----------------------------------------------------------------------
ePolyScat Version E2
----------------------------------------------------------------------

Authors: R. R. Lucchese, N. Sanna, A. P. P. Natalense, and F. A. Gianturco
http://www.chem.tamu.edu/rgroup/lucchese/ePolyScat.E2.manual/manual.html
Please cite the following two papers when reporting results obtained with  this program
F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 100, 6464 (1994).
A. P. P. Natalense and R. R. Lucchese, J. Chem. Phys. 111, 5344 (1999).

----------------------------------------------------------------------

Starting at 2009-03-13  11:46:33.773 (GMT -0500)
Using    16 processors

----------------------------------------------------------------------


+ Start of Input Records
#
# input file for test18
#
# CH4,  T2^-1 photoionization
#
  LMax   15     # maximum l to be used for wave functions
  EMax  50.0    # EMax, maximum asymptotic energy in eV
  FegeEng 13.0   # Energy correction (in eV) used in the fege potential
  ScatEng  0.1 5.8 15.8 25.8    # list of scattering energies

 InitSym 'A1'      # Initial state symmetry
 InitSpinDeg 1     # Initial state spin degeneracy
 OrbOccInit 2 2 6  # Orbital occupation of initial state

 OrbOcc  2 2 5     # occupation of the orbital groups of target
 SpinDeg 1         # Spin degeneracy of the total scattering state (=1 singlet)
 TargSym 'T2'      # Symmetry of the target state
 TargSpinDeg 2     # Target spin degeneracy
 IPot 14.2         # ionization potentail

Convert '/scratch/rrl581a/ePolyScat.E2/tests/test18.g03' 'g03'
GetBlms
ExpOrb

 FileName 'MatrixElements' 'test18T2T1.idy' 'REWIND'
 ScatSym     'T2'  # Scattering symmetry of total final state
 ScatContSym 'T1'  # Scattering symmetry of continuum electron

GenFormPhIon
DipoleOp
GetPot
PhIon
GetCro 'test18T2T1.idy'
#

 FileName 'MatrixElements' 'test18T2T2.idy' 'REWIND'

 ScatSym     'T2'  # Scattering symmetry of total final state
 ScatContSym 'T2'  # Scattering symmetry of continuum electron

GenFormPhIon
DipoleOp
GetPot
PhIon 0.1
PhIonN 5.8 10.0 3
GetCro 'test18T2T2.idy'
#

 FileName 'MatrixElements' 'test18T2E.idy' 'REWIND'

 ScatSym     'T2'  # Scattering symmetry of total final state
 ScatContSym 'E'  # Scattering symmetry of continuum electron

GenFormPhIon
DipoleOp
GetPot
PhIon 0.1 5.8 15.8 25.8
GetCro 'test18T2E.idy'
#
 FileName 'MatrixElements' 'test18T2A1.idy' 'REWIND'

 ScatSym     'T2'  # Scattering symmetry of total final state
 ScatContSym 'A1'  # Scattering symmetry of continuum electron

GenFormPhIon
DipoleOp
GetPot
PhIon 0.1 5.8 15.8 25.8
GetCro 'test18T2A1.idy'
#
#
GetCro 'test18T2A1.idy' 'test18T2E.idy' 'test18T2T2.idy'  'test18T2T1.idy'
#
+ End of input reached
+ Data Record LMax - 15
+ Data Record EMax - 50.0
+ Data Record FegeEng - 13.0
+ Data Record ScatEng - 0.1 5.8 15.8 25.8
+ Data Record InitSym - 'A1'
+ Data Record InitSpinDeg - 1
+ Data Record OrbOccInit - 2 2 6
+ Data Record OrbOcc - 2 2 5
+ Data Record SpinDeg - 1
+ Data Record TargSym - 'T2'
+ Data Record TargSpinDeg - 2
+ Data Record IPot - 14.2

+ Command Convert
+ '/scratch/rrl581a/ePolyScat.E2/tests/test18.g03' 'g03'

----------------------------------------------------------------------
g03cnv - read input from G03 output
----------------------------------------------------------------------

Expansion center is (in Angstroms) -
     0.0000000000   0.0000000000   0.0000000000
CardFlag =    T
Normal Mode flag =    F
Selecting orbitals
from     1  to     5  number already selected     0
Number of orbitals selected is     5
Highest orbital read in is =    5
Time Now =         0.0768  Delta time =         0.0768 End g03cnv

Atoms found    5  Coordinates in Angstroms
Z =  6 ZS =  6 r =   0.0000000000   0.0000000000   0.0000000000
Z =  1 ZS =  1 r =   0.6254700000   0.6254700000   0.6254700000
Z =  1 ZS =  1 r =  -0.6254700000  -0.6254700000   0.6254700000
Z =  1 ZS =  1 r =   0.6254700000  -0.6254700000  -0.6254700000
Z =  1 ZS =  1 r =  -0.6254700000   0.6254700000  -0.6254700000
Maximum distance from expansion center is    1.0833458186

+ Command GetBlms
+

----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------

Found point group  Td
Reduce angular grid using nthd =  1  nphid =  4
Found point group for abelian subgroup D2
Time Now =         0.0810  Delta time =         0.0042 End GetPGroup
List of unique axes
  N  Vector                      Z   R
  1  0.00000  0.00000  1.00000
  2  0.57735  0.57735  0.57735   1  2.04723
  3 -0.57735 -0.57735  0.57735   1  2.04723
  4  0.57735 -0.57735 -0.57735   1  2.04723
  5 -0.57735  0.57735 -0.57735   1  2.04723
List of corresponding x axes
  N  Vector
  1  1.00000 -0.00000 -0.00000
  2  0.81650 -0.40825 -0.40825
  3  0.81650 -0.40825  0.40825
  4  0.81650  0.40825  0.40825
  5  0.81650  0.40825 -0.40825
Computed default value of LMaxA =   11
Determineing angular grid in GetAxMax  LMax =   15  LMaxA =   11  LMaxAb =   30
MMax =    3  MMaxAbFlag =    1
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11  12  13  -1  -1
For axis     2  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3
For axis     3  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3
For axis     4  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3
For axis     5  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3
On the double L grid used for products
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19
  20  21  22  23  24  25  26  27  28  29  30
For axis     2  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
For axis     3  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
For axis     4  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
For axis     5  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is Td
LMax = =   15
 The dimension of each irreducable representation is
    A1    (  1)    A2    (  1)    E     (  2)    T1    (  3)    T2    (  3)
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     8    11    14
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A1        1         1         15       1  1  1
 A2        1         2          7       1  1  1
 E         1         3         20       1  1  1
 E         2         4         20       1  1  1
 T1        1         5         27      -1 -1  1
 T1        2         6         27      -1  1 -1
 T1        3         7         27       1 -1 -1
 T2        1         8         36      -1 -1  1
 T2        2         9         36      -1  1 -1
 T2        3        10         36       1 -1 -1
Time Now =         0.5875  Delta time =         0.5065 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
A1    1    0(   1)    1(   1)    2(   1)    3(   2)    4(   3)    5(   3)    6(   4)    7(   5)    8(   6)    9(   7)
          10(   8)   11(   9)
A2    1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   1)    7(   1)    8(   1)    9(   2)
          10(   3)   11(   3)
E     1    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   3)    6(   4)    7(   5)    8(   7)    9(   8)
          10(  10)   11(  12)
E     2    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   3)    6(   4)    7(   5)    8(   7)    9(   8)
          10(  10)   11(  12)
T1    1    0(   0)    1(   0)    2(   0)    3(   1)    4(   2)    5(   3)    6(   4)    7(   6)    8(   8)    9(  10)
          10(  12)   11(  15)
T1    2    0(   0)    1(   0)    2(   0)    3(   1)    4(   2)    5(   3)    6(   4)    7(   6)    8(   8)    9(  10)
          10(  12)   11(  15)
T1    3    0(   0)    1(   0)    2(   0)    3(   1)    4(   2)    5(   3)    6(   4)    7(   6)    8(   8)    9(  10)
          10(  12)   11(  15)
T2    1    0(   0)    1(   1)    2(   2)    3(   3)    4(   4)    5(   6)    6(   8)    7(  10)    8(  12)    9(  15)
          10(  18)   11(  21)
T2    2    0(   0)    1(   1)    2(   2)    3(   3)    4(   4)    5(   6)    6(   8)    7(  10)    8(  12)    9(  15)
          10(  18)   11(  21)
T2    3    0(   0)    1(   1)    2(   2)    3(   3)    4(   4)    5(   6)    6(   8)    7(  10)    8(  12)    9(  15)
          10(  18)   11(  21)

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is D2
LMax = =   30
 The dimension of each irreducable representation is
    A     (  1)    B1    (  1)    B2    (  1)    B3    (  1)
Abelian axes
    1       1.000000       0.000000       0.000000
    2       0.000000       1.000000       0.000000
    3       0.000000       0.000000       1.000000
Symmetry operation directions
  1       0.000000       0.000000       1.000000 ang =  0  1 type = 0 axis = 3
  2       0.000000       0.000000       1.000000 ang =  1  2 type = 2 axis = 3
  3       1.000000       0.000000       0.000000 ang =  1  2 type = 2 axis = 1
  4       0.000000       1.000000       0.000000 ang =  1  2 type = 2 axis = 2
irep =    1  sym =A     1  eigs =   1   1   1   1
irep =    2  sym =B1    1  eigs =   1   1  -1  -1
irep =    3  sym =B2    1  eigs =   1  -1  -1   1
irep =    4  sym =B3    1  eigs =   1  -1   1  -1
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     2     3     4
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A         1         1        241       1  1  1
 B1        1         2        240       1 -1 -1
 B2        1         3        240      -1 -1  1
 B3        1         4        240      -1  1 -1
Time Now =         0.6110  Delta time =         0.0235 End SymGen

+ Command ExpOrb
+
In GetRMax, RMaxEps =  0.10000000E-05  RMax =   12.5505943826 Angs

----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------

Maximum R in the grid (RMax) =    12.55059 Angs
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) =   10.0
In regions controlled by the wave length (HFacWave) =   10.0
Factor used to control the minimum exponent at each center (MinExpFac) =  300.0
Maximum asymptotic kinetic energy (EMAx) =  50.00000 eV
Maximum step size (MaxStep) =  12.55059 Angs
Factor to increase grid by (GridFac) =     1

    1  Center at =     0.00000 Angs  Alpha Max = 0.33980E+05
    2  Center at =     1.08335 Angs  Alpha Max = 0.30000E+03

Generated Grid

  irg  nin  ntot      step Angs     R end Angs
    1    8     8    0.28707E-03     0.00230
    2    8    16    0.30604E-03     0.00474
    3    8    24    0.37726E-03     0.00776
    4    8    32    0.57239E-03     0.01234
    5    8    40    0.91002E-03     0.01962
    6    8    48    0.14468E-02     0.03120
    7    8    56    0.23002E-02     0.04960
    8    8    64    0.36571E-02     0.07886
    9    8    72    0.58142E-02     0.12537
   10    8    80    0.92438E-02     0.19932
   11    8    88    0.11380E-01     0.29036
   12    8    96    0.12337E-01     0.38905
   13    8   104    0.11857E-01     0.48391
   14    8   112    0.11284E-01     0.57418
   15    8   120    0.11908E-01     0.66944
   16    8   128    0.13884E-01     0.78051
   17    8   136    0.13776E-01     0.89072
   18    8   144    0.87733E-02     0.96090
   19    8   152    0.55766E-02     1.00552
   20    8   160    0.38388E-02     1.03623
   21    8   168    0.32048E-02     1.06187
   22    8   176    0.26851E-02     1.08335
   23    8   184    0.30552E-02     1.10779
   24    8   192    0.32571E-02     1.13384
   25    8   200    0.40150E-02     1.16596
   26    8   208    0.60918E-02     1.21470
   27    8   216    0.96851E-02     1.29218
   28    8   224    0.15398E-01     1.41536
   29    8   232    0.24481E-01     1.61121
   30    8   240    0.33415E-01     1.87853
   31    8   248    0.38959E-01     2.19021
   32    8   256    0.46359E-01     2.56107
   33    8   264    0.58081E-01     3.02572
   34    8   272    0.61727E-01     3.51954
   35    8   280    0.64635E-01     4.03662
   36    8   288    0.66998E-01     4.57261
   37    8   296    0.68947E-01     5.12418
   38    8   304    0.70575E-01     5.68878
   39    8   312    0.71953E-01     6.26441
   40    8   320    0.73130E-01     6.84945
   41    8   328    0.74146E-01     7.44262
   42    8   336    0.75030E-01     8.04286
   43    8   344    0.75805E-01     8.64930
   44    8   352    0.76489E-01     9.26121
   45    8   360    0.77097E-01     9.87799
   46    8   368    0.77640E-01    10.49911
   47    8   376    0.78128E-01    11.12414
   48    8   384    0.78569E-01    11.75269
   49    8   392    0.78969E-01    12.38444
   50    8   400    0.20769E-01    12.55059
Time Now =         0.7716  Delta time =         0.1606 End GenGrid

----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------

Maximum scattering l (lmax) =   15
Maximum scattering m (mmaxs) =   15
Maximum numerical integration l (lmaxi) =   30
Maximum numerical integration m (mmaxi) =   30
Maximum l to include in the asymptotic region (lmasym) =   11
Parameter used to determine the cutoff points (PCutRd) =  0.10000000E-07 au
Maximum E used to determine grid (in eV) =       50.00000
Print flag (iprnfg) =    0
lmasymtyts =   11
 Actual value of lmasym found =     11
Number of regions of the same l expansion (NAngReg) =   10
Angular regions
    1 L =    2  from (    1)         0.00029  to (    7)         0.00201
    2 L =    4  from (    8)         0.00230  to (   15)         0.00444
    3 L =    5  from (   16)         0.00474  to (   31)         0.01177
    4 L =    6  from (   32)         0.01234  to (   47)         0.02975
    5 L =    7  from (   48)         0.03120  to (   55)         0.04730
    6 L =    8  from (   56)         0.04960  to (   63)         0.07520
    7 L =    9  from (   64)         0.07886  to (   71)         0.11955
    8 L =   11  from (   72)         0.12537  to (  119)         0.65753
    9 L =   15  from (  120)         0.66944  to (  248)         2.19021
   10 L =   11  from (  249)         2.23656  to (  400)        12.55059
Angular regions for computing spherical harmonics
    1 lval =   11
    2 lval =   15
Last grid points by processor WorkExp =     1.500
Proc id =   -1  Last grid point =       1
Proc id =    0  Last grid point =      72
Proc id =    1  Last grid point =     104
Proc id =    2  Last grid point =     128
Proc id =    3  Last grid point =     144
Proc id =    4  Last grid point =     160
Proc id =    5  Last grid point =     176
Proc id =    6  Last grid point =     192
Proc id =    7  Last grid point =     208
Proc id =    8  Last grid point =     232
Proc id =    9  Last grid point =     248
Proc id =   10  Last grid point =     264
Proc id =   11  Last grid point =     296
Proc id =   12  Last grid point =     320
Proc id =   13  Last grid point =     352
Proc id =   14  Last grid point =     376
Proc id =   15  Last grid point =     400
Time Now =         0.7935  Delta time =         0.0219 End AngGCt

----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------


 R of maximum density
     1  A1    1 at max irg =    8  r =   0.07886
     2  A1    1 at max irg =   16  r =   0.78051
     3  T2    1 at max irg =   19  r =   1.00552
     4  T2    2 at max irg =   19  r =   1.00552
     5  T2    3 at max irg =   19  r =   1.00552

Rotation coefficients for orbital     1  grp =    1 A1    1
     1  1.0000000000

Rotation coefficients for orbital     2  grp =    2 A1    1
     2  1.0000000000

Rotation coefficients for orbital     3  grp =    3 T2    1
     3  0.0000000000    4  1.0000000000    5  0.0000000000

Rotation coefficients for orbital     4  grp =    3 T2    2
     3  1.0000000000    4 -0.0000000000    5  0.0000000000

Rotation coefficients for orbital     5  grp =    3 T2    3
     3 -0.0000000000    4 -0.0000000000    5  1.0000000000
Number of orbital groups and degeneracis are         3
  1  1  3
Number of orbital groups and number of electrons when fully occupied
         3
  2  2  6
Time Now =         1.2062  Delta time =         0.4127 End RotOrb

----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------

 First orbital group to expand (mofr) =    1
 Last orbital group to expand (moto) =    3
Orbital     1 of  A1    1 symmetry normalization integral =  0.99999999
Orbital     2 of  A1    1 symmetry normalization integral =  0.99997860
Orbital     3 of  T2    1 symmetry normalization integral =  0.99997266
Time Now =         4.4000  Delta time =         3.1938 End ExpOrb

+ Command FileName
+ 'MatrixElements' 'test18T2T1.idy' 'REWIND'
Opening file test18T2T1.idy at position REWIND
+ Data Record ScatSym - 'T2'
+ Data Record ScatContSym - 'T1'

+ Command GenFormPhIon
+

----------------------------------------------------------------------
SymProd - Construct products of symmetry types
----------------------------------------------------------------------

Number of sets of degenerate orbitals =    3
Set    1  has degeneracy     1
Orbital     1  is num     1  type =   1  name - A1    1
Set    2  has degeneracy     1
Orbital     1  is num     2  type =   1  name - A1    1
Set    3  has degeneracy     3
Orbital     1  is num     3  type =   8  name - T2    1
Orbital     2  is num     4  type =   9  name - T2    2
Orbital     3  is num     5  type =  10  name - T2    3
Orbital occupations by degenerate group
    1  A1       occ = 2
    2  A1       occ = 2
    3  T2       occ = 5
The dimension of each irreducable representation is
    A1    (  1)    A2    (  1)    E     (  2)    T1    (  3)    T2    (  3)
Symmetry of the continuum orbital is T1
Symmetry of the total state is T2
Spin degeneracy of the total state is =    1
Symmetry of the target state is T2
Spin degeneracy of the target state is =    2
Symmetry of the initial state is A1
Spin degeneracy of the initial state is =    1
Orbital occupations of initial state by degenerate group
    1  A1       occ = 2
    2  A1       occ = 2
    3  T2       occ = 6
Open shell symmetry types
    1  T2     iele =    5
Use only configuration of type T2
MS2 =    1  SDGN =    2
NumAlpha =    3
List of determinants found
    1:   1.00000   0.00000    1    2    3    4    5
    2:   1.00000   0.00000    1    2    3    4    6
    3:   1.00000   0.00000    1    2    3    5    6
Spin adapted configurations
Configuration    1
    1:   1.00000   0.00000    1    2    3    4    5
Configuration    2
    1:   1.00000   0.00000    1    2    3    4    6
Configuration    3
    1:   1.00000   0.00000    1    2    3    5    6
 Each irreducable representation is present the number of times indicated
    T2    (  1)

 representation T2     component     1  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1    2    3    5    6

 representation T2     component     2  fun    1
Symmeterized Function
    1:  -1.00000   0.00000    1    2    3    4    6

 representation T2     component     3  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1    2    3    4    5
Open shell symmetry types
    1  T2     iele =    5
    2  T1     iele =    1
Use only configuration of type T2
 Each irreducable representation is present the number of times indicated
    A2    (  1)
    E     (  1)
    T1    (  1)
    T2    (  1)

 representation T2     component     1  fun    1
Symmeterized Function from AddNewShell
    1:  -0.50000   0.00000    1    2    3    4    5   11
    2:   0.50000   0.00000    1    2    3    4    6   12
    3:   0.50000   0.00000    1    2    4    5    6    8
    4:  -0.50000   0.00000    1    3    4    5    6    9

 representation T2     component     2  fun    1
Symmeterized Function from AddNewShell
    1:  -0.50000   0.00000    1    2    3    4    5   10
    2:   0.50000  -0.00000    1    2    3    5    6   12
    3:   0.50000   0.00000    1    2    4    5    6    7
    4:  -0.50000   0.00000    2    3    4    5    6    9

 representation T2     component     3  fun    1
Symmeterized Function from AddNewShell
    1:  -0.50000   0.00000    1    2    3    4    6   10
    2:   0.50000  -0.00000    1    2    3    5    6   11
    3:   0.50000  -0.00000    1    3    4    5    6    7
    4:  -0.50000   0.00000    2    3    4    5    6    8
Open shell symmetry types
    1  T2     iele =    5
Use only configuration of type T2
MS2 =    1  SDGN =    2
NumAlpha =    3
List of determinants found
    1:   1.00000   0.00000    1    2    3    4    5
    2:   1.00000   0.00000    1    2    3    4    6
    3:   1.00000   0.00000    1    2    3    5    6
Spin adapted configurations
Configuration    1
    1:   1.00000   0.00000    1    2    3    4    5
Configuration    2
    1:   1.00000   0.00000    1    2    3    4    6
Configuration    3
    1:   1.00000   0.00000    1    2    3    5    6
 Each irreducable representation is present the number of times indicated
    T2    (  1)

 representation T2     component     1  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1    2    3    5    6

 representation T2     component     2  fun    1
Symmeterized Function
    1:  -1.00000   0.00000    1    2    3    4    6

 representation T2     component     3  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1    2    3    4    5
Direct product basis set
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    9   10   14
    2:   0.70711   0.00000    1    2    3    4    6    7    8    9   10   11
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    9   10   15
    2:   0.70711   0.00000    1    2    3    4    6    7    8    9   10   12
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    9   10   16
    2:   0.70711   0.00000    1    2    3    4    6    7    8    9   10   13
Direct product basis function
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   14
    2:  -0.70711   0.00000    1    2    3    4    5    7    8    9   10   11
Direct product basis function
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   15
    2:  -0.70711   0.00000    1    2    3    4    5    7    8    9   10   12
Direct product basis function
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   16
    2:  -0.70711   0.00000    1    2    3    4    5    7    8    9   10   13
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   14
    2:   0.70711   0.00000    1    2    3    4    5    6    8    9   10   11
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   15
    2:   0.70711   0.00000    1    2    3    4    5    6    8    9   10   12
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   16
    2:   0.70711   0.00000    1    2    3    4    5    6    8    9   10   13
Closed shell target
Time Now =         4.4231  Delta time =         0.0232 End SymProd

----------------------------------------------------------------------
MatEle - Program to compute Matrix Elements over Determinants
----------------------------------------------------------------------

Configuration     1
    1:  -0.50000   0.00000    1    2    3    4    5    6    7    8    9   15
    2:   0.50000   0.00000    1    2    3    4    5    6    7    8   10   16
    3:   0.50000   0.00000    1    2    3    4    5    6    8    9   10   12
    4:  -0.50000   0.00000    1    2    3    4    5    7    8    9   10   13
Configuration     2
    1:  -0.50000   0.00000    1    2    3    4    5    6    7    8    9   14
    2:   0.50000  -0.00000    1    2    3    4    5    6    7    9   10   16
    3:   0.50000   0.00000    1    2    3    4    5    6    8    9   10   11
    4:  -0.50000   0.00000    1    2    3    4    6    7    8    9   10   13
Configuration     3
    1:  -0.50000   0.00000    1    2    3    4    5    6    7    8   10   14
    2:   0.50000  -0.00000    1    2    3    4    5    6    7    9   10   15
    3:   0.50000  -0.00000    1    2    3    4    5    7    8    9   10   11
    4:  -0.50000   0.00000    1    2    3    4    6    7    8    9   10   12
Direct product Configuration Cont sym =    1  Targ sym =    1
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    9   10   14
    2:   0.70711   0.00000    1    2    3    4    6    7    8    9   10   11
Direct product Configuration Cont sym =    2  Targ sym =    1
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    9   10   15
    2:   0.70711   0.00000    1    2    3    4    6    7    8    9   10   12
Direct product Configuration Cont sym =    3  Targ sym =    1
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    9   10   16
    2:   0.70711   0.00000    1    2    3    4    6    7    8    9   10   13
Direct product Configuration Cont sym =    1  Targ sym =    2
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   14
    2:  -0.70711   0.00000    1    2    3    4    5    7    8    9   10   11
Direct product Configuration Cont sym =    2  Targ sym =    2
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   15
    2:  -0.70711   0.00000    1    2    3    4    5    7    8    9   10   12
Direct product Configuration Cont sym =    3  Targ sym =    2
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   16
    2:  -0.70711   0.00000    1    2    3    4    5    7    8    9   10   13
Direct product Configuration Cont sym =    1  Targ sym =    3
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   14
    2:   0.70711   0.00000    1    2    3    4    5    6    8    9   10   11
Direct product Configuration Cont sym =    2  Targ sym =    3
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   15
    2:   0.70711   0.00000    1    2    3    4    5    6    8    9   10   12
Direct product Configuration Cont sym =    3  Targ sym =    3
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   16
    2:   0.70711   0.00000    1    2    3    4    5    6    8    9   10   13
Overlap of Direct Product expansion and Symmeterized states
Symmetry of Continuum =    4
Symmetry of target =    5
Symmetry of total states =    5

Total symmetry component =    1

Cont      Target Component
Comp        1               2               3
   1   0.00000000E+00  0.00000000E+00  0.00000000E+00
   2   0.00000000E+00  0.00000000E+00  0.70710678E+00
   3   0.00000000E+00  0.70710678E+00  0.00000000E+00

Total symmetry component =    2

Cont      Target Component
Comp        1               2               3
   1   0.00000000E+00  0.00000000E+00  0.70710678E+00
   2   0.00000000E+00  0.00000000E+00  0.00000000E+00
   3  -0.70710678E+00  0.00000000E+00  0.00000000E+00

Total symmetry component =    3

Cont      Target Component
Comp        1               2               3
   1   0.00000000E+00 -0.70710678E+00  0.00000000E+00
   2  -0.70710678E+00  0.00000000E+00  0.00000000E+00
   3   0.00000000E+00  0.00000000E+00  0.00000000E+00
Initial State Configuration
    1:   1.00000   0.00000    1    2    3    4    5    6    7    8    9   10
One electron matrix elements between initial and final states
    1:   -1.000000000    0.000000000  <    6|   13>
    2:   -1.000000000    0.000000000  <    7|   12>

Reduced formula list
    3    3    2 -0.1000000000E+01
    2    3    3 -0.1000000000E+01
Time Now =         4.4243  Delta time =         0.0011 End MatEle

+ Command DipoleOp
+

----------------------------------------------------------------------
DipoleOp - Dipole Operator Program
----------------------------------------------------------------------

Number of orbitals in formula for the dipole operator (NOrbSel) =    2
Symmetry of the continuum orbital (iContSym) =     4 or T1
Symmetry of total final state (iTotalSym) =     5 or T2
Symmetry of the initial state (iInitSym) =     1 or A1
Symmetry of the ionized target state (iTargSym) =     5 or T2
List of unique symmetry types
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
Unique dipole matrix type     1 Dipole symmetry type =T2
     Final state symmetry type = T2     Target sym =T2
     Continuum type =A1
In the product of the symmetry types T2    A2
 Each irreducable representation is present the number of times indicated
    T1    (  1)
In the product of the symmetry types T2    E
 Each irreducable representation is present the number of times indicated
    T1    (  1)
    T2    (  1)
Unique dipole matrix type     2 Dipole symmetry type =T2
     Final state symmetry type = T2     Target sym =T2
     Continuum type =E
In the product of the symmetry types T2    T1
 Each irreducable representation is present the number of times indicated
    A2    (  1)
    E     (  1)
    T1    (  1)
    T2    (  1)
Unique dipole matrix type     3 Dipole symmetry type =T2
     Final state symmetry type = T2     Target sym =T2
     Continuum type =T1
In the product of the symmetry types T2    T2
 Each irreducable representation is present the number of times indicated
    A1    (  1)
    E     (  1)
    T1    (  1)
    T2    (  1)
Unique dipole matrix type     4 Dipole symmetry type =T2
     Final state symmetry type = T2     Target sym =T2
     Continuum type =T2
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
Irreducible representation containing the dipole operator is T2
Number of different dipole operators in this representation is     1
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
Vector of the total symmetry
ie =    1  ij =    1
    1 (  0.10000000E+01, -0.00000000E+00)
    2 (  0.00000000E+00, -0.00000000E+00)
    3 (  0.00000000E+00, -0.00000000E+00)
Vector of the total symmetry
ie =    2  ij =    1
    1 (  0.00000000E+00,  0.00000000E+00)
    2 (  0.10000000E+01,  0.00000000E+00)
    3 ( -0.00000000E+00,  0.00000000E+00)
Vector of the total symmetry
ie =    3  ij =    1
    1 ( -0.00000000E+00,  0.00000000E+00)
    2 (  0.00000000E+00,  0.00000000E+00)
    3 (  0.10000000E+01,  0.00000000E+00)
Component Dipole Op Sym =  1 goes to Total Sym component   1 phase = 1.0
Component Dipole Op Sym =  2 goes to Total Sym component   2 phase = 1.0
Component Dipole Op Sym =  3 goes to Total Sym component   3 phase = 1.0

Dipole operator types by symmetry components (x=1, y=2, z=3)
sym comp =  1
  coefficients =  0.00000000  1.00000000  0.00000000
sym comp =  2
  coefficients =  1.00000000  0.00000000  0.00000000
sym comp =  3
  coefficients =  0.00000000  0.00000000  1.00000000

Formula for dipole operator

Dipole operator sym comp 1  index =    1
  1  Cont comp  3  Orb  4  Coef =  -1.0000000000
  2  Cont comp  2  Orb  5  Coef =  -1.0000000000
Symmetry type to write out (SymTyp) =T1
Time Now =        28.2155  Delta time =        23.7912 End DipoleOp

+ Command GetPot
+

----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------

Total density =      9.00000000
Time Now =        28.4044  Delta time =         0.1890 End Den

----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------

 vasymp =  0.90000000E+01 facnorm =  0.10000000E+01
Time Now =        28.4387  Delta time =         0.0343 Electronic part
Time Now =        28.4409  Delta time =         0.0021 End StPot

+ Command PhIon
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.10000000E+00 eV (  0.36749326E-02 AU)
Time Now =        28.4872  Delta time =         0.0463 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =T1    1
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =     T
Maximum l for computed scattering solutions (LMaxK) =   11
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    50
Number of partial waves (np) =    27
Number of asymptotic solutions on the right (NAsymR) =    15
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   11
Number of partial waves in the asymptotic region (npasym) =   15
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =   10
Maximum number of asymptotic partial waves =  133
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =   11
Highest l used at large r (lpasym) =   11
Higest l used in the asymptotic potential (lpzb) =   22
Maximum L used in the homogeneous solution (LMaxHomo) =   11
Number of partial waves in the homogeneous solution (npHomo) =   15
Time Now =        28.4990  Delta time =         0.0118 Energy independent setup

Compute solution for E =    0.1000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.13877788E-15
 i =  2  lval =   3  stpote = -0.11393263E-18
 i =  3  lval =   3  stpote = -0.41977709E-18
 i =  4  lval =   4  stpote = -0.29200319E-04
For potential     2
 i =  1  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.23318031E-16
 i =  2  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.23098957E-16
 i =  3  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.22905876E-16
 i =  4  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.22750416E-16
For potential     3
For potential     4
 i =  1  lval =   4  stpote =  0.49821926E-01
 i =  2  lval =   3  stpote = -0.40027623E-04
 i =  3  lval =   3  stpote = -0.23109959E-04
 i =  4  lval =   4  stpote =  0.44838727E-05
For potential     5
 i =  1  lval =   4  stpote =  0.49821926E-01
 i =  2  lval =   3  stpote =  0.40027623E-04
 i =  3  lval =   3  stpote = -0.23109959E-04
 i =  4  lval =   4  stpote =  0.44838727E-05
For potential     6
 i =  1  lval =   2  stpote = -0.10453834E-02
 i =  2  lval =   3  stpote = -0.11167469E-03
 i =  3  lval =   4  stpote = -0.24994566E-05
 i =  4  lval =   4  stpote = -0.32267846E-05
For potential     7
 i =  1  lval =   4  stpote = -0.74732889E-01
 i =  2  lval =   3  stpote = -0.60041435E-04
 i =  3  lval =   3  stpote =  0.34664939E-04
 i =  4  lval =   4  stpote = -0.67258090E-05
For potential     8
 i =  1  lval =   4  stpote =  0.49821926E-01
 i =  2  lval =   3  stpote =  0.24581947E-20
 i =  3  lval =   3  stpote =  0.46219918E-04
 i =  4  lval =   4  stpote =  0.44838727E-05
For potential     9
 i =  1  lval =   4  stpote = -0.74732889E-01
 i =  2  lval =   3  stpote = -0.36872920E-20
 i =  3  lval =   3  stpote = -0.69329877E-04
 i =  4  lval =   4  stpote = -0.67258090E-05
For potential    10
 i =  1  lval =   2  stpote = -0.10453834E-02
 i =  2  lval =   3  stpote = -0.11167469E-03
 i =  3  lval =   4  stpote = -0.24994566E-05
 i =  4  lval =   4  stpote = -0.32267846E-05
Number of asymptotic regions =      12
Final point in integration =   0.18156553E+03 Angstroms
Time Now =        34.0900  Delta time =         5.5910 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.08837303 rmsk=     0.05427493
iL =   1 Iter =   2 c.s. =      0.09072732 rmsk=     0.00331934
iL =   1 Iter =   3 c.s. =      0.09063498 rmsk=     0.00004225
iL =   1 Iter =   4 c.s. =      0.09063498 rmsk=     0.00000006
iL =   1 Iter =   5 c.s. =      0.09063498 rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =      0.11011034 rmsk=     0.02547898
iL =   2 Iter =   2 c.s. =      0.11007144 rmsk=     0.00147441
iL =   2 Iter =   3 c.s. =      0.11002131 rmsk=     0.00003439
iL =   2 Iter =   4 c.s. =      0.11002132 rmsk=     0.00000002
iL =   2 Iter =   5 c.s. =      0.11002132 rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.30054405E+00,-0.15825839E-01) ( 0.45017265E-02,-0.61164747E-02)
  ( 0.33572553E-03, 0.43403677E-04) ( 0.75119418E-05, 0.31856776E-05)
  (-0.56470060E-06, 0.84194015E-08) (-0.48222490E-06, 0.87993931E-07)
  ( 0.35909576E-08, 0.46584661E-08) (-0.17591658E-08,-0.10068836E-07)
  (-0.51337754E-10,-0.24766338E-10) ( 0.93099577E-09,-0.48878372E-10)
  ( 0.96065045E-11, 0.74432235E-12) ( 0.98821833E-11,-0.11224942E-10)
  ( 0.63167768E-13, 0.11049408E-13) ( 0.54781332E-13, 0.53563301E-13)
  ( 0.26921212E-13,-0.16511740E-12)
     ROW  2
  ( 0.13899942E+00,-0.73173710E-02) ( 0.19847416E-02,-0.28275982E-02)
  ( 0.15416913E-03, 0.17965033E-04) (-0.54519795E-05, 0.15243317E-05)
  (-0.78477127E-07, 0.12394938E-07) (-0.21917437E-07,-0.92288934E-07)
  (-0.11845861E-08, 0.17437864E-09) (-0.92869355E-09,-0.10694085E-08)
  (-0.34549810E-10,-0.14647555E-10) ( 0.22432101E-09, 0.38508268E-11)
  ( 0.27492525E-11, 0.38564655E-12) ( 0.29173226E-11,-0.27343475E-11)
  ( 0.19226753E-13, 0.47887187E-14) ( 0.12976615E-13, 0.16733311E-13)
  ( 0.13139739E-13,-0.46383227E-13)
MaxIter =   5 c.s. =      0.11002132 rmsk=     0.00000000
Time Now =        42.0501  Delta time =         7.9601 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.58000000E+01 eV (  0.21314609E+00 AU)
Time Now =        42.0947  Delta time =         0.0446 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =T1    1
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =     T
Maximum l for computed scattering solutions (LMaxK) =   11
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    50
Number of partial waves (np) =    27
Number of asymptotic solutions on the right (NAsymR) =    15
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   11
Number of partial waves in the asymptotic region (npasym) =   15
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =   10
Maximum number of asymptotic partial waves =  133
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =   11
Highest l used at large r (lpasym) =   11
Higest l used in the asymptotic potential (lpzb) =   22
Maximum L used in the homogeneous solution (LMaxHomo) =   11
Number of partial waves in the homogeneous solution (npHomo) =   15
Time Now =        42.1066  Delta time =         0.0118 Energy independent setup

Compute solution for E =    5.8000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.13877788E-15
 i =  2  lval =   3  stpote = -0.11393263E-18
 i =  3  lval =   3  stpote = -0.41977709E-18
 i =  4  lval =   4  stpote = -0.29200319E-04
For potential     2
 i =  1  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.15092243E-16
 i =  2  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.14894425E-16
 i =  3  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.14712238E-16
 i =  4  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.14560092E-16
For potential     3
For potential     4
 i =  1  lval =   4  stpote =  0.49821926E-01
 i =  2  lval =   3  stpote = -0.40027623E-04
 i =  3  lval =   3  stpote = -0.23109959E-04
 i =  4  lval =   4  stpote =  0.44838727E-05
For potential     5
 i =  1  lval =   4  stpote =  0.49821926E-01
 i =  2  lval =   3  stpote =  0.40027623E-04
 i =  3  lval =   3  stpote = -0.23109959E-04
 i =  4  lval =   4  stpote =  0.44838727E-05
For potential     6
 i =  1  lval =   2  stpote = -0.10453834E-02
 i =  2  lval =   3  stpote = -0.11167469E-03
 i =  3  lval =   4  stpote = -0.24994566E-05
 i =  4  lval =   4  stpote = -0.32267846E-05
For potential     7
 i =  1  lval =   4  stpote = -0.74732889E-01
 i =  2  lval =   3  stpote = -0.60041435E-04
 i =  3  lval =   3  stpote =  0.34664939E-04
 i =  4  lval =   4  stpote = -0.67258090E-05
For potential     8
 i =  1  lval =   4  stpote =  0.49821926E-01
 i =  2  lval =   3  stpote =  0.24581947E-20
 i =  3  lval =   3  stpote =  0.46219918E-04
 i =  4  lval =   4  stpote =  0.44838727E-05
For potential     9
 i =  1  lval =   4  stpote = -0.74732889E-01
 i =  2  lval =   3  stpote = -0.36872920E-20
 i =  3  lval =   3  stpote = -0.69329877E-04
 i =  4  lval =   4  stpote = -0.67258090E-05
For potential    10
 i =  1  lval =   2  stpote = -0.10453834E-02
 i =  2  lval =   3  stpote = -0.11167469E-03
 i =  3  lval =   4  stpote = -0.24994566E-05
 i =  4  lval =   4  stpote = -0.32267846E-05
Number of asymptotic regions =      27
Final point in integration =   0.65906507E+02 Angstroms
Time Now =        50.9359  Delta time =         8.8294 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.31257015 rmsk=     0.10207353
iL =   1 Iter =   2 c.s. =      0.29792873 rmsk=     0.00559367
iL =   1 Iter =   3 c.s. =      0.29752695 rmsk=     0.00007203
iL =   1 Iter =   4 c.s. =      0.29752706 rmsk=     0.00000005
iL =   1 Iter =   5 c.s. =      0.29752706 rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =      0.42489292 rmsk=     0.06515772
iL =   2 Iter =   2 c.s. =      0.41530283 rmsk=     0.00391272
iL =   2 Iter =   3 c.s. =      0.41517944 rmsk=     0.00003839
iL =   2 Iter =   4 c.s. =      0.41517947 rmsk=     0.00000003
iL =   2 Iter =   5 c.s. =      0.41517947 rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.53787310E+00,-0.56383121E-01) ( 0.63918157E-01,-0.30817785E-01)
  ( 0.13006574E-02, 0.14800287E-02) (-0.94966377E-03, 0.69285980E-03)
  (-0.40353481E-04,-0.26742573E-04) ( 0.23710331E-04,-0.86836412E-04)
  (-0.98708337E-06,-0.13803336E-05) ( 0.66380482E-06, 0.12172496E-05)
  (-0.49321527E-06,-0.91431080E-07) ( 0.30087739E-05, 0.48106816E-06)
  ( 0.19302184E-06, 0.14643093E-07) ( 0.32190865E-06,-0.11920221E-07)
  ( 0.54817371E-08, 0.51945630E-09) (-0.67689517E-08, 0.22178538E-08)
  ( 0.13242701E-07,-0.31885565E-08)
     ROW  2
  ( 0.33810749E+00,-0.35498662E-01) ( 0.41189127E-01,-0.19389198E-01)
  ( 0.92902471E-03, 0.96454294E-03) (-0.10406922E-02, 0.44560424E-03)
  ( 0.16976051E-04,-0.17215520E-04) ( 0.74919484E-04,-0.65459034E-04)
  (-0.37514699E-06,-0.16000816E-05) (-0.17175824E-05, 0.19762709E-05)
  (-0.12502317E-06,-0.96861689E-07) ( 0.58306896E-06, 0.41736789E-06)
  ( 0.48319086E-07, 0.15744181E-07) ( 0.93365724E-07, 0.24646185E-07)
  ( 0.14076840E-08, 0.42784918E-09) (-0.25063381E-08, 0.34091328E-09)
  ( 0.49414572E-08, 0.22602124E-10)
MaxIter =   5 c.s. =      0.41517947 rmsk=     0.00000000
Time Now =        58.8934  Delta time =         7.9575 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.15800000E+02 eV (  0.58063935E+00 AU)
Time Now =        58.9380  Delta time =         0.0446 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =T1    1
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =     T
Maximum l for computed scattering solutions (LMaxK) =   11
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    50
Number of partial waves (np) =    27
Number of asymptotic solutions on the right (NAsymR) =    15
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   11
Number of partial waves in the asymptotic region (npasym) =   15
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =   10
Maximum number of asymptotic partial waves =  133
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =   11
Highest l used at large r (lpasym) =   11
Higest l used in the asymptotic potential (lpzb) =   22
Maximum L used in the homogeneous solution (LMaxHomo) =   11
Number of partial waves in the homogeneous solution (npHomo) =   15
Time Now =        58.9498  Delta time =         0.0118 Energy independent setup

Compute solution for E =   15.8000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.13877788E-15
 i =  2  lval =   3  stpote = -0.11393263E-18
 i =  3  lval =   3  stpote = -0.41977709E-18
 i =  4  lval =   4  stpote = -0.29200319E-04
For potential     2
 i =  1  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.11167396E-16
 i =  2  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.11050437E-16
 i =  3  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.10963980E-16
 i =  4  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.10906645E-16
For potential     3
For potential     4
 i =  1  lval =   4  stpote =  0.49821926E-01
 i =  2  lval =   3  stpote = -0.40027623E-04
 i =  3  lval =   3  stpote = -0.23109959E-04
 i =  4  lval =   4  stpote =  0.44838727E-05
For potential     5
 i =  1  lval =   4  stpote =  0.49821926E-01
 i =  2  lval =   3  stpote =  0.40027623E-04
 i =  3  lval =   3  stpote = -0.23109959E-04
 i =  4  lval =   4  stpote =  0.44838727E-05
For potential     6
 i =  1  lval =   2  stpote = -0.10453834E-02
 i =  2  lval =   3  stpote = -0.11167469E-03
 i =  3  lval =   4  stpote = -0.24994566E-05
 i =  4  lval =   4  stpote = -0.32267846E-05
For potential     7
 i =  1  lval =   4  stpote = -0.74732889E-01
 i =  2  lval =   3  stpote = -0.60041435E-04
 i =  3  lval =   3  stpote =  0.34664939E-04
 i =  4  lval =   4  stpote = -0.67258090E-05
For potential     8
 i =  1  lval =   4  stpote =  0.49821926E-01
 i =  2  lval =   3  stpote =  0.24581947E-20
 i =  3  lval =   3  stpote =  0.46219918E-04
 i =  4  lval =   4  stpote =  0.44838727E-05
For potential     9
 i =  1  lval =   4  stpote = -0.74732889E-01
 i =  2  lval =   3  stpote = -0.36872920E-20
 i =  3  lval =   3  stpote = -0.69329877E-04
 i =  4  lval =   4  stpote = -0.67258090E-05
For potential    10
 i =  1  lval =   2  stpote = -0.10453834E-02
 i =  2  lval =   3  stpote = -0.11167469E-03
 i =  3  lval =   4  stpote = -0.24994566E-05
 i =  4  lval =   4  stpote = -0.32267846E-05
Number of asymptotic regions =      32
Final point in integration =   0.51339860E+02 Angstroms
Time Now =        67.8209  Delta time =         8.8711 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.24589997 rmsk=     0.09053544
iL =   1 Iter =   2 c.s. =      0.23533705 rmsk=     0.00479988
iL =   1 Iter =   3 c.s. =      0.23510821 rmsk=     0.00004809
iL =   1 Iter =   4 c.s. =      0.23510826 rmsk=     0.00000003
iL =   1 Iter =   5 c.s. =      0.23510826 rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =      0.45914377 rmsk=     0.08641673
iL =   2 Iter =   2 c.s. =      0.44351579 rmsk=     0.00475659
iL =   2 Iter =   3 c.s. =      0.44337883 rmsk=     0.00003182
iL =   2 Iter =   4 c.s. =      0.44337886 rmsk=     0.00000002
iL =   2 Iter =   5 c.s. =      0.44337886 rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.46414271E+00,-0.97592062E-01) ( 0.91231695E-01,-0.42028078E-01)
  ( 0.20608913E-02, 0.20271884E-02) (-0.69741328E-02, 0.27885371E-02)
  ( 0.10078195E-03,-0.16158994E-03) ( 0.92060792E-03,-0.59480358E-03)
  (-0.73849610E-06,-0.23169697E-04) (-0.43656343E-04, 0.28303000E-04)
  (-0.55970821E-05,-0.23852650E-05) ( 0.27440327E-04, 0.95950045E-05)
  ( 0.35881203E-05, 0.54239910E-06) ( 0.61486162E-05, 0.87581079E-06)
  ( 0.17124691E-06, 0.23204857E-07) (-0.28114288E-06, 0.23390510E-07)
  ( 0.50463532E-06,-0.73108867E-08)
     ROW  2
  ( 0.43589008E+00,-0.92035802E-01) ( 0.90333430E-01,-0.39672836E-01)
  ( 0.20569597E-02, 0.20977147E-02) (-0.69825669E-02, 0.26504067E-02)
  ( 0.31790206E-03,-0.15330090E-03) ( 0.96064613E-03,-0.57908116E-03)
  ( 0.38517670E-05,-0.21340479E-04) (-0.42009337E-04, 0.32914994E-04)
  (-0.87939800E-06,-0.21476037E-05) ( 0.17784140E-05, 0.96193328E-05)
  ( 0.80628480E-06, 0.55997085E-06) ( 0.20797272E-05, 0.12994810E-05)
  ( 0.41374545E-07, 0.20737889E-07) (-0.11924487E-06,-0.92052285E-08)
  ( 0.25192241E-06, 0.52966561E-07)
MaxIter =   5 c.s. =      0.44337886 rmsk=     0.00000000
Time Now =        75.8099  Delta time =         7.9890 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.25800000E+02 eV (  0.94813261E+00 AU)
Time Now =        75.8549  Delta time =         0.0449 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =T1    1
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =     T
Maximum l for computed scattering solutions (LMaxK) =   11
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    50
Number of partial waves (np) =    27
Number of asymptotic solutions on the right (NAsymR) =    15
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   11
Number of partial waves in the asymptotic region (npasym) =   15
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =   10
Maximum number of asymptotic partial waves =  133
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =   11
Highest l used at large r (lpasym) =   11
Higest l used in the asymptotic potential (lpzb) =   22
Maximum L used in the homogeneous solution (LMaxHomo) =   11
Number of partial waves in the homogeneous solution (npHomo) =   15
Time Now =        75.8666  Delta time =         0.0118 Energy independent setup

Compute solution for E =   25.8000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.13877788E-15
 i =  2  lval =   3  stpote = -0.11393263E-18
 i =  3  lval =   3  stpote = -0.41977709E-18
 i =  4  lval =   4  stpote = -0.29200319E-04
For potential     2
 i =  1  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.80446840E-17
 i =  2  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.80814907E-17
 i =  3  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.81237516E-17
 i =  4  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.81650637E-17
For potential     3
For potential     4
 i =  1  lval =   4  stpote =  0.49821926E-01
 i =  2  lval =   3  stpote = -0.40027623E-04
 i =  3  lval =   3  stpote = -0.23109959E-04
 i =  4  lval =   4  stpote =  0.44838727E-05
For potential     5
 i =  1  lval =   4  stpote =  0.49821926E-01
 i =  2  lval =   3  stpote =  0.40027623E-04
 i =  3  lval =   3  stpote = -0.23109959E-04
 i =  4  lval =   4  stpote =  0.44838727E-05
For potential     6
 i =  1  lval =   2  stpote = -0.10453834E-02
 i =  2  lval =   3  stpote = -0.11167469E-03
 i =  3  lval =   4  stpote = -0.24994566E-05
 i =  4  lval =   4  stpote = -0.32267846E-05
For potential     7
 i =  1  lval =   4  stpote = -0.74732889E-01
 i =  2  lval =   3  stpote = -0.60041435E-04
 i =  3  lval =   3  stpote =  0.34664939E-04
 i =  4  lval =   4  stpote = -0.67258090E-05
For potential     8
 i =  1  lval =   4  stpote =  0.49821926E-01
 i =  2  lval =   3  stpote =  0.24581947E-20
 i =  3  lval =   3  stpote =  0.46219918E-04
 i =  4  lval =   4  stpote =  0.44838727E-05
For potential     9
 i =  1  lval =   4  stpote = -0.74732889E-01
 i =  2  lval =   3  stpote = -0.36872920E-20
 i =  3  lval =   3  stpote = -0.69329877E-04
 i =  4  lval =   4  stpote = -0.67258090E-05
For potential    10
 i =  1  lval =   2  stpote = -0.10453834E-02
 i =  2  lval =   3  stpote = -0.11167469E-03
 i =  3  lval =   4  stpote = -0.24994566E-05
 i =  4  lval =   4  stpote = -0.32267846E-05
Number of asymptotic regions =      35
Final point in integration =   0.45437022E+02 Angstroms
Time Now =        87.8736  Delta time =        12.0069 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.12907284 rmsk=     0.06559290
iL =   1 Iter =   2 c.s. =      0.12763395 rmsk=     0.00351452
iL =   1 Iter =   3 c.s. =      0.12756641 rmsk=     0.00002296
iL =   1 Iter =   4 c.s. =      0.12756642 rmsk=     0.00000001
iL =   1 Iter =   5 c.s. =      0.12756642 rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =      0.32998737 rmsk=     0.08214235
iL =   2 Iter =   2 c.s. =      0.32251754 rmsk=     0.00403624
iL =   2 Iter =   3 c.s. =      0.32243275 rmsk=     0.00002198
iL =   2 Iter =   4 c.s. =      0.32243277 rmsk=     0.00000001
iL =   2 Iter =   5 c.s. =      0.32243277 rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.33047542E+00,-0.95951147E-01) ( 0.85607885E-01,-0.40416123E-01)
  ( 0.24863489E-02, 0.19689976E-02) (-0.12227812E-01, 0.42630886E-02)
  ( 0.52910494E-03,-0.29173057E-03) ( 0.20445405E-02,-0.11379896E-02)
  (-0.13530305E-04,-0.49532421E-04) (-0.10089915E-03, 0.77188153E-04)
  (-0.15434737E-04,-0.60835486E-05) ( 0.64703637E-04, 0.29058593E-04)
  ( 0.11226535E-04, 0.20372040E-05) ( 0.26018552E-04, 0.39152350E-05)
  ( 0.62291138E-06, 0.12764310E-06) (-0.16832608E-05, 0.14635184E-06)
  ( 0.32443580E-05, 0.60776077E-07)
     ROW  2
  ( 0.40670356E+00,-0.11876908E+00) ( 0.11205253E+00,-0.50253045E-01)
  ( 0.27388721E-02, 0.27360458E-02) (-0.14760270E-01, 0.52899249E-02)
  ( 0.10344684E-02,-0.35780612E-03) ( 0.26900433E-02,-0.14243180E-02)
  ( 0.24029827E-04,-0.62469847E-04) (-0.14966058E-03, 0.10774300E-03)
  ( 0.19028688E-05,-0.78498120E-05) (-0.22662257E-04, 0.36699327E-04)
  ( 0.33720732E-06, 0.26179325E-05) ( 0.61142144E-05, 0.69368086E-05)
  ( 0.42209105E-07, 0.11864964E-06) (-0.59301045E-06,-0.10791886E-06)
  ( 0.14453285E-05, 0.43441668E-06)
MaxIter =   5 c.s. =      0.32243277 rmsk=     0.00000000
Time Now =        95.7601  Delta time =         7.8865 End ScatStab

+ Command GetCro
+ 'test18T2T1.idy'
Taking dipole matrix from file test18T2T1.idy

----------------------------------------------------------------------
CnvIdy - read in and convert dynamical matrix elements and convert to raw form
----------------------------------------------------------------------

Time Now =        95.7680  Delta time =         0.0080 End CnvIdy
Found     4 energies :
     0.10000     5.80000    15.80000    25.80000
List of matrix element types found   Number =    1
    1  Cont Sym T1     Targ Sym T2     Total Sym T2
Keeping     4 energies :
     0.10000     5.80000    15.80000    25.80000
Time Now =        95.7682  Delta time =         0.0002 End SelIdy

----------------------------------------------------------------------
CrossSection - compute photoionization cross section
----------------------------------------------------------------------

Ionization potential (IPot) =     14.2000 eV
Label -
Cross section by partial wave      F
Cross Sections for

     Sigma LENGTH   at all energies
      Eng
    14.3000  0.24461816E+00
    20.0000  0.11230867E+01
    30.0000  0.13312081E+01
    40.0000  0.96305961E+00

     Sigma MIXED    at all energies
      Eng
    14.3000  0.21527975E+00
    20.0000  0.96087928E+00
    30.0000  0.11364054E+01
    40.0000  0.80964843E+00

     Sigma VELOCITY at all energies
      Eng
    14.3000  0.18946015E+00
    20.0000  0.82210800E+00
    30.0000  0.97020789E+00
    40.0000  0.68082413E+00

     Beta LENGTH   at all energies
      Eng
    14.3000  0.49999912E+00
    20.0000  0.49999137E+00
    30.0000  0.49997833E+00
    40.0000  0.49994992E+00

     Beta MIXED    at all energies
      Eng
    14.3000  0.49999913E+00
    20.0000  0.49999052E+00
    30.0000  0.49997505E+00
    40.0000  0.49994666E+00

     Beta VELOCITY at all energies
      Eng
    14.3000  0.49999914E+00
    20.0000  0.49998956E+00
    30.0000  0.49997127E+00
    40.0000  0.49994288E+00

          COMPOSITE CROSS SECTIONS AT ALL ENERGIES
         Energy  SIGMA LEN  SIGMA MIX  SIGMA VEL   BETA LEN   BETA MIX   BETA VEL
EPhi     14.3000     0.2446     0.2153     0.1895     0.5000     0.5000     0.5000
EPhi     20.0000     1.1231     0.9609     0.8221     0.5000     0.5000     0.5000
EPhi     30.0000     1.3312     1.1364     0.9702     0.5000     0.5000     0.5000
EPhi     40.0000     0.9631     0.8096     0.6808     0.4999     0.4999     0.4999
Time Now =        95.9198  Delta time =         0.1516 End CrossSection

+ Command FileName
+ 'MatrixElements' 'test18T2T2.idy' 'REWIND'
Opening file test18T2T2.idy at position REWIND
+ Data Record ScatSym - 'T2'
+ Data Record ScatContSym - 'T2'

+ Command GenFormPhIon
+

----------------------------------------------------------------------
SymProd - Construct products of symmetry types
----------------------------------------------------------------------

Number of sets of degenerate orbitals =    3
Set    1  has degeneracy     1
Orbital     1  is num     1  type =   1  name - A1    1
Set    2  has degeneracy     1
Orbital     1  is num     2  type =   1  name - A1    1
Set    3  has degeneracy     3
Orbital     1  is num     3  type =   8  name - T2    1
Orbital     2  is num     4  type =   9  name - T2    2
Orbital     3  is num     5  type =  10  name - T2    3
Orbital occupations by degenerate group
    1  A1       occ = 2
    2  A1       occ = 2
    3  T2       occ = 5
The dimension of each irreducable representation is
    A1    (  1)    A2    (  1)    E     (  2)    T1    (  3)    T2    (  3)
Symmetry of the continuum orbital is T2
Symmetry of the total state is T2
Spin degeneracy of the total state is =    1
Symmetry of the target state is T2
Spin degeneracy of the target state is =    2
Symmetry of the initial state is A1
Spin degeneracy of the initial state is =    1
Orbital occupations of initial state by degenerate group
    1  A1       occ = 2
    2  A1       occ = 2
    3  T2       occ = 6
Open shell symmetry types
    1  T2     iele =    5
Use only configuration of type T2
MS2 =    1  SDGN =    2
NumAlpha =    3
List of determinants found
    1:   1.00000   0.00000    1    2    3    4    5
    2:   1.00000   0.00000    1    2    3    4    6
    3:   1.00000   0.00000    1    2    3    5    6
Spin adapted configurations
Configuration    1
    1:   1.00000   0.00000    1    2    3    4    5
Configuration    2
    1:   1.00000   0.00000    1    2    3    4    6
Configuration    3
    1:   1.00000   0.00000    1    2    3    5    6
 Each irreducable representation is present the number of times indicated
    T2    (  1)

 representation T2     component     1  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1    2    3    5    6

 representation T2     component     2  fun    1
Symmeterized Function
    1:  -1.00000   0.00000    1    2    3    4    6

 representation T2     component     3  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1    2    3    4    5
Open shell symmetry types
    1  T2     iele =    5
    2  T2     iele =    1
Use only configuration of type T2
 Each irreducable representation is present the number of times indicated
    A1    (  1)
    E     (  1)
    T1    (  1)
    T2    (  1)

 representation T2     component     1  fun    1
Symmeterized Function from AddNewShell
    1:  -0.50000   0.00000    1    2    3    4    5   11
    2:   0.50000   0.00000    1    2    3    4    6   12
    3:   0.50000   0.00000    1    2    4    5    6    8
    4:  -0.50000   0.00000    1    3    4    5    6    9

 representation T2     component     2  fun    1
Symmeterized Function from AddNewShell
    1:  -0.50000   0.00000    1    2    3    4    5   10
    2:  -0.50000   0.00000    1    2    3    5    6   12
    3:   0.50000   0.00000    1    2    4    5    6    7
    4:   0.50000   0.00000    2    3    4    5    6    9

 representation T2     component     3  fun    1
Symmeterized Function from AddNewShell
    1:   0.50000   0.00000    1    2    3    4    6   10
    2:  -0.50000   0.00000    1    2    3    5    6   11
    3:  -0.50000   0.00000    1    3    4    5    6    7
    4:   0.50000   0.00000    2    3    4    5    6    8
Open shell symmetry types
    1  T2     iele =    5
Use only configuration of type T2
MS2 =    1  SDGN =    2
NumAlpha =    3
List of determinants found
    1:   1.00000   0.00000    1    2    3    4    5
    2:   1.00000   0.00000    1    2    3    4    6
    3:   1.00000   0.00000    1    2    3    5    6
Spin adapted configurations
Configuration    1
    1:   1.00000   0.00000    1    2    3    4    5
Configuration    2
    1:   1.00000   0.00000    1    2    3    4    6
Configuration    3
    1:   1.00000   0.00000    1    2    3    5    6
 Each irreducable representation is present the number of times indicated
    T2    (  1)

 representation T2     component     1  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1    2    3    5    6

 representation T2     component     2  fun    1
Symmeterized Function
    1:  -1.00000   0.00000    1    2    3    4    6

 representation T2     component     3  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1    2    3    4    5
Direct product basis set
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    9   10   14
    2:   0.70711   0.00000    1    2    3    4    6    7    8    9   10   11
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    9   10   15
    2:   0.70711   0.00000    1    2    3    4    6    7    8    9   10   12
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    9   10   16
    2:   0.70711   0.00000    1    2    3    4    6    7    8    9   10   13
Direct product basis function
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   14
    2:  -0.70711   0.00000    1    2    3    4    5    7    8    9   10   11
Direct product basis function
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   15
    2:  -0.70711   0.00000    1    2    3    4    5    7    8    9   10   12
Direct product basis function
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   16
    2:  -0.70711   0.00000    1    2    3    4    5    7    8    9   10   13
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   14
    2:   0.70711   0.00000    1    2    3    4    5    6    8    9   10   11
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   15
    2:   0.70711   0.00000    1    2    3    4    5    6    8    9   10   12
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   16
    2:   0.70711   0.00000    1    2    3    4    5    6    8    9   10   13
Closed shell target
Time Now =        95.9529  Delta time =         0.0331 End SymProd

----------------------------------------------------------------------
MatEle - Program to compute Matrix Elements over Determinants
----------------------------------------------------------------------

Configuration     1
    1:  -0.50000   0.00000    1    2    3    4    5    6    7    8    9   15
    2:   0.50000   0.00000    1    2    3    4    5    6    7    8   10   16
    3:   0.50000   0.00000    1    2    3    4    5    6    8    9   10   12
    4:  -0.50000   0.00000    1    2    3    4    5    7    8    9   10   13
Configuration     2
    1:  -0.50000   0.00000    1    2    3    4    5    6    7    8    9   14
    2:  -0.50000   0.00000    1    2    3    4    5    6    7    9   10   16
    3:   0.50000   0.00000    1    2    3    4    5    6    8    9   10   11
    4:   0.50000   0.00000    1    2    3    4    6    7    8    9   10   13
Configuration     3
    1:   0.50000   0.00000    1    2    3    4    5    6    7    8   10   14
    2:  -0.50000   0.00000    1    2    3    4    5    6    7    9   10   15
    3:  -0.50000   0.00000    1    2    3    4    5    7    8    9   10   11
    4:   0.50000   0.00000    1    2    3    4    6    7    8    9   10   12
Direct product Configuration Cont sym =    1  Targ sym =    1
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    9   10   14
    2:   0.70711   0.00000    1    2    3    4    6    7    8    9   10   11
Direct product Configuration Cont sym =    2  Targ sym =    1
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    9   10   15
    2:   0.70711   0.00000    1    2    3    4    6    7    8    9   10   12
Direct product Configuration Cont sym =    3  Targ sym =    1
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    9   10   16
    2:   0.70711   0.00000    1    2    3    4    6    7    8    9   10   13
Direct product Configuration Cont sym =    1  Targ sym =    2
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   14
    2:  -0.70711   0.00000    1    2    3    4    5    7    8    9   10   11
Direct product Configuration Cont sym =    2  Targ sym =    2
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   15
    2:  -0.70711   0.00000    1    2    3    4    5    7    8    9   10   12
Direct product Configuration Cont sym =    3  Targ sym =    2
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   16
    2:  -0.70711   0.00000    1    2    3    4    5    7    8    9   10   13
Direct product Configuration Cont sym =    1  Targ sym =    3
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   14
    2:   0.70711   0.00000    1    2    3    4    5    6    8    9   10   11
Direct product Configuration Cont sym =    2  Targ sym =    3
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   15
    2:   0.70711   0.00000    1    2    3    4    5    6    8    9   10   12
Direct product Configuration Cont sym =    3  Targ sym =    3
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   16
    2:   0.70711   0.00000    1    2    3    4    5    6    8    9   10   13
Overlap of Direct Product expansion and Symmeterized states
Symmetry of Continuum =    5
Symmetry of target =    5
Symmetry of total states =    5

Total symmetry component =    1

Cont      Target Component
Comp        1               2               3
   1   0.00000000E+00  0.00000000E+00  0.00000000E+00
   2   0.00000000E+00  0.00000000E+00  0.70710678E+00
   3   0.00000000E+00  0.70710678E+00  0.00000000E+00

Total symmetry component =    2

Cont      Target Component
Comp        1               2               3
   1   0.00000000E+00  0.00000000E+00  0.70710678E+00
   2   0.00000000E+00  0.00000000E+00  0.00000000E+00
   3   0.70710678E+00  0.00000000E+00  0.00000000E+00

Total symmetry component =    3

Cont      Target Component
Comp        1               2               3
   1   0.00000000E+00  0.70710678E+00  0.00000000E+00
   2   0.70710678E+00  0.00000000E+00  0.00000000E+00
   3   0.00000000E+00  0.00000000E+00  0.00000000E+00
Initial State Configuration
    1:   1.00000   0.00000    1    2    3    4    5    6    7    8    9   10
One electron matrix elements between initial and final states
    1:   -1.000000000    0.000000000  <    6|   13>
    2:   -1.000000000    0.000000000  <    7|   12>

Reduced formula list
    3    3    2 -0.1000000000E+01
    2    3    3 -0.1000000000E+01
Time Now =        95.9537  Delta time =         0.0008 End MatEle

+ Command DipoleOp
+

----------------------------------------------------------------------
DipoleOp - Dipole Operator Program
----------------------------------------------------------------------

Number of orbitals in formula for the dipole operator (NOrbSel) =    2
Symmetry of the continuum orbital (iContSym) =     5 or T2
Symmetry of total final state (iTotalSym) =     5 or T2
Symmetry of the initial state (iInitSym) =     1 or A1
Symmetry of the ionized target state (iTargSym) =     5 or T2
List of unique symmetry types
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
Unique dipole matrix type     1 Dipole symmetry type =T2
     Final state symmetry type = T2     Target sym =T2
     Continuum type =A1
In the product of the symmetry types T2    A2
 Each irreducable representation is present the number of times indicated
    T1    (  1)
In the product of the symmetry types T2    E
 Each irreducable representation is present the number of times indicated
    T1    (  1)
    T2    (  1)
Unique dipole matrix type     2 Dipole symmetry type =T2
     Final state symmetry type = T2     Target sym =T2
     Continuum type =E
In the product of the symmetry types T2    T1
 Each irreducable representation is present the number of times indicated
    A2    (  1)
    E     (  1)
    T1    (  1)
    T2    (  1)
Unique dipole matrix type     3 Dipole symmetry type =T2
     Final state symmetry type = T2     Target sym =T2
     Continuum type =T1
In the product of the symmetry types T2    T2
 Each irreducable representation is present the number of times indicated
    A1    (  1)
    E     (  1)
    T1    (  1)
    T2    (  1)
Unique dipole matrix type     4 Dipole symmetry type =T2
     Final state symmetry type = T2     Target sym =T2
     Continuum type =T2
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
Irreducible representation containing the dipole operator is T2
Number of different dipole operators in this representation is     1
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
Vector of the total symmetry
ie =    1  ij =    1
    1 (  0.10000000E+01, -0.00000000E+00)
    2 (  0.00000000E+00, -0.00000000E+00)
    3 (  0.00000000E+00, -0.00000000E+00)
Vector of the total symmetry
ie =    2  ij =    1
    1 (  0.00000000E+00,  0.00000000E+00)
    2 (  0.10000000E+01,  0.00000000E+00)
    3 ( -0.00000000E+00,  0.00000000E+00)
Vector of the total symmetry
ie =    3  ij =    1
    1 ( -0.00000000E+00,  0.00000000E+00)
    2 (  0.00000000E+00,  0.00000000E+00)
    3 (  0.10000000E+01,  0.00000000E+00)
Component Dipole Op Sym =  1 goes to Total Sym component   1 phase = 1.0
Component Dipole Op Sym =  2 goes to Total Sym component   2 phase = 1.0
Component Dipole Op Sym =  3 goes to Total Sym component   3 phase = 1.0

Dipole operator types by symmetry components (x=1, y=2, z=3)
sym comp =  1
  coefficients =  0.00000000  1.00000000  0.00000000
sym comp =  2
  coefficients =  1.00000000  0.00000000  0.00000000
sym comp =  3
  coefficients =  0.00000000  0.00000000  1.00000000

Formula for dipole operator

Dipole operator sym comp 1  index =    1
  1  Cont comp  3  Orb  4  Coef =  -1.0000000000
  2  Cont comp  2  Orb  5  Coef =  -1.0000000000
Symmetry type to write out (SymTyp) =T2
Time Now =       122.2925  Delta time =        26.3388 End DipoleOp

+ Command GetPot
+

----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------

Total density =      9.00000000
Time Now =       122.5066  Delta time =         0.2141 End Den

----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------

 vasymp =  0.90000000E+01 facnorm =  0.10000000E+01
Time Now =       122.5411  Delta time =         0.0345 Electronic part
Time Now =       122.5433  Delta time =         0.0021 End StPot

+ Command PhIon
+ 0.1

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.10000000E+00 eV (  0.36749326E-02 AU)
Time Now =       122.5897  Delta time =         0.0464 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =T2    1
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =     T
Maximum l for computed scattering solutions (LMaxK) =   11
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    50
Number of partial waves (np) =    36
Number of asymptotic solutions on the right (NAsymR) =    21
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   11
Number of partial waves in the asymptotic region (npasym) =   21
Number of orthogonality constraints (NOrthUse) =    1
Number of different asymptotic potentials =   10
Maximum number of asymptotic partial waves =  133
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =   11
Highest l used at large r (lpasym) =   11
Higest l used in the asymptotic potential (lpzb) =   22
Maximum L used in the homogeneous solution (LMaxHomo) =   11
Number of partial waves in the homogeneous solution (npHomo) =   21
Time Now =       122.6015  Delta time =         0.0118 Energy independent setup

Compute solution for E =    0.1000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.13877788E-15
 i =  2  lval =   3  stpote = -0.11393263E-18
 i =  3  lval =   3  stpote = -0.41977709E-18
 i =  4  lval =   4  stpote = -0.29200319E-04
For potential     2
 i =  1  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.23318031E-16
 i =  2  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.23098957E-16
 i =  3  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.22905876E-16
 i =  4  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.22750416E-16
For potential     3
For potential     4
 i =  1  lval =   4  stpote =  0.49821926E-01
 i =  2  lval =   3  stpote = -0.40027623E-04
 i =  3  lval =   3  stpote = -0.23109959E-04
 i =  4  lval =   4  stpote =  0.44838727E-05
For potential     5
 i =  1  lval =   4  stpote =  0.49821926E-01
 i =  2  lval =   3  stpote =  0.40027623E-04
 i =  3  lval =   3  stpote = -0.23109959E-04
 i =  4  lval =   4  stpote =  0.44838727E-05
For potential     6
 i =  1  lval =   2  stpote = -0.10453834E-02
 i =  2  lval =   3  stpote = -0.11167469E-03
 i =  3  lval =   4  stpote = -0.24994566E-05
 i =  4  lval =   4  stpote = -0.32267846E-05
For potential     7
 i =  1  lval =   4  stpote = -0.74732889E-01
 i =  2  lval =   3  stpote = -0.60041435E-04
 i =  3  lval =   3  stpote =  0.34664939E-04
 i =  4  lval =   4  stpote = -0.67258090E-05
For potential     8
 i =  1  lval =   4  stpote =  0.49821926E-01
 i =  2  lval =   3  stpote =  0.24581947E-20
 i =  3  lval =   3  stpote =  0.46219918E-04
 i =  4  lval =   4  stpote =  0.44838727E-05
For potential     9
 i =  1  lval =   4  stpote = -0.74732889E-01
 i =  2  lval =   3  stpote = -0.36872920E-20
 i =  3  lval =   3  stpote = -0.69329877E-04
 i =  4  lval =   4  stpote = -0.67258090E-05
For potential    10
 i =  1  lval =   2  stpote = -0.10453834E-02
 i =  2  lval =   3  stpote = -0.11167469E-03
 i =  3  lval =   4  stpote = -0.24994566E-05
 i =  4  lval =   4  stpote = -0.32267846E-05
Number of asymptotic regions =      12
Final point in integration =   0.18156553E+03 Angstroms
Time Now =       131.1539  Delta time =         8.5523 End SolveHomo
iL =   1 Iter =   1 c.s. =     20.26365152 rmsk=     0.69459909
iL =   1 Iter =   2 c.s. =     16.27984141 rmsk=     0.53344128
iL =   1 Iter =   3 c.s. =     15.57574385 rmsk=     0.03504146
iL =   1 Iter =   4 c.s. =     15.61296958 rmsk=     0.00217169
iL =   1 Iter =   5 c.s. =     15.61262953 rmsk=     0.00001316
iL =   1 Iter =   6 c.s. =     15.61263102 rmsk=     0.00000005
iL =   1 Iter =   7 c.s. =     15.61263102 rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =     21.26048941 rmsk=     0.36670536
iL =   2 Iter =   2 c.s. =     18.91753503 rmsk=     0.27038243
iL =   2 Iter =   3 c.s. =     18.77957731 rmsk=     0.01395410
iL =   2 Iter =   4 c.s. =     18.79611418 rmsk=     0.00102458
iL =   2 Iter =   5 c.s. =     18.79608657 rmsk=     0.00000520
iL =   2 Iter =   6 c.s. =     18.79608694 rmsk=     0.00000002
iL =   2 Iter =   7 c.s. =     18.79608694 rmsk=     0.00000000
      Final k matrix
     ROW  1
  (-0.12711578E+01,-0.38961048E+00) (-0.33858273E+01, 0.15375145E+01)
  (-0.21901964E-01, 0.12916448E+00) (-0.63336132E-02,-0.32963028E-02)
  (-0.51335660E-03, 0.12204967E-03) (-0.71255815E-03, 0.81702858E-05)
  (-0.12207348E-04,-0.14933925E-04) ( 0.17122013E-04, 0.11995934E-05)
  (-0.82179040E-06,-0.18989315E-06) (-0.46569420E-06, 0.40869393E-06)
  ( 0.60852246E-08,-0.11625146E-08) (-0.11139472E-07, 0.17324633E-07)
  (-0.16323892E-09, 0.10553367E-09) (-0.26322643E-09, 0.21690079E-09)
  (-0.17173214E-09, 0.20473912E-09) ( 0.31735172E-11,-0.48289947E-11)
  (-0.39560252E-11,-0.84926030E-12) ( 0.15742836E-11,-0.51891262E-12)
  (-0.18951167E-13,-0.44700639E-13) (-0.75827806E-13,-0.15218473E-13)
  ( 0.18222523E-13, 0.26630577E-13)
     ROW  2
  (-0.59074642E+00,-0.21999270E+00) (-0.15133295E+01, 0.70175917E+00)
  (-0.81602814E-02, 0.58062746E-01) (-0.22558690E-02,-0.15557870E-02)
  (-0.20944115E-03, 0.53674559E-04) (-0.36462145E-03, 0.16810393E-04)
  ( 0.10074078E-05,-0.74744809E-05) ( 0.94110530E-05,-0.45247381E-07)
  (-0.21874878E-06,-0.14145859E-06) (-0.16012009E-06, 0.14381374E-06)
  ( 0.35308830E-08,-0.39094227E-09) (-0.73896390E-09, 0.50170129E-08)
  (-0.32126669E-10, 0.92322044E-11) (-0.61574625E-10, 0.27925091E-10)
  ( 0.36113054E-12, 0.70351602E-10) ( 0.12750472E-11,-0.56083502E-12)
  (-0.62333308E-12,-0.46047153E-12) ( 0.12911585E-12,-0.26713080E-12)
  ( 0.84589811E-15,-0.51520236E-14) (-0.15053465E-13,-0.17323732E-14)
  ( 0.42079798E-14, 0.16605117E-13)
MaxIter =   7 c.s. =     18.79608694 rmsk=     0.00000000
Time Now =       145.5255  Delta time =        14.3716 End ScatStab

+ Command PhIonN
+ 5.8 10.0 3

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.58000000E+01 eV (  0.21314609E+00 AU)
Time Now =       145.6640  Delta time =         0.1385 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =T2    1
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =     T
Maximum l for computed scattering solutions (LMaxK) =   11
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    50
Number of partial waves (np) =    36
Number of asymptotic solutions on the right (NAsymR) =    21
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   11
Number of partial waves in the asymptotic region (npasym) =   21
Number of orthogonality constraints (NOrthUse) =    1
Number of different asymptotic potentials =   10
Maximum number of asymptotic partial waves =  133
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =   11
Highest l used at large r (lpasym) =   11
Higest l used in the asymptotic potential (lpzb) =   22
Maximum L used in the homogeneous solution (LMaxHomo) =   11
Number of partial waves in the homogeneous solution (npHomo) =   21
Time Now =       145.6822  Delta time =         0.0182 Energy independent setup

Compute solution for E =    5.8000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.13877788E-15
 i =  2  lval =   3  stpote = -0.11393263E-18
 i =  3  lval =   3  stpote = -0.41977709E-18
 i =  4  lval =   4  stpote = -0.29200319E-04
For potential     2
 i =  1  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.15092243E-16
 i =  2  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.14894425E-16
 i =  3  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.14712238E-16
 i =  4  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.14560092E-16
For potential     3
For potential     4
 i =  1  lval =   4  stpote =  0.49821926E-01
 i =  2  lval =   3  stpote = -0.40027623E-04
 i =  3  lval =   3  stpote = -0.23109959E-04
 i =  4  lval =   4  stpote =  0.44838727E-05
For potential     5
 i =  1  lval =   4  stpote =  0.49821926E-01
 i =  2  lval =   3  stpote =  0.40027623E-04
 i =  3  lval =   3  stpote = -0.23109959E-04
 i =  4  lval =   4  stpote =  0.44838727E-05
For potential     6
 i =  1  lval =   2  stpote = -0.10453834E-02
 i =  2  lval =   3  stpote = -0.11167469E-03
 i =  3  lval =   4  stpote = -0.24994566E-05
 i =  4  lval =   4  stpote = -0.32267846E-05
For potential     7
 i =  1  lval =   4  stpote = -0.74732889E-01
 i =  2  lval =   3  stpote = -0.60041435E-04
 i =  3  lval =   3  stpote =  0.34664939E-04
 i =  4  lval =   4  stpote = -0.67258090E-05
For potential     8
 i =  1  lval =   4  stpote =  0.49821926E-01
 i =  2  lval =   3  stpote =  0.24581947E-20
 i =  3  lval =   3  stpote =  0.46219918E-04
 i =  4  lval =   4  stpote =  0.44838727E-05
For potential     9
 i =  1  lval =   4  stpote = -0.74732889E-01
 i =  2  lval =   3  stpote = -0.36872920E-20
 i =  3  lval =   3  stpote = -0.69329877E-04
 i =  4  lval =   4  stpote = -0.67258090E-05
For potential    10
 i =  1  lval =   2  stpote = -0.10453834E-02
 i =  2  lval =   3  stpote = -0.11167469E-03
 i =  3  lval =   4  stpote = -0.24994566E-05
 i =  4  lval =   4  stpote = -0.32267846E-05
Number of asymptotic regions =      27
Final point in integration =   0.65906507E+02 Angstroms
Time Now =       158.8359  Delta time =        13.1536 End SolveHomo
iL =   1 Iter =   1 c.s. =      2.77274378 rmsk=     0.25693912
iL =   1 Iter =   2 c.s. =      6.71506007 rmsk=     0.22249969
iL =   1 Iter =   3 c.s. =      6.70006245 rmsk=     0.00468277
iL =   1 Iter =   4 c.s. =      6.65196342 rmsk=     0.00150362
iL =   1 Iter =   5 c.s. =      6.65193716 rmsk=     0.00000138
iL =   1 Iter =   6 c.s. =      6.65193729 rmsk=     0.00000001
iL =   1 Iter =   7 c.s. =      6.65193729 rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =      8.07281516 rmsk=     0.18393049
iL =   2 Iter =   2 c.s. =      9.01412743 rmsk=     0.12283244
iL =   2 Iter =   3 c.s. =      8.98863975 rmsk=     0.00218148
iL =   2 Iter =   4 c.s. =      9.00143068 rmsk=     0.00123284
iL =   2 Iter =   5 c.s. =      9.00142639 rmsk=     0.00000050
iL =   2 Iter =   6 c.s. =      9.00142646 rmsk=     0.00000001
iL =   2 Iter =   7 c.s. =      9.00142646 rmsk=     0.00000000
      Final k matrix
     ROW  1
  (-0.58352791E+00, 0.12049026E+00) (-0.17527234E+01, 0.17543029E+01)
  (-0.55386425E-01, 0.37429424E+00) (-0.36470089E-01,-0.51741335E-01)
  (-0.47371967E-02, 0.95452020E-03) (-0.35950597E-02, 0.93670477E-02)
  (-0.43782826E-03,-0.94598928E-03) ( 0.28384435E-03,-0.30235659E-03)
  (-0.13298928E-03,-0.45006685E-04) (-0.76743878E-04,-0.16954796E-04)
  ( 0.55418489E-05,-0.92087706E-06) (-0.15031623E-04,-0.17694249E-05)
  (-0.12675190E-05, 0.47552235E-07) (-0.26136439E-05, 0.16854517E-06)
  (-0.81467442E-06, 0.12455997E-06) ( 0.27859325E-06,-0.47207310E-07)
  ( 0.39423269E-08,-0.20825191E-07) ( 0.15811995E-07,-0.65831859E-08)
  ( 0.85215058E-08,-0.19961455E-08) (-0.63175684E-09,-0.50161909E-09)
  (-0.13199583E-07, 0.70577247E-08)
     ROW  2
  (-0.35135106E+00, 0.40497905E-01) (-0.10372732E+01, 0.10472296E+01)
  (-0.25057863E-01, 0.22294614E+00) (-0.20585778E-01,-0.31164428E-01)
  (-0.27300820E-02, 0.49982400E-03) (-0.28860506E-02, 0.56262800E-02)
  ( 0.17971105E-03,-0.57823253E-03) ( 0.31721897E-03,-0.19315331E-03)
  (-0.23418872E-04,-0.34568846E-04) (-0.26635186E-04,-0.15715374E-04)
  ( 0.30740523E-05,-0.21254592E-06) ( 0.84298983E-07,-0.32943722E-05)
  (-0.24315615E-06,-0.11017288E-06) (-0.55383118E-06,-0.19718617E-06)
  ( 0.14389001E-06,-0.95155948E-07) ( 0.80694896E-07, 0.57689524E-08)
  ( 0.70179568E-08,-0.46127602E-08) (-0.78874596E-08, 0.76545163E-09)
  ( 0.29504191E-08, 0.14631589E-10) ( 0.24982501E-09,-0.49120802E-10)
  (-0.27821585E-08, 0.11706908E-08)
MaxIter =   7 c.s. =      9.00142646 rmsk=     0.00000000
Time Now =       173.0807  Delta time =        14.2449 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.15800000E+02 eV (  0.58063935E+00 AU)
Time Now =       173.1254  Delta time =         0.0446 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =T2    1
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =     T
Maximum l for computed scattering solutions (LMaxK) =   11
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    50
Number of partial waves (np) =    36
Number of asymptotic solutions on the right (NAsymR) =    21
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   11
Number of partial waves in the asymptotic region (npasym) =   21
Number of orthogonality constraints (NOrthUse) =    1
Number of different asymptotic potentials =   10
Maximum number of asymptotic partial waves =  133
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =   11
Highest l used at large r (lpasym) =   11
Higest l used in the asymptotic potential (lpzb) =   22
Maximum L used in the homogeneous solution (LMaxHomo) =   11
Number of partial waves in the homogeneous solution (npHomo) =   21
Time Now =       173.1372  Delta time =         0.0118 Energy independent setup

Compute solution for E =   15.8000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.13877788E-15
 i =  2  lval =   3  stpote = -0.11393263E-18
 i =  3  lval =   3  stpote = -0.41977709E-18
 i =  4  lval =   4  stpote = -0.29200319E-04
For potential     2
 i =  1  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.11167396E-16
 i =  2  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.11050437E-16
 i =  3  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.10963980E-16
 i =  4  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.10906645E-16
For potential     3
For potential     4
 i =  1  lval =   4  stpote =  0.49821926E-01
 i =  2  lval =   3  stpote = -0.40027623E-04
 i =  3  lval =   3  stpote = -0.23109959E-04
 i =  4  lval =   4  stpote =  0.44838727E-05
For potential     5
 i =  1  lval =   4  stpote =  0.49821926E-01
 i =  2  lval =   3  stpote =  0.40027623E-04
 i =  3  lval =   3  stpote = -0.23109959E-04
 i =  4  lval =   4  stpote =  0.44838727E-05
For potential     6
 i =  1  lval =   2  stpote = -0.10453834E-02
 i =  2  lval =   3  stpote = -0.11167469E-03
 i =  3  lval =   4  stpote = -0.24994566E-05
 i =  4  lval =   4  stpote = -0.32267846E-05
For potential     7
 i =  1  lval =   4  stpote = -0.74732889E-01
 i =  2  lval =   3  stpote = -0.60041435E-04
 i =  3  lval =   3  stpote =  0.34664939E-04
 i =  4  lval =   4  stpote = -0.67258090E-05
For potential     8
 i =  1  lval =   4  stpote =  0.49821926E-01
 i =  2  lval =   3  stpote =  0.24581947E-20
 i =  3  lval =   3  stpote =  0.46219918E-04
 i =  4  lval =   4  stpote =  0.44838727E-05
For potential     9
 i =  1  lval =   4  stpote = -0.74732889E-01
 i =  2  lval =   3  stpote = -0.36872920E-20
 i =  3  lval =   3  stpote = -0.69329877E-04
 i =  4  lval =   4  stpote = -0.67258090E-05
For potential    10
 i =  1  lval =   2  stpote = -0.10453834E-02
 i =  2  lval =   3  stpote = -0.11167469E-03
 i =  3  lval =   4  stpote = -0.24994566E-05
 i =  4  lval =   4  stpote = -0.32267846E-05
Number of asymptotic regions =      32
Final point in integration =   0.51339860E+02 Angstroms
Time Now =       186.0574  Delta time =        12.9202 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.33341086 rmsk=     0.08909744
iL =   1 Iter =   2 c.s. =      0.86889226 rmsk=     0.06310396
iL =   1 Iter =   3 c.s. =      0.86528831 rmsk=     0.00047440
iL =   1 Iter =   4 c.s. =      0.86530898 rmsk=     0.00001512
iL =   1 Iter =   5 c.s. =      0.86530690 rmsk=     0.00000020
iL =   1 Iter =   6 c.s. =      0.86530692 rmsk=     0.00000001
iL =   2 Iter =   1 c.s. =      1.21940542 rmsk=     0.09182002
iL =   2 Iter =   2 c.s. =      1.46701575 rmsk=     0.03756187
iL =   2 Iter =   3 c.s. =      1.46529384 rmsk=     0.00037400
iL =   2 Iter =   4 c.s. =      1.46529833 rmsk=     0.00000950
iL =   2 Iter =   5 c.s. =      1.46529709 rmsk=     0.00000015
iL =   2 Iter =   6 c.s. =      1.46529709 rmsk=     0.00000000
      Final k matrix
     ROW  1
  (-0.22279311E+00, 0.16233910E+00) (-0.56074099E+00, 0.65788521E+00)
  ( 0.23325676E-01, 0.18392832E+00) (-0.73847484E-01,-0.41312122E-01)
  (-0.15674053E-01,-0.30007119E-03) (-0.13811228E-01, 0.93810558E-02)
  ( 0.24291945E-02,-0.15267037E-02) ( 0.23510302E-02,-0.50884158E-03)
  (-0.30408221E-03,-0.15047900E-03) (-0.47648127E-03,-0.98067526E-04)
  ( 0.12029961E-03,-0.57756902E-05) ( 0.86540249E-05,-0.27807669E-04)
  (-0.29615385E-05,-0.17594306E-05) (-0.17320867E-04,-0.22803163E-05)
  ( 0.61725414E-05,-0.11676943E-05) ( 0.51747789E-05,-0.12561881E-06)
  ( 0.15653067E-05,-0.28768788E-06) (-0.52820944E-06, 0.56700002E-08)
  ( 0.41145057E-06,-0.33379434E-07) ( 0.19541591E-06,-0.34133019E-07)
  (-0.38901803E-06, 0.87987601E-07)
     ROW  2
  (-0.18474937E+00, 0.13556562E+00) (-0.46873904E+00, 0.54580868E+00)
  ( 0.29599785E-01, 0.15199520E+00) (-0.65688560E-01,-0.33653583E-01)
  (-0.13734189E-01,-0.25578697E-03) (-0.12881397E-01, 0.75137354E-02)
  ( 0.32299396E-02,-0.12467582E-02) ( 0.26025681E-02,-0.44134878E-03)
  ( 0.44733982E-04,-0.14375499E-03) (-0.28438427E-03,-0.85735593E-04)
  ( 0.81306721E-04,-0.44054512E-05) ( 0.93388807E-04,-0.35327062E-04)
  ( 0.42696531E-05,-0.28495725E-05) ( 0.24165821E-05,-0.47217226E-05)
  ( 0.14233800E-04,-0.31048018E-05) ( 0.14555620E-05, 0.44492077E-06)
  ( 0.88357757E-06,-0.14275447E-06) (-0.78712895E-06, 0.12260972E-06)
  ( 0.15977238E-06, 0.40643725E-08) ( 0.10118394E-06,-0.25089721E-07)
  (-0.31604364E-07,-0.22959254E-07)
MaxIter =   6 c.s. =      1.46529709 rmsk=     0.00000000
Time Now =       197.4320  Delta time =        11.3746 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.25800000E+02 eV (  0.94813261E+00 AU)
Time Now =       197.4766  Delta time =         0.0447 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =T2    1
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =     T
Maximum l for computed scattering solutions (LMaxK) =   11
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    50
Number of partial waves (np) =    36
Number of asymptotic solutions on the right (NAsymR) =    21
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   11
Number of partial waves in the asymptotic region (npasym) =   21
Number of orthogonality constraints (NOrthUse) =    1
Number of different asymptotic potentials =   10
Maximum number of asymptotic partial waves =  133
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =   11
Highest l used at large r (lpasym) =   11
Higest l used in the asymptotic potential (lpzb) =   22
Maximum L used in the homogeneous solution (LMaxHomo) =   11
Number of partial waves in the homogeneous solution (npHomo) =   21
Time Now =       197.4885  Delta time =         0.0119 Energy independent setup

Compute solution for E =   25.8000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.13877788E-15
 i =  2  lval =   3  stpote = -0.11393263E-18
 i =  3  lval =   3  stpote = -0.41977709E-18
 i =  4  lval =   4  stpote = -0.29200319E-04
For potential     2
 i =  1  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.80446840E-17
 i =  2  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.80814907E-17
 i =  3  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.81237516E-17
 i =  4  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.81650637E-17
For potential     3
For potential     4
 i =  1  lval =   4  stpote =  0.49821926E-01
 i =  2  lval =   3  stpote = -0.40027623E-04
 i =  3  lval =   3  stpote = -0.23109959E-04
 i =  4  lval =   4  stpote =  0.44838727E-05
For potential     5
 i =  1  lval =   4  stpote =  0.49821926E-01
 i =  2  lval =   3  stpote =  0.40027623E-04
 i =  3  lval =   3  stpote = -0.23109959E-04
 i =  4  lval =   4  stpote =  0.44838727E-05
For potential     6
 i =  1  lval =   2  stpote = -0.10453834E-02
 i =  2  lval =   3  stpote = -0.11167469E-03
 i =  3  lval =   4  stpote = -0.24994566E-05
 i =  4  lval =   4  stpote = -0.32267846E-05
For potential     7
 i =  1  lval =   4  stpote = -0.74732889E-01
 i =  2  lval =   3  stpote = -0.60041435E-04
 i =  3  lval =   3  stpote =  0.34664939E-04
 i =  4  lval =   4  stpote = -0.67258090E-05
For potential     8
 i =  1  lval =   4  stpote =  0.49821926E-01
 i =  2  lval =   3  stpote =  0.24581947E-20
 i =  3  lval =   3  stpote =  0.46219918E-04
 i =  4  lval =   4  stpote =  0.44838727E-05
For potential     9
 i =  1  lval =   4  stpote = -0.74732889E-01
 i =  2  lval =   3  stpote = -0.36872920E-20
 i =  3  lval =   3  stpote = -0.69329877E-04
 i =  4  lval =   4  stpote = -0.67258090E-05
For potential    10
 i =  1  lval =   2  stpote = -0.10453834E-02
 i =  2  lval =   3  stpote = -0.11167469E-03
 i =  3  lval =   4  stpote = -0.24994566E-05
 i =  4  lval =   4  stpote = -0.32267846E-05
Number of asymptotic regions =      35
Final point in integration =   0.45437022E+02 Angstroms
Time Now =       215.0607  Delta time =        17.5722 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.09765031 rmsk=     0.04821833
iL =   1 Iter =   2 c.s. =      0.20235010 rmsk=     0.02646425
iL =   1 Iter =   3 c.s. =      0.20156922 rmsk=     0.00022453
iL =   1 Iter =   4 c.s. =      0.20155349 rmsk=     0.00000349
iL =   1 Iter =   5 c.s. =      0.20155372 rmsk=     0.00000023
iL =   1 Iter =   6 c.s. =      0.20155373 rmsk=     0.00000000
iL =   1 Iter =   7 c.s. =      0.20155373 rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =      0.38407902 rmsk=     0.06592299
iL =   2 Iter =   2 c.s. =      0.44669814 rmsk=     0.01639921
iL =   2 Iter =   3 c.s. =      0.44602113 rmsk=     0.00020909
iL =   2 Iter =   4 c.s. =      0.44600212 rmsk=     0.00000368
iL =   2 Iter =   5 c.s. =      0.44600210 rmsk=     0.00000009
iL =   2 Iter =   6 c.s. =      0.44600210 rmsk=     0.00000000
      Final k matrix
     ROW  1
  (-0.10758876E+00, 0.14423902E+00) (-0.30271148E+00, 0.25442717E+00)
  ( 0.24842846E-01, 0.72565725E-01) (-0.75943292E-01,-0.78978775E-02)
  (-0.22074673E-01, 0.21210379E-02) (-0.22697630E-01, 0.30156037E-02)
  ( 0.71604828E-02,-0.12008684E-02) ( 0.48203028E-02,-0.40479404E-03)
  (-0.24958971E-04,-0.98544810E-04) (-0.99896130E-03, 0.10130613E-03)
  ( 0.34805176E-03,-0.55360468E-04) ( 0.15351218E-03,-0.42584631E-04)
  ( 0.11926199E-04,-0.98663982E-05) (-0.22601422E-04,-0.99010674E-05)
  ( 0.40035063E-04,-0.57084602E-05) ( 0.17197277E-04, 0.23010160E-06)
  ( 0.10113424E-04,-0.18542339E-05) (-0.35699301E-05, 0.26554870E-06)
  ( 0.21363510E-05,-0.14971176E-06) ( 0.14496354E-05,-0.27129525E-06)
  (-0.22391394E-05, 0.30539936E-06)
     ROW  2
  (-0.11562740E+00, 0.17593070E+00) (-0.33374604E+00, 0.26793093E+00)
  ( 0.41276004E-01, 0.73542904E-01) (-0.91159647E-01,-0.39658559E-02)
  (-0.25659125E-01, 0.28356688E-02) (-0.26672697E-01, 0.20587587E-02)
  ( 0.93540630E-02,-0.11806687E-02) ( 0.65699193E-02,-0.42827518E-03)
  ( 0.55935717E-03,-0.11001404E-03) (-0.74276682E-03, 0.15873501E-03)
  ( 0.30756352E-03,-0.67226930E-04) ( 0.47647209E-03,-0.70183683E-04)
  ( 0.39661689E-04,-0.15711988E-04) ( 0.47495169E-04,-0.19744402E-04)
  ( 0.82713581E-04,-0.13459056E-04) ( 0.18230955E-05, 0.25226880E-05)
  ( 0.58552294E-05,-0.16290780E-05) (-0.53955418E-05, 0.82676364E-06)
  ( 0.83043769E-06,-0.13897557E-07) ( 0.87602760E-06,-0.30285004E-06)
  ( 0.38246085E-06,-0.27187657E-06)
MaxIter =   7 c.s. =      0.44600210 rmsk=     0.00000000
Time Now =       227.9162  Delta time =        12.8554 End ScatStab

+ Command GetCro
+ 'test18T2T2.idy'
Taking dipole matrix from file test18T2T2.idy

----------------------------------------------------------------------
CnvIdy - read in and convert dynamical matrix elements and convert to raw form
----------------------------------------------------------------------

Time Now =       227.9260  Delta time =         0.0098 End CnvIdy
Found     4 energies :
     0.10000     5.80000    15.80000    25.80000
List of matrix element types found   Number =    1
    1  Cont Sym T2     Targ Sym T2     Total Sym T2
Keeping     4 energies :
     0.10000     5.80000    15.80000    25.80000
Time Now =       227.9261  Delta time =         0.0001 End SelIdy

----------------------------------------------------------------------
CrossSection - compute photoionization cross section
----------------------------------------------------------------------

Ionization potential (IPot) =     14.2000 eV
Label -
Cross section by partial wave      F
Cross Sections for

     Sigma LENGTH   at all energies
      Eng
    14.3000  0.42137519E+02
    20.0000  0.25109321E+02
    30.0000  0.48994605E+01
    40.0000  0.15216251E+01

     Sigma MIXED    at all energies
      Eng
    14.3000  0.36192847E+02
    20.0000  0.20298651E+02
    30.0000  0.37001176E+01
    40.0000  0.11381715E+01

     Sigma VELOCITY at all energies
      Eng
    14.3000  0.31111494E+02
    20.0000  0.16417292E+02
    30.0000  0.27949944E+01
    40.0000  0.85405380E+00

     Beta LENGTH   at all energies
      Eng
    14.3000  0.64489841E+00
    20.0000  0.60008958E+00
    30.0000  0.52027042E+00
    40.0000  0.51379792E+00

     Beta MIXED    at all energies
      Eng
    14.3000  0.64130460E+00
    20.0000  0.60075244E+00
    30.0000  0.52185315E+00
    40.0000  0.51288350E+00

     Beta VELOCITY at all energies
      Eng
    14.3000  0.63741634E+00
    20.0000  0.60138643E+00
    30.0000  0.52327794E+00
    40.0000  0.51024372E+00

          COMPOSITE CROSS SECTIONS AT ALL ENERGIES
         Energy  SIGMA LEN  SIGMA MIX  SIGMA VEL   BETA LEN   BETA MIX   BETA VEL
EPhi     14.3000    42.1375    36.1928    31.1115     0.6449     0.6413     0.6374
EPhi     20.0000    25.1093    20.2987    16.4173     0.6001     0.6008     0.6014
EPhi     30.0000     4.8995     3.7001     2.7950     0.5203     0.5219     0.5233
EPhi     40.0000     1.5216     1.1382     0.8541     0.5138     0.5129     0.5102
Time Now =       228.0591  Delta time =         0.1330 End CrossSection

+ Command FileName
+ 'MatrixElements' 'test18T2E.idy' 'REWIND'
Opening file test18T2E.idy at position REWIND
+ Data Record ScatSym - 'T2'
+ Data Record ScatContSym - 'E'

+ Command GenFormPhIon
+

----------------------------------------------------------------------
SymProd - Construct products of symmetry types
----------------------------------------------------------------------

Number of sets of degenerate orbitals =    3
Set    1  has degeneracy     1
Orbital     1  is num     1  type =   1  name - A1    1
Set    2  has degeneracy     1
Orbital     1  is num     2  type =   1  name - A1    1
Set    3  has degeneracy     3
Orbital     1  is num     3  type =   8  name - T2    1
Orbital     2  is num     4  type =   9  name - T2    2
Orbital     3  is num     5  type =  10  name - T2    3
Orbital occupations by degenerate group
    1  A1       occ = 2
    2  A1       occ = 2
    3  T2       occ = 5
The dimension of each irreducable representation is
    A1    (  1)    A2    (  1)    E     (  2)    T1    (  3)    T2    (  3)
Symmetry of the continuum orbital is E
Symmetry of the total state is T2
Spin degeneracy of the total state is =    1
Symmetry of the target state is T2
Spin degeneracy of the target state is =    2
Symmetry of the initial state is A1
Spin degeneracy of the initial state is =    1
Orbital occupations of initial state by degenerate group
    1  A1       occ = 2
    2  A1       occ = 2
    3  T2       occ = 6
Open shell symmetry types
    1  T2     iele =    5
Use only configuration of type T2
MS2 =    1  SDGN =    2
NumAlpha =    3
List of determinants found
    1:   1.00000   0.00000    1    2    3    4    5
    2:   1.00000   0.00000    1    2    3    4    6
    3:   1.00000   0.00000    1    2    3    5    6
Spin adapted configurations
Configuration    1
    1:   1.00000   0.00000    1    2    3    4    5
Configuration    2
    1:   1.00000   0.00000    1    2    3    4    6
Configuration    3
    1:   1.00000   0.00000    1    2    3    5    6
 Each irreducable representation is present the number of times indicated
    T2    (  1)

 representation T2     component     1  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1    2    3    5    6

 representation T2     component     2  fun    1
Symmeterized Function
    1:  -1.00000   0.00000    1    2    3    4    6

 representation T2     component     3  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1    2    3    4    5
Open shell symmetry types
    1  T2     iele =    5
    2  E      iele =    1
Use only configuration of type T2
 Each irreducable representation is present the number of times indicated
    T1    (  1)
    T2    (  1)

 representation T2     component     1  fun    1
Symmeterized Function from AddNewShell
    1:  -0.35355   0.00000    1    2    3    5    6    9
    2:  -0.61237   0.00000    1    2    3    5    6   10
    3:   0.35355   0.00000    2    3    4    5    6    7
    4:   0.61237   0.00000    2    3    4    5    6    8

 representation T2     component     2  fun    1
Symmeterized Function from AddNewShell
    1:   0.35355   0.00000    1    2    3    4    6    9
    2:  -0.61237   0.00000    1    2    3    4    6   10
    3:  -0.35355   0.00000    1    3    4    5    6    7
    4:   0.61237  -0.00000    1    3    4    5    6    8

 representation T2     component     3  fun    1
Symmeterized Function from AddNewShell
    1:   0.70711  -0.00000    1    2    3    4    5    9
    2:  -0.70711   0.00000    1    2    4    5    6    7
Open shell symmetry types
    1  T2     iele =    5
Use only configuration of type T2
MS2 =    1  SDGN =    2
NumAlpha =    3
List of determinants found
    1:   1.00000   0.00000    1    2    3    4    5
    2:   1.00000   0.00000    1    2    3    4    6
    3:   1.00000   0.00000    1    2    3    5    6
Spin adapted configurations
Configuration    1
    1:   1.00000   0.00000    1    2    3    4    5
Configuration    2
    1:   1.00000   0.00000    1    2    3    4    6
Configuration    3
    1:   1.00000   0.00000    1    2    3    5    6
 Each irreducable representation is present the number of times indicated
    T2    (  1)

 representation T2     component     1  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1    2    3    5    6

 representation T2     component     2  fun    1
Symmeterized Function
    1:  -1.00000   0.00000    1    2    3    4    6

 representation T2     component     3  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1    2    3    4    5
Direct product basis set
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    9   10   13
    2:   0.70711   0.00000    1    2    3    4    6    7    8    9   10   11
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    9   10   14
    2:   0.70711   0.00000    1    2    3    4    6    7    8    9   10   12
Direct product basis function
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   13
    2:  -0.70711   0.00000    1    2    3    4    5    7    8    9   10   11
Direct product basis function
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   14
    2:  -0.70711   0.00000    1    2    3    4    5    7    8    9   10   12
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   13
    2:   0.70711   0.00000    1    2    3    4    5    6    8    9   10   11
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   14
    2:   0.70711   0.00000    1    2    3    4    5    6    8    9   10   12
Closed shell target
Time Now =       228.0780  Delta time =         0.0189 End SymProd

----------------------------------------------------------------------
MatEle - Program to compute Matrix Elements over Determinants
----------------------------------------------------------------------

Configuration     1
    1:  -0.35355   0.00000    1    2    3    4    5    6    7    9   10   13
    2:  -0.61237   0.00000    1    2    3    4    5    6    7    9   10   14
    3:   0.35355   0.00000    1    2    3    4    6    7    8    9   10   11
    4:   0.61237   0.00000    1    2    3    4    6    7    8    9   10   12
Configuration     2
    1:   0.35355   0.00000    1    2    3    4    5    6    7    8   10   13
    2:  -0.61237   0.00000    1    2    3    4    5    6    7    8   10   14
    3:  -0.35355   0.00000    1    2    3    4    5    7    8    9   10   11
    4:   0.61237  -0.00000    1    2    3    4    5    7    8    9   10   12
Configuration     3
    1:   0.70711  -0.00000    1    2    3    4    5    6    7    8    9   13
    2:  -0.70711   0.00000    1    2    3    4    5    6    8    9   10   11
Direct product Configuration Cont sym =    1  Targ sym =    1
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    9   10   13
    2:   0.70711   0.00000    1    2    3    4    6    7    8    9   10   11
Direct product Configuration Cont sym =    2  Targ sym =    1
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    9   10   14
    2:   0.70711   0.00000    1    2    3    4    6    7    8    9   10   12
Direct product Configuration Cont sym =    1  Targ sym =    2
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   13
    2:  -0.70711   0.00000    1    2    3    4    5    7    8    9   10   11
Direct product Configuration Cont sym =    2  Targ sym =    2
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   14
    2:  -0.70711   0.00000    1    2    3    4    5    7    8    9   10   12
Direct product Configuration Cont sym =    1  Targ sym =    3
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   13
    2:   0.70711   0.00000    1    2    3    4    5    6    8    9   10   11
Direct product Configuration Cont sym =    2  Targ sym =    3
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   14
    2:   0.70711   0.00000    1    2    3    4    5    6    8    9   10   12
Overlap of Direct Product expansion and Symmeterized states
Symmetry of Continuum =    3
Symmetry of target =    5
Symmetry of total states =    5

Total symmetry component =    1

Cont      Target Component
Comp        1               2               3
   1   0.50000000E+00  0.00000000E+00  0.00000000E+00
   2   0.86602540E+00  0.00000000E+00  0.00000000E+00

Total symmetry component =    2

Cont      Target Component
Comp        1               2               3
   1   0.00000000E+00  0.50000000E+00  0.00000000E+00
   2   0.00000000E+00 -0.86602540E+00  0.00000000E+00

Total symmetry component =    3

Cont      Target Component
Comp        1               2               3
   1   0.00000000E+00  0.00000000E+00 -0.10000000E+01
   2   0.00000000E+00  0.00000000E+00  0.00000000E+00
Initial State Configuration
    1:   1.00000   0.00000    1    2    3    4    5    6    7    8    9   10
One electron matrix elements between initial and final states
    1:   -0.707106781    0.000000000  <    5|   11>
    2:   -1.224744871    0.000000000  <    5|   12>

Reduced formula list
    1    3    1 -0.7071067812E+00
    2    3    1 -0.1224744871E+01
Time Now =       228.0788  Delta time =         0.0008 End MatEle

+ Command DipoleOp
+

----------------------------------------------------------------------
DipoleOp - Dipole Operator Program
----------------------------------------------------------------------

Number of orbitals in formula for the dipole operator (NOrbSel) =    2
Symmetry of the continuum orbital (iContSym) =     3 or E
Symmetry of total final state (iTotalSym) =     5 or T2
Symmetry of the initial state (iInitSym) =     1 or A1
Symmetry of the ionized target state (iTargSym) =     5 or T2
List of unique symmetry types
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
Unique dipole matrix type     1 Dipole symmetry type =T2
     Final state symmetry type = T2     Target sym =T2
     Continuum type =A1
In the product of the symmetry types T2    A2
 Each irreducable representation is present the number of times indicated
    T1    (  1)
In the product of the symmetry types T2    E
 Each irreducable representation is present the number of times indicated
    T1    (  1)
    T2    (  1)
Unique dipole matrix type     2 Dipole symmetry type =T2
     Final state symmetry type = T2     Target sym =T2
     Continuum type =E
In the product of the symmetry types T2    T1
 Each irreducable representation is present the number of times indicated
    A2    (  1)
    E     (  1)
    T1    (  1)
    T2    (  1)
Unique dipole matrix type     3 Dipole symmetry type =T2
     Final state symmetry type = T2     Target sym =T2
     Continuum type =T1
In the product of the symmetry types T2    T2
 Each irreducable representation is present the number of times indicated
    A1    (  1)
    E     (  1)
    T1    (  1)
    T2    (  1)
Unique dipole matrix type     4 Dipole symmetry type =T2
     Final state symmetry type = T2     Target sym =T2
     Continuum type =T2
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
Irreducible representation containing the dipole operator is T2
Number of different dipole operators in this representation is     1
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
Vector of the total symmetry
ie =    1  ij =    1
    1 (  0.10000000E+01, -0.00000000E+00)
    2 (  0.00000000E+00, -0.00000000E+00)
    3 (  0.00000000E+00, -0.00000000E+00)
Vector of the total symmetry
ie =    2  ij =    1
    1 (  0.00000000E+00,  0.00000000E+00)
    2 (  0.10000000E+01,  0.00000000E+00)
    3 ( -0.00000000E+00,  0.00000000E+00)
Vector of the total symmetry
ie =    3  ij =    1
    1 ( -0.00000000E+00,  0.00000000E+00)
    2 (  0.00000000E+00,  0.00000000E+00)
    3 (  0.10000000E+01,  0.00000000E+00)
Component Dipole Op Sym =  1 goes to Total Sym component   1 phase = 1.0
Component Dipole Op Sym =  2 goes to Total Sym component   2 phase = 1.0
Component Dipole Op Sym =  3 goes to Total Sym component   3 phase = 1.0

Dipole operator types by symmetry components (x=1, y=2, z=3)
sym comp =  1
  coefficients =  0.00000000  1.00000000  0.00000000
sym comp =  2
  coefficients =  1.00000000  0.00000000  0.00000000
sym comp =  3
  coefficients =  0.00000000  0.00000000  1.00000000

Formula for dipole operator

Dipole operator sym comp 1  index =    1
  1  Cont comp  1  Orb  3  Coef =  -0.7071067812
  2  Cont comp  2  Orb  3  Coef =  -1.2247448710
Symmetry type to write out (SymTyp) =E
Time Now =       254.4222  Delta time =        26.3434 End DipoleOp

+ Command GetPot
+

----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------

Total density =      9.00000000
Time Now =       254.6256  Delta time =         0.2034 End Den

----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------

 vasymp =  0.90000000E+01 facnorm =  0.10000000E+01
Time Now =       254.6601  Delta time =         0.0345 Electronic part
Time Now =       254.6623  Delta time =         0.0022 End StPot

+ Command PhIon
+ 0.1 5.8 15.8 25.8

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.10000000E+00 eV (  0.36749326E-02 AU)
Time Now =       254.7086  Delta time =         0.0463 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =E     1
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =     T
Maximum l for computed scattering solutions (LMaxK) =   11
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    50
Number of partial waves (np) =    20
Number of asymptotic solutions on the right (NAsymR) =    12
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   11
Number of partial waves in the asymptotic region (npasym) =   12
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    9
Maximum number of asymptotic partial waves =  133
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =   11
Highest l used at large r (lpasym) =   11
Higest l used in the asymptotic potential (lpzb) =   22
Maximum L used in the homogeneous solution (LMaxHomo) =   11
Number of partial waves in the homogeneous solution (npHomo) =   12
Time Now =       254.7206  Delta time =         0.0120 Energy independent setup

Compute solution for E =    0.1000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.13877788E-15
 i =  2  lval =   3  stpote = -0.11393263E-18
 i =  3  lval =   3  stpote = -0.41977709E-18
 i =  4  lval =   4  stpote = -0.29200319E-04
For potential     2
 i =  1  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.23318031E-16
 i =  2  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.23098957E-16
 i =  3  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.22905876E-16
 i =  4  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.22750416E-16
For potential     3
For potential     4
 i =  1  lval =   4  stpote =  0.12455482E-01
 i =  2  lval =   3  stpote = -0.10006906E-04
 i =  3  lval =   3  stpote = -0.57774898E-05
 i =  4  lval =   4  stpote =  0.11209682E-05
For potential     5
 i =  1  lval =   4  stpote = -0.64720581E-01
 i =  2  lval =   3  stpote =  0.51997408E-04
 i =  3  lval =   3  stpote =  0.30020718E-04
 i =  4  lval =   4  stpote = -0.58247215E-05
For potential     6
 i =  1  lval =   4  stpote = -0.64720581E-01
 i =  2  lval =   3  stpote =  0.51997408E-04
 i =  3  lval =   3  stpote =  0.30020718E-04
 i =  4  lval =   4  stpote = -0.58247215E-05
For potential     7
 i =  1  lval =   4  stpote = -0.11209933E+00
 i =  2  lval =   3  stpote =  0.90062153E-04
 i =  3  lval =   3  stpote =  0.51997408E-04
 i =  4  lval =   4  stpote = -0.10088714E-04
For potential     8
 i =  1  lval =   4  stpote =  0.49821926E-01
 i =  2  lval =   3  stpote =  0.40027623E-04
 i =  3  lval =   3  stpote = -0.23109959E-04
 i =  4  lval =   4  stpote =  0.44838727E-05
For potential     9
 i =  1  lval =   4  stpote =  0.49821926E-01
 i =  2  lval =   3  stpote =  0.24581947E-20
 i =  3  lval =   3  stpote =  0.46219918E-04
 i =  4  lval =   4  stpote =  0.44838727E-05
Number of asymptotic regions =      12
Final point in integration =   0.18156553E+03 Angstroms
Time Now =       258.9070  Delta time =         4.1865 End SolveHomo
iL =   1 Iter =   1 c.s. =      7.30282061 rmsk=     0.55161961
iL =   1 Iter =   2 c.s. =      5.66126929 rmsk=     0.09071190
iL =   1 Iter =   3 c.s. =      5.65140775 rmsk=     0.00044582
iL =   1 Iter =   4 c.s. =      5.65136309 rmsk=     0.00000203
iL =   1 Iter =   5 c.s. =      5.65136309 rmsk=     0.00000000
iL =   1 Iter =   6 c.s. =      5.65136309 rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =      7.54396032 rmsk=     0.28081705
iL =   2 Iter =   2 c.s. =      6.93698044 rmsk=     0.05812516
iL =   2 Iter =   3 c.s. =      6.93532847 rmsk=     0.00015983
iL =   2 Iter =   4 c.s. =      6.93532280 rmsk=     0.00000052
iL =   2 Iter =   5 c.s. =      6.93532280 rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.23547402E+01,-0.32584025E+00) ( 0.18517242E-01,-0.67720059E-02)
  ( 0.90720304E-03,-0.18466711E-03) (-0.38128854E-05, 0.57854525E-06)
  ( 0.18611825E-06,-0.10771585E-06) ( 0.12755491E-08,-0.90749044E-10)
  ( 0.17112401E-07, 0.16817200E-08) ( 0.37419814E-09,-0.65062572E-12)
  ( 0.63186549E-11, 0.63757429E-12) (-0.10649447E-11, 0.23454856E-12)
  ( 0.58098033E-13, 0.91471630E-14) ( 0.15237853E-12,-0.33643845E-14)
     ROW  2
  ( 0.11223911E+01,-0.15531029E+00) ( 0.81268478E-02,-0.32309029E-02)
  ( 0.43317816E-03,-0.87262924E-04) (-0.43599830E-05, 0.27870544E-06)
  ( 0.18348599E-06,-0.50259122E-07) (-0.66409079E-09,-0.10153110E-09)
  ( 0.50399823E-09, 0.77964734E-09) ( 0.52668565E-10, 0.38859050E-11)
  ( 0.15333999E-11, 0.10773333E-12) (-0.72602770E-13, 0.15373819E-13)
  ( 0.15836962E-13, 0.14413608E-14) ( 0.37984436E-13,-0.10666877E-14)
MaxIter =   6 c.s. =      6.93532280 rmsk=     0.00000000
Time Now =       267.1843  Delta time =         8.2772 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.58000000E+01 eV (  0.21314609E+00 AU)
Time Now =       267.2301  Delta time =         0.0458 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =E     1
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =     T
Maximum l for computed scattering solutions (LMaxK) =   11
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    50
Number of partial waves (np) =    20
Number of asymptotic solutions on the right (NAsymR) =    12
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   11
Number of partial waves in the asymptotic region (npasym) =   12
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    9
Maximum number of asymptotic partial waves =  133
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =   11
Highest l used at large r (lpasym) =   11
Higest l used in the asymptotic potential (lpzb) =   22
Maximum L used in the homogeneous solution (LMaxHomo) =   11
Number of partial waves in the homogeneous solution (npHomo) =   12
Time Now =       267.2421  Delta time =         0.0120 Energy independent setup

Compute solution for E =    5.8000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.13877788E-15
 i =  2  lval =   3  stpote = -0.11393263E-18
 i =  3  lval =   3  stpote = -0.41977709E-18
 i =  4  lval =   4  stpote = -0.29200319E-04
For potential     2
 i =  1  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.15092243E-16
 i =  2  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.14894425E-16
 i =  3  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.14712238E-16
 i =  4  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.14560092E-16
For potential     3
For potential     4
 i =  1  lval =   4  stpote =  0.12455482E-01
 i =  2  lval =   3  stpote = -0.10006906E-04
 i =  3  lval =   3  stpote = -0.57774898E-05
 i =  4  lval =   4  stpote =  0.11209682E-05
For potential     5
 i =  1  lval =   4  stpote = -0.64720581E-01
 i =  2  lval =   3  stpote =  0.51997408E-04
 i =  3  lval =   3  stpote =  0.30020718E-04
 i =  4  lval =   4  stpote = -0.58247215E-05
For potential     6
 i =  1  lval =   4  stpote = -0.64720581E-01
 i =  2  lval =   3  stpote =  0.51997408E-04
 i =  3  lval =   3  stpote =  0.30020718E-04
 i =  4  lval =   4  stpote = -0.58247215E-05
For potential     7
 i =  1  lval =   4  stpote = -0.11209933E+00
 i =  2  lval =   3  stpote =  0.90062153E-04
 i =  3  lval =   3  stpote =  0.51997408E-04
 i =  4  lval =   4  stpote = -0.10088714E-04
For potential     8
 i =  1  lval =   4  stpote =  0.49821926E-01
 i =  2  lval =   3  stpote =  0.40027623E-04
 i =  3  lval =   3  stpote = -0.23109959E-04
 i =  4  lval =   4  stpote =  0.44838727E-05
For potential     9
 i =  1  lval =   4  stpote =  0.49821926E-01
 i =  2  lval =   3  stpote =  0.24581947E-20
 i =  3  lval =   3  stpote =  0.46219918E-04
 i =  4  lval =   4  stpote =  0.44838727E-05
Number of asymptotic regions =      27
Final point in integration =   0.65906507E+02 Angstroms
Time Now =       273.5669  Delta time =         6.3248 End SolveHomo
iL =   1 Iter =   1 c.s. =      3.82223967 rmsk=     0.39907391
iL =   1 Iter =   2 c.s. =      3.75205587 rmsk=     0.07340691
iL =   1 Iter =   3 c.s. =      3.75031191 rmsk=     0.00021267
iL =   1 Iter =   4 c.s. =      3.75030005 rmsk=     0.00000078
iL =   1 Iter =   5 c.s. =      3.75030005 rmsk=     0.00000000
iL =   1 Iter =   6 c.s. =      3.75030005 rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =      5.57949457 rmsk=     0.27607325
iL =   2 Iter =   2 c.s. =      5.31324200 rmsk=     0.05330813
iL =   2 Iter =   3 c.s. =      5.31234324 rmsk=     0.00009836
iL =   2 Iter =   4 c.s. =      5.31234112 rmsk=     0.00000021
iL =   2 Iter =   5 c.s. =      5.31234112 rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.18706038E+01,-0.49644954E+00) ( 0.60730161E-01,-0.27999053E-01)
  ( 0.12863073E-01,-0.64406227E-02) (-0.50137663E-03, 0.44220771E-03)
  ( 0.71618375E-04,-0.43552296E-04) (-0.97600314E-06, 0.80238598E-06)
  ( 0.37425070E-06, 0.86081141E-05) ( 0.44112877E-06, 0.48914661E-06)
  ( 0.59787051E-07, 0.23738683E-07) (-0.64154727E-08,-0.59893232E-08)
  ( 0.30204663E-08, 0.77106027E-09) ( 0.10878195E-07, 0.21017172E-08)
     ROW  2
  ( 0.12073304E+01,-0.32038058E+00) ( 0.36625038E-01,-0.18075102E-01)
  ( 0.80654701E-02,-0.41428120E-02) (-0.44655922E-03, 0.28234267E-03)
  ( 0.49381291E-04,-0.27162762E-04) (-0.76185186E-06, 0.37620549E-06)
  (-0.50326345E-05, 0.54201644E-05) (-0.23810762E-06, 0.33768921E-06)
  ( 0.24524626E-07, 0.12103972E-07) ( 0.10046019E-07,-0.58228030E-08)
  ( 0.16472093E-08, 0.25094316E-09) ( 0.30902845E-08, 0.17156331E-08)
MaxIter =   6 c.s. =      5.31234112 rmsk=     0.00000000
Time Now =       281.9109  Delta time =         8.3440 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.15800000E+02 eV (  0.58063935E+00 AU)
Time Now =       281.9560  Delta time =         0.0451 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =E     1
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =     T
Maximum l for computed scattering solutions (LMaxK) =   11
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    50
Number of partial waves (np) =    20
Number of asymptotic solutions on the right (NAsymR) =    12
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   11
Number of partial waves in the asymptotic region (npasym) =   12
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    9
Maximum number of asymptotic partial waves =  133
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =   11
Highest l used at large r (lpasym) =   11
Higest l used in the asymptotic potential (lpzb) =   22
Maximum L used in the homogeneous solution (LMaxHomo) =   11
Number of partial waves in the homogeneous solution (npHomo) =   12
Time Now =       281.9680  Delta time =         0.0120 Energy independent setup

Compute solution for E =   15.8000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.13877788E-15
 i =  2  lval =   3  stpote = -0.11393263E-18
 i =  3  lval =   3  stpote = -0.41977709E-18
 i =  4  lval =   4  stpote = -0.29200319E-04
For potential     2
 i =  1  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.11167396E-16
 i =  2  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.11050437E-16
 i =  3  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.10963980E-16
 i =  4  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.10906645E-16
For potential     3
For potential     4
 i =  1  lval =   4  stpote =  0.12455482E-01
 i =  2  lval =   3  stpote = -0.10006906E-04
 i =  3  lval =   3  stpote = -0.57774898E-05
 i =  4  lval =   4  stpote =  0.11209682E-05
For potential     5
 i =  1  lval =   4  stpote = -0.64720581E-01
 i =  2  lval =   3  stpote =  0.51997408E-04
 i =  3  lval =   3  stpote =  0.30020718E-04
 i =  4  lval =   4  stpote = -0.58247215E-05
For potential     6
 i =  1  lval =   4  stpote = -0.64720581E-01
 i =  2  lval =   3  stpote =  0.51997408E-04
 i =  3  lval =   3  stpote =  0.30020718E-04
 i =  4  lval =   4  stpote = -0.58247215E-05
For potential     7
 i =  1  lval =   4  stpote = -0.11209933E+00
 i =  2  lval =   3  stpote =  0.90062153E-04
 i =  3  lval =   3  stpote =  0.51997408E-04
 i =  4  lval =   4  stpote = -0.10088714E-04
For potential     8
 i =  1  lval =   4  stpote =  0.49821926E-01
 i =  2  lval =   3  stpote =  0.40027623E-04
 i =  3  lval =   3  stpote = -0.23109959E-04
 i =  4  lval =   4  stpote =  0.44838727E-05
For potential     9
 i =  1  lval =   4  stpote =  0.49821926E-01
 i =  2  lval =   3  stpote =  0.24581947E-20
 i =  3  lval =   3  stpote =  0.46219918E-04
 i =  4  lval =   4  stpote =  0.44838727E-05
Number of asymptotic regions =      32
Final point in integration =   0.51339860E+02 Angstroms
Time Now =       288.0693  Delta time =         6.1014 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.92411805 rmsk=     0.19622670
iL =   1 Iter =   2 c.s. =      1.08230250 rmsk=     0.03335306
iL =   1 Iter =   3 c.s. =      1.08260552 rmsk=     0.00007511
iL =   1 Iter =   4 c.s. =      1.08260444 rmsk=     0.00000013
iL =   1 Iter =   5 c.s. =      1.08260444 rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =      2.04208861 rmsk=     0.19994626
iL =   2 Iter =   2 c.s. =      2.05930417 rmsk=     0.02881169
iL =   2 Iter =   3 c.s. =      2.05928754 rmsk=     0.00003760
iL =   2 Iter =   4 c.s. =      2.05928721 rmsk=     0.00000004
iL =   2 Iter =   5 c.s. =      2.05928720 rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.97033275E+00,-0.36821446E+00) ( 0.58269484E-01,-0.32378683E-01)
  ( 0.30299276E-01,-0.10206303E-01) (-0.30857440E-02, 0.96526180E-03)
  ( 0.68280116E-03,-0.17215475E-03) (-0.23993515E-04, 0.43617606E-05)
  (-0.14353845E-03, 0.54687673E-04) (-0.14736064E-04, 0.59073555E-05)
  ( 0.88046825E-06, 0.39985598E-06) ( 0.88906307E-06,-0.19017217E-06)
  ( 0.13453828E-06, 0.12412251E-07) ( 0.10541317E-06, 0.10251184E-06)
     ROW  2
  ( 0.92188862E+00,-0.34972217E+00) ( 0.52699168E-01,-0.30667067E-01)
  ( 0.26038792E-01,-0.96100108E-02) (-0.30781084E-02, 0.88880003E-03)
  ( 0.43404895E-03,-0.16190521E-03) (-0.98215639E-05, 0.34812562E-05)
  (-0.12931792E-03, 0.48556486E-04) (-0.14910319E-04, 0.52465730E-05)
  ( 0.81319549E-06, 0.28686625E-06) ( 0.84140923E-06,-0.17795518E-06)
  ( 0.11475170E-06, 0.45210835E-08) ( 0.58972352E-07, 0.88229717E-07)
MaxIter =   5 c.s. =      2.05928720 rmsk=     0.00000000
Time Now =       295.4009  Delta time =         7.3316 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.25800000E+02 eV (  0.94813261E+00 AU)
Time Now =       295.4470  Delta time =         0.0461 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =E     1
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =     T
Maximum l for computed scattering solutions (LMaxK) =   11
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    50
Number of partial waves (np) =    20
Number of asymptotic solutions on the right (NAsymR) =    12
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   11
Number of partial waves in the asymptotic region (npasym) =   12
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    9
Maximum number of asymptotic partial waves =  133
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =   11
Highest l used at large r (lpasym) =   11
Higest l used in the asymptotic potential (lpzb) =   22
Maximum L used in the homogeneous solution (LMaxHomo) =   11
Number of partial waves in the homogeneous solution (npHomo) =   12
Time Now =       295.4591  Delta time =         0.0121 Energy independent setup

Compute solution for E =   25.8000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.13877788E-15
 i =  2  lval =   3  stpote = -0.11393263E-18
 i =  3  lval =   3  stpote = -0.41977709E-18
 i =  4  lval =   4  stpote = -0.29200319E-04
For potential     2
 i =  1  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.80446840E-17
 i =  2  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.80814907E-17
 i =  3  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.81237516E-17
 i =  4  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.81650637E-17
For potential     3
For potential     4
 i =  1  lval =   4  stpote =  0.12455482E-01
 i =  2  lval =   3  stpote = -0.10006906E-04
 i =  3  lval =   3  stpote = -0.57774898E-05
 i =  4  lval =   4  stpote =  0.11209682E-05
For potential     5
 i =  1  lval =   4  stpote = -0.64720581E-01
 i =  2  lval =   3  stpote =  0.51997408E-04
 i =  3  lval =   3  stpote =  0.30020718E-04
 i =  4  lval =   4  stpote = -0.58247215E-05
For potential     6
 i =  1  lval =   4  stpote = -0.64720581E-01
 i =  2  lval =   3  stpote =  0.51997408E-04
 i =  3  lval =   3  stpote =  0.30020718E-04
 i =  4  lval =   4  stpote = -0.58247215E-05
For potential     7
 i =  1  lval =   4  stpote = -0.11209933E+00
 i =  2  lval =   3  stpote =  0.90062153E-04
 i =  3  lval =   3  stpote =  0.51997408E-04
 i =  4  lval =   4  stpote = -0.10088714E-04
For potential     8
 i =  1  lval =   4  stpote =  0.49821926E-01
 i =  2  lval =   3  stpote =  0.40027623E-04
 i =  3  lval =   3  stpote = -0.23109959E-04
 i =  4  lval =   4  stpote =  0.44838727E-05
For potential     9
 i =  1  lval =   4  stpote =  0.49821926E-01
 i =  2  lval =   3  stpote =  0.24581947E-20
 i =  3  lval =   3  stpote =  0.46219918E-04
 i =  4  lval =   4  stpote =  0.44838727E-05
Number of asymptotic regions =      35
Final point in integration =   0.45437022E+02 Angstroms
Time Now =       303.7834  Delta time =         8.3243 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.28969639 rmsk=     0.10986666
iL =   1 Iter =   2 c.s. =      0.35388206 rmsk=     0.01673885
iL =   1 Iter =   3 c.s. =      0.35395724 rmsk=     0.00003625
iL =   1 Iter =   4 c.s. =      0.35395692 rmsk=     0.00000006
iL =   1 Iter =   5 c.s. =      0.35395692 rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =      0.88070734 rmsk=     0.14814835
iL =   2 Iter =   2 c.s. =      0.91331402 rmsk=     0.01640869
iL =   2 Iter =   3 c.s. =      0.91334231 rmsk=     0.00001809
iL =   2 Iter =   4 c.s. =      0.91334210 rmsk=     0.00000004
iL =   2 Iter =   5 c.s. =      0.91334210 rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.54484211E+00,-0.22876219E+00) ( 0.50397608E-01,-0.22894659E-01)
  ( 0.40090033E-01,-0.76545126E-02) (-0.62433082E-02, 0.87440346E-03)
  ( 0.13751259E-02,-0.24789269E-03) (-0.48992427E-04, 0.67435196E-05)
  (-0.49819386E-03, 0.10617955E-03) (-0.77470940E-04, 0.16817225E-04)
  ( 0.56794511E-05, 0.11547735E-05) ( 0.60787115E-05,-0.84845340E-06)
  ( 0.10556200E-05, 0.10994553E-07) ( 0.38627557E-06, 0.50476843E-06)
     ROW  2
  ( 0.68567881E+00,-0.28769790E+00) ( 0.59235272E-01,-0.28435979E-01)
  ( 0.44658514E-01,-0.92970191E-02) (-0.76569717E-02, 0.99654162E-03)
  ( 0.11730439E-02,-0.29704640E-03) (-0.28201050E-04, 0.66933674E-05)
  (-0.56301131E-03, 0.11781064E-03) (-0.87512636E-04, 0.18662196E-04)
  ( 0.37027728E-05, 0.10523110E-05) ( 0.58455286E-05,-0.96884824E-06)
  ( 0.78964432E-06,-0.94864620E-08) (-0.15870959E-06, 0.55511017E-06)
MaxIter =   5 c.s. =      0.91334210 rmsk=     0.00000000
Time Now =       311.0272  Delta time =         7.2438 End ScatStab

+ Command GetCro
+ 'test18T2E.idy'
Taking dipole matrix from file test18T2E.idy

----------------------------------------------------------------------
CnvIdy - read in and convert dynamical matrix elements and convert to raw form
----------------------------------------------------------------------

Time Now =       311.0328  Delta time =         0.0056 End CnvIdy
Found     4 energies :
     0.10000     5.80000    15.80000    25.80000
List of matrix element types found   Number =    1
    1  Cont Sym E      Targ Sym T2     Total Sym T2
Keeping     4 energies :
     0.10000     5.80000    15.80000    25.80000
Time Now =       311.0328  Delta time =         0.0001 End SelIdy

----------------------------------------------------------------------
CrossSection - compute photoionization cross section
----------------------------------------------------------------------

Ionization potential (IPot) =     14.2000 eV
Label -
Cross section by partial wave      F
Cross Sections for

     Sigma LENGTH   at all energies
      Eng
    14.3000  0.15252677E+02
    20.0000  0.14156400E+02
    30.0000  0.61298223E+01
    40.0000  0.26721893E+01

     Sigma MIXED    at all energies
      Eng
    14.3000  0.13834379E+02
    20.0000  0.12430419E+02
    30.0000  0.52809962E+01
    40.0000  0.22851689E+01

     Sigma VELOCITY at all energies
      Eng
    14.3000  0.12547969E+02
    20.0000  0.10914919E+02
    30.0000  0.45497794E+01
    40.0000  0.19543801E+01

     Beta LENGTH   at all energies
      Eng
    14.3000  0.56562779E+00
    20.0000  0.59735214E+00
    30.0000  0.62652970E+00
    40.0000  0.64761699E+00

     Beta MIXED    at all energies
      Eng
    14.3000  0.56590784E+00
    20.0000  0.59694162E+00
    30.0000  0.62581128E+00
    40.0000  0.64615966E+00

     Beta VELOCITY at all energies
      Eng
    14.3000  0.56618759E+00
    20.0000  0.59652770E+00
    30.0000  0.62508457E+00
    40.0000  0.64465483E+00

          COMPOSITE CROSS SECTIONS AT ALL ENERGIES
         Energy  SIGMA LEN  SIGMA MIX  SIGMA VEL   BETA LEN   BETA MIX   BETA VEL
EPhi     14.3000    15.2527    13.8344    12.5480     0.5656     0.5659     0.5662
EPhi     20.0000    14.1564    12.4304    10.9149     0.5974     0.5969     0.5965
EPhi     30.0000     6.1298     5.2810     4.5498     0.6265     0.6258     0.6251
EPhi     40.0000     2.6722     2.2852     1.9544     0.6476     0.6462     0.6447
Time Now =       311.1664  Delta time =         0.1335 End CrossSection

+ Command FileName
+ 'MatrixElements' 'test18T2A1.idy' 'REWIND'
Opening file test18T2A1.idy at position REWIND
+ Data Record ScatSym - 'T2'
+ Data Record ScatContSym - 'A1'

+ Command GenFormPhIon
+

----------------------------------------------------------------------
SymProd - Construct products of symmetry types
----------------------------------------------------------------------

Number of sets of degenerate orbitals =    3
Set    1  has degeneracy     1
Orbital     1  is num     1  type =   1  name - A1    1
Set    2  has degeneracy     1
Orbital     1  is num     2  type =   1  name - A1    1
Set    3  has degeneracy     3
Orbital     1  is num     3  type =   8  name - T2    1
Orbital     2  is num     4  type =   9  name - T2    2
Orbital     3  is num     5  type =  10  name - T2    3
Orbital occupations by degenerate group
    1  A1       occ = 2
    2  A1       occ = 2
    3  T2       occ = 5
The dimension of each irreducable representation is
    A1    (  1)    A2    (  1)    E     (  2)    T1    (  3)    T2    (  3)
Symmetry of the continuum orbital is A1
Symmetry of the total state is T2
Spin degeneracy of the total state is =    1
Symmetry of the target state is T2
Spin degeneracy of the target state is =    2
Symmetry of the initial state is A1
Spin degeneracy of the initial state is =    1
Orbital occupations of initial state by degenerate group
    1  A1       occ = 2
    2  A1       occ = 2
    3  T2       occ = 6
Open shell symmetry types
    1  T2     iele =    5
Use only configuration of type T2
MS2 =    1  SDGN =    2
NumAlpha =    3
List of determinants found
    1:   1.00000   0.00000    1    2    3    4    5
    2:   1.00000   0.00000    1    2    3    4    6
    3:   1.00000   0.00000    1    2    3    5    6
Spin adapted configurations
Configuration    1
    1:   1.00000   0.00000    1    2    3    4    5
Configuration    2
    1:   1.00000   0.00000    1    2    3    4    6
Configuration    3
    1:   1.00000   0.00000    1    2    3    5    6
 Each irreducable representation is present the number of times indicated
    T2    (  1)

 representation T2     component     1  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1    2    3    5    6

 representation T2     component     2  fun    1
Symmeterized Function
    1:  -1.00000   0.00000    1    2    3    4    6

 representation T2     component     3  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1    2    3    4    5
Open shell symmetry types
    1  T2     iele =    5
    2  A1     iele =    1
Use only configuration of type T2
 Each irreducable representation is present the number of times indicated
    T2    (  1)

 representation T2     component     1  fun    1
Symmeterized Function from AddNewShell
    1:  -0.70711   0.00000    1    2    3    5    6    8
    2:   0.70711   0.00000    2    3    4    5    6    7

 representation T2     component     2  fun    1
Symmeterized Function from AddNewShell
    1:   0.70711   0.00000    1    2    3    4    6    8
    2:  -0.70711   0.00000    1    3    4    5    6    7

 representation T2     component     3  fun    1
Symmeterized Function from AddNewShell
    1:  -0.70711   0.00000    1    2    3    4    5    8
    2:   0.70711   0.00000    1    2    4    5    6    7
Open shell symmetry types
    1  T2     iele =    5
Use only configuration of type T2
MS2 =    1  SDGN =    2
NumAlpha =    3
List of determinants found
    1:   1.00000   0.00000    1    2    3    4    5
    2:   1.00000   0.00000    1    2    3    4    6
    3:   1.00000   0.00000    1    2    3    5    6
Spin adapted configurations
Configuration    1
    1:   1.00000   0.00000    1    2    3    4    5
Configuration    2
    1:   1.00000   0.00000    1    2    3    4    6
Configuration    3
    1:   1.00000   0.00000    1    2    3    5    6
 Each irreducable representation is present the number of times indicated
    T2    (  1)

 representation T2     component     1  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1    2    3    5    6

 representation T2     component     2  fun    1
Symmeterized Function
    1:  -1.00000   0.00000    1    2    3    4    6

 representation T2     component     3  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1    2    3    4    5
Direct product basis set
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    9   10   12
    2:   0.70711   0.00000    1    2    3    4    6    7    8    9   10   11
Direct product basis function
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   12
    2:  -0.70711   0.00000    1    2    3    4    5    7    8    9   10   11
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   12
    2:   0.70711   0.00000    1    2    3    4    5    6    8    9   10   11
Closed shell target
Time Now =       311.1780  Delta time =         0.0116 End SymProd

----------------------------------------------------------------------
MatEle - Program to compute Matrix Elements over Determinants
----------------------------------------------------------------------

Configuration     1
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    9   10   12
    2:   0.70711   0.00000    1    2    3    4    6    7    8    9   10   11
Configuration     2
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   12
    2:  -0.70711   0.00000    1    2    3    4    5    7    8    9   10   11
Configuration     3
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   12
    2:   0.70711   0.00000    1    2    3    4    5    6    8    9   10   11
Direct product Configuration Cont sym =    1  Targ sym =    1
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    9   10   12
    2:   0.70711   0.00000    1    2    3    4    6    7    8    9   10   11
Direct product Configuration Cont sym =    1  Targ sym =    2
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   12
    2:  -0.70711   0.00000    1    2    3    4    5    7    8    9   10   11
Direct product Configuration Cont sym =    1  Targ sym =    3
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   12
    2:   0.70711   0.00000    1    2    3    4    5    6    8    9   10   11
Overlap of Direct Product expansion and Symmeterized states
Symmetry of Continuum =    1
Symmetry of target =    5
Symmetry of total states =    5

Total symmetry component =    1

Cont      Target Component
Comp        1               2               3
   1   0.10000000E+01  0.00000000E+00  0.00000000E+00

Total symmetry component =    2

Cont      Target Component
Comp        1               2               3
   1   0.00000000E+00  0.10000000E+01  0.00000000E+00

Total symmetry component =    3

Cont      Target Component
Comp        1               2               3
   1   0.00000000E+00  0.00000000E+00  0.10000000E+01
Initial State Configuration
    1:   1.00000   0.00000    1    2    3    4    5    6    7    8    9   10
One electron matrix elements between initial and final states
    1:   -1.414213562    0.000000000  <    5|   11>

Reduced formula list
    1    3    1 -0.1414213562E+01
Time Now =       311.1784  Delta time =         0.0004 End MatEle

+ Command DipoleOp
+

----------------------------------------------------------------------
DipoleOp - Dipole Operator Program
----------------------------------------------------------------------

Number of orbitals in formula for the dipole operator (NOrbSel) =    1
Symmetry of the continuum orbital (iContSym) =     1 or A1
Symmetry of total final state (iTotalSym) =     5 or T2
Symmetry of the initial state (iInitSym) =     1 or A1
Symmetry of the ionized target state (iTargSym) =     5 or T2
List of unique symmetry types
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
Unique dipole matrix type     1 Dipole symmetry type =T2
     Final state symmetry type = T2     Target sym =T2
     Continuum type =A1
In the product of the symmetry types T2    A2
 Each irreducable representation is present the number of times indicated
    T1    (  1)
In the product of the symmetry types T2    E
 Each irreducable representation is present the number of times indicated
    T1    (  1)
    T2    (  1)
Unique dipole matrix type     2 Dipole symmetry type =T2
     Final state symmetry type = T2     Target sym =T2
     Continuum type =E
In the product of the symmetry types T2    T1
 Each irreducable representation is present the number of times indicated
    A2    (  1)
    E     (  1)
    T1    (  1)
    T2    (  1)
Unique dipole matrix type     3 Dipole symmetry type =T2
     Final state symmetry type = T2     Target sym =T2
     Continuum type =T1
In the product of the symmetry types T2    T2
 Each irreducable representation is present the number of times indicated
    A1    (  1)
    E     (  1)
    T1    (  1)
    T2    (  1)
Unique dipole matrix type     4 Dipole symmetry type =T2
     Final state symmetry type = T2     Target sym =T2
     Continuum type =T2
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
Irreducible representation containing the dipole operator is T2
Number of different dipole operators in this representation is     1
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
Vector of the total symmetry
ie =    1  ij =    1
    1 (  0.10000000E+01, -0.00000000E+00)
    2 (  0.00000000E+00, -0.00000000E+00)
    3 (  0.00000000E+00, -0.00000000E+00)
Vector of the total symmetry
ie =    2  ij =    1
    1 (  0.00000000E+00,  0.00000000E+00)
    2 (  0.10000000E+01,  0.00000000E+00)
    3 ( -0.00000000E+00,  0.00000000E+00)
Vector of the total symmetry
ie =    3  ij =    1
    1 ( -0.00000000E+00,  0.00000000E+00)
    2 (  0.00000000E+00,  0.00000000E+00)
    3 (  0.10000000E+01,  0.00000000E+00)
Component Dipole Op Sym =  1 goes to Total Sym component   1 phase = 1.0
Component Dipole Op Sym =  2 goes to Total Sym component   2 phase = 1.0
Component Dipole Op Sym =  3 goes to Total Sym component   3 phase = 1.0

Dipole operator types by symmetry components (x=1, y=2, z=3)
sym comp =  1
  coefficients =  0.00000000  1.00000000  0.00000000
sym comp =  2
  coefficients =  1.00000000  0.00000000  0.00000000
sym comp =  3
  coefficients =  0.00000000  0.00000000  1.00000000

Formula for dipole operator

Dipole operator sym comp 1  index =    1
  1  Cont comp  1  Orb  3  Coef =  -1.4142135620
Symmetry type to write out (SymTyp) =A1
Time Now =       324.3546  Delta time =        13.1762 End DipoleOp

+ Command GetPot
+

----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------

Total density =      9.00000000
Time Now =       324.5872  Delta time =         0.2326 End Den

----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------

 vasymp =  0.90000000E+01 facnorm =  0.10000000E+01
Time Now =       324.6216  Delta time =         0.0344 Electronic part
Time Now =       324.6237  Delta time =         0.0021 End StPot

+ Command PhIon
+ 0.1 5.8 15.8 25.8

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.10000000E+00 eV (  0.36749326E-02 AU)
Time Now =       324.6700  Delta time =         0.0463 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A1    1
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =     T
Maximum l for computed scattering solutions (LMaxK) =   11
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    50
Number of partial waves (np) =    15
Number of asymptotic solutions on the right (NAsymR) =     9
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   11
Number of partial waves in the asymptotic region (npasym) =    9
Number of orthogonality constraints (NOrthUse) =    2
Number of different asymptotic potentials =    6
Maximum number of asymptotic partial waves =  133
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =   11
Highest l used at large r (lpasym) =   11
Higest l used in the asymptotic potential (lpzb) =   22
Maximum L used in the homogeneous solution (LMaxHomo) =   11
Number of partial waves in the homogeneous solution (npHomo) =    9
Time Now =       324.6818  Delta time =         0.0117 Energy independent setup

Compute solution for E =    0.1000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.13877788E-15
 i =  2  lval =   3  stpote = -0.11393263E-18
 i =  3  lval =   3  stpote = -0.41977709E-18
 i =  4  lval =   4  stpote = -0.29200319E-04
For potential     2
 i =  1  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.23318031E-16
 i =  2  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.23098957E-16
 i =  3  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.22905876E-16
 i =  4  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.22750416E-16
For potential     3
For potential     4
 i =  1  lval =   4  stpote = -0.99643852E-01
 i =  2  lval =   3  stpote =  0.80055247E-04
 i =  3  lval =   3  stpote =  0.46219918E-04
 i =  4  lval =   4  stpote = -0.89677454E-05
For potential     5
 i =  1  lval =   4  stpote =  0.49821926E-01
 i =  2  lval =   3  stpote =  0.40027623E-04
 i =  3  lval =   3  stpote = -0.23109959E-04
 i =  4  lval =   4  stpote =  0.44838727E-05
For potential     6
 i =  1  lval =   4  stpote =  0.49821926E-01
 i =  2  lval =   3  stpote =  0.24581947E-20
 i =  3  lval =   3  stpote =  0.46219918E-04
 i =  4  lval =   4  stpote =  0.44838727E-05
Number of asymptotic regions =      12
Final point in integration =   0.18156553E+03 Angstroms
Time Now =       327.2436  Delta time =         2.5618 End SolveHomo
iL =   1 Iter =   1 c.s. =      2.09305662 rmsk=     0.34099989
iL =   1 Iter =   2 c.s. =      2.11317419 rmsk=     0.06722684
iL =   1 Iter =   3 c.s. =      2.11314234 rmsk=     0.00050421
iL =   1 Iter =   4 c.s. =      2.11313160 rmsk=     0.00000228
iL =   1 Iter =   5 c.s. =      2.11313132 rmsk=     0.00000003
iL =   1 Iter =   6 c.s. =      2.11313132 rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =      2.71966280 rmsk=     0.18356523
iL =   2 Iter =   2 c.s. =      2.62693786 rmsk=     0.03763143
iL =   2 Iter =   3 c.s. =      2.62614451 rmsk=     0.00023621
iL =   2 Iter =   4 c.s. =      2.62614044 rmsk=     0.00000103
iL =   2 Iter =   5 c.s. =      2.62614039 rmsk=     0.00000002
iL =   2 Iter =   6 c.s. =      2.62614039 rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.14207752E+01,-0.17497575E+00) (-0.23793405E+00, 0.83963587E-01)
  ( 0.14365552E-01,-0.66194805E-02) (-0.14236059E-05,-0.59908154E-05)
  (-0.60019644E-06,-0.11527664E-06) ( 0.81749320E-08, 0.15636988E-09)
  (-0.78577984E-09, 0.18483802E-11) ( 0.17620153E-10,-0.50054541E-12)
  ( 0.13420054E-12,-0.65379571E-14)
     ROW  2
  ( 0.70083141E+00,-0.86047947E-01) (-0.11259928E+00, 0.41298529E-01)
  ( 0.67515473E-02,-0.32240937E-02) ( 0.70210087E-05,-0.29118182E-05)
  ( 0.58392546E-07,-0.58440694E-07) ( 0.52850997E-09, 0.10175728E-09)
  (-0.16056856E-09,-0.40573208E-11) ( 0.41559677E-11,-0.62817280E-13)
  ( 0.36572275E-13,-0.12966795E-14)
MaxIter =   6 c.s. =      2.62614039 rmsk=     0.00000000
Time Now =       334.8819  Delta time =         7.6383 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.58000000E+01 eV (  0.21314609E+00 AU)
Time Now =       334.9267  Delta time =         0.0449 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A1    1
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =     T
Maximum l for computed scattering solutions (LMaxK) =   11
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    50
Number of partial waves (np) =    15
Number of asymptotic solutions on the right (NAsymR) =     9
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   11
Number of partial waves in the asymptotic region (npasym) =    9
Number of orthogonality constraints (NOrthUse) =    2
Number of different asymptotic potentials =    6
Maximum number of asymptotic partial waves =  133
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =   11
Highest l used at large r (lpasym) =   11
Higest l used in the asymptotic potential (lpzb) =   22
Maximum L used in the homogeneous solution (LMaxHomo) =   11
Number of partial waves in the homogeneous solution (npHomo) =    9
Time Now =       334.9387  Delta time =         0.0120 Energy independent setup

Compute solution for E =    5.8000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.13877788E-15
 i =  2  lval =   3  stpote = -0.11393263E-18
 i =  3  lval =   3  stpote = -0.41977709E-18
 i =  4  lval =   4  stpote = -0.29200319E-04
For potential     2
 i =  1  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.15092243E-16
 i =  2  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.14894425E-16
 i =  3  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.14712238E-16
 i =  4  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.14560092E-16
For potential     3
For potential     4
 i =  1  lval =   4  stpote = -0.99643852E-01
 i =  2  lval =   3  stpote =  0.80055247E-04
 i =  3  lval =   3  stpote =  0.46219918E-04
 i =  4  lval =   4  stpote = -0.89677454E-05
For potential     5
 i =  1  lval =   4  stpote =  0.49821926E-01
 i =  2  lval =   3  stpote =  0.40027623E-04
 i =  3  lval =   3  stpote = -0.23109959E-04
 i =  4  lval =   4  stpote =  0.44838727E-05
For potential     6
 i =  1  lval =   4  stpote =  0.49821926E-01
 i =  2  lval =   3  stpote =  0.24581947E-20
 i =  3  lval =   3  stpote =  0.46219918E-04
 i =  4  lval =   4  stpote =  0.44838727E-05
Number of asymptotic regions =      27
Final point in integration =   0.65906507E+02 Angstroms
Time Now =       338.4148  Delta time =         3.4761 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.87563885 rmsk=     0.22055975
iL =   1 Iter =   2 c.s. =      0.95481014 rmsk=     0.04782179
iL =   1 Iter =   3 c.s. =      0.95568704 rmsk=     0.00027881
iL =   1 Iter =   4 c.s. =      0.95570019 rmsk=     0.00000301
iL =   1 Iter =   5 c.s. =      0.95570019 rmsk=     0.00000002
iL =   1 Iter =   6 c.s. =      0.95570019 rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =      1.42406575 rmsk=     0.16130812
iL =   2 Iter =   2 c.s. =      1.39018097 rmsk=     0.03331075
iL =   2 Iter =   3 c.s. =      1.39011006 rmsk=     0.00018341
iL =   2 Iter =   4 c.s. =      1.39011738 rmsk=     0.00000268
iL =   2 Iter =   5 c.s. =      1.39011742 rmsk=     0.00000003
iL =   2 Iter =   6 c.s. =      1.39011742 rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.84116327E+00,-0.13256639E+00) (-0.38627554E+00, 0.27555752E+00)
  ( 0.55906153E-01,-0.47989474E-01) ( 0.47064288E-03,-0.11103708E-02)
  (-0.23315829E-04,-0.11595759E-03) ( 0.20308481E-05, 0.34019024E-05)
  (-0.29899789E-05,-0.58488017E-06) ( 0.36304227E-06, 0.40249255E-07)
  ( 0.15514492E-07, 0.90624120E-09)
     ROW  2
  ( 0.57507986E+00,-0.86373815E-01) (-0.24512823E+00, 0.18399541E+00)
  ( 0.35863527E-01,-0.31790163E-01) ( 0.66972226E-03,-0.72684722E-03)
  ( 0.49273199E-04,-0.76452947E-04) (-0.84861389E-06, 0.22594688E-05)
  (-0.53329111E-06,-0.45749767E-06) ( 0.88075507E-07, 0.37986961E-07)
  ( 0.48335212E-08, 0.11425069E-08)
MaxIter =   6 c.s. =      1.39011742 rmsk=     0.00000000
Time Now =       346.0975  Delta time =         7.6827 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.15800000E+02 eV (  0.58063935E+00 AU)
Time Now =       346.1427  Delta time =         0.0452 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A1    1
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =     T
Maximum l for computed scattering solutions (LMaxK) =   11
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    50
Number of partial waves (np) =    15
Number of asymptotic solutions on the right (NAsymR) =     9
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   11
Number of partial waves in the asymptotic region (npasym) =    9
Number of orthogonality constraints (NOrthUse) =    2
Number of different asymptotic potentials =    6
Maximum number of asymptotic partial waves =  133
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =   11
Highest l used at large r (lpasym) =   11
Higest l used in the asymptotic potential (lpzb) =   22
Maximum L used in the homogeneous solution (LMaxHomo) =   11
Number of partial waves in the homogeneous solution (npHomo) =    9
Time Now =       346.1545  Delta time =         0.0118 Energy independent setup

Compute solution for E =   15.8000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.13877788E-15
 i =  2  lval =   3  stpote = -0.11393263E-18
 i =  3  lval =   3  stpote = -0.41977709E-18
 i =  4  lval =   4  stpote = -0.29200319E-04
For potential     2
 i =  1  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.11167396E-16
 i =  2  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.11050437E-16
 i =  3  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.10963980E-16
 i =  4  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.10906645E-16
For potential     3
For potential     4
 i =  1  lval =   4  stpote = -0.99643852E-01
 i =  2  lval =   3  stpote =  0.80055247E-04
 i =  3  lval =   3  stpote =  0.46219918E-04
 i =  4  lval =   4  stpote = -0.89677454E-05
For potential     5
 i =  1  lval =   4  stpote =  0.49821926E-01
 i =  2  lval =   3  stpote =  0.40027623E-04
 i =  3  lval =   3  stpote = -0.23109959E-04
 i =  4  lval =   4  stpote =  0.44838727E-05
For potential     6
 i =  1  lval =   4  stpote =  0.49821926E-01
 i =  2  lval =   3  stpote =  0.24581947E-20
 i =  3  lval =   3  stpote =  0.46219918E-04
 i =  4  lval =   4  stpote =  0.44838727E-05
Number of asymptotic regions =      32
Final point in integration =   0.51339860E+02 Angstroms
Time Now =       349.6267  Delta time =         3.4722 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.13059485 rmsk=     0.08517787
iL =   1 Iter =   2 c.s. =      0.17677451 rmsk=     0.02035207
iL =   1 Iter =   3 c.s. =      0.17671215 rmsk=     0.00008252
iL =   1 Iter =   4 c.s. =      0.17671799 rmsk=     0.00001327
iL =   1 Iter =   5 c.s. =      0.17671804 rmsk=     0.00000002
iL =   1 Iter =   6 c.s. =      0.17671804 rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =      0.33135325 rmsk=     0.09268681
iL =   2 Iter =   2 c.s. =      0.35430754 rmsk=     0.01679822
iL =   2 Iter =   3 c.s. =      0.35436189 rmsk=     0.00007920
iL =   2 Iter =   4 c.s. =      0.35435293 rmsk=     0.00000563
iL =   2 Iter =   5 c.s. =      0.35435295 rmsk=     0.00000001
iL =   2 Iter =   6 c.s. =      0.35435295 rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.30832845E+00,-0.60913504E-01) (-0.95865958E-01, 0.25431788E+00)
  ( 0.23818235E-01,-0.59099060E-01) ( 0.19841038E-02,-0.30116284E-02)
  ( 0.21675110E-03,-0.47041595E-03) (-0.17620578E-04, 0.21250173E-04)
  (-0.37874747E-04,-0.67244414E-05) ( 0.79973688E-05, 0.84747860E-06)
  ( 0.60207485E-06, 0.41754440E-07)
     ROW  2
  ( 0.31737174E+00,-0.55300548E-01) (-0.85793367E-01, 0.25032169E+00)
  ( 0.21571210E-01,-0.57889983E-01) ( 0.22504610E-02,-0.29206238E-02)
  ( 0.34848764E-03,-0.45579250E-03) (-0.12913415E-04, 0.20695212E-04)
  (-0.58463155E-05,-0.67527861E-05) ( 0.22380307E-05, 0.92394673E-06)
  ( 0.24920906E-06, 0.46721769E-07)
MaxIter =   6 c.s. =      0.35435295 rmsk=     0.00000000
Time Now =       357.1445  Delta time =         7.5177 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.25800000E+02 eV (  0.94813261E+00 AU)
Time Now =       357.1893  Delta time =         0.0449 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A1    1
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =     T
Maximum l for computed scattering solutions (LMaxK) =   11
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    50
Number of partial waves (np) =    15
Number of asymptotic solutions on the right (NAsymR) =     9
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   11
Number of partial waves in the asymptotic region (npasym) =    9
Number of orthogonality constraints (NOrthUse) =    2
Number of different asymptotic potentials =    6
Maximum number of asymptotic partial waves =  133
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =   11
Highest l used at large r (lpasym) =   11
Higest l used in the asymptotic potential (lpzb) =   22
Maximum L used in the homogeneous solution (LMaxHomo) =   11
Number of partial waves in the homogeneous solution (npHomo) =    9
Time Now =       357.2011  Delta time =         0.0118 Energy independent setup

Compute solution for E =   25.8000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.13877788E-15
 i =  2  lval =   3  stpote = -0.11393263E-18
 i =  3  lval =   3  stpote = -0.41977709E-18
 i =  4  lval =   4  stpote = -0.29200319E-04
For potential     2
 i =  1  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.80446840E-17
 i =  2  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.80814907E-17
 i =  3  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.81237516E-17
 i =  4  exps = -0.94868745E+02 -0.20000000E+01  stpote = -0.81650637E-17
For potential     3
For potential     4
 i =  1  lval =   4  stpote = -0.99643852E-01
 i =  2  lval =   3  stpote =  0.80055247E-04
 i =  3  lval =   3  stpote =  0.46219918E-04
 i =  4  lval =   4  stpote = -0.89677454E-05
For potential     5
 i =  1  lval =   4  stpote =  0.49821926E-01
 i =  2  lval =   3  stpote =  0.40027623E-04
 i =  3  lval =   3  stpote = -0.23109959E-04
 i =  4  lval =   4  stpote =  0.44838727E-05
For potential     6
 i =  1  lval =   4  stpote =  0.49821926E-01
 i =  2  lval =   3  stpote =  0.24581947E-20
 i =  3  lval =   3  stpote =  0.46219918E-04
 i =  4  lval =   4  stpote =  0.44838727E-05
Number of asymptotic regions =      35
Final point in integration =   0.45437022E+02 Angstroms
Time Now =       361.7185  Delta time =         4.5174 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.02137419 rmsk=     0.03445947
iL =   1 Iter =   2 c.s. =      0.02969796 rmsk=     0.00736741
iL =   1 Iter =   3 c.s. =      0.02959002 rmsk=     0.00010973
iL =   1 Iter =   4 c.s. =      0.02959011 rmsk=     0.00000110
iL =   1 Iter =   5 c.s. =      0.02959011 rmsk=     0.00000001
iL =   1 Iter =   6 c.s. =      0.02959011 rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =      0.07845480 rmsk=     0.05210283
iL =   2 Iter =   2 c.s. =      0.08619756 rmsk=     0.00686706
iL =   2 Iter =   3 c.s. =      0.08610799 rmsk=     0.00009883
iL =   2 Iter =   4 c.s. =      0.08610979 rmsk=     0.00000143
iL =   2 Iter =   5 c.s. =      0.08610980 rmsk=     0.00000000
iL =   2 Iter =   6 c.s. =      0.08610980 rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.13479874E+00, 0.59525099E-02) (-0.44454428E-02, 0.10195304E+00)
  ( 0.12458613E-01,-0.28084614E-01) ( 0.45284128E-02,-0.20864362E-02)
  ( 0.87963894E-03,-0.43017705E-03) (-0.67295291E-04, 0.24927452E-04)
  (-0.10479858E-03,-0.12576134E-04) ( 0.32126331E-04, 0.20939497E-05)
  ( 0.34949390E-05, 0.12985835E-06)
     ROW  2
  ( 0.19086522E+00, 0.13415055E-01) (-0.48187661E-03, 0.13548110E+00)
  ( 0.12209965E-01,-0.36997201E-01) ( 0.52821531E-02,-0.26780270E-02)
  ( 0.12565623E-02,-0.53957414E-03) (-0.68450649E-04, 0.31470465E-04)
  ( 0.74876405E-05,-0.15726522E-04) ( 0.54748653E-05, 0.29821877E-05)
  ( 0.12736608E-05, 0.20286207E-06)
MaxIter =   6 c.s. =      0.08610980 rmsk=     0.00000000
Time Now =       369.0868  Delta time =         7.3683 End ScatStab

+ Command GetCro
+ 'test18T2A1.idy'
Taking dipole matrix from file test18T2A1.idy

----------------------------------------------------------------------
CnvIdy - read in and convert dynamical matrix elements and convert to raw form
----------------------------------------------------------------------

Time Now =       369.0893  Delta time =         0.0025 End CnvIdy
Found     4 energies :
     0.10000     5.80000    15.80000    25.80000
List of matrix element types found   Number =    1
    1  Cont Sym A1     Targ Sym T2     Total Sym T2
Keeping     4 energies :
     0.10000     5.80000    15.80000    25.80000
Time Now =       369.0893  Delta time =         0.0001 End SelIdy

----------------------------------------------------------------------
CrossSection - compute photoionization cross section
----------------------------------------------------------------------

Ionization potential (IPot) =     14.2000 eV
Label -
Cross section by partial wave      F
Cross Sections for

     Sigma LENGTH   at all energies
      Eng
    14.3000  0.57032098E+01
    20.0000  0.36075179E+01
    30.0000  0.10005965E+01
    40.0000  0.22338986E+00

     Sigma MIXED    at all energies
      Eng
    14.3000  0.53471676E+01
    20.0000  0.33079966E+01
    30.0000  0.90933215E+00
    40.0000  0.20977204E+00

     Sigma VELOCITY at all energies
      Eng
    14.3000  0.50135698E+01
    20.0000  0.30355341E+01
    30.0000  0.82749454E+00
    40.0000  0.19746848E+00

     Beta LENGTH   at all energies
      Eng
    14.3000 -0.13084473E-20
    20.0000  0.13751359E-18
    30.0000 -0.51300962E-18
    40.0000 -0.16270917E-17

     Beta MIXED    at all energies
      Eng
    14.3000  0.75829245E-21
    20.0000 -0.28640838E-19
    30.0000  0.22578917E-18
    40.0000 -0.12203624E-17

     Beta VELOCITY at all energies
      Eng
    14.3000 -0.11402168E-20
    20.0000 -0.17755813E-18
    30.0000 -0.19322629E-18
    40.0000 -0.12094645E-17

          COMPOSITE CROSS SECTIONS AT ALL ENERGIES
         Energy  SIGMA LEN  SIGMA MIX  SIGMA VEL   BETA LEN   BETA MIX   BETA VEL
EPhi     14.3000     5.7032     5.3472     5.0136    -0.0000     0.0000    -0.0000
EPhi     20.0000     3.6075     3.3080     3.0355     0.0000    -0.0000    -0.0000
EPhi     30.0000     1.0006     0.9093     0.8275    -0.0000     0.0000    -0.0000
EPhi     40.0000     0.2234     0.2098     0.1975    -0.0000    -0.0000    -0.0000
Time Now =       369.2228  Delta time =         0.1335 End CrossSection

+ Command GetCro
+ 'test18T2A1.idy' 'test18T2E.idy' 'test18T2T2.idy'  'test18T2T1.idy'
Taking dipole matrix from file test18T2A1.idy

----------------------------------------------------------------------
CnvIdy - read in and convert dynamical matrix elements and convert to raw form
----------------------------------------------------------------------

Time Now =       369.2253  Delta time =         0.0025 End CnvIdy
Taking dipole matrix from file test18T2E.idy

----------------------------------------------------------------------
CnvIdy - read in and convert dynamical matrix elements and convert to raw form
----------------------------------------------------------------------

Time Now =       369.2296  Delta time =         0.0043 End CnvIdy
Taking dipole matrix from file test18T2T2.idy

----------------------------------------------------------------------
CnvIdy - read in and convert dynamical matrix elements and convert to raw form
----------------------------------------------------------------------

Time Now =       369.2401  Delta time =         0.0106 End CnvIdy
Taking dipole matrix from file test18T2T1.idy

----------------------------------------------------------------------
CnvIdy - read in and convert dynamical matrix elements and convert to raw form
----------------------------------------------------------------------

Time Now =       369.2477  Delta time =         0.0076 End CnvIdy
Found     4 energies :
     0.10000     5.80000    15.80000    25.80000
List of matrix element types found   Number =    4
    1  Cont Sym A1     Targ Sym T2     Total Sym T2
    2  Cont Sym E      Targ Sym T2     Total Sym T2
    3  Cont Sym T2     Targ Sym T2     Total Sym T2
    4  Cont Sym T1     Targ Sym T2     Total Sym T2
Keeping     4 energies :
     0.10000     5.80000    15.80000    25.80000
Time Now =       369.2478  Delta time =         0.0001 End SelIdy

----------------------------------------------------------------------
CrossSection - compute photoionization cross section
----------------------------------------------------------------------

Ionization potential (IPot) =     14.2000 eV
Label -
Cross section by partial wave      F
Cross Sections for

     Sigma LENGTH   at all energies
      Eng
    14.3000  0.63338024E+02
    20.0000  0.43996326E+02
    30.0000  0.13361087E+02
    40.0000  0.53802638E+01

     Sigma MIXED    at all energies
      Eng
    14.3000  0.55589674E+02
    20.0000  0.36997945E+02
    30.0000  0.11026851E+02
    40.0000  0.44427609E+01

     Sigma VELOCITY at all energies
      Eng
    14.3000  0.48862493E+02
    20.0000  0.31189853E+02
    30.0000  0.91424763E+01
    40.0000  0.36867265E+01

     Beta LENGTH   at all energies
      Eng
    14.3000  0.18869341E+00
    20.0000  0.99771390E+00
    30.0000  0.10972299E+01
    40.0000  0.11179809E+01

     Beta MIXED    at all energies
      Eng
    14.3000  0.16072801E+00
    20.0000  0.10021515E+01
    30.0000  0.11168068E+01
    40.0000  0.11418654E+01

     Beta VELOCITY at all energies
      Eng
    14.3000  0.13321934E+00
    20.0000  0.10039739E+01
    30.0000  0.11311247E+01
    40.0000  0.11594721E+01

          COMPOSITE CROSS SECTIONS AT ALL ENERGIES
         Energy  SIGMA LEN  SIGMA MIX  SIGMA VEL   BETA LEN   BETA MIX   BETA VEL
EPhi     14.3000    63.3380    55.5897    48.8625     0.1887     0.1607     0.1332
EPhi     20.0000    43.9963    36.9979    31.1899     0.9977     1.0022     1.0040
EPhi     30.0000    13.3611    11.0269     9.1425     1.0972     1.1168     1.1311
EPhi     40.0000     5.3803     4.4428     3.6867     1.1180     1.1419     1.1595
Time Now =       369.3813  Delta time =         0.1335 End CrossSection
Time Now =       369.3832  Delta time =         0.0019 Finalize