----------------------------------------------------------------------
ePolyScat Version E2
----------------------------------------------------------------------

Authors: R. R. Lucchese, N. Sanna, A. P. P. Natalense, and F. A. Gianturco
http://www.chem.tamu.edu/rgroup/lucchese/ePolyScat.E2.manual/manual.html
Please cite the following two papers when reporting results obtained with  this program
F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 100, 6464 (1994).
A. P. P. Natalense and R. R. Lucchese, J. Chem. Phys. 111, 5344 (1999).

----------------------------------------------------------------------

Starting at 2009-03-13  11:37:59.486 (GMT -0500)
Using    16 processors

----------------------------------------------------------------------


+ Start of Input Records
#
# input file for test17
#
# script for SF6 photoionization test run using G03 output for orbitals
#
 Label 'SF6 core ionization'
 LMax   15     # maximum l to be used for wave functions
 LMaxI  40     # maximum l value used to determine numerical angular grids
 EMax  100.0    # EMax, maximum asymptotic energy in eV
 OrbOcc        # occupation of the orbital groups of target
 1 4 6 2 2 6 2 6 4 2 6 6 4 6 6 6
 ScatSym     'T1U' # Scattering symmetry of total final state
 ScatContSym 'T1U' # Scattering symmetry of continuum electron
 SpinDeg 1         # Spin degeneracy of the total scattering state (=1 singlet)
 TargSym 'A1G'      # Symmetry of the target state
 TargSpinDeg 2     # Target spin degeneracy
 InitSym 'A1G'      # Initial state symmetry
 InitSpinDeg 1     # Initial state spin degeneracy
 OrbOccInit        # Orbital occupation of initial state
 2 4 6 2 2 6 2 6 4 2 6 6 4 6 6 6
 ScatEng 0.1 60.0 90.0  # list of scattering energies
 FegeEng 2490.  # Energy correction used in the fege potential
 IPot 2490.    # IPot, ionization potential
Convert '/scratch/rrl581a/ePolyScat.E2/tests/test17.g03' 'g03'
FileName 'MatrixElements' 'test17.idy' 'REWIND'
FileName 'PlotData' 'test17.dat' 'REWIND'
GetBlms
ExpOrb
GenFormPhIon
DipoleOp
GetPot
PhIon
GetCro
#
+ End of input reached
+ Data Record Label - 'SF6 core ionization'
+ Data Record LMax - 15
+ Data Record LMaxI - 40
+ Data Record EMax - 100.0
+ Data Record OrbOcc - 1 4 6 2 2 6 2 6 4 2 6 6 4 6 6 6
+ Data Record ScatSym - 'T1U'
+ Data Record ScatContSym - 'T1U'
+ Data Record SpinDeg - 1
+ Data Record TargSym - 'A1G'
+ Data Record TargSpinDeg - 2
+ Data Record InitSym - 'A1G'
+ Data Record InitSpinDeg - 1
+ Data Record OrbOccInit - 2 4 6 2 2 6 2 6 4 2 6 6 4 6 6 6
+ Data Record ScatEng - 0.1 60.0 90.0
+ Data Record FegeEng - 2490.
+ Data Record IPot - 2490.

+ Command Convert
+ '/scratch/rrl581a/ePolyScat.E2/tests/test17.g03' 'g03'

----------------------------------------------------------------------
g03cnv - read input from G03 output
----------------------------------------------------------------------

Expansion center is (in Angstroms) -
     0.0000000000   0.0000000000   0.0000000000
CardFlag =    T
Normal Mode flag =    F
Selecting orbitals
from     1  to    35  number already selected     0
Number of orbitals selected is    35
Highest orbital read in is =   35
Time Now =         0.0700  Delta time =         0.0700 End g03cnv

Atoms found    7  Coordinates in Angstroms
Z = 16 ZS = 16 r =   0.0000000000   0.0000000000   0.0000000000
Z =  9 ZS =  9 r =   0.0000000000   0.0000000000   1.5602260000
Z =  9 ZS =  9 r =   0.0000000000   1.5602260000   0.0000000000
Z =  9 ZS =  9 r =  -1.5602260000   0.0000000000   0.0000000000
Z =  9 ZS =  9 r =   1.5602260000   0.0000000000   0.0000000000
Z =  9 ZS =  9 r =   0.0000000000  -1.5602260000   0.0000000000
Z =  9 ZS =  9 r =   0.0000000000   0.0000000000  -1.5602260000
Maximum distance from expansion center is    1.5602260000

+ Command FileName
+ 'MatrixElements' 'test17.idy' 'REWIND'
Opening file test17.idy at position REWIND

+ Command FileName
+ 'PlotData' 'test17.dat' 'REWIND'
Opening file test17.dat at position REWIND

+ Command GetBlms
+

----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------

Found point group  Oh
Reduce angular grid using nthd =  2  nphid =  4
Found point group for abelian subgroup D2h
Time Now =         0.0975  Delta time =         0.0274 End GetPGroup
List of unique axes
  N  Vector                      Z   R
  1  0.00000  0.00000  1.00000   9  2.94840   9  2.94840
  2  0.00000  1.00000  0.00000   9  2.94840   9  2.94840
  3 -1.00000  0.00000  0.00000   9  2.94840   9  2.94840
List of corresponding x axes
  N  Vector
  1  1.00000 -0.00000 -0.00000
  2  1.00000 -0.00000 -0.00000
  3  0.00000  1.00000 -0.00000
Computed default value of LMaxA =   15
Determineing angular grid in GetAxMax  LMax =   15  LMaxA =   15  LMaxAb =   30
MMax =    3  MMaxAbFlag =    1
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
For axis     2  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
For axis     3  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
On the double L grid used for products
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19
  20  21  22  23  24  25  26  27  28  29  30
For axis     2  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
For axis     3  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is Oh
LMax = =   15
 The dimension of each irreducable representation is
    A1G   (  1)    A2G   (  1)    EG    (  2)    T1G   (  3)    T2G   (  3)
    A1U   (  1)    A2U   (  1)    EU    (  2)    T1U   (  3)    T2U   (  3)
 Number of symmetry operations in the abelian subgroup (excluding E) =    7
 The operations are -
    16    19    24     2     4     3     5
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A1G       1         1          8       1  1  1  1  1  1  1
 A2G       1         2          4       1  1  1  1  1  1  1
 EG        1         3         12       1  1  1  1  1  1  1
 EG        2         4         12       1  1  1  1  1  1  1
 T1G       1         5         12      -1 -1  1  1 -1 -1  1
 T1G       2         6         12      -1  1 -1  1 -1  1 -1
 T1G       3         7         12       1 -1 -1  1  1 -1 -1
 T2G       1         8         16      -1 -1  1  1 -1 -1  1
 T2G       2         9         16      -1  1 -1  1 -1  1 -1
 T2G       3        10         16       1 -1 -1  1  1 -1 -1
 A1U       1        11          3       1  1  1 -1 -1 -1 -1
 A2U       1        12          7       1  1  1 -1 -1 -1 -1
 EU        1        13          9       1  1  1 -1 -1 -1 -1
 EU        2        14          9       1  1  1 -1 -1 -1 -1
 T1U       1        15         20      -1 -1  1 -1  1  1 -1
 T1U       2        16         20      -1  1 -1 -1  1 -1  1
 T1U       3        17         20       1 -1 -1 -1 -1  1  1
 T2U       1        18         16      -1 -1  1 -1  1  1 -1
 T2U       2        19         16      -1  1 -1 -1  1 -1  1
 T2U       3        20         16       1 -1 -1 -1 -1  1  1
Time Now =         1.1310  Delta time =         1.0335 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
A1G   1    0(   1)    1(   1)    2(   1)    3(   1)    4(   2)    5(   2)    6(   3)    7(   3)    8(   4)    9(   4)
          10(   5)   11(   5)   12(   7)   13(   7)   14(   8)   15(   8)
A2G   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   1)    7(   1)    8(   1)    9(   1)
          10(   2)   11(   2)   12(   3)   13(   3)   14(   4)   15(   4)
EG    1    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)    6(   3)    7(   3)    8(   5)    9(   5)
          10(   7)   11(   7)   12(   9)   13(   9)   14(  12)   15(  12)
EG    2    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)    6(   3)    7(   3)    8(   5)    9(   5)
          10(   7)   11(   7)   12(   9)   13(   9)   14(  12)   15(  12)
T1G   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   1)    6(   2)    7(   2)    8(   4)    9(   4)
          10(   6)   11(   6)   12(   9)   13(   9)   14(  12)   15(  12)
T1G   2    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   1)    6(   2)    7(   2)    8(   4)    9(   4)
          10(   6)   11(   6)   12(   9)   13(   9)   14(  12)   15(  12)
T1G   3    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   1)    6(   2)    7(   2)    8(   4)    9(   4)
          10(   6)   11(   6)   12(   9)   13(   9)   14(  12)   15(  12)
T2G   1    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)    6(   4)    7(   4)    8(   6)    9(   6)
          10(   9)   11(   9)   12(  12)   13(  12)   14(  16)   15(  16)
T2G   2    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)    6(   4)    7(   4)    8(   6)    9(   6)
          10(   9)   11(   9)   12(  12)   13(  12)   14(  16)   15(  16)
T2G   3    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)    6(   4)    7(   4)    8(   6)    9(   6)
          10(   9)   11(   9)   12(  12)   13(  12)   14(  16)   15(  16)
A1U   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   0)    7(   0)    8(   0)    9(   1)
          10(   1)   11(   1)   12(   1)   13(   2)   14(   2)   15(   3)
A2U   1    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   1)    6(   1)    7(   2)    8(   2)    9(   3)
          10(   3)   11(   4)   12(   4)   13(   5)   14(   5)   15(   7)
EU    1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   1)    6(   1)    7(   2)    8(   2)    9(   3)
          10(   3)   11(   5)   12(   5)   13(   7)   14(   7)   15(   9)
EU    2    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   1)    6(   1)    7(   2)    8(   2)    9(   3)
          10(   3)   11(   5)   12(   5)   13(   7)   14(   7)   15(   9)
T1U   1    0(   0)    1(   1)    2(   1)    3(   2)    4(   2)    5(   4)    6(   4)    7(   6)    8(   6)    9(   9)
          10(   9)   11(  12)   12(  12)   13(  16)   14(  16)   15(  20)
T1U   2    0(   0)    1(   1)    2(   1)    3(   2)    4(   2)    5(   4)    6(   4)    7(   6)    8(   6)    9(   9)
          10(   9)   11(  12)   12(  12)   13(  16)   14(  16)   15(  20)
T1U   3    0(   0)    1(   1)    2(   1)    3(   2)    4(   2)    5(   4)    6(   4)    7(   6)    8(   6)    9(   9)
          10(   9)   11(  12)   12(  12)   13(  16)   14(  16)   15(  20)
T2U   1    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   2)    6(   2)    7(   4)    8(   4)    9(   6)
          10(   6)   11(   9)   12(   9)   13(  12)   14(  12)   15(  16)
T2U   2    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   2)    6(   2)    7(   4)    8(   4)    9(   6)
          10(   6)   11(   9)   12(   9)   13(  12)   14(  12)   15(  16)
T2U   3    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   2)    6(   2)    7(   4)    8(   4)    9(   6)
          10(   6)   11(   9)   12(   9)   13(  12)   14(  12)   15(  16)

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is D2h
LMax = =   30
 The dimension of each irreducable representation is
    AG    (  1)    B1G   (  1)    B2G   (  1)    B3G   (  1)    AU    (  1)
    B1U   (  1)    B2U   (  1)    B3U   (  1)
Abelian axes
    1       1.000000       0.000000       0.000000
    2       0.000000       1.000000       0.000000
    3       0.000000       0.000000       1.000000
Symmetry operation directions
  1       0.000000       0.000000       1.000000 ang =  0  1 type = 0 axis = 3
  2       0.000000       1.000000       0.000000 ang =  1  2 type = 2 axis = 2
  3       1.000000       0.000000       0.000000 ang =  1  2 type = 2 axis = 1
  4       0.000000       0.000000       1.000000 ang =  1  2 type = 2 axis = 3
  5       0.000000       0.000000       1.000000 ang =  1  2 type = 3 axis = 3
  6       0.000000       1.000000       0.000000 ang =  0  1 type = 1 axis = 2
  7       1.000000       0.000000       0.000000 ang =  0  1 type = 1 axis = 1
  8       0.000000       0.000000       1.000000 ang =  0  1 type = 1 axis = 3
irep =    1  sym =AG    1  eigs =   1   1   1   1   1   1   1   1
irep =    2  sym =B1G   1  eigs =   1  -1  -1   1   1  -1  -1   1
irep =    3  sym =B2G   1  eigs =   1   1  -1  -1   1   1  -1  -1
irep =    4  sym =B3G   1  eigs =   1  -1   1  -1   1  -1   1  -1
irep =    5  sym =AU    1  eigs =   1   1   1   1  -1  -1  -1  -1
irep =    6  sym =B1U   1  eigs =   1  -1  -1   1  -1   1   1  -1
irep =    7  sym =B2U   1  eigs =   1   1  -1  -1  -1  -1   1   1
irep =    8  sym =B3U   1  eigs =   1  -1   1  -1  -1   1  -1   1
 Number of symmetry operations in the abelian subgroup (excluding E) =    7
 The operations are -
     2     3     4     5     6     7     8
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 AG        1         1        136       1  1  1  1  1  1  1
 B1G       1         2        120      -1 -1  1  1 -1 -1  1
 B2G       1         3        120       1 -1 -1  1  1 -1 -1
 B3G       1         4        120      -1  1 -1  1 -1  1 -1
 AU        1         5        105       1  1  1 -1 -1 -1 -1
 B1U       1         6        120      -1 -1  1 -1  1  1 -1
 B2U       1         7        120       1 -1 -1 -1 -1  1  1
 B3U       1         8        120      -1  1 -1 -1  1 -1  1
Time Now =         1.1554  Delta time =         0.0244 End SymGen

+ Command ExpOrb
+
In GetRMax, RMaxEps =  0.10000000E-05  RMax =    7.6821016117 Angs

----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------

Maximum R in the grid (RMax) =     7.68210 Angs
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) =   10.0
In regions controlled by the wave length (HFacWave) =   10.0
Factor used to control the minimum exponent at each center (MinExpFac) =  300.0
Maximum asymptotic kinetic energy (EMAx) = 100.00000 eV
Maximum step size (MaxStep) =   7.68210 Angs
Factor to increase grid by (GridFac) =     1

    1  Center at =     0.00000 Angs  Alpha Max = 0.93413E+05
    2  Center at =     1.56023 Angs  Alpha Max = 0.24300E+05

Generated Grid

  irg  nin  ntot      step Angs     R end Angs
    1    8     8    0.17314E-03     0.00139
    2    8    16    0.18458E-03     0.00286
    3    8    24    0.22753E-03     0.00468
    4    8    32    0.34522E-03     0.00744
    5    8    40    0.54886E-03     0.01183
    6    8    48    0.87261E-03     0.01882
    7    8    56    0.13873E-02     0.02991
    8    8    64    0.22057E-02     0.04756
    9    8    72    0.35067E-02     0.07561
   10    8    80    0.55752E-02     0.12021
   11    8    88    0.88638E-02     0.19112
   12    8    96    0.14092E-01     0.30386
   13    8   104    0.19060E-01     0.45635
   14    8   112    0.20002E-01     0.61636
   15    8   120    0.18519E-01     0.76451
   16    8   128    0.17538E-01     0.90481
   17    8   136    0.16840E-01     1.03953
   18    8   144    0.16840E-01     1.17425
   19    8   152    0.16901E-01     1.30946
   20    8   160    0.11421E-01     1.40083
   21    8   168    0.72598E-02     1.45891
   22    8   176    0.46146E-02     1.49582
   23    8   184    0.29332E-02     1.51929
   24    8   192    0.18645E-02     1.53420
   25    8   200    0.11851E-02     1.54369
   26    8   208    0.75332E-03     1.54971
   27    8   216    0.48738E-03     1.55361
   28    8   224    0.37814E-03     1.55664
   29    8   232    0.34156E-03     1.55937
   30    8   240    0.10710E-03     1.56023
   31    8   248    0.33947E-03     1.56294
   32    8   256    0.36190E-03     1.56584
   33    8   264    0.44612E-03     1.56941
   34    8   272    0.67686E-03     1.57482
   35    8   280    0.10761E-02     1.58343
   36    8   288    0.17109E-02     1.59712
   37    8   296    0.27201E-02     1.61888
   38    8   304    0.43245E-02     1.65347
   39    8   312    0.68754E-02     1.70848
   40    8   320    0.10931E-01     1.79593
   41    8   328    0.17067E-01     1.93246
   42    8   336    0.17089E-01     2.06917
   43    8   344    0.17109E-01     2.20604
   44    8   352    0.18697E-01     2.35562
   45    8   360    0.20474E-01     2.51942
   46    8   368    0.22174E-01     2.69681
   47    8   376    0.23795E-01     2.88716
   48    8   384    0.25338E-01     3.08987
   49    8   392    0.26805E-01     3.30431
   50    8   400    0.28198E-01     3.52989
   51    8   408    0.29519E-01     3.76605
   52    8   416    0.30772E-01     4.01222
   53    8   424    0.31958E-01     4.26789
   54    8   432    0.33081E-01     4.53254
   55    8   440    0.34145E-01     4.80569
   56    8   448    0.35151E-01     5.08691
   57    8   456    0.36104E-01     5.37574
   58    8   464    0.37006E-01     5.67179
   59    8   472    0.37861E-01     5.97468
   60    8   480    0.38670E-01     6.28404
   61    8   488    0.39437E-01     6.59954
   62    8   496    0.40164E-01     6.92085
   63    8   504    0.40853E-01     7.24767
   64    8   512    0.41508E-01     7.57973
   65    8   520    0.12796E-01     7.68210
Time Now =         1.3664  Delta time =         0.2110 End GenGrid

----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------

Maximum scattering l (lmax) =   15
Maximum scattering m (mmaxs) =   15
Maximum numerical integration l (lmaxi) =   40
Maximum numerical integration m (mmaxi) =   40
Maximum l to include in the asymptotic region (lmasym) =   15
Parameter used to determine the cutoff points (PCutRd) =  0.10000000E-07 au
Maximum E used to determine grid (in eV) =      100.00000
Print flag (iprnfg) =    0
lmasymtyts =   14
 Actual value of lmasym found =     15
Number of regions of the same l expansion (NAngReg) =    9
Angular regions
    1 L =    2  from (    1)         0.00017  to (    7)         0.00121
    2 L =    5  from (    8)         0.00139  to (   23)         0.00445
    3 L =    6  from (   24)         0.00468  to (   31)         0.00710
    4 L =    7  from (   32)         0.00744  to (   47)         0.01794
    5 L =    8  from (   48)         0.01882  to (   55)         0.02853
    6 L =   10  from (   56)         0.02991  to (   63)         0.04535
    7 L =   11  from (   64)         0.04756  to (   71)         0.07211
    8 L =   13  from (   72)         0.07561  to (   79)         0.11464
    9 L =   15  from (   80)         0.12021  to (  520)         7.68210
Angular regions for computing spherical harmonics
    1 lval =   15
    2 lval =   15
Last grid points by processor WorkExp =     1.500
Proc id =   -1  Last grid point =       1
Proc id =    0  Last grid point =      80
Proc id =    1  Last grid point =     112
Proc id =    2  Last grid point =     144
Proc id =    3  Last grid point =     168
Proc id =    4  Last grid point =     200
Proc id =    5  Last grid point =     232
Proc id =    6  Last grid point =     256
Proc id =    7  Last grid point =     288
Proc id =    8  Last grid point =     320
Proc id =    9  Last grid point =     344
Proc id =   10  Last grid point =     376
Proc id =   11  Last grid point =     408
Proc id =   12  Last grid point =     432
Proc id =   13  Last grid point =     464
Proc id =   14  Last grid point =     496
Proc id =   15  Last grid point =     520
Time Now =         1.4050  Delta time =         0.0386 End AngGCt

----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------


 R of maximum density
     1  A1G   1 at max irg =    7  r =   0.02991
     2  EG    1 at max irg =   30  r =   1.56023
     3  EG    2 at max irg =   30  r =   1.56023
     4  T1U   1 at max irg =   30  r =   1.56023
     5  T1U   2 at max irg =   30  r =   1.56023
     6  T1U   3 at max irg =   30  r =   1.56023
     7  A1G   1 at max irg =   30  r =   1.56023
     8  A1G   1 at max irg =   11  r =   0.19112
     9  T1U   1 at max irg =   11  r =   0.19112
    10  T1U   2 at max irg =   11  r =   0.19112
    11  T1U   3 at max irg =   11  r =   0.19112
    12  A1G   1 at max irg =   20  r =   1.40083
    13  T1U   1 at max irg =   29  r =   1.55937
    14  T1U   2 at max irg =   29  r =   1.55937
    15  T1U   3 at max irg =   29  r =   1.55937
    16  EG    1 at max irg =   30  r =   1.56023
    17  EG    2 at max irg =   30  r =   1.56023
    18  A1G   1 at max irg =   40  r =   1.79593
    19  T1U   1 at max irg =   40  r =   1.79593
    20  T1U   2 at max irg =   40  r =   1.79593
    21  T1U   3 at max irg =   40  r =   1.79593
    22  T2G   1 at max irg =   35  r =   1.58343
    23  T2G   2 at max irg =   35  r =   1.58343
    24  T2G   3 at max irg =   35  r =   1.58343
    25  EG    1 at max irg =   40  r =   1.79593
    26  EG    2 at max irg =   40  r =   1.79593
    27  T2U   1 at max irg =   35  r =   1.58343
    28  T2U   2 at max irg =   35  r =   1.58343
    29  T2U   3 at max irg =   35  r =   1.58343
    30  T1U   1 at max irg =   37  r =   1.61888
    31  T1U   2 at max irg =   37  r =   1.61888
    32  T1U   3 at max irg =   37  r =   1.61888
    33  T1G   1 at max irg =   35  r =   1.58343
    34  T1G   2 at max irg =   35  r =   1.58343
    35  T1G   3 at max irg =   35  r =   1.58343

Rotation coefficients for orbital     1  grp =    1 A1G   1
     1  1.0000000000

Rotation coefficients for orbital     2  grp =    2 EG    1
     2 -0.1769666276    3  0.9842168525

Rotation coefficients for orbital     3  grp =    2 EG    2
     2  0.9842168525    3  0.1769666276

Rotation coefficients for orbital     4  grp =    3 T1U   1
     4 -0.0000000000    5 -0.0000000000    6  1.0000000000

Rotation coefficients for orbital     5  grp =    3 T1U   2
     4 -1.0000000000    5 -0.0000000000    6 -0.0000000000

Rotation coefficients for orbital     6  grp =    3 T1U   3
     4 -0.0000000000    5  1.0000000000    6  0.0000000000

Rotation coefficients for orbital     7  grp =    4 A1G   1
     7  1.0000000000

Rotation coefficients for orbital     8  grp =    5 A1G   1
     8  1.0000000000

Rotation coefficients for orbital     9  grp =    6 T1U   1
     9  0.0000000000   10  1.0000000000   11 -0.0000000000

Rotation coefficients for orbital    10  grp =    6 T1U   2
     9 -0.0000000000   10  0.0000000000   11  1.0000000000

Rotation coefficients for orbital    11  grp =    6 T1U   3
     9  1.0000000000   10 -0.0000000000   11  0.0000000000

Rotation coefficients for orbital    12  grp =    7 A1G   1
    12  1.0000000000

Rotation coefficients for orbital    13  grp =    8 T1U   1
    13  0.0000000000   14  1.0000000000   15 -0.0000000000

Rotation coefficients for orbital    14  grp =    8 T1U   2
    13 -1.0000000000   14  0.0000000000   15 -0.0000000000

Rotation coefficients for orbital    15  grp =    8 T1U   3
    13 -0.0000000000   14  0.0000000000   15  1.0000000000

Rotation coefficients for orbital    16  grp =    9 EG    1
    16 -0.5002934503   17 -0.8658559139

Rotation coefficients for orbital    17  grp =    9 EG    2
    16  0.8658559139   17 -0.5002934503

Rotation coefficients for orbital    18  grp =   10 A1G   1
    18  1.0000000000

Rotation coefficients for orbital    19  grp =   11 T1U   1
    19  0.0000000000   20 -0.0000000000   21 -1.0000000000

Rotation coefficients for orbital    20  grp =   11 T1U   2
    19  0.0000000000   20 -1.0000000000   21  0.0000000000

Rotation coefficients for orbital    21  grp =   11 T1U   3
    19 -1.0000000000   20 -0.0000000000   21 -0.0000000000

Rotation coefficients for orbital    22  grp =   12 T2G   1
    22  0.0000000000   23  1.0000000000   24 -0.0000000000

Rotation coefficients for orbital    23  grp =   12 T2G   2
    22 -0.0000000000   23  0.0000000000   24  1.0000000000

Rotation coefficients for orbital    24  grp =   12 T2G   3
    22  1.0000000000   23 -0.0000000000   24  0.0000000000

Rotation coefficients for orbital    25  grp =   13 EG    1
    25 -0.1633372263   26  0.9865702968

Rotation coefficients for orbital    26  grp =   13 EG    2
    25 -0.9865702968   26 -0.1633372263

Rotation coefficients for orbital    27  grp =   14 T2U   1
    27  0.0000000000   28 -0.0000000000   29 -1.0000000000

Rotation coefficients for orbital    28  grp =   14 T2U   2
    27  0.0000000000   28  1.0000000000   29 -0.0000000000

Rotation coefficients for orbital    29  grp =   14 T2U   3
    27  1.0000000000   28 -0.0000000000   29  0.0000000000

Rotation coefficients for orbital    30  grp =   15 T1U   1
    30 -0.0000000000   31 -0.0000000000   32  1.0000000000

Rotation coefficients for orbital    31  grp =   15 T1U   2
    30  1.0000000000   31  0.0000000000   32  0.0000000000

Rotation coefficients for orbital    32  grp =   15 T1U   3
    30 -0.0000000000   31  1.0000000000   32  0.0000000000

Rotation coefficients for orbital    33  grp =   16 T1G   1
    33  0.0000000000   34 -1.0000000000   35 -0.0000000000

Rotation coefficients for orbital    34  grp =   16 T1G   2
    33  1.0000000000   34  0.0000000000   35  0.0000000000

Rotation coefficients for orbital    35  grp =   16 T1G   3
    33 -0.0000000000   34 -0.0000000000   35  1.0000000000
Number of orbital groups and degeneracis are        16
  1  2  3  1  1  3  1  3  2  1  3  3  2  3  3  3
Number of orbital groups and number of electrons when fully occupied
        16
  2  4  6  2  2  6  2  6  4  2  6  6  4  6  6  6
Time Now =         3.8408  Delta time =         2.4357 End RotOrb

----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------

 First orbital group to expand (mofr) =    1
 Last orbital group to expand (moto) =   16
Orbital     1 of  A1G   1 symmetry normalization integral =  0.99999999
Orbital     2 of  EG    1 symmetry normalization integral =  0.55843502
Orbital     3 of  T1U   1 symmetry normalization integral =  0.58773011
Orbital     4 of  A1G   1 symmetry normalization integral =  0.53527419
Orbital     5 of  A1G   1 symmetry normalization integral =  0.99999991
Orbital     6 of  T1U   1 symmetry normalization integral =  0.99999985
Orbital     7 of  A1G   1 symmetry normalization integral =  0.96812200
Orbital     8 of  T1U   1 symmetry normalization integral =  0.96361789
Orbital     9 of  EG    1 symmetry normalization integral =  0.95603090
Orbital    10 of  A1G   1 symmetry normalization integral =  0.98514732
Orbital    11 of  T1U   1 symmetry normalization integral =  0.99135487
Orbital    12 of  T2G   1 symmetry normalization integral =  0.98380448
Orbital    13 of  EG    1 symmetry normalization integral =  0.99404941
Orbital    14 of  T2U   1 symmetry normalization integral =  0.98304625
Orbital    15 of  T1U   1 symmetry normalization integral =  0.98575827
Orbital    16 of  T1G   1 symmetry normalization integral =  0.97340206
Time Now =         8.8191  Delta time =         4.9783 End ExpOrb

+ Command GenFormPhIon
+

----------------------------------------------------------------------
SymProd - Construct products of symmetry types
----------------------------------------------------------------------

Number of sets of degenerate orbitals =   16
Set    1  has degeneracy     1
Orbital     1  is num     1  type =   1  name - A1G   1
Set    2  has degeneracy     2
Orbital     1  is num     2  type =   3  name - EG    1
Orbital     2  is num     3  type =   4  name - EG    2
Set    3  has degeneracy     3
Orbital     1  is num     4  type =  15  name - T1U   1
Orbital     2  is num     5  type =  16  name - T1U   2
Orbital     3  is num     6  type =  17  name - T1U   3
Set    4  has degeneracy     1
Orbital     1  is num     7  type =   1  name - A1G   1
Set    5  has degeneracy     1
Orbital     1  is num     8  type =   1  name - A1G   1
Set    6  has degeneracy     3
Orbital     1  is num     9  type =  15  name - T1U   1
Orbital     2  is num    10  type =  16  name - T1U   2
Orbital     3  is num    11  type =  17  name - T1U   3
Set    7  has degeneracy     1
Orbital     1  is num    12  type =   1  name - A1G   1
Set    8  has degeneracy     3
Orbital     1  is num    13  type =  15  name - T1U   1
Orbital     2  is num    14  type =  16  name - T1U   2
Orbital     3  is num    15  type =  17  name - T1U   3
Set    9  has degeneracy     2
Orbital     1  is num    16  type =   3  name - EG    1
Orbital     2  is num    17  type =   4  name - EG    2
Set   10  has degeneracy     1
Orbital     1  is num    18  type =   1  name - A1G   1
Set   11  has degeneracy     3
Orbital     1  is num    19  type =  15  name - T1U   1
Orbital     2  is num    20  type =  16  name - T1U   2
Orbital     3  is num    21  type =  17  name - T1U   3
Set   12  has degeneracy     3
Orbital     1  is num    22  type =   8  name - T2G   1
Orbital     2  is num    23  type =   9  name - T2G   2
Orbital     3  is num    24  type =  10  name - T2G   3
Set   13  has degeneracy     2
Orbital     1  is num    25  type =   3  name - EG    1
Orbital     2  is num    26  type =   4  name - EG    2
Set   14  has degeneracy     3
Orbital     1  is num    27  type =  18  name - T2U   1
Orbital     2  is num    28  type =  19  name - T2U   2
Orbital     3  is num    29  type =  20  name - T2U   3
Set   15  has degeneracy     3
Orbital     1  is num    30  type =  15  name - T1U   1
Orbital     2  is num    31  type =  16  name - T1U   2
Orbital     3  is num    32  type =  17  name - T1U   3
Set   16  has degeneracy     3
Orbital     1  is num    33  type =   5  name - T1G   1
Orbital     2  is num    34  type =   6  name - T1G   2
Orbital     3  is num    35  type =   7  name - T1G   3
Orbital occupations by degenerate group
    1  A1G      occ = 1
    2  EG       occ = 4
    3  T1U      occ = 6
    4  A1G      occ = 2
    5  A1G      occ = 2
    6  T1U      occ = 6
    7  A1G      occ = 2
    8  T1U      occ = 6
    9  EG       occ = 4
   10  A1G      occ = 2
   11  T1U      occ = 6
   12  T2G      occ = 6
   13  EG       occ = 4
   14  T2U      occ = 6
   15  T1U      occ = 6
   16  T1G      occ = 6
The dimension of each irreducable representation is
    A1G   (  1)    A2G   (  1)    EG    (  2)    T1G   (  3)    T2G   (  3)
    A1U   (  1)    A2U   (  1)    EU    (  2)    T1U   (  3)    T2U   (  3)
Symmetry of the continuum orbital is T1U
Symmetry of the total state is T1U
Spin degeneracy of the total state is =    1
Symmetry of the target state is A1G
Spin degeneracy of the target state is =    2
Symmetry of the initial state is A1G
Spin degeneracy of the initial state is =    1
Orbital occupations of initial state by degenerate group
    1  A1G      occ = 2
    2  EG       occ = 4
    3  T1U      occ = 6
    4  A1G      occ = 2
    5  A1G      occ = 2
    6  T1U      occ = 6
    7  A1G      occ = 2
    8  T1U      occ = 6
    9  EG       occ = 4
   10  A1G      occ = 2
   11  T1U      occ = 6
   12  T2G      occ = 6
   13  EG       occ = 4
   14  T2U      occ = 6
   15  T1U      occ = 6
   16  T1G      occ = 6
Open shell symmetry types
    1  A1G    iele =    1
Use only configuration of type A1G
MS2 =    1  SDGN =    2
NumAlpha =    1
List of determinants found
    1:   1.00000   0.00000    1
Spin adapted configurations
Configuration    1
    1:   1.00000   0.00000    1
 Each irreducable representation is present the number of times indicated
    A1G   (  1)

 representation A1G    component     1  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1
Open shell symmetry types
    1  A1G    iele =    1
    2  T1U    iele =    1
Use only configuration of type T1U
 Each irreducable representation is present the number of times indicated
    T1U   (  1)

 representation T1U    component     1  fun    1
Symmeterized Function from AddNewShell
    1:  -0.70711   0.00000    1    6
    2:   0.70711   0.00000    2    3

 representation T1U    component     2  fun    1
Symmeterized Function from AddNewShell
    1:  -0.70711   0.00000    1    7
    2:   0.70711   0.00000    2    4

 representation T1U    component     3  fun    1
Symmeterized Function from AddNewShell
    1:  -0.70711   0.00000    1    8
    2:   0.70711   0.00000    2    5
Open shell symmetry types
    1  A1G    iele =    1
Use only configuration of type A1G
MS2 =    1  SDGN =    2
NumAlpha =    1
List of determinants found
    1:   1.00000   0.00000    1
Spin adapted configurations
Configuration    1
    1:   1.00000   0.00000    1
 Each irreducable representation is present the number of times indicated
    A1G   (  1)

 representation A1G    component     1  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1
Direct product basis set
Direct product basis function
    1:  -0.70711   0.00000    1    3    4    5    6    7    8    9   10   11
                             12   13   14   15   16   17   18   19   20   21
                             22   23   24   25   26   27   28   29   30   31
                             32   33   34   35   36   37   38   39   40   41
                             42   43   44   45   46   47   48   49   50   51
                             52   53   54   55   56   57   58   59   60   61
                             62   63   64   65   66   67   68   69   70   74
    2:   0.70711   0.00000    2    3    4    5    6    7    8    9   10   11
                             12   13   14   15   16   17   18   19   20   21
                             22   23   24   25   26   27   28   29   30   31
                             32   33   34   35   36   37   38   39   40   41
                             42   43   44   45   46   47   48   49   50   51
                             52   53   54   55   56   57   58   59   60   61
                             62   63   64   65   66   67   68   69   70   71
Direct product basis function
    1:  -0.70711   0.00000    1    3    4    5    6    7    8    9   10   11
                             12   13   14   15   16   17   18   19   20   21
                             22   23   24   25   26   27   28   29   30   31
                             32   33   34   35   36   37   38   39   40   41
                             42   43   44   45   46   47   48   49   50   51
                             52   53   54   55   56   57   58   59   60   61
                             62   63   64   65   66   67   68   69   70   75
    2:   0.70711   0.00000    2    3    4    5    6    7    8    9   10   11
                             12   13   14   15   16   17   18   19   20   21
                             22   23   24   25   26   27   28   29   30   31
                             32   33   34   35   36   37   38   39   40   41
                             42   43   44   45   46   47   48   49   50   51
                             52   53   54   55   56   57   58   59   60   61
                             62   63   64   65   66   67   68   69   70   72
Direct product basis function
    1:  -0.70711   0.00000    1    3    4    5    6    7    8    9   10   11
                             12   13   14   15   16   17   18   19   20   21
                             22   23   24   25   26   27   28   29   30   31
                             32   33   34   35   36   37   38   39   40   41
                             42   43   44   45   46   47   48   49   50   51
                             52   53   54   55   56   57   58   59   60   61
                             62   63   64   65   66   67   68   69   70   76
    2:   0.70711   0.00000    2    3    4    5    6    7    8    9   10   11
                             12   13   14   15   16   17   18   19   20   21
                             22   23   24   25   26   27   28   29   30   31
                             32   33   34   35   36   37   38   39   40   41
                             42   43   44   45   46   47   48   49   50   51
                             52   53   54   55   56   57   58   59   60   61
                             62   63   64   65   66   67   68   69   70   73
Closed shell target
Time Now =         8.8304  Delta time =         0.0114 End SymProd

----------------------------------------------------------------------
MatEle - Program to compute Matrix Elements over Determinants
----------------------------------------------------------------------

Configuration     1
    1:  -0.70711   0.00000    1    3    4    5    6    7    8    9   10   11
                             12   13   14   15   16   17   18   19   20   21
                             22   23   24   25   26   27   28   29   30   31
                             32   33   34   35   36   37   38   39   40   41
                             42   43   44   45   46   47   48   49   50   51
                             52   53   54   55   56   57   58   59   60   61
                             62   63   64   65   66   67   68   69   70   74
    2:   0.70711   0.00000    2    3    4    5    6    7    8    9   10   11
                             12   13   14   15   16   17   18   19   20   21
                             22   23   24   25   26   27   28   29   30   31
                             32   33   34   35   36   37   38   39   40   41
                             42   43   44   45   46   47   48   49   50   51
                             52   53   54   55   56   57   58   59   60   61
                             62   63   64   65   66   67   68   69   70   71
Configuration     2
    1:  -0.70711   0.00000    1    3    4    5    6    7    8    9   10   11
                             12   13   14   15   16   17   18   19   20   21
                             22   23   24   25   26   27   28   29   30   31
                             32   33   34   35   36   37   38   39   40   41
                             42   43   44   45   46   47   48   49   50   51
                             52   53   54   55   56   57   58   59   60   61
                             62   63   64   65   66   67   68   69   70   75
    2:   0.70711   0.00000    2    3    4    5    6    7    8    9   10   11
                             12   13   14   15   16   17   18   19   20   21
                             22   23   24   25   26   27   28   29   30   31
                             32   33   34   35   36   37   38   39   40   41
                             42   43   44   45   46   47   48   49   50   51
                             52   53   54   55   56   57   58   59   60   61
                             62   63   64   65   66   67   68   69   70   72
Configuration     3
    1:  -0.70711   0.00000    1    3    4    5    6    7    8    9   10   11
                             12   13   14   15   16   17   18   19   20   21
                             22   23   24   25   26   27   28   29   30   31
                             32   33   34   35   36   37   38   39   40   41
                             42   43   44   45   46   47   48   49   50   51
                             52   53   54   55   56   57   58   59   60   61
                             62   63   64   65   66   67   68   69   70   76
    2:   0.70711   0.00000    2    3    4    5    6    7    8    9   10   11
                             12   13   14   15   16   17   18   19   20   21
                             22   23   24   25   26   27   28   29   30   31
                             32   33   34   35   36   37   38   39   40   41
                             42   43   44   45   46   47   48   49   50   51
                             52   53   54   55   56   57   58   59   60   61
                             62   63   64   65   66   67   68   69   70   73
Direct product Configuration Cont sym =    1  Targ sym =    1
    1:  -0.70711   0.00000    1    3    4    5    6    7    8    9   10   11
                             12   13   14   15   16   17   18   19   20   21
                             22   23   24   25   26   27   28   29   30   31
                             32   33   34   35   36   37   38   39   40   41
                             42   43   44   45   46   47   48   49   50   51
                             52   53   54   55   56   57   58   59   60   61
                             62   63   64   65   66   67   68   69   70   74
    2:   0.70711   0.00000    2    3    4    5    6    7    8    9   10   11
                             12   13   14   15   16   17   18   19   20   21
                             22   23   24   25   26   27   28   29   30   31
                             32   33   34   35   36   37   38   39   40   41
                             42   43   44   45   46   47   48   49   50   51
                             52   53   54   55   56   57   58   59   60   61
                             62   63   64   65   66   67   68   69   70   71
Direct product Configuration Cont sym =    2  Targ sym =    1
    1:  -0.70711   0.00000    1    3    4    5    6    7    8    9   10   11
                             12   13   14   15   16   17   18   19   20   21
                             22   23   24   25   26   27   28   29   30   31
                             32   33   34   35   36   37   38   39   40   41
                             42   43   44   45   46   47   48   49   50   51
                             52   53   54   55   56   57   58   59   60   61
                             62   63   64   65   66   67   68   69   70   75
    2:   0.70711   0.00000    2    3    4    5    6    7    8    9   10   11
                             12   13   14   15   16   17   18   19   20   21
                             22   23   24   25   26   27   28   29   30   31
                             32   33   34   35   36   37   38   39   40   41
                             42   43   44   45   46   47   48   49   50   51
                             52   53   54   55   56   57   58   59   60   61
                             62   63   64   65   66   67   68   69   70   72
Direct product Configuration Cont sym =    3  Targ sym =    1
    1:  -0.70711   0.00000    1    3    4    5    6    7    8    9   10   11
                             12   13   14   15   16   17   18   19   20   21
                             22   23   24   25   26   27   28   29   30   31
                             32   33   34   35   36   37   38   39   40   41
                             42   43   44   45   46   47   48   49   50   51
                             52   53   54   55   56   57   58   59   60   61
                             62   63   64   65   66   67   68   69   70   76
    2:   0.70711   0.00000    2    3    4    5    6    7    8    9   10   11
                             12   13   14   15   16   17   18   19   20   21
                             22   23   24   25   26   27   28   29   30   31
                             32   33   34   35   36   37   38   39   40   41
                             42   43   44   45   46   47   48   49   50   51
                             52   53   54   55   56   57   58   59   60   61
                             62   63   64   65   66   67   68   69   70   73
Overlap of Direct Product expansion and Symmeterized states
Symmetry of Continuum =    9
Symmetry of target =    1
Symmetry of total states =    9

Total symmetry component =    1

Cont      Target Component
Comp        1
   1   0.10000000E+01
   2   0.00000000E+00
   3   0.00000000E+00

Total symmetry component =    2

Cont      Target Component
Comp        1
   1   0.00000000E+00
   2   0.10000000E+01
   3   0.00000000E+00

Total symmetry component =    3

Cont      Target Component
Comp        1
   1   0.00000000E+00
   2   0.00000000E+00
   3   0.10000000E+01
Initial State Configuration
    1:   1.00000   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   18   19   20
                             21   22   23   24   25   26   27   28   29   30
                             31   32   33   34   35   36   37   38   39   40
                             41   42   43   44   45   46   47   48   49   50
                             51   52   53   54   55   56   57   58   59   60
                             61   62   63   64   65   66   67   68   69   70
One electron matrix elements between initial and final states
    1:   -1.414213562    0.000000000  <    1|   71>

Reduced formula list
    1    1    1 -0.1414213562E+01
Time Now =         8.8318  Delta time =         0.0013 End MatEle

+ Command DipoleOp
+

----------------------------------------------------------------------
DipoleOp - Dipole Operator Program
----------------------------------------------------------------------

Number of orbitals in formula for the dipole operator (NOrbSel) =    1
Symmetry of the continuum orbital (iContSym) =     9 or T1U
Symmetry of total final state (iTotalSym) =     9 or T1U
Symmetry of the initial state (iInitSym) =     1 or A1G
Symmetry of the ionized target state (iTargSym) =     1 or A1G
List of unique symmetry types
In the product of the symmetry types T1U   A1G
 Each irreducable representation is present the number of times indicated
    T1U   (  1)
In the product of the symmetry types T1U   A1G
 Each irreducable representation is present the number of times indicated
    T1U   (  1)
In the product of the symmetry types T1U   A2G
 Each irreducable representation is present the number of times indicated
    T2U   (  1)
In the product of the symmetry types T1U   EG
 Each irreducable representation is present the number of times indicated
    T1U   (  1)
    T2U   (  1)
In the product of the symmetry types T1U   T1G
 Each irreducable representation is present the number of times indicated
    A1U   (  1)
    EU    (  1)
    T1U   (  1)
    T2U   (  1)
In the product of the symmetry types T1U   T2G
 Each irreducable representation is present the number of times indicated
    A2U   (  1)
    EU    (  1)
    T1U   (  1)
    T2U   (  1)
In the product of the symmetry types T1U   A1U
 Each irreducable representation is present the number of times indicated
    T1G   (  1)
In the product of the symmetry types T1U   A2U
 Each irreducable representation is present the number of times indicated
    T2G   (  1)
In the product of the symmetry types T1U   EU
 Each irreducable representation is present the number of times indicated
    T1G   (  1)
    T2G   (  1)
In the product of the symmetry types T1U   T1U
 Each irreducable representation is present the number of times indicated
    A1G   (  1)
    EG    (  1)
    T1G   (  1)
    T2G   (  1)
Unique dipole matrix type     1 Dipole symmetry type =T1U
     Final state symmetry type = T1U    Target sym =A1G
     Continuum type =T1U
In the product of the symmetry types T1U   T2U
 Each irreducable representation is present the number of times indicated
    A2G   (  1)
    EG    (  1)
    T1G   (  1)
    T2G   (  1)
In the product of the symmetry types T1U   A1G
 Each irreducable representation is present the number of times indicated
    T1U   (  1)
In the product of the symmetry types T1U   A1G
 Each irreducable representation is present the number of times indicated
    T1U   (  1)
In the product of the symmetry types T1U   A1G
 Each irreducable representation is present the number of times indicated
    T1U   (  1)
Irreducible representation containing the dipole operator is T1U
Number of different dipole operators in this representation is     1
In the product of the symmetry types T1U   A1G
 Each irreducable representation is present the number of times indicated
    T1U   (  1)
Vector of the total symmetry
ie =    1  ij =    1
    1 (  0.10000000E+01, -0.00000000E+00)
    2 (  0.00000000E+00, -0.00000000E+00)
    3 (  0.00000000E+00, -0.00000000E+00)
Vector of the total symmetry
ie =    2  ij =    1
    1 ( -0.00000000E+00,  0.00000000E+00)
    2 (  0.10000000E+01,  0.00000000E+00)
    3 (  0.00000000E+00,  0.00000000E+00)
Vector of the total symmetry
ie =    3  ij =    1
    1 ( -0.00000000E+00,  0.00000000E+00)
    2 (  0.00000000E+00,  0.00000000E+00)
    3 (  0.10000000E+01,  0.00000000E+00)
Component Dipole Op Sym =  1 goes to Total Sym component   1 phase = 1.0
Component Dipole Op Sym =  2 goes to Total Sym component   2 phase = 1.0
Component Dipole Op Sym =  3 goes to Total Sym component   3 phase = 1.0

Dipole operator types by symmetry components (x=1, y=2, z=3)
sym comp =  1
  coefficients =  0.00000000  0.00000000  1.00000000
sym comp =  2
  coefficients =  1.00000000  0.00000000  0.00000000
sym comp =  3
  coefficients =  0.00000000  1.00000000  0.00000000

Formula for dipole operator

Dipole operator sym comp 1  index =    1
  1  Cont comp  1  Orb  1  Coef =  -1.4142135620
Symmetry type to write out (SymTyp) =T1U
Time Now =        24.9298  Delta time =        16.0981 End DipoleOp

+ Command GetPot
+

----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------

Total density =     69.00000000
Time Now =        25.1557  Delta time =         0.2259 End Den

----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------

 vasymp =  0.69000000E+02 facnorm =  0.10000000E+01
Time Now =        25.1948  Delta time =         0.0391 Electronic part
Time Now =        25.1986  Delta time =         0.0037 End StPot

+ Command PhIon
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.24900000E+04  eV
 Do E =  0.10000000E+00 eV (  0.36749326E-02 AU)
Time Now =        25.2760  Delta time =         0.0774 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =T1U   1
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =     T
Maximum l for computed scattering solutions (LMaxK) =   15
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    65
Number of partial waves (np) =    20
Number of asymptotic solutions on the right (NAsymR) =    20
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   15
Number of partial waves in the asymptotic region (npasym) =   20
Number of orthogonality constraints (NOrthUse) =    5
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  136
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =   15
Highest l used at large r (lpasym) =   15
Higest l used in the asymptotic potential (lpzb) =   30
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =   20
Time Now =        25.2921  Delta time =         0.0161 Energy independent setup

Compute solution for E =    0.1000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.22204460E-15
 i =  2  lval =   3  stpote = -0.48276795E-18
 i =  3  lval =   3  stpote =  0.92551265E-16
 i =  4  lval =   5  stpote = -0.10353285E-03
For potential     2
 i =  1  exps = -0.58068273E+02 -0.20000000E+01  stpote = -0.58353102E-16
 i =  2  exps = -0.58068273E+02 -0.20000000E+01  stpote = -0.58353377E-16
 i =  3  exps = -0.58068273E+02 -0.20000000E+01  stpote = -0.58353886E-16
 i =  4  exps = -0.58068273E+02 -0.20000000E+01  stpote = -0.58354551E-16
For potential     3
Number of asymptotic regions =       7
Final point in integration =   0.94081469E+02 Angstroms
Time Now =        29.2169  Delta time =         3.9248 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00053252 rmsk=     0.00364871
iL =   1 Iter =   2 c.s. =      0.00002530 rmsk=     0.00427732
iL =   1 Iter =   3 c.s. =      0.00002589 rmsk=     0.00017084
iL =   1 Iter =   4 c.s. =      0.00002550 rmsk=     0.00001316
iL =   1 Iter =   5 c.s. =      0.00002550 rmsk=     0.00000011
iL =   1 Iter =   6 c.s. =      0.00002550 rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =      4.46531229 rmsk=     0.33411401
iL =   2 Iter =   2 c.s. =      0.20797864 rmsk=     0.39095972
iL =   2 Iter =   3 c.s. =      0.21119540 rmsk=     0.01536412
iL =   2 Iter =   4 c.s. =      0.20799070 rmsk=     0.00118906
iL =   2 Iter =   5 c.s. =      0.20798027 rmsk=     0.00001118
iL =   2 Iter =   6 c.s. =      0.20797997 rmsk=     0.00000042
      Final k matrix
     ROW  1
  (-0.24221381E-02, 0.36165119E-02) (-0.25567905E-02, 0.12728101E-03)
  ( 0.34835986E-04, 0.35330631E-05) (-0.32366625E-04, 0.12027733E-04)
  (-0.89723881E-07,-0.10177004E-07) (-0.28676166E-06, 0.77555315E-08)
  ( 0.39621343E-10,-0.35422288E-11) ( 0.69791027E-10, 0.53366535E-11)
  (-0.15954009E-09, 0.22391042E-10) (-0.11338156E-13,-0.27162391E-15)
  (-0.19218867E-13, 0.54828622E-14) (-0.84016909E-13, 0.15298040E-13)
  ( 0.46052185E-18,-0.57551803E-18) ( 0.60965823E-18,-0.99281411E-19)
  ( 0.24464492E-18, 0.64136620E-18) (-0.10564108E-16, 0.10932230E-17)
  ( 0.16261155E-20, 0.16717176E-21) (-0.25243772E-21, 0.27595410E-21)
  (-0.86477621E-21,-0.14090011E-21) (-0.96150663E-21,-0.34804555E-21)
     ROW  2
  (-0.21896063E+00, 0.32682296E+00) (-0.23031357E+00, 0.11567942E-01)
  ( 0.31992634E-02, 0.31951851E-03) (-0.27900307E-02, 0.10861723E-02)
  (-0.84346727E-05,-0.90512628E-06) (-0.25642585E-04, 0.69160479E-06)
  ( 0.38788474E-08,-0.32092055E-09) ( 0.66807079E-08, 0.47311111E-09)
  (-0.13511505E-07, 0.20005310E-08) (-0.11876210E-11,-0.13223694E-13)
  (-0.19212182E-11, 0.50630978E-12) (-0.74151975E-11, 0.13648632E-11)
  ( 0.73528272E-16,-0.52604512E-16) ( 0.89894930E-16,-0.78704129E-17)
  ( 0.71571258E-16, 0.55063168E-16) (-0.84601460E-15, 0.95445091E-16)
  ( 0.14659566E-18, 0.14186096E-19) (-0.26772540E-19, 0.23667389E-19)
  (-0.79375557E-19,-0.13821414E-19) (-0.84226342E-19,-0.30239292E-19)
MaxIter =   6 c.s. =      0.20797997 rmsk=     0.00000042
Time Now =        45.9760  Delta time =        16.7590 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.24900000E+04  eV
 Do E =  0.60000000E+02 eV (  0.22049596E+01 AU)
Time Now =        46.0527  Delta time =         0.0767 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =T1U   1
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =     T
Maximum l for computed scattering solutions (LMaxK) =   15
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    65
Number of partial waves (np) =    20
Number of asymptotic solutions on the right (NAsymR) =    20
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   15
Number of partial waves in the asymptotic region (npasym) =   20
Number of orthogonality constraints (NOrthUse) =    5
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  136
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =   15
Highest l used at large r (lpasym) =   15
Higest l used in the asymptotic potential (lpzb) =   30
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =   20
Time Now =        46.0687  Delta time =         0.0160 Energy independent setup

Compute solution for E =   60.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.22204460E-15
 i =  2  lval =   3  stpote = -0.48276795E-18
 i =  3  lval =   3  stpote =  0.92551265E-16
 i =  4  lval =   5  stpote = -0.10353285E-03
For potential     2
 i =  1  exps = -0.58068273E+02 -0.20000000E+01  stpote = -0.13368264E-15
 i =  2  exps = -0.58068273E+02 -0.20000000E+01  stpote = -0.13368291E-15
 i =  3  exps = -0.58068273E+02 -0.20000000E+01  stpote = -0.13368342E-15
 i =  4  exps = -0.58068273E+02 -0.20000000E+01  stpote = -0.13368409E-15
For potential     3
Number of asymptotic regions =      30
Final point in integration =   0.26186127E+02 Angstroms
Time Now =        50.5744  Delta time =         4.5057 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00016960 rmsk=     0.00205914
iL =   1 Iter =   2 c.s. =      0.00028925 rmsk=     0.00175418
iL =   1 Iter =   3 c.s. =      0.00030722 rmsk=     0.00026789
iL =   1 Iter =   4 c.s. =      0.00030714 rmsk=     0.00000701
iL =   1 Iter =   5 c.s. =      0.00030712 rmsk=     0.00000018
iL =   1 Iter =   6 c.s. =      0.00030712 rmsk=     0.00000001
iL =   2 Iter =   1 c.s. =      1.50322864 rmsk=     0.19383766
iL =   2 Iter =   2 c.s. =      2.53773938 rmsk=     0.16423496
iL =   2 Iter =   3 c.s. =      2.69416009 rmsk=     0.02504815
iL =   2 Iter =   4 c.s. =      2.69342297 rmsk=     0.00064376
iL =   2 Iter =   5 c.s. =      2.69322119 rmsk=     0.00001704
iL =   2 Iter =   6 c.s. =      2.69322011 rmsk=     0.00000054
iL =   2 Iter =   7 c.s. =      2.69322004 rmsk=     0.00000000
iL =   2 Iter =   8 c.s. =      2.69322005 rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.63376092E-02,-0.75850407E-02) ( 0.89512976E-03, 0.10969373E-02)
  (-0.39337279E-02, 0.12592341E-02) (-0.23633757E-02,-0.21929424E-02)
  ( 0.46417842E-02,-0.18993867E-02) ( 0.55044485E-03, 0.10950090E-01)
  (-0.81161132E-03, 0.64619632E-03) (-0.13114147E-02, 0.77890800E-03)
  (-0.18168351E-02, 0.52305771E-02) ( 0.12626203E-03,-0.13110277E-03)
  ( 0.16724449E-03,-0.16018864E-03) ( 0.10492088E-03, 0.65613472E-03)
  (-0.62876554E-05, 0.96662502E-05) (-0.93951480E-05, 0.14559527E-04)
  (-0.12032858E-04, 0.16637728E-04) (-0.18667245E-05, 0.85166062E-04)
  ( 0.29921790E-06,-0.75793190E-06) ( 0.35983167E-06,-0.95144358E-06)
  ( 0.36801465E-06,-0.10830589E-05) ( 0.13751600E-05, 0.35434754E-05)
     ROW  2
  ( 0.59236065E+00,-0.71287172E+00) ( 0.84216012E-01, 0.10080281E+00)
  (-0.36976571E+00, 0.11585056E+00) (-0.22201638E+00,-0.20620624E+00)
  ( 0.43401796E+00,-0.17567207E+00) ( 0.50785450E-01, 0.10252644E+01)
  (-0.75666763E-01, 0.60079900E-01) (-0.12233044E+00, 0.72335826E-01)
  (-0.16948933E+00, 0.48856777E+00) ( 0.11748742E-01,-0.12200018E-01)
  ( 0.15578132E-01,-0.14907265E-01) ( 0.98419031E-02, 0.61371338E-01)
  (-0.58249826E-03, 0.89973965E-03) (-0.87192968E-03, 0.13557599E-02)
  (-0.11178489E-02, 0.15492914E-02) (-0.15887693E-03, 0.79542800E-02)
  ( 0.27573317E-04,-0.70577363E-04) ( 0.33191235E-04,-0.88623222E-04)
  ( 0.33940160E-04,-0.10092274E-03) ( 0.12904452E-03, 0.33123370E-03)
MaxIter =   8 c.s. =      2.69322005 rmsk=     0.00000000
Time Now =        71.5422  Delta time =        20.9678 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.24900000E+04  eV
 Do E =  0.90000000E+02 eV (  0.33074393E+01 AU)
Time Now =        71.6179  Delta time =         0.0757 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =T1U   1
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =     T
Maximum l for computed scattering solutions (LMaxK) =   15
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    65
Number of partial waves (np) =    20
Number of asymptotic solutions on the right (NAsymR) =    20
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   15
Number of partial waves in the asymptotic region (npasym) =   20
Number of orthogonality constraints (NOrthUse) =    5
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  136
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =   15
Highest l used at large r (lpasym) =   15
Higest l used in the asymptotic potential (lpzb) =   30
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =   20
Time Now =        71.6340  Delta time =         0.0161 Energy independent setup

Compute solution for E =   90.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.22204460E-15
 i =  2  lval =   3  stpote = -0.48276795E-18
 i =  3  lval =   3  stpote =  0.92551265E-16
 i =  4  lval =   5  stpote = -0.10353285E-03
For potential     2
 i =  1  exps = -0.58068273E+02 -0.20000000E+01  stpote =  0.89566986E-16
 i =  2  exps = -0.58068273E+02 -0.20000000E+01  stpote =  0.89566711E-16
 i =  3  exps = -0.58068273E+02 -0.20000000E+01  stpote =  0.89566202E-16
 i =  4  exps = -0.58068273E+02 -0.20000000E+01  stpote =  0.89565538E-16
For potential     3
Number of asymptotic regions =      32
Final point in integration =   0.24148589E+02 Angstroms
Time Now =        76.1679  Delta time =         4.5339 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00024160 rmsk=     0.00245764
iL =   1 Iter =   2 c.s. =      0.00021676 rmsk=     0.00042487
iL =   1 Iter =   3 c.s. =      0.00021685 rmsk=     0.00000607
iL =   1 Iter =   4 c.s. =      0.00021684 rmsk=     0.00000055
iL =   1 Iter =   5 c.s. =      0.00021684 rmsk=     0.00000000
iL =   1 Iter =   6 c.s. =      0.00021684 rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =      2.19614177 rmsk=     0.23430348
iL =   2 Iter =   2 c.s. =      1.95254093 rmsk=     0.04073438
iL =   2 Iter =   3 c.s. =      1.95321710 rmsk=     0.00057395
iL =   2 Iter =   4 c.s. =      1.95317962 rmsk=     0.00005740
iL =   2 Iter =   5 c.s. =      1.95317932 rmsk=     0.00000028
iL =   2 Iter =   6 c.s. =      1.95317933 rmsk=     0.00000000
iL =   2 Iter =   7 c.s. =      1.95317933 rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.63938253E-02,-0.10442145E-01) ( 0.42042133E-02,-0.12029741E-02)
  ( 0.29366597E-03,-0.64046632E-03) (-0.34530188E-02,-0.22876431E-02)
  ( 0.56803925E-04,-0.40050293E-03) ( 0.29841884E-02, 0.22100533E-02)
  ( 0.60759392E-04, 0.23030977E-03) ( 0.22580127E-03, 0.38863759E-03)
  ( 0.34819599E-02, 0.17100032E-02) (-0.64484050E-04,-0.60250866E-04)
  (-0.10331215E-03,-0.63749091E-04) ( 0.90677861E-03, 0.12302886E-03)
  ( 0.76762683E-05, 0.52720307E-05) ( 0.13345944E-04, 0.44207514E-05)
  ( 0.17446091E-04, 0.21809156E-05) ( 0.16823817E-03,-0.53076794E-05)
  (-0.10523173E-05,-0.23125249E-06) (-0.12922053E-05, 0.16537936E-07)
  (-0.13584717E-05, 0.33846469E-06) ( 0.13827438E-04,-0.32224278E-05)
     ROW  2
  ( 0.60688477E+00,-0.99052527E+00) ( 0.39864408E+00,-0.11391067E+00)
  ( 0.27882788E-01,-0.60908204E-01) (-0.32721803E+00,-0.21741574E+00)
  ( 0.53897326E-02,-0.37712599E-01) ( 0.28426512E+00, 0.20973138E+00)
  ( 0.59601229E-02, 0.21692471E-01) ( 0.21698698E-01, 0.36667151E-01)
  ( 0.33168279E+00, 0.16173558E+00) (-0.62031867E-02,-0.56624448E-02)
  (-0.99008164E-02,-0.59857300E-02) ( 0.86316711E-01, 0.11562087E-01)
  ( 0.74011967E-03, 0.49285057E-03) ( 0.12816865E-02, 0.40929619E-03)
  ( 0.16718704E-02, 0.19491373E-03) ( 0.16033205E-01,-0.54554770E-03)
  (-0.10130331E-03,-0.21012870E-04) (-0.12425050E-03, 0.26839534E-05)
  (-0.13058493E-03, 0.33353282E-04) ( 0.13166741E-02,-0.30885768E-03)
MaxIter =   7 c.s. =      1.95317933 rmsk=     0.00000000
Time Now =        95.4123  Delta time =        19.2444 End ScatStab

+ Command GetCro
+

----------------------------------------------------------------------
CnvIdy - read in and convert dynamical matrix elements and convert to raw form
----------------------------------------------------------------------

Time Now =        95.4190  Delta time =         0.0066 End CnvIdy
Found     3 energies :
     0.10000    60.00000    90.00000
List of matrix element types found   Number =    1
    1  Cont Sym T1U    Targ Sym A1G    Total Sym T1U
Keeping     3 energies :
     0.10000    60.00000    90.00000
Time Now =        95.4190  Delta time =         0.0000 End SelIdy

----------------------------------------------------------------------
CrossSection - compute photoionization cross section
----------------------------------------------------------------------

Ionization potential (IPot) =   2490.0000 eV
Label -SF6 core ionization
Cross section by partial wave      F
Cross Sections for SF6 core ionization

     Sigma LENGTH   at all energies
      Eng
  2490.1000  0.11985134E-01
  2550.0000  0.14780919E+00
  2580.0000  0.10559044E+00

     Sigma MIXED    at all energies
      Eng
  2490.1000  0.11827031E-01
  2550.0000  0.14769594E+00
  2580.0000  0.10568856E+00

     Sigma VELOCITY at all energies
      Eng
  2490.1000  0.11671039E-01
  2550.0000  0.14758431E+00
  2580.0000  0.10578699E+00

     Beta LENGTH   at all energies
      Eng
  2490.1000  0.15722559E+01
  2550.0000  0.91059263E+00
  2580.0000  0.14902564E+01

     Beta MIXED    at all energies
      Eng
  2490.1000  0.15731235E+01
  2550.0000  0.91092155E+00
  2580.0000  0.14893807E+01

     Beta VELOCITY at all energies
      Eng
  2490.1000  0.15739901E+01
  2550.0000  0.91125200E+00
  2580.0000  0.14885014E+01

          COMPOSITE CROSS SECTIONS AT ALL ENERGIES
         Energy  SIGMA LEN  SIGMA MIX  SIGMA VEL   BETA LEN   BETA MIX   BETA VEL
EPhi   2490.1000     0.0120     0.0118     0.0117     1.5723     1.5731     1.5740
EPhi   2550.0000     0.1478     0.1477     0.1476     0.9106     0.9109     0.9113
EPhi   2580.0000     0.1056     0.1057     0.1058     1.4903     1.4894     1.4885
Time Now =        95.4974  Delta time =         0.0784 End CrossSection
Time Now =        95.4991  Delta time =         0.0017 Finalize