0.80085938E-04-0.50469052E-04-0.32284984E-04 0.20617872E-03
  0.10061586E-04 0.11044474E-04
     ROW  5
  0.10136109E-03-0.35990425E-04-0.30318200E-04-0.86720804E-03 0.12045197E-01
 -0.53048884E-04 0.75543010E-04 0.82701998E-06 0.61108219E-05-0.56404020E-04
 -0.11114854E-03-0.20704018E-06
     ROW  6
  0.13223657E-03 0.57698573E-03-0.16618930E-03-0.10417854E-02-0.53048884E-04
  0.12349740E-01 0.38222134E-03-0.70807168E-03-0.27031769E-05-0.82503383E-04
  0.90297120E-05-0.13358690E-03
     ROW  7
 -0.53447630E-06 0.22513044E-04-0.29390302E-03 0.80085938E-04 0.75543010E-04
  0.38222134E-03 0.84226408E-02 0.11745347E-04 0.40646384E-03 0.28215819E-03
 -0.81892429E-05-0.31720198E-04
     ROW  8
 -0.27401112E-05-0.49395903E-04 0.22299957E-05-0.50469052E-04 0.82701998E-06
 -0.70807168E-03 0.11745347E-04 0.82196140E-02 0.13388351E-06-0.13165414E-03
  0.42207307E-06 0.46258705E-04
     ROW  9
  0.18005325E-06 0.48261512E-06-0.22939271E-04-0.32284984E-04 0.61108219E-05
 -0.27031769E-05 0.40646384E-03 0.13388351E-06 0.58782745E-02-0.31715451E-04
 -0.29101070E-04-0.23151234E-06
     ROW 10
 -0.15767237E-05-0.85224721E-06-0.11995550E-04 0.20617872E-03-0.56404020E-04
 -0.82503383E-04 0.28215819E-03-0.13165414E-03-0.31715451E-04 0.60341019E-02
  0.24895852E-03 0.31289845E-03
     ROW 11
 -0.75825828E-07 0.20802005E-07-0.50177556E-07 0.10061586E-04-0.11114854E-03
  0.90297120E-05-0.81892429E-05 0.42207307E-06-0.29101070E-04 0.24895852E-03
  0.44144659E-02-0.12942237E-04
     ROW 12
 -0.12657573E-06-0.42932688E-06 0.11260587E-06 0.11044474E-04-0.20704018E-06
 -0.13358690E-03-0.31720198E-04 0.46258705E-04-0.23151234E-06 0.31289845E-03
 -0.12942237E-04 0.44410904E-02
 eigenphases
  0.4318578E-02  0.4436651E-02  0.5794273E-02  0.6104501E-02  0.8097582E-02
  0.8484600E-02  0.1189237E-01  0.1241171E-01  0.1957201E-01  0.3159997E-01
  0.5949928E-01  0.1552529E+00
 eigenphase sum 0.327464E+00  scattering length=  -0.39623
 eps+pi 0.346906E+01  eps+2*pi 0.661065E+01

MaxIter =   1 c.s. =      0.14061586 angs^2  rmsk=     0.00037121
Time Now =       264.4299  Delta time =         0.0017 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.20000000E+02 eV (  0.73498652E+00 AU)
Time Now =       265.2768  Delta time =         0.8469 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =T1    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.17500000E+02  au
Number of integration regions used =    51
Number of partial waves (np) =    38
Number of asymptotic solutions on the right (NAsymR) =    12
Number of asymptotic solutions on the left (NAsymL) =    12
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =    12
Maximum in the asymptotic region (lpasym) =   11
Number of partial waves in the asymptotic region (npasym) =   15
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  133
Found polarization potential
Maximum l used in usual function (lmax) =   20
Maximum m used in usual function (LMax) =   20
Maxamum l used in expanding static potential (lpotct) =   40
Maximum l used in exapnding the exchange potential (lmaxab) =   40
Higest l included in the expansion of the wave function (lnp) =   20
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   11
Higest l used in the asymptotic potential (lpzb) =   22
Maximum L used in the homogeneous solution (LMaxHomo) =   20
Number of partial waves in the homogeneous solution (npHomo) =   38
Time Now =       265.3100  Delta time =         0.0332 Energy independent setup

Compute solution for E =   20.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.17500000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.10465319E-15
 i =  2  lval =   3  stpote = -0.36496507E-19
 i =  3  lval =   3  stpote = -0.41025463E-18
 i =  4  lval =   4  stpote = -0.15743972E-04
For potential     2
 i =  1  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.68700479E-17
 i =  2  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.55721542E-17
 i =  3  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.43550934E-17
 i =  4  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.33234086E-17
For potential     3
 i =  1  lvals =   6   6  stpote =  0.13552527E-19  second term =  0.00000000E+00
 i =  2  lvals =   6   6  stpote = -0.10344762E-19  second term =  0.00000000E+00
 i =  3  lvals =   6   6  stpote =  0.66979938E-20  second term =  0.00000000E+00
 i =  4  lvals =   7   9  stpote = -0.60833368E-07  second term = -0.60833368E-07
Number of asymptotic regions =      11
Final point in integration =   0.59223160E+02 Angstroms
Time Now =       286.4479  Delta time =        21.1379 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.25839782 angs^2  rmsk=     0.02843110
iL =   2 Iter =   1 c.s. =      0.25839782 angs^2  rmsk=     0.01097344
iL =   3 Iter =   1 c.s. =      0.25839782 angs^2  rmsk=     0.00543966
iL =   4 Iter =   1 c.s. =      0.25839782 angs^2  rmsk=     0.00343902
iL =   5 Iter =   1 c.s. =      0.25839782 angs^2  rmsk=     0.00202298
iL =   6 Iter =   1 c.s. =      0.25839782 angs^2  rmsk=     0.00212344
iL =   7 Iter =   1 c.s. =      0.25839782 angs^2  rmsk=     0.00142341
iL =   8 Iter =   1 c.s. =      0.25839782 angs^2  rmsk=     0.00137325
iL =   9 Iter =   1 c.s. =      0.25839782 angs^2  rmsk=     0.00097815
iL =  10 Iter =   1 c.s. =      0.25839782 angs^2  rmsk=     0.00101898
iL =  11 Iter =   1 c.s. =      0.25839782 angs^2  rmsk=     0.00073896
iL =  12 Iter =   1 c.s. =      0.25839782 angs^2  rmsk=     0.00074663
     REAL PART -  Final k matrix
     ROW  1
  0.29826959E+00 0.42815579E-01 0.28290316E-02-0.63511855E-02 0.46321509E-03
  0.77035176E-03-0.19036175E-05-0.29319927E-04 0.20297719E-05-0.17760985E-04
 -0.10841644E-05-0.20475211E-05
     ROW  2
  0.42815579E-01 0.12430844E+00-0.64128139E-02-0.29521670E-02-0.57411245E-04
  0.20767682E-02 0.11126913E-03-0.20970989E-03 0.48399749E-05-0.98392556E-05
 -0.16020997E-06-0.40772777E-05
     ROW  3
  0.28290316E-02-0.64128139E-02 0.64848231E-01-0.23346103E-02-0.67772744E-04
 -0.56793317E-03-0.86119644E-03 0.18752737E-04-0.80861140E-04-0.48681468E-04
 -0.57702995E-06 0.99031646E-06
     ROW  4
 -0.63511855E-02-0.29521670E-02-0.23346103E-02 0.40461162E-01-0.21109988E-02
 -0.25743535E-02 0.24562415E-03-0.12795743E-03-0.79982612E-04 0.53557350E-03
  0.35617057E-04 0.40946482E-04
     ROW  5
  0.46321509E-03-0.57411245E-04-0.67772744E-04-0.21109988E-02 0.24176262E-01
 -0.12784495E-03 0.16415011E-03 0.59120176E-05 0.20945632E-04-0.17710751E-03
 -0.25837322E-03-0.18449268E-05
     ROW  6
  0.77035176E-03 0.20767682E-02-0.56793317E-03-0.25743535E-02-0.12784495E-03
  0.25179558E-01 0.85862869E-03-0.15843654E-02 0.50278975E-07-0.25127076E-03
  0.19393899E-04-0.31568289E-03
     ROW  7
 -0.19036175E-05 0.11126913E-03-0.86119644E-03 0.24562415E-03 0.16415011E-03
  0.85862869E-03 0.17001228E-01 0.22140466E-04 0.87272934E-03 0.60663161E-03
 -0.21903633E-04-0.92408117E-04
     ROW  8
 -0.29319927E-04-0.20970989E-03 0.18752737E-04-0.12795743E-03 0.59120176E-05
 -0.15843654E-02 0.22140466E-04 0.16397794E-01 0.84961468E-06-0.27919469E-03
 -0.47993428E-06 0.13902882E-03
     ROW  9
  0.20297719E-05 0.48399749E-05-0.80861140E-04-0.79982612E-04 0.20945632E-04
  0.50278975E-07 0.87272934E-03 0.84961468E-06 0.11704213E-01-0.88143971E-04
 -0.61712536E-04-0.18633044E-05
     ROW 10
 -0.17760985E-04-0.98392556E-05-0.48681468E-04 0.53557350E-03-0.17710751E-03
 -0.25127076E-03 0.60663161E-03-0.27919469E-03-0.88143971E-04 0.12164370E-01
  0.52425963E-03 0.65881178E-03
     ROW 11
 -0.10841644E-05-0.16020997E-06-0.57702995E-06 0.35617057E-04-0.25837322E-03
  0.19393899E-04-0.21903633E-04-0.47993428E-06-0.61712536E-04 0.52425963E-03
  0.88478328E-02-0.33442572E-04
     ROW 12
 -0.20475211E-05-0.40772777E-05 0.99031646E-06 0.40946482E-04-0.18449268E-05
 -0.31568289E-03-0.92408117E-04 0.13902882E-03-0.18633044E-05 0.65881178E-03
 -0.33442572E-04 0.89280257E-02
 eigenphases
  0.8643038E-02  0.8910940E-02  0.1151645E-01  0.1230739E-01  0.1611173E-01
  0.1712008E-01  0.2378023E-01  0.2524125E-01  0.4067788E-01  0.6408500E-01
  0.1148344E+00  0.2991691E+00
 eigenphase sum 0.642397E+00  scattering length=  -0.61717
 eps+pi 0.378399E+01  eps+2*pi 0.692558E+01

MaxIter =   1 c.s. =      0.25839782 angs^2  rmsk=     0.00074663
Time Now =       286.4496  Delta time =         0.0017 End ScatStab
+ Data Record ScatContSym - 'T2'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.10000000E+00 eV (  0.36749326E-02 AU)
Time Now =       287.3842  Delta time =         0.9346 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =T2    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.17500000E+02  au
Number of integration regions used =    51
Number of partial waves (np) =    52
Number of asymptotic solutions on the right (NAsymR) =    18
Number of asymptotic solutions on the left (NAsymL) =    18
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =    18
Maximum in the asymptotic region (lpasym) =   11
Number of partial waves in the asymptotic region (npasym) =   21
Number of orthogonality constraints (NOrthUse) =    1
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  133
Found polarization potential
Maximum l used in usual function (lmax) =   20
Maximum m used in usual function (LMax) =   20
Maxamum l used in expanding static potential (lpotct) =   40
Maximum l used in exapnding the exchange potential (lmaxab) =   40
Higest l included in the expansion of the wave function (lnp) =   20
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   11
Higest l used in the asymptotic potential (lpzb) =   22
Maximum L used in the homogeneous solution (LMaxHomo) =   20
Number of partial waves in the homogeneous solution (npHomo) =   52
Time Now =       287.4175  Delta time =         0.0334 Energy independent setup

Compute solution for E =    0.1000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.17500000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.10465319E-15
 i =  2  lval =   3  stpote = -0.36496507E-19
 i =  3  lval =   3  stpote = -0.41025463E-18
 i =  4  lval =   4  stpote = -0.15743972E-04
For potential     2
 i =  1  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.25916614E-16
 i =  2  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.25786305E-16
 i =  3  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.25679173E-16
 i =  4  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.25599205E-16
For potential     3
 i =  1  lvals =   6   6  stpote =  0.13552527E-19  second term =  0.00000000E+00
 i =  2  lvals =   6   6  stpote = -0.10344762E-19  second term =  0.00000000E+00
 i =  3  lvals =   6   6  stpote =  0.66979938E-20  second term =  0.00000000E+00
 i =  4  lvals =   7   9  stpote = -0.60833368E-07  second term = -0.60833368E-07
Number of asymptotic regions =       4
Final point in integration =   0.22255445E+03 Angstroms
Time Now =       318.6920  Delta time =        31.2744 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.15568886 angs^2  rmsk=     0.00100197
iL =   2 Iter =   1 c.s. =      0.15568886 angs^2  rmsk=     0.00022040
iL =   3 Iter =   1 c.s. =      0.15568886 angs^2  rmsk=     0.00007187
iL =   4 Iter =   1 c.s. =      0.15568886 angs^2  rmsk=     0.00003268
iL =   5 Iter =   1 c.s. =      0.15568886 angs^2  rmsk=     0.00001750
iL =   6 Iter =   1 c.s. =      0.15568886 angs^2  rmsk=     0.00001755
iL =   7 Iter =   1 c.s. =      0.15568886 angs^2  rmsk=     0.00001051
iL =   8 Iter =   1 c.s. =      0.15568886 angs^2  rmsk=     0.00001047
iL =   9 Iter =   1 c.s. =      0.15568886 angs^2  rmsk=     0.00000677
iL =  10 Iter =   1 c.s. =      0.15568886 angs^2  rmsk=     0.00000678
iL =  11 Iter =   1 c.s. =      0.15568886 angs^2  rmsk=     0.00000464
iL =  12 Iter =   1 c.s. =      0.15568886 angs^2  rmsk=     0.00000464
iL =  13 Iter =   1 c.s. =      0.15568886 angs^2  rmsk=     0.00000330
iL =  14 Iter =   1 c.s. =      0.15568886 angs^2  rmsk=     0.00000329
iL =  15 Iter =   1 c.s. =      0.15568886 angs^2  rmsk=     0.00000330
iL =  16 Iter =   1 c.s. =      0.15568886 angs^2  rmsk=     0.00000243
iL =  17 Iter =   1 c.s. =      0.15568886 angs^2  rmsk=     0.00000243
iL =  18 Iter =   1 c.s. =      0.15568886 angs^2  rmsk=     0.00000242
     REAL PART -  Final k matrix
     ROW  1
  0.17514812E-01 0.64501347E-03 0.22017239E-04-0.43441641E-04-0.67033466E-06
  0.34749391E-06-0.66835093E-10-0.24661731E-11-0.69483949E-10-0.15089711E-09
  0.14706124E-11-0.93729280E-12 0.49062420E-14-0.25228528E-14-0.19499530E-14
  0.10569389E-15 0.17661037E-15 0.49250745E-18
     ROW  2
  0.64501347E-03 0.39095901E-02 0.19307731E-03-0.24617770E-05 0.43646706E-05
  0.15492861E-04-0.11389188E-06-0.19300054E-06-0.32484946E-11-0.42985077E-11
 -0.13061666E-10-0.35562086E-10-0.10149357E-12-0.15787858E-12-0.28544210E-12
  0.41369085E-15-0.32479374E-15 0.84032619E-15
     ROW  3
  0.22017239E-04 0.19307731E-03 0.12789133E-02-0.18102974E-04 0.94842984E-06
  0.11256435E-05-0.72315291E-05-0.20711845E-10-0.92182354E-07 0.28506703E-07
 -0.13005481E-11-0.16980435E-11-0.54989710E-11-0.92624987E-11-0.11125458E-15
  0.88004792E-13-0.34458013E-13 0.11971563E-18
     ROW  4
 -0.43441641E-04-0.24617770E-05-0.18102974E-04 0.58495660E-03 0.34867163E-04
 -0.20627725E-04 0.18055655E-06-0.26721822E-06 0.19077943E-05 0.41422742E-05
 -0.34143618E-07 0.21465871E-07-0.14742004E-12 0.30553266E-12-0.13618189E-12
 -0.25033127E-11-0.42546424E-11 0.17649428E-15
     ROW  5
 -0.67033466E-06 0.43646706E-05 0.94842984E-06 0.34867163E-04 0.31295067E-03
  0.50239525E-06-0.90490141E-05-0.13425562E-10 0.19073873E-06 0.20738406E-06
 -0.23896675E-05 0.35761169E-12-0.25252928E-07 0.60548736E-08-0.41226278E-14
 -0.12529647E-12-0.19037904E-12 0.78780881E-19
     ROW  6
  0.34749391E-06 0.15492861E-04 0.11256435E-05-0.20627725E-04 0.50239525E-06
  0.31414105E-03-0.11471736E-04-0.17015310E-04 0.48116489E-07-0.21006030E-06
 -0.33660583E-06-0.27497537E-05 0.49356501E-09-0.12000582E-07-0.18701558E-07
  0.56485431E-13 0.13280491E-12 0.10197015E-12
     ROW  7
 -0.66835093E-10-0.11389188E-06-0.72315291E-05 0.18055655E-06-0.90490141E-05
 -0.11471736E-04 0.18815402E-03-0.76407838E-07 0.11648688E-04-0.25292090E-05
  0.97091877E-07 0.88174657E-07 0.92306797E-06 0.15548415E-05 0.61744258E-12
 -0.12429052E-07 0.48728670E-08 0.82470000E-15
     ROW  8
 -0.24661734E-11-0.19300054E-06-0.20711845E-10-0.26721822E-06-0.13425562E-10
 -0.17015310E-04-0.76407838E-07 0.18760916E-03-0.20988767E-11-0.37514228E-05
 -0.52938245E-08 0.13078413E-06-0.13365348E-12-0.69884285E-07 0.15247088E-05
 -0.41518502E-10 0.30703519E-08-0.15230075E-07
     ROW  9
 -0.69483950E-10-0.32484947E-11-0.92182354E-07 0.19077943E-05 0.19073873E-06
  0.48116489E-07 0.11648688E-04-0.20988767E-11 0.12125847E-03 0.15902389E-06
 -0.44508011E-05 0.12790553E-11 0.62296270E-07 0.63009005E-07-0.32700698E-14
 -0.10769055E-05-0.80517435E-13 0.49642205E-19
     ROW 10
 -0.15089711E-09-0.42985077E-11 0.28506703E-07 0.41422742E-05 0.20738406E-06
 -0.21006030E-06-0.25292090E-05-0.37514228E-05 0.15902389E-06 0.12156388E-03
 -0.54761328E-05 0.50236918E-05 0.22501421E-07-0.28988341E-07-0.45175073E-07
 -0.24799324E-06-0.12645217E-05 0.27029307E-12
     ROW 11
  0.14706125E-11-0.13061666E-10-0.13005481E-11-0.34143618E-07-0.23896675E-05
 -0.33660583E-06 0.97091877E-07-0.52938245E-08-0.44508011E-05-0.54761328E-05
  0.82991786E-04 0.45605589E-07 0.52073016E-05 0.39890234E-12 0.39295674E-12
  0.44958595E-07 0.32768208E-07 0.40726003E-15
     ROW 12
 -0.93729283E-12-0.35562087E-10-0.16980435E-11 0.21465871E-07 0.35761169E-12
 -0.27497537E-05 0.88174657E-07 0.13078413E-06 0.12790553E-11 0.50236918E-05
  0.45605589E-07 0.83059554E-04 0.52147106E-12 0.30064374E-05 0.46851944E-05
  0.47550003E-08-0.43833877E-07 0.18583368E-07
     ROW 13
  0.49062426E-14-0.10149358E-12-0.54989710E-11-0.14742004E-12-0.25252928E-07
  0.49356501E-09 0.92306797E-06-0.13365348E-12 0.62296270E-07 0.22501421E-07
  0.52073016E-05 0.52147106E-12 0.59031796E-04 0.63520654E-07-0.81633401E-15
 -0.24551185E-05 0.18303954E-12 0.10426037E-19
     ROW 14
 -0.25228531E-14-0.15787858E-12-0.92624988E-11 0.30553266E-12 0.60548736E-08
 -0.12000582E-07 0.15548415E-05-0.69884285E-07 0.63009005E-07-0.28988341E-07
  0.39890234E-12 0.30064374E-05 0.63520654E-07 0.59116160E-04-0.16296571E-07
 -0.28572364E-05 0.14746055E-05 0.10432152E-12
     ROW 15
 -0.19499532E-14-0.28544211E-12-0.11125462E-15-0.13618189E-12-0.41226279E-14
 -0.18701558E-07 0.61744258E-12 0.15247088E-05-0.32700699E-14-0.45175073E-07
  0.39295674E-12 0.46851944E-05-0.81633410E-15-0.16296571E-07 0.59101221E-04
  0.94859840E-13 0.14247641E-05-0.31991026E-05
     ROW 16
  0.10569394E-15 0.41369088E-15 0.88004794E-13-0.25033127E-11-0.12529647E-12
  0.56485432E-13-0.12429052E-07-0.41518502E-10-0.10769055E-05-0.24799324E-06
  0.44958595E-07 0.47550003E-08-0.24551185E-05-0.28572364E-05 0.94859839E-13
  0.43575680E-04 0.23585168E-07 0.70849828E-16
     ROW 17
  0.17661036E-15-0.32479367E-15-0.34458014E-13-0.42546424E-11-0.19037904E-12
  0.13280491E-12 0.48728670E-08 0.30703519E-08-0.80517435E-13-0.12645217E-05
  0.32768208E-07-0.43833877E-07 0.18303954E-12 0.14746055E-05 0.14247641E-05
  0.23585168E-07 0.43609041E-04 0.45917188E-08
     ROW 18
  0.49247962E-18 0.84032612E-15 0.11956919E-18 0.17649433E-15 0.78781334E-19
  0.10197015E-12 0.82469996E-15-0.15230075E-07 0.49616442E-19 0.27029307E-12
  0.40726005E-15 0.18583368E-07 0.10433797E-19 0.10432152E-12-0.31991026E-05
  0.70849751E-16 0.45917188E-08 0.43504348E-04
 eigenphases
  0.4252322E-04  0.4279362E-04  0.4353919E-04  0.5804863E-04  0.5878890E-04
  0.5977072E-04  0.8242622E-04  0.8405779E-04  0.1193379E-03  0.1230554E-03
  0.1850319E-03  0.1891323E-03  0.3074630E-03  0.3176156E-03  0.5903315E-03
  0.1265300E-02  0.3893208E-02  0.1754369E-01
 eigenphase sum 0.250061E-01  scattering length=  -0.29174
 eps+pi 0.316660E+01  eps+2*pi 0.630819E+01

MaxIter =   1 c.s. =      0.15568886 angs^2  rmsk=     0.00000242
Time Now =       318.6952  Delta time =         0.0032 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+00 eV (  0.18374663E-01 AU)
Time Now =       318.7913  Delta time =         0.0962 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =T2    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.17500000E+02  au
Number of integration regions used =    51
Number of partial waves (np) =    52
Number of asymptotic solutions on the right (NAsymR) =    18
Number of asymptotic solutions on the left (NAsymL) =    18
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =    18
Maximum in the asymptotic region (lpasym) =   11
Number of partial waves in the asymptotic region (npasym) =   21
Number of orthogonality constraints (NOrthUse) =    1
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  133
Found polarization potential
Maximum l used in usual function (lmax) =   20
Maximum m used in usual function (LMax) =   20
Maxamum l used in expanding static potential (lpotct) =   40
Maximum l used in exapnding the exchange potential (lmaxab) =   40
Higest l included in the expansion of the wave function (lnp) =   20
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   11
Higest l used in the asymptotic potential (lpzb) =   22
Maximum L used in the homogeneous solution (LMaxHomo) =   20
Number of partial waves in the homogeneous solution (npHomo) =   52
Time Now =       318.8246  Delta time =         0.0333 Energy independent setup

Compute solution for E =    0.5000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.17500000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.10465319E-15
 i =  2  lval =   3  stpote = -0.36496507E-19
 i =  3  lval =   3  stpote = -0.41025463E-18
 i =  4  lval =   4  stpote = -0.15743972E-04
For potential     2
 i =  1  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.24706871E-16
 i =  2  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.24818625E-16
 i =  3  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.24888866E-16
 i =  4  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.24925158E-16
For potential     3
 i =  1  lvals =   6   6  stpote =  0.13552527E-19  second term =  0.00000000E+00
 i =  2  lvals =   6   6  stpote = -0.10344762E-19  second term =  0.00000000E+00
 i =  3  lvals =   6   6  stpote =  0.66979938E-20  second term =  0.00000000E+00
 i =  4  lvals =   7   9  stpote = -0.60833368E-07  second term = -0.60833368E-07
Number of asymptotic regions =       5
Final point in integration =   0.14885034E+03 Angstroms
Time Now =       349.6036  Delta time =        30.7790 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.15248843 angs^2  rmsk=     0.00221798
iL =   2 Iter =   1 c.s. =      0.15248843 angs^2  rmsk=     0.00114626
iL =   3 Iter =   1 c.s. =      0.15248843 angs^2  rmsk=     0.00036027
iL =   4 Iter =   1 c.s. =      0.15248843 angs^2  rmsk=     0.00016451
iL =   5 Iter =   1 c.s. =      0.15248843 angs^2  rmsk=     0.00008747
iL =   6 Iter =   1 c.s. =      0.15248843 angs^2  rmsk=     0.00008810
iL =   7 Iter =   1 c.s. =      0.15248843 angs^2  rmsk=     0.00005274
iL =   8 Iter =   1 c.s. =      0.15248843 angs^2  rmsk=     0.00005232
iL =   9 Iter =   1 c.s. =      0.15248843 angs^2  rmsk=     0.00003391
iL =  10 Iter =   1 c.s. =      0.15248843 angs^2  rmsk=     0.00003403
iL =  11 Iter =   1 c.s. =      0.15248843 angs^2  rmsk=     0.00002329
iL =  12 Iter =   1 c.s. =      0.15248843 angs^2  rmsk=     0.00002330
iL =  13 Iter =   1 c.s. =      0.15248843 angs^2  rmsk=     0.00001655
iL =  14 Iter =   1 c.s. =      0.15248843 angs^2  rmsk=     0.00001658
iL =  15 Iter =   1 c.s. =      0.15248843 angs^2  rmsk=     0.00001660
iL =  16 Iter =   1 c.s. =      0.15248843 angs^2  rmsk=     0.00001225
iL =  17 Iter =   1 c.s. =      0.15248843 angs^2  rmsk=     0.00001224
iL =  18 Iter =   1 c.s. =      0.15248843 angs^2  rmsk=     0.00001219
     REAL PART -  Final k matrix
     ROW  1
  0.33287166E-01 0.98467667E-03 0.15518617E-03-0.22555304E-03-0.74764810E-05
  0.41823595E-05-0.10065570E-07-0.39753839E-08-0.38838250E-08-0.82431627E-08
  0.17931639E-09-0.12235042E-09 0.12791547E-11-0.81619274E-12-0.63337998E-12
  0.48030271E-13 0.76863161E-13 0.78698629E-15
     ROW  2
  0.98467667E-03 0.20582890E-01 0.10355187E-02-0.29861575E-04 0.22080996E-04
  0.78486300E-04-0.13409027E-05-0.21494909E-05-0.13135081E-08-0.55053660E-09
 -0.72532899E-09-0.19941341E-08-0.13217583E-10-0.20618718E-10-0.36086393E-10
  0.13102778E-12-0.91683887E-13 0.23870155E-12
     ROW  3
  0.15518617E-03 0.10355187E-02 0.63989283E-02-0.91680371E-04 0.10598642E-04
  0.12789922E-04-0.36284698E-04-0.50948646E-08-0.10293464E-05 0.31311973E-06
 -0.19144888E-09-0.30160524E-09-0.31322609E-09-0.52532123E-09-0.16012531E-11
  0.11259518E-10-0.43649322E-11 0.53296331E-15
     ROW  4
 -0.22555304E-03-0.29861575E-04-0.91680371E-04 0.29438577E-02 0.17513099E-03
 -0.10361649E-03 0.20206101E-05-0.29587648E-05 0.95305719E-05 0.20692116E-04
 -0.38644458E-06 0.24355681E-06-0.57775171E-10 0.67329403E-10-0.73606642E-11
 -0.14262423E-09-0.24207228E-09 0.35039982E-12
     ROW  5
 -0.74764810E-05 0.22080996E-04 0.10598642E-04 0.17513099E-03 0.15637171E-02
  0.56001722E-05-0.45349733E-04-0.20237249E-08 0.21285114E-05 0.23301815E-05
 -0.11897476E-04 0.19815225E-10-0.28346437E-06 0.66739780E-07-0.22387913E-11
 -0.16044326E-10-0.32083071E-10 0.32438829E-15
     ROW  6
  0.41823595E-05 0.78486300E-04 0.12789922E-04-0.10361649E-03 0.56001722E-05
  0.15770622E-02-0.57493767E-04-0.85273088E-04 0.52455974E-06-0.23468409E-05
 -0.16758379E-05-0.13690476E-04 0.47180391E-08-0.13567550E-06-0.21143605E-06
  0.14181215E-10 0.17389437E-10 0.25396082E-10
     ROW  7
 -0.10065570E-07-0.13409027E-05-0.36284698E-04 0.20206101E-05-0.45349733E-04
 -0.57493767E-04 0.94384220E-03-0.84148234E-06 0.58341846E-04-0.12667191E-04
  0.10841028E-05 0.98684852E-06 0.45738912E-05 0.77042472E-05 0.82870759E-10
 -0.14041742E-06 0.54930378E-07 0.35774020E-12
     ROW  8
 -0.39753839E-08-0.21494909E-05-0.50948646E-08-0.29587648E-05-0.20237249E-08
 -0.85273088E-04-0.84148234E-06 0.93772997E-03-0.31459541E-09-0.18788456E-04
 -0.57148867E-07 0.14637222E-05-0.20585113E-10-0.34619231E-06 0.75548683E-05
 -0.38922643E-09 0.34834284E-07-0.17086230E-06
     ROW  9
 -0.38838250E-08-0.13135081E-08-0.10293464E-05 0.95305719E-05 0.21285114E-05
  0.52455974E-06 0.58341846E-04-0.31459541E-09 0.60715771E-03 0.17809323E-05
 -0.22287660E-04 0.18345833E-09 0.69481120E-06 0.70511415E-06-0.12166009E-11
 -0.52951105E-05-0.17588874E-10 0.14653510E-15
     ROW 10
 -0.82431627E-08-0.55053660E-09 0.31311973E-06 0.20692116E-04 0.23301815E-05
 -0.23468409E-05-0.12667191E-04-0.18788456E-04 0.17809323E-05 0.61057293E-03
 -0.27422371E-04 0.25156589E-04 0.24894476E-06-0.32288237E-06-0.50317849E-06
 -0.12193967E-05-0.62176116E-05 0.36554230E-10
     ROW 11
  0.17931639E-09-0.72532899E-09-0.19144888E-09-0.38644458E-06-0.11897476E-04
 -0.16758379E-05 0.10841028E-05-0.57148867E-07-0.22287660E-04-0.27422371E-04
  0.41673695E-03 0.50865406E-06 0.26074754E-04 0.54321904E-10 0.55785755E-10
  0.50137323E-06 0.36632957E-06 0.14446389E-12
     ROW 12
 -0.12235042E-09-0.19941341E-08-0.30160524E-09 0.24355681E-06 0.19815225E-10
 -0.13690476E-04 0.98684852E-06 0.14637222E-05 0.18345833E-09 0.25156589E-04
  0.50865406E-06 0.41749428E-03 0.72697679E-10 0.15054330E-04 0.23460478E-04
  0.52326570E-07-0.48896207E-06 0.20629993E-06
     ROW 13
  0.12791547E-11-0.13217583E-10-0.31322609E-09-0.57775172E-10-0.28346437E-06
  0.47180391E-08 0.45738912E-05-0.20585113E-10 0.69481120E-06 0.24894476E-06
  0.26074754E-04 0.72697679E-10 0.29654083E-03 0.71205663E-06-0.28620948E-12
 -0.12308194E-04 0.25092772E-10 0.36231876E-16
     ROW 14
 -0.81619275E-12-0.20618718E-10-0.52532124E-09 0.67329403E-10 0.66739780E-07
 -0.13567550E-06 0.77042472E-05-0.34619231E-06 0.70511415E-06-0.32288237E-06
  0.54321904E-10 0.15054330E-04 0.71205663E-06 0.29748483E-03-0.18134605E-06
 -0.14324172E-04 0.73926063E-05 0.14436428E-10
     ROW 15
 -0.63337998E-12-0.36086394E-10-0.16012532E-11-0.73606642E-11-0.22387913E-11
 -0.21143605E-06 0.82870759E-10 0.75548683E-05-0.12166009E-11-0.50317849E-06
  0.55785755E-10 0.23460478E-04-0.28620948E-12-0.18134605E-06 0.29731859E-03
  0.13266153E-10 0.71427322E-05-0.16037987E-04
     ROW 16
  0.48030271E-13 0.13102778E-12 0.11259518E-10-0.14262423E-09-0.16044326E-10
  0.14181215E-10-0.14041742E-06-0.38922643E-09-0.52951105E-05-0.12193967E-05
  0.50137323E-06 0.52326570E-07-0.12308194E-04-0.14324172E-04 0.13266153E-10
  0.21955887E-03 0.26404705E-06 0.26371002E-13
     ROW 17
  0.76863162E-13-0.91683891E-13-0.43649323E-11-0.24207228E-09-0.32083071E-10
  0.17389437E-10 0.54930378E-07 0.34834284E-07-0.17588874E-10-0.62176116E-05
  0.36632957E-06-0.48896207E-06 0.25092772E-10 0.73926063E-05 0.71427322E-05
  0.26404705E-06 0.21993197E-03 0.51038976E-07
     ROW 18
  0.78698621E-15 0.23870156E-12 0.53296319E-15 0.35039983E-12 0.32438819E-15
  0.25396082E-10 0.35774020E-12-0.17086230E-06 0.14653472E-15 0.36554230E-10
  0.14446389E-12 0.20629993E-06 0.36231404E-16 0.14436428E-10-0.16037987E-04
  0.26371003E-13 0.51038976E-07 0.21875864E-03
 eigenphases
  0.2141248E-03  0.2153729E-03  0.2195718E-03  0.2914384E-03  0.2957753E-03
  0.3009528E-03  0.4138255E-03  0.4225914E-03  0.5971767E-03  0.6183734E-03
  0.9250794E-03  0.9485659E-03  0.1535410E-02  0.1595371E-02  0.2969446E-02
  0.6325973E-02  0.2057791E-01  0.3335441E-01
 eigenphase sum 0.718214E-01  scattering length=  -0.37530
 eps+pi 0.321341E+01  eps+2*pi 0.635501E+01

MaxIter =   1 c.s. =      0.15248843 angs^2  rmsk=     0.00001219
Time Now =       349.6068  Delta time =         0.0032 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.20000000E+01 eV (  0.73498652E-01 AU)
Time Now =       349.7041  Delta time =         0.0973 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =T2    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.17500000E+02  au
Number of integration regions used =    51
Number of partial waves (np) =    52
Number of asymptotic solutions on the right (NAsymR) =    18
Number of asymptotic solutions on the left (NAsymL) =    18
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =    18
Maximum in the asymptotic region (lpasym) =   11
Number of partial waves in the asymptotic region (npasym) =   21
Number of orthogonality constraints (NOrthUse) =    1
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  133
Found polarization potential
Maximum l used in usual function (lmax) =   20
Maximum m used in usual function (LMax) =   20
Maxamum l used in expanding static potential (lpotct) =   40
Maximum l used in exapnding the exchange potential (lmaxab) =   40
Higest l included in the expansion of the wave function (lnp) =   20
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   11
Higest l used in the asymptotic potential (lpzb) =   22
Maximum L used in the homogeneous solution (LMaxHomo) =   20
Number of partial waves in the homogeneous solution (npHomo) =   52
Time Now =       349.7374  Delta time =         0.0333 Energy independent setup

Compute solution for E =    2.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.17500000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.10465319E-15
 i =  2  lval =   3  stpote = -0.36496507E-19
 i =  3  lval =   3  stpote = -0.41025463E-18
 i =  4  lval =   4  stpote = -0.15743972E-04
For potential     2
 i =  1  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.21704717E-16
 i =  2  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.21124799E-16
 i =  3  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.20618596E-16
 i =  4  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.20214528E-16
For potential     3
 i =  1  lvals =   6   6  stpote =  0.13552527E-19  second term =  0.00000000E+00
 i =  2  lvals =   6   6  stpote = -0.10344762E-19  second term =  0.00000000E+00
 i =  3  lvals =   6   6  stpote =  0.66979938E-20  second term =  0.00000000E+00
 i =  4  lvals =   7   9  stpote = -0.60833368E-07  second term = -0.60833368E-07
Number of asymptotic regions =       7
Final point in integration =   0.10527008E+03 Angstroms
Time Now =       380.6835  Delta time =        30.9461 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.44514141 angs^2  rmsk=     0.00760888
iL =   2 Iter =   1 c.s. =      0.44514141 angs^2  rmsk=     0.00567528
iL =   3 Iter =   1 c.s. =      0.44514141 angs^2  rmsk=     0.00149486
iL =   4 Iter =   1 c.s. =      0.44514141 angs^2  rmsk=     0.00066944
iL =   5 Iter =   1 c.s. =      0.44514141 angs^2  rmsk=     0.00034950
iL =   6 Iter =   1 c.s. =      0.44514141 angs^2  rmsk=     0.00035520
iL =   7 Iter =   1 c.s. =      0.44514141 angs^2  rmsk=     0.00021186
iL =   8 Iter =   1 c.s. =      0.44514141 angs^2  rmsk=     0.00020880
iL =   9 Iter =   1 c.s. =      0.44514141 angs^2  rmsk=     0.00013546
iL =  10 Iter =   1 c.s. =      0.44514141 angs^2  rmsk=     0.00013667
iL =  11 Iter =   1 c.s. =      0.44514141 angs^2  rmsk=     0.00009339
iL =  12 Iter =   1 c.s. =      0.44514141 angs^2  rmsk=     0.00009360
iL =  13 Iter =   1 c.s. =      0.44514141 angs^2  rmsk=     0.00006619
iL =  14 Iter =   1 c.s. =      0.44514141 angs^2  rmsk=     0.00006649
iL =  15 Iter =   1 c.s. =      0.44514141 angs^2  rmsk=     0.00006655
iL =  16 Iter =   1 c.s. =      0.44514141 angs^2  rmsk=     0.00004911
iL =  17 Iter =   1 c.s. =      0.44514141 angs^2  rmsk=     0.00004916
iL =  18 Iter =   1 c.s. =      0.44514141 angs^2  rmsk=     0.00004869
     REAL PART -  Final k matrix
     ROW  1
 -0.84009640E-01-0.16147404E-01-0.41453088E-03-0.10822604E-02-0.69833538E-04
  0.34824453E-04-0.12316669E-06-0.12679873E-06-0.12852776E-06-0.26902943E-06
  0.11435172E-07-0.96540411E-08 0.12922637E-09-0.16729291E-09-0.14465486E-09
  0.15034487E-10 0.20550359E-10 0.10632666E-11
     ROW  2
 -0.16147404E-01 0.10066465E+00 0.64229285E-02-0.36671660E-03 0.10279577E-03
  0.37854373E-03-0.14232837E-04-0.18217644E-04-0.13346312E-06-0.57908423E-07
 -0.21497542E-07-0.64737610E-07-0.96970068E-09-0.15515180E-08-0.22739143E-08
  0.27459307E-10-0.10401717E-10 0.29466312E-10
     ROW  3
 -0.41453088E-03 0.64229285E-02 0.26122325E-01-0.40917248E-03 0.86606629E-04
  0.11262211E-03-0.15234118E-03-0.42624959E-06-0.82582291E-05 0.23447845E-05
 -0.12810070E-07-0.22578285E-07-0.99879312E-08-0.16438281E-07-0.32940877E-09
  0.69961776E-09-0.25798081E-09 0.86389227E-12
     ROW  4
 -0.10822604E-02-0.36671660E-03-0.40917248E-03 0.11958960E-01 0.72074580E-03
 -0.42710281E-03 0.16376884E-04-0.22964355E-04 0.39079180E-04 0.84776499E-04
 -0.32276581E-05 0.20528547E-05-0.46509144E-08 0.49925282E-08-0.10995409E-09
 -0.45240872E-08-0.76277264E-08 0.56927530E-10
     ROW  5
 -0.69833538E-04 0.10279577E-03 0.86606629E-04 0.72074580E-03 0.62445858E-02
  0.44457817E-04-0.18390565E-03-0.13675269E-06 0.16998589E-04 0.19100487E-04
 -0.48218657E-04 0.83582691E-09-0.22653985E-05 0.49521885E-06-0.34864922E-09
 -0.10219749E-08-0.22760254E-08 0.44504184E-12
     ROW  6
  0.34824453E-04 0.37854373E-03 0.11262211E-03-0.42710281E-03 0.44457817E-04
  0.63528970E-02-0.23331783E-03-0.34578083E-03 0.38073762E-05-0.18828734E-04
 -0.67907267E-05-0.55502380E-04 0.11897424E-07-0.11146459E-05-0.17371768E-05
  0.11120192E-08 0.11158219E-08 0.19270816E-08
     ROW  7
 -0.12316669E-06-0.14232837E-04-0.15234118E-03 0.16376884E-04-0.18390565E-03
 -0.23331783E-03 0.37909665E-02-0.63443117E-05 0.23520968E-03-0.51053978E-04
  0.86741745E-05 0.79669455E-05 0.18434542E-04 0.31041871E-04 0.54872498E-08
 -0.11447443E-05 0.44408714E-06 0.49576615E-10
     ROW  8
 -0.12679873E-06-0.18217644E-04-0.42624959E-06-0.22964355E-04-0.13675269E-06
 -0.34578083E-03-0.63443117E-05 0.37413941E-02-0.20924129E-07-0.75724278E-04
 -0.39709777E-06 0.11815297E-04-0.13530887E-08-0.13893830E-05 0.30434808E-04
 -0.68543954E-09 0.28843407E-06-0.13557548E-05
     ROW  9
 -0.12852776E-06-0.13346312E-06-0.82582291E-05 0.39079180E-04 0.16998589E-04
  0.38073762E-05 0.23520968E-03-0.20924129E-07 0.24247896E-02 0.14323857E-04
 -0.89599893E-04 0.12463911E-07 0.55462073E-05 0.57002516E-05-0.16748262E-09
 -0.21254049E-04-0.13145798E-08 0.16897069E-12
     ROW 10
 -0.26902943E-06-0.57908423E-07 0.23447845E-05 0.84776499E-04 0.19100487E-04
 -0.18828734E-04-0.51053978E-04-0.75724278E-04 0.14323857E-04 0.24520996E-02
 -0.11026193E-03 0.10114282E-03 0.19256358E-05-0.25640191E-05-0.39961101E-05
 -0.48960894E-05-0.24956969E-04 0.23917514E-08
     ROW 11
  0.11435172E-07-0.21497542E-07-0.12810070E-07-0.32276581E-05-0.48218657E-04
 -0.67907267E-05 0.86741745E-05-0.39709777E-06-0.89599893E-04-0.11026193E-03
  0.16709864E-02 0.40219759E-05 0.10466962E-03 0.35785261E-08 0.37337310E-08
  0.40054889E-05 0.29540601E-05 0.18833284E-10
     ROW 12
 -0.96540411E-08-0.64737610E-07-0.22578285E-07 0.20528547E-05 0.83582691E-09
 -0.55502380E-04 0.79669455E-05 0.11815297E-04 0.12463911E-07 0.10114282E-03
  0.40219759E-05 0.16770206E-02 0.48325810E-08 0.60435252E-04 0.94181537E-04
  0.39673880E-06-0.39103647E-05 0.16195392E-05
     ROW 13
  0.12922637E-09-0.96970068E-09-0.99879313E-08-0.46509144E-08-0.22653985E-05
  0.11897424E-07 0.18434542E-04-0.13530887E-08 0.55462073E-05 0.19256358E-05
  0.10466962E-03 0.48325810E-08 0.11855471E-02 0.57249739E-05-0.37547144E-10
 -0.49360456E-04 0.16794116E-08 0.38957926E-13
     ROW 14
 -0.16729291E-09-0.15515180E-08-0.16438281E-07 0.49925282E-08 0.49521885E-06
 -0.11146459E-05 0.31041871E-04-0.13893830E-05 0.57002516E-05-0.25640191E-05
  0.35785261E-08 0.60435252E-04 0.57249739E-05 0.11930845E-02-0.14172503E-05
 -0.57448462E-04 0.29646957E-04 0.95153355E-09
     ROW 15
 -0.14465486E-09-0.22739143E-08-0.32940877E-09-0.10995409E-09-0.34864922E-09
 -0.17371768E-05 0.54872498E-08 0.30434808E-04-0.16748262E-09-0.39961101E-05
  0.37337310E-08 0.94181537E-04-0.37547144E-10-0.14172503E-05 0.11917852E-02
  0.87646716E-09 0.28644530E-04-0.64317847E-04
     ROW 16
  0.15034487E-10 0.27459307E-10 0.69961776E-09-0.45240872E-08-0.10219749E-08
  0.11120192E-08-0.11447443E-05-0.68543955E-09-0.21254049E-04-0.48960894E-05
  0.40054889E-05 0.39673880E-06-0.49360456E-04-0.57448462E-04 0.87646716E-09
  0.88052006E-03 0.21077656E-05 0.34153470E-11
     ROW 17
  0.20550359E-10-0.10401717E-10-0.25798081E-09-0.76277265E-08-0.22760254E-08
  0.11158219E-08 0.44408714E-06 0.28843407E-06-0.13145798E-08-0.24956969E-04
  0.29540601E-05-0.39103647E-05 0.16794116E-08 0.29646957E-04 0.28644530E-04
  0.21077656E-05 0.88348622E-03 0.39618367E-06
     ROW 18
  0.10632666E-11 0.29466312E-10 0.86389226E-12 0.56927530E-10 0.44504184E-12
  0.19270816E-08 0.49576615E-10-0.13557548E-05 0.16897069E-12 0.23917514E-08
  0.18833284E-10 0.16195392E-05 0.38957925E-13 0.95153355E-09-0.64317847E-04
  0.34153469E-11 0.39618367E-06 0.87408223E-03
 eigenphases
 -0.8521690E-01  0.8571294E-03  0.8620430E-03  0.8820875E-03  0.1163773E-02
  0.1185708E-02  0.1208353E-02  0.1658487E-02  0.1698018E-02  0.2381827E-02
  0.2485923E-02  0.3691306E-02  0.3808759E-02  0.6121863E-02  0.6433134E-02
  0.1208035E-01  0.2558821E-01  0.1022521E+00
 eigenphase sum 0.891422E-01  scattering length=  -0.23312
 eps+pi 0.323073E+01  eps+2*pi 0.637233E+01

MaxIter =   1 c.s. =      0.44514141 angs^2  rmsk=     0.00004869
Time Now =       380.6867  Delta time =         0.0032 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.10000000E+02 eV (  0.36749326E+00 AU)
Time Now =       380.7836  Delta time =         0.0969 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =T2    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.17500000E+02  au
Number of integration regions used =    51
Number of partial waves (np) =    52
Number of asymptotic solutions on the right (NAsymR) =    18
Number of asymptotic solutions on the left (NAsymL) =    18
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =    18
Maximum in the asymptotic region (lpasym) =   11
Number of partial waves in the asymptotic region (npasym) =   21
Number of orthogonality constraints (NOrthUse) =    1
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  133
Found polarization potential
Maximum l used in usual function (lmax) =   20
Maximum m used in usual function (LMax) =   20
Maxamum l used in expanding static potential (lpotct) =   40
Maximum l used in exapnding the exchange potential (lmaxab) =   40
Higest l included in the expansion of the wave function (lnp) =   20
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   11
Higest l used in the asymptotic potential (lpzb) =   22
Maximum L used in the homogeneous solution (LMaxHomo) =   20
Number of partial waves in the homogeneous solution (npHomo) =   52
Time Now =       380.8169  Delta time =         0.0333 Energy independent setup

Compute solution for E =   10.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.17500000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.10465319E-15
 i =  2  lval =   3  stpote = -0.36496507E-19
 i =  3  lval =   3  stpote = -0.41025463E-18
 i =  4  lval =   4  stpote = -0.15743972E-04
For potential     2
 i =  1  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.17427622E-16
 i =  2  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.17277668E-16
 i =  3  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.17196103E-16
 i =  4  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.17166923E-16
For potential     3
 i =  1  lvals =   6   6  stpote =  0.13552527E-19  second term =  0.00000000E+00
 i =  2  lvals =   6   6  stpote = -0.10344762E-19  second term =  0.00000000E+00
 i =  3  lvals =   6   6  stpote =  0.66979938E-20  second term =  0.00000000E+00
 i =  4  lvals =   7   9  stpote = -0.60833368E-07  second term = -0.60833368E-07
Number of asymptotic regions =      10
Final point in integration =   0.70417590E+02 Angstroms
Time Now =       411.7633  Delta time =        30.9464 End SolveHomo
iL =   1 Iter =   1 c.s. =      4.86806942 angs^2  rmsk=     0.08227618
iL =   2 Iter =   1 c.s. =      4.86806942 angs^2  rmsk=     0.06770341
iL =   3 Iter =   1 c.s. =      4.86806942 angs^2  rmsk=     0.01473109
iL =   4 Iter =   1 c.s. =      4.86806942 angs^2  rmsk=     0.00434204
iL =   5 Iter =   1 c.s. =      4.86806942 angs^2  rmsk=     0.00179191
iL =   6 Iter =   1 c.s. =      4.86806942 angs^2  rmsk=     0.00200361
iL =   7 Iter =   1 c.s. =      4.86806942 angs^2  rmsk=     0.00108564
iL =   8 Iter =   1 c.s. =      4.86806942 angs^2  rmsk=     0.00104500
iL =   9 Iter =   1 c.s. =      4.86806942 angs^2  rmsk=     0.00067635
iL =  10 Iter =   1 c.s. =      4.86806942 angs^2  rmsk=     0.00069202
iL =  11 Iter =   1 c.s. =      4.86806942 angs^2  rmsk=     0.00046983
iL =  12 Iter =   1 c.s. =      4.86806942 angs^2  rmsk=     0.00047289
iL =  13 Iter =   1 c.s. =      4.86806942 angs^2  rmsk=     0.00032988
iL =  14 Iter =   1 c.s. =      4.86806942 angs^2  rmsk=     0.00033392
iL =  15 Iter =   1 c.s. =      4.86806942 angs^2  rmsk=     0.00033391
iL =  16 Iter =   1 c.s. =      4.86806942 angs^2  rmsk=     0.00024633
iL =  17 Iter =   1 c.s. =      4.86806942 angs^2  rmsk=     0.00024748
iL =  18 Iter =   1 c.s. =      4.86806942 angs^2  rmsk=     0.00024185
     REAL PART -  Final k matrix
     ROW  1
 -0.78381630E+00-0.11565445E+00-0.10211737E-01-0.13414277E-01-0.18922132E-02
  0.71685664E-03 0.10621290E-04-0.61056961E-05-0.16932095E-04-0.36690993E-04
  0.33318356E-05-0.30555510E-05 0.59867510E-07-0.13683307E-06-0.12044264E-06
  0.23503642E-07 0.27024151E-07 0.25998509E-08
     ROW  2
 -0.11565445E+00 0.11956509E+01 0.20204373E+00-0.34499159E-01 0.12132951E-02
  0.12768276E-01-0.13036642E-02-0.74289007E-03-0.87521471E-04-0.66621081E-04
  0.36216421E-07-0.19053024E-04-0.60186258E-06-0.12713280E-05-0.10544156E-05
  0.87329659E-07 0.20098396E-07 0.23618093E-07
     ROW  3
 -0.10211737E-01 0.20204373E+00 0.17106835E+00-0.10017707E-01 0.13169104E-02
  0.37876577E-02-0.16704324E-02-0.13420387E-03-0.15242603E-03 0.14148951E-04
 -0.15739958E-05-0.70812900E-05-0.87290143E-06-0.14097020E-05-0.33208267E-06
  0.12355604E-06-0.23512548E-07 0.58509572E-08
     ROW  4
 -0.13414277E-01-0.34499159E-01-0.10017707E-01 0.67813342E-01 0.51752751E-02
 -0.34588807E-02 0.26579424E-03-0.23087751E-03 0.28962093E-03 0.61442024E-03
 -0.52187353E-04 0.34942697E-04-0.65483367E-06 0.74540713E-06 0.13146930E-06
 -0.27470400E-06-0.43493511E-06 0.13090177E-07
     ROW  5
 -0.18922132E-02 0.12132951E-02 0.13169104E-02 0.51752751E-02 0.31703844E-01
  0.52257970E-03-0.10848459E-02-0.18006854E-04 0.19943690E-03 0.25560865E-03
 -0.29034036E-03 0.23518219E-06-0.26926548E-04 0.36455680E-05-0.12286901E-06
 -0.12533012E-06-0.32492918E-06 0.17634437E-08
     ROW  6
  0.71685664E-03 0.12768276E-01 0.37876577E-02-0.34588807E-02 0.52257970E-03
  0.33229924E-01-0.14133837E-02-0.20398632E-02 0.19054735E-04-0.22812842E-03
 -0.40626703E-04-0.33685304E-03-0.14629807E-05-0.15150976E-04-0.23572296E-04
  0.17912352E-06 0.13692788E-06 0.25257282E-06
     ROW  7
  0.10621290E-04-0.13036642E-02-0.16704324E-02 0.26579424E-03-0.10848459E-02
 -0.14133837E-02 0.19296601E-01-0.48401469E-04 0.12809319E-02-0.27589640E-03
  0.99847295E-04 0.96112027E-04 0.10401283E-03 0.17401411E-03 0.73284073E-06
 -0.14436596E-04 0.53865821E-05 0.98409565E-08
     ROW  8
 -0.61056961E-05-0.74289007E-03-0.13420387E-03-0.23087751E-03-0.18006854E-04
 -0.20398632E-02-0.48401469E-04 0.18676435E-01-0.22317880E-05-0.40910236E-03
 -0.88489031E-06 0.14194416E-03-0.12132318E-06-0.70440650E-05 0.16984108E-03
  0.13868831E-06 0.38616816E-05-0.14925270E-04
     ROW  9
 -0.16932095E-04-0.87521471E-04-0.15242603E-03 0.28962093E-03 0.19943690E-03
  0.19054735E-04 0.12809319E-02-0.22317880E-05 0.12088987E-01 0.16777272E-03
 -0.47186683E-03 0.16972389E-05 0.62225545E-04 0.68244587E-04-0.41633798E-07
 -0.11471193E-03-0.18060817E-06 0.55638560E-09
     ROW 10
 -0.36690993E-04-0.66621081E-04 0.14148951E-04 0.61442024E-03 0.25560865E-03
 -0.22812842E-03-0.27589640E-03-0.40910236E-03 0.16777272E-03 0.12399228E-01
 -0.58331768E-03 0.53387505E-03 0.17959073E-04-0.27937377E-04-0.43646984E-04
 -0.26635601E-04-0.13471901E-03 0.28745370E-06
     ROW 11
  0.33318356E-05 0.36216421E-07-0.15739958E-05-0.52187353E-04-0.29034036E-03
 -0.40626703E-04 0.99847295E-04-0.88489031E-06-0.47186683E-03-0.58331768E-03
  0.83999310E-02 0.42596155E-04 0.54177081E-03 0.44926857E-06 0.46780941E-06
  0.44984985E-04 0.34818612E-04 0.33345325E-08
     ROW 12
 -0.30555510E-05-0.19053024E-04-0.70812900E-05 0.34942697E-04 0.23518219E-06
 -0.33685304E-03 0.96112027E-04 0.14194416E-03 0.16972389E-05 0.53387505E-03
  0.42596155E-04 0.84666563E-02 0.60599137E-06 0.31333481E-03 0.48829485E-03
  0.31829904E-05-0.44165330E-04 0.16475583E-04
     ROW 13
  0.59867510E-07-0.60186258E-06-0.87290143E-06-0.65483367E-06-0.26926548E-04
 -0.14629807E-05 0.10401283E-03-0.12132318E-06 0.62225545E-04 0.17959073E-04
  0.54177081E-03 0.60599137E-06 0.59059115E-02 0.66056034E-04-0.71943146E-08
 -0.25294190E-03 0.22219174E-06 0.11608808E-09
     ROW 14
 -0.13683307E-06-0.12713280E-05-0.14097020E-05 0.74540713E-06 0.36455680E-05
 -0.15150976E-04 0.17401411E-03-0.70440650E-05 0.68244587E-04-0.27937377E-04
  0.44926857E-06 0.31333481E-03 0.66056034E-04 0.59897475E-02-0.13918605E-04
 -0.29480379E-03 0.15189958E-03 0.11339107E-06
     ROW 15
 -0.12044264E-06-0.10544156E-05-0.33208267E-06 0.13146930E-06-0.12286901E-06
 -0.23572296E-04 0.73284073E-06 0.16984108E-03-0.41633798E-07-0.43646984E-04
  0.46780941E-06 0.48829485E-03-0.71943146E-08-0.13918605E-04 0.59769366E-02
  0.10473972E-06 0.14672190E-03-0.32952309E-03
     ROW 16
  0.23503642E-07 0.87329659E-07 0.12355604E-06-0.27470400E-06-0.12533012E-06
  0.17912352E-06-0.14436596E-04 0.13868831E-06-0.11471193E-03-0.26635601E-04
  0.44984985E-04 0.31829904E-05-0.25294190E-03-0.29480379E-03 0.10473972E-06
  0.44149744E-02 0.23362607E-04 0.49722395E-09
     ROW 17
  0.27024151E-07 0.20098396E-07-0.23512548E-07-0.43493511E-06-0.32492918E-06
  0.13692788E-06 0.53865821E-05 0.38616816E-05-0.18060817E-06-0.13471901E-03
  0.34818612E-04-0.44165330E-04 0.22219174E-06 0.15189958E-03 0.14672190E-03
  0.23362607E-04 0.44471214E-02 0.37121031E-05
     ROW 18
  0.25998509E-08 0.23618093E-07 0.58509572E-08 0.13090177E-07 0.17634437E-08
  0.25257282E-06 0.98409565E-08-0.14925270E-04 0.55638560E-09 0.28745370E-06
  0.33345325E-08 0.16475583E-04 0.11608808E-09 0.11339107E-06-0.32952309E-03
  0.49722395E-09 0.37121031E-05 0.43406650E-02
 eigenphases
 -0.6691276E+00  0.4262407E-02  0.4305954E-02  0.4441340E-02  0.5773893E-02
  0.5944374E-02  0.6085350E-02  0.8319741E-02  0.8579468E-02  0.1180926E-01
  0.1260813E-01  0.1837045E-01  0.1934773E-01  0.3061238E-01  0.3362124E-01
  0.6778237E-01  0.1322778E+00  0.8928571E+00
 eigenphase sum 0.597871E+00  scattering length=  -0.79436
 eps+pi 0.373946E+01  eps+2*pi 0.688106E+01

MaxIter =   1 c.s. =      4.86806942 angs^2  rmsk=     0.00024185
Time Now =       411.7665  Delta time =         0.0032 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.20000000E+02 eV (  0.73498652E+00 AU)
Time Now =       411.8625  Delta time =         0.0960 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =T2    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.17500000E+02  au
Number of integration regions used =    51
Number of partial waves (np) =    52
Number of asymptotic solutions on the right (NAsymR) =    18
Number of asymptotic solutions on the left (NAsymL) =    18
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =    18
Maximum in the asymptotic region (lpasym) =   11
Number of partial waves in the asymptotic region (npasym) =   21
Number of orthogonality constraints (NOrthUse) =    1
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  133
Found polarization potential
Maximum l used in usual function (lmax) =   20
Maximum m used in usual function (LMax) =   20
Maxamum l used in expanding static potential (lpotct) =   40
Maximum l used in exapnding the exchange potential (lmaxab) =   40
Higest l included in the expansion of the wave function (lnp) =   20
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   11
Higest l used in the asymptotic potential (lpzb) =   22
Maximum L used in the homogeneous solution (LMaxHomo) =   20
Number of partial waves in the homogeneous solution (npHomo) =   52
Time Now =       411.8959  Delta time =         0.0334 Energy independent setup

Compute solution for E =   20.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.17500000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.10465319E-15
 i =  2  lval =   3  stpote = -0.36496507E-19
 i =  3  lval =   3  stpote = -0.41025463E-18
 i =  4  lval =   4  stpote = -0.15743972E-04
For potential     2
 i =  1  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.68700479E-17
 i =  2  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.55721542E-17
 i =  3  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.43550934E-17
 i =  4  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.33234086E-17
For potential     3
 i =  1  lvals =   6   6  stpote =  0.13552527E-19  second term =  0.00000000E+00
 i =  2  lvals =   6   6  stpote = -0.10344762E-19  second term =  0.00000000E+00
 i =  3  lvals =   6   6  stpote =  0.66979938E-20  second term =  0.00000000E+00
 i =  4  lvals =   7   9  stpote = -0.60833368E-07  second term = -0.60833368E-07
Number of asymptotic regions =      11
Final point in integration =   0.59223160E+02 Angstroms
Time Now =       442.8044  Delta time =        30.9085 End SolveHomo
iL =   1 Iter =   1 c.s. =      4.00638986 angs^2  rmsk=     0.22540407
iL =   2 Iter =   1 c.s. =      4.00638986 angs^2  rmsk=     0.20233287
iL =   3 Iter =   1 c.s. =      4.00638986 angs^2  rmsk=     0.05495278
iL =   4 Iter =   1 c.s. =      4.00638986 angs^2  rmsk=     0.01785501
iL =   5 Iter =   1 c.s. =      4.00638986 angs^2  rmsk=     0.00383278
iL =   6 Iter =   1 c.s. =      4.00638986 angs^2  rmsk=     0.00631811
iL =   7 Iter =   1 c.s. =      4.00638986 angs^2  rmsk=     0.00239827
iL =   8 Iter =   1 c.s. =      4.00638986 angs^2  rmsk=     0.00215145
iL =   9 Iter =   1 c.s. =      4.00638986 angs^2  rmsk=     0.00137192
iL =  10 Iter =   1 c.s. =      4.00638986 angs^2  rmsk=     0.00142217
iL =  11 Iter =   1 c.s. =      4.00638986 angs^2  rmsk=     0.00095037
iL =  12 Iter =   1 c.s. =      4.00638986 angs^2  rmsk=     0.00096000
iL =  13 Iter =   1 c.s. =      4.00638986 angs^2  rmsk=     0.00065940
iL =  14 Iter =   1 c.s. =      4.00638986 angs^2  rmsk=     0.00067133
iL =  15 Iter =   1 c.s. =      4.00638986 angs^2  rmsk=     0.00067111
iL =  16 Iter =   1 c.s. =      4.00638986 angs^2  rmsk=     0.00049432
iL =  17 Iter =   1 c.s. =      4.00638986 angs^2  rmsk=     0.00049784
iL =  18 Iter =   1 c.s. =      4.00638986 angs^2  rmsk=     0.00048125
     REAL PART -  Final k matrix
     ROW  1
 -0.12428814E+01 0.69465858E+00 0.22078235E+00-0.12333992E+00-0.11660510E-01
  0.25714614E-01-0.32379934E-02-0.13003540E-02-0.59540999E-03-0.80922503E-03
  0.78615813E-04-0.13776637E-03-0.98150978E-06-0.10817339E-04-0.79324366E-05
  0.15357558E-05 0.11898277E-05 0.21086566E-06
     ROW  2
  0.69465858E+00 0.34648226E+01 0.84544379E+00-0.23584606E+00-0.42613106E-02
  0.77359754E-01-0.11436750E-01-0.46651632E-02-0.13420740E-02-0.12916090E-02
  0.72368162E-04-0.33677195E-03-0.10060087E-04-0.29418739E-04-0.21594933E-04
  0.32967115E-05 0.16638429E-05 0.59577953E-06
     ROW  3
  0.22078235E+00 0.84544379E+00 0.45695299E+00-0.72776256E-01 0.26037435E-02
  0.26790923E-01-0.82224664E-02-0.14716594E-02-0.96816429E-03-0.27395424E-03
  0.38657192E-05-0.13197836E-03-0.11046538E-04-0.20725193E-04-0.86536678E-05
  0.23878250E-05 0.13170486E-06 0.23337638E-06
     ROW  4
 -0.12333992E+00-0.23584606E+00-0.72776256E-01 0.16309191E+00 0.17193042E-01
 -0.15933702E-01 0.17745627E-02-0.37225099E-03 0.12098051E-02 0.24050574E-02
 -0.28048010E-03 0.21240073E-03-0.61618545E-05 0.97344503E-05 0.39024820E-05
 -0.30328182E-05-0.43255976E-05 0.74837893E-07
     ROW  5
 -0.11660510E-01-0.42613106E-02 0.26037435E-02 0.17193042E-01 0.65495364E-01
  0.15074201E-02-0.29926685E-02-0.14772625E-03 0.67380785E-03 0.99986269E-03
 -0.87649800E-03 0.48665801E-05-0.10031134E-03 0.61758915E-05-0.17648405E-05
 -0.11227855E-05-0.33643961E-05 0.60822133E-07
     ROW  6
  0.25714614E-01 0.77359754E-01 0.26790923E-01-0.15933702E-01 0.15074201E-02
  0.72525745E-01-0.43765431E-02-0.57412928E-02-0.81495877E-04-0.83318046E-03
 -0.11739101E-03-0.10423664E-02-0.11876327E-04-0.65003846E-04-0.99093186E-04
  0.21441712E-05 0.12630487E-05 0.22459056E-05
     ROW  7
 -0.32379934E-02-0.11436750E-01-0.82224664E-02 0.17745627E-02-0.29926685E-02
 -0.43765431E-02 0.40159554E-01-0.28057502E-04 0.31146592E-02-0.65020049E-03
  0.31457830E-03 0.32292935E-03 0.27350334E-03 0.45131688E-03 0.69450169E-05
 -0.51555048E-04 0.18570797E-04 0.33145481E-07
     ROW  8
 -0.13003540E-02-0.46651632E-02-0.14716594E-02-0.37225099E-03-0.14772625E-03
 -0.57412928E-02-0.28057502E-04 0.37942407E-01-0.12222268E-04-0.96729343E-03
  0.11622417E-04 0.46807157E-03-0.28838043E-06-0.13110330E-04 0.43467137E-03
  0.91231421E-06 0.14154286E-04-0.46656485E-04
     ROW  9
 -0.59540999E-03-0.13420740E-02-0.96816429E-03 0.12098051E-02 0.67380785E-03
 -0.81495877E-04 0.31146592E-02-0.12222268E-04 0.24362945E-01 0.53140746E-03
 -0.10571246E-02 0.15872710E-04 0.18297099E-03 0.21589835E-03-0.34809290E-06
 -0.27001734E-03-0.15690864E-05 0.17905150E-07
     ROW 10
 -0.80922503E-03-0.12916090E-02-0.27395424E-03 0.24050574E-02 0.99986269E-03
 -0.83318046E-03-0.65020049E-03-0.96729343E-03 0.53140746E-03 0.25307394E-01
 -0.13247663E-02 0.12040598E-02 0.39917180E-04-0.78826948E-04-0.12416266E-03
 -0.64026790E-04-0.31722376E-03 0.21768173E-05
     ROW 11
  0.78615813E-04 0.72368162E-04 0.38657192E-05-0.28048010E-03-0.87649800E-03
 -0.11739101E-03 0.31457830E-03 0.11622417E-04-0.10571246E-02-0.13247663E-02
  0.16952883E-01 0.11536234E-03 0.11626154E-02 0.36196300E-05 0.37283263E-05
  0.13038297E-03 0.10669408E-03 0.47349748E-08
     ROW 12
 -0.13776637E-03-0.33677195E-03-0.13197836E-03 0.21240073E-03 0.48665801E-05
 -0.10423664E-02 0.32292935E-03 0.46807157E-03 0.15872710E-04 0.12040598E-02
  0.11536234E-03 0.17144918E-01 0.48559516E-05 0.67578216E-03 0.10530443E-02
  0.47377597E-05-0.12892259E-03 0.41764739E-04
     ROW 13
 -0.98150978E-06-0.10060087E-04-0.11046538E-04-0.61618545E-05-0.10031134E-03
 -0.11876327E-04 0.27350334E-03-0.28838043E-06 0.18297099E-03 0.39917180E-04
  0.11626154E-02 0.48559516E-05 0.11793455E-01 0.19660317E-03-0.22094071E-07
 -0.53074289E-03 0.18848024E-05 0.34792342E-08
     ROW 14
 -0.10817339E-04-0.29418739E-04-0.20725193E-04 0.97344503E-05 0.61758915E-05
 -0.65003846E-04 0.45131688E-03-0.13110330E-04 0.21589835E-03-0.78826948E-04
  0.36196300E-05 0.67578216E-03 0.19660317E-03 0.12032279E-01-0.33096612E-04
 -0.62118394E-03 0.31855665E-03 0.82282218E-06
     ROW 15
 -0.79324366E-05-0.21594933E-04-0.86536678E-05 0.39024820E-05-0.17648405E-05
 -0.99093186E-04 0.69450169E-05 0.43467137E-03-0.34809290E-06-0.12416266E-03
  0.37283263E-05 0.10530443E-02-0.22094071E-07-0.33096612E-04 0.12001259E-01
  0.76430307E-06 0.30747109E-03-0.69097543E-03
     ROW 16
  0.15357558E-05 0.32967115E-05 0.23878250E-05-0.30328182E-05-0.11227855E-05
  0.21441712E-05-0.51555048E-04 0.91231421E-06-0.27001734E-03-0.64026790E-04
  0.13038297E-03 0.47377597E-05-0.53074289E-03-0.62118394E-03 0.76430307E-06
  0.88544840E-02 0.65976407E-04-0.16771706E-08
     ROW 17
  0.11898277E-05 0.16638429E-05 0.13170486E-06-0.43255976E-05-0.33643961E-05
  0.12630487E-05 0.18570797E-04 0.14154286E-04-0.15690864E-05-0.31722376E-03
  0.10669408E-03-0.12892259E-03 0.18848024E-05 0.31855665E-03 0.30747109E-03
  0.65976407E-04 0.89426624E-02 0.80721134E-05
     ROW 18
  0.21086566E-06 0.59577953E-06 0.23337638E-06 0.74837893E-07 0.60822133E-07
  0.22459056E-05 0.33145481E-07-0.46656485E-04 0.17905150E-07 0.21768173E-05
  0.47349748E-08 0.41764739E-04 0.34792342E-08 0.82282218E-06-0.69097543E-03
 -0.16771706E-08 0.80721134E-05 0.86345843E-02
 eigenphases
 -0.9347254E+00  0.8471728E-02  0.8604879E-02  0.8929876E-02  0.1147278E-01
  0.1192085E-01  0.1225741E-01  0.1672873E-01  0.1737846E-01  0.2356043E-01
  0.2579808E-01  0.3689974E-01  0.3997185E-01  0.6079437E-01  0.7202689E-01
  0.1511555E+00  0.2343061E+00  0.1314263E+01
 eigenphase sum 0.111982E+01  scattering length=  -1.70318
 eps+pi 0.426141E+01  eps+2*pi 0.740300E+01

MaxIter =   1 c.s. =      4.00638986 angs^2  rmsk=     0.00048125
Time Now =       442.8076  Delta time =         0.0032 End ScatStab

+ Command TotalCrossSection
+
Symmetry A1 -
        E (eV)      XS(angs^2)    EPS(radians)
       0.100000       0.058803       0.013352
       0.500000       1.976311      -0.132003
       2.000000       6.123851      -0.479593
      10.000000       4.879466      -1.039963
      20.000000       3.148809      -0.894185
Symmetry A2 -
        E (eV)      XS(angs^2)    EPS(radians)
       0.100000       0.000019       0.000290
       0.500000       0.000098       0.001455
       2.000000       0.000389       0.005819
      10.000000       0.001946       0.029087
      20.000000       0.003983       0.058684
Symmetry E -
        E (eV)      XS(angs^2)    EPS(radians)
       0.100000       0.007306       0.005358
       0.500000       0.038090       0.027231
       2.000000       0.181635       0.116553
      10.000000       0.860136       0.587416
      20.000000       0.867454       0.940899
Symmetry T1 -
        E (eV)      XS(angs^2)    EPS(radians)
       0.100000       0.001047       0.002983
       0.500000       0.005291       0.014972
       2.000000       0.022158       0.060707
      10.000000       0.140616       0.327464
      20.000000       0.258398       0.642397
Symmetry T2 -
        E (eV)      XS(angs^2)    EPS(radians)
       0.100000       0.155689       0.025006
       0.500000       0.152488       0.071821
       2.000000       0.445141       0.089142
      10.000000       4.868069       0.597871
      20.000000       4.006390       1.119815

 Total Cross Sections

 Energy      Total Cross Section
   0.10000     0.54364
   0.50000     2.52593
   2.00000     7.88941
  10.00000    21.62774
  20.00000    17.68206
Time Now =       442.8544  Delta time =         0.0468 Finalize