----------------------------------------------------------------------
ePolyScat Version E2
----------------------------------------------------------------------

Authors: R. R. Lucchese, N. Sanna, A. P. P. Natalense, and F. A. Gianturco
http://www.chem.tamu.edu/rgroup/lucchese/ePolyScat.E2.manual/manual.html
Please cite the following two papers when reporting results obtained with  this program
F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 100, 6464 (1994).
A. P. P. Natalense and R. R. Lucchese, J. Chem. Phys. 111, 5344 (1999).

----------------------------------------------------------------------

Starting at 2009-03-13  11:39:36.865 (GMT -0500)
Using    16 processors

----------------------------------------------------------------------


+ Start of Input Records
#
# input file for test15
#
# electron scattering from N2 molden SCF, DCS calculation
#
  LMax   15     # maximum l to be used for wave functions
  LMaxA  10     # set larger than default to accomodate LMaxK in second part of calculation
  EMax  50.0    # EMax, maximum asymptotic energy in eV
  EngForm      # Energy formulas
   0 0         # charge, formula type
  FegeEng 13.0   # Energy correction (in eV) used in the fege potential
  ScatContSym 'SG'  # Scattering symmetry
  LMaxK    4     # Maximum l in the K matirx
  ScatEng 3.0 4.0 5.0 6.0
Convert '/scratch/rrl581a/ePolyScat.E2/tests/test15.molden' 'molden'
GetBlms
ExpOrb
GetPot
FileName 'MatrixElements' 'test15se.dat' 'REWIND'
GrnType 1
  ScatContSym 'SG'  # Scattering symmetry
Scat
  ScatContSym 'SU'  # Scattering symmetry
Scat
  ScatContSym 'PG'  # Scattering symmetry
Scat
  ScatContSym 'PU'  # Scattering symmetry
Scat
  ScatContSym 'DG'  # Scattering symmetry
Scat
  ScatContSym 'DU'  # Scattering symmetry
Scat
  ScatContSym 'FG'  # Scattering symmetry
Scat
  ScatContSym 'FU'  # Scattering symmetry
Scat
  ScatContSym 'GG'  # Scattering symmetry
Scat
  ScatContSym 'GU'  # Scattering symmetry
Scat
  ScatContSym 'A2G' # Scattering symmetry
Scat
  ScatContSym 'A2U' # Scattering symmetry
Scat
  ScatContSym 'B1G' # Scattering symmetry
Scat
  ScatContSym 'B1U' # Scattering symmetry
Scat
  ScatContSym 'B2G' # Scattering symmetry
Scat
  ScatContSym 'B2U' # Scattering symmetry
Scat
FileName 'MatrixElements' 'test15loc.dat' 'REWIND'
  LMaxK 10           # do higher partial wave with just the local potential
  IterMax -1
  ScatContSym 'SG'  # Scattering symmetry
Scat
  ScatContSym 'SU'  # Scattering symmetry
Scat
  ScatContSym 'PG'  # Scattering symmetry
Scat
  ScatContSym 'PU'  # Scattering symmetry
Scat
  ScatContSym 'DG'  # Scattering symmetry
Scat
  ScatContSym 'DU'  # Scattering symmetry
Scat
  ScatContSym 'FG'  # Scattering symmetry
Scat
  ScatContSym 'FU'  # Scattering symmetry
Scat
  ScatContSym 'GG'  # Scattering symmetry
Scat
  ScatContSym 'GU'  # Scattering symmetry
Scat
  ScatContSym 'A2G' # Scattering symmetry
Scat
  ScatContSym 'A2U' # Scattering symmetry
Scat
  ScatContSym 'B1G' # Scattering symmetry
Scat
  ScatContSym 'B1U' # Scattering symmetry
Scat
  ScatContSym 'B2G' # Scattering symmetry
Scat
  ScatContSym 'B2U' # Scattering symmetry
Scat
MatrixElementsCollect 'test15loc.dat'
MatrixElementsCombine 'test15se.dat'
TotalCrossSection
EDCS
+ End of input reached
+ Data Record LMax - 15
+ Data Record LMaxA - 10
+ Data Record EMax - 50.0
+ Data Record EngForm - 0 0
+ Data Record FegeEng - 13.0
+ Data Record ScatContSym - 'SG'
+ Data Record LMaxK - 4
+ Data Record ScatEng - 3.0 4.0 5.0 6.0

+ Command Convert
+ '/scratch/rrl581a/ePolyScat.E2/tests/test15.molden' 'molden'

----------------------------------------------------------------------
MoldenCnv - Molden (from Molpro) conversion program
----------------------------------------------------------------------

Expansion center is (in Angstroms) -
     0.0000000000   0.0000000000   0.0000000000
Convert from Angstroms to Bohr radii
Found    110 basis functions
Selecting orbitals
Number of orbitals selected is     7
Selecting    1   1 Ene =     -15.6842 Spin =Alpha Occup =   2.000000
Selecting    2   2 Ene =     -15.6806 Spin =Alpha Occup =   2.000000
Selecting    3   3 Ene =      -1.4752 Spin =Alpha Occup =   2.000000
Selecting    4   4 Ene =      -0.7786 Spin =Alpha Occup =   2.000000
Selecting    5   5 Ene =      -0.6350 Spin =Alpha Occup =   2.000000
Selecting    6   6 Ene =      -0.6161 Spin =Alpha Occup =   2.000000
Selecting    7   7 Ene =      -0.6161 Spin =Alpha Occup =   2.000000

Atoms found    2  Coordinates in Angstroms
Z =  7 ZS =  7 r =   0.0000000000   0.0000000000  -0.5470000000
Z =  7 ZS =  7 r =   0.0000000000   0.0000000000   0.5470000000
Maximum distance from expansion center is    0.5470000000

+ Command GetBlms
+

----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------

Found point group  DAh
Reduce angular grid using nthd =  2  nphid =  4
Found point group for abelian subgroup D2h
Time Now =         0.0823  Delta time =         0.0823 End GetPGroup
List of unique axes
  N  Vector                      Z   R
  1  0.00000  0.00000  1.00000   7  1.03368   7  1.03368
List of corresponding x axes
  N  Vector
  1  1.00000 -0.00000 -0.00000
Determineing angular grid in GetAxMax  LMax =   15  LMaxA =   10  LMaxAb =   30
MMax =    3  MMaxAbFlag =    2
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10   3   3   3   3   3
On the double L grid used for products
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19
  20  13  13  13  13  13   6   6   6   6   6

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is DAh
LMax = =   15
 The dimension of each irreducable representation is
    SG    (  1)    A2G   (  1)    B1G   (  1)    B2G   (  1)    PG    (  2)
    DG    (  2)    FG    (  2)    GG    (  2)    SU    (  1)    A2U   (  1)
    B1U   (  1)    B2U   (  1)    PU    (  2)    DU    (  2)    FU    (  2)
    GU    (  2)
 Number of symmetry operations in the abelian subgroup (excluding E) =    7
 The operations are -
    12    22    32     2     3    21    31
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 SG        1         1          9       1  1  1  1  1  1  1
 A2G       1         2          1       1 -1 -1  1  1 -1 -1
 B1G       1         3          3      -1  1 -1  1 -1  1 -1
 B2G       1         4          3      -1 -1  1  1 -1 -1  1
 PG        1         5          8      -1 -1  1  1 -1 -1  1
 PG        2         6          8      -1  1 -1  1 -1  1 -1
 DG        1         7          9       1 -1 -1  1  1 -1 -1
 DG        2         8          9       1  1  1  1  1  1  1
 FG        1         9          8      -1 -1  1  1 -1 -1  1
 FG        2        10          8      -1  1 -1  1 -1  1 -1
 GG        1        11          7       1 -1 -1  1  1 -1 -1
 GG        2        12          7       1  1  1  1  1  1  1
 SU        1        13          8       1 -1 -1 -1 -1  1  1
 A2U       1        14          0       1  1  1 -1 -1 -1 -1
 B1U       1        15          3      -1 -1  1 -1  1  1 -1
 B2U       1        16          3      -1  1 -1 -1  1 -1  1
 PU        1        17          9      -1 -1  1 -1  1  1 -1
 PU        2        18          9      -1  1 -1 -1  1 -1  1
 DU        1        19          8       1 -1 -1 -1 -1  1  1
 DU        2        20          8       1  1  1 -1 -1 -1 -1
 FU        1        21          9      -1 -1  1 -1  1  1 -1
 FU        2        22          9      -1  1 -1 -1  1 -1  1
 GU        1        23          5       1 -1 -1 -1 -1  1  1
 GU        2        24          5       1  1  1 -1 -1 -1 -1
Time Now =         0.8998  Delta time =         0.8175 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
SG    1    0(   1)    1(   1)    2(   2)    3(   2)    4(   3)    5(   3)    6(   4)    7(   4)    8(   5)    9(   5)
          10(   7)
A2G   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   0)    7(   0)    8(   0)    9(   0)
          10(   1)
B1G   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   1)    7(   1)    8(   2)    9(   2)
          10(   3)
B2G   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   1)    7(   1)    8(   2)    9(   2)
          10(   3)
PG    1    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)    6(   3)    7(   3)    8(   4)    9(   4)
          10(   6)
PG    2    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)    6(   3)    7(   3)    8(   4)    9(   4)
          10(   6)
DG    1    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)    6(   3)    7(   3)    8(   5)    9(   5)
          10(   7)
DG    2    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)    6(   3)    7(   3)    8(   5)    9(   5)
          10(   7)
FG    1    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   1)    6(   2)    7(   2)    8(   4)    9(   4)
          10(   6)
FG    2    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   1)    6(   2)    7(   2)    8(   4)    9(   4)
          10(   6)
GG    1    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   1)    6(   3)    7(   3)    8(   5)    9(   5)
          10(   7)
GG    2    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   1)    6(   3)    7(   3)    8(   5)    9(   5)
          10(   7)
SU    1    0(   0)    1(   1)    2(   1)    3(   2)    4(   2)    5(   3)    6(   3)    7(   4)    8(   4)    9(   5)
          10(   5)
A2U   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   0)    7(   0)    8(   0)    9(   0)
          10(   0)
B1U   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   1)    6(   1)    7(   2)    8(   2)    9(   3)
          10(   3)
B2U   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   1)    6(   1)    7(   2)    8(   2)    9(   3)
          10(   3)
PU    1    0(   0)    1(   1)    2(   1)    3(   2)    4(   2)    5(   3)    6(   3)    7(   4)    8(   4)    9(   6)
          10(   6)
PU    2    0(   0)    1(   1)    2(   1)    3(   2)    4(   2)    5(   3)    6(   3)    7(   4)    8(   4)    9(   6)
          10(   6)
DU    1    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   2)    6(   2)    7(   3)    8(   3)    9(   5)
          10(   5)
DU    2    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   2)    6(   2)    7(   3)    8(   3)    9(   5)
          10(   5)
FU    1    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   2)    6(   2)    7(   4)    8(   4)    9(   6)
          10(   6)
FU    2    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   2)    6(   2)    7(   4)    8(   4)    9(   6)
          10(   6)
GU    1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   1)    6(   1)    7(   3)    8(   3)    9(   5)
          10(   5)
GU    2    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   1)    6(   1)    7(   3)    8(   3)    9(   5)
          10(   5)

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is D2h
LMax = =   30
 The dimension of each irreducable representation is
    AG    (  1)    B1G   (  1)    B2G   (  1)    B3G   (  1)    AU    (  1)
    B1U   (  1)    B2U   (  1)    B3U   (  1)
Abelian axes
    1       1.000000      -0.000000       0.000000
    2       0.000000       1.000000      -0.000000
    3       0.000000       0.000000       1.000000
Symmetry operation directions
  1       0.000000       0.000000       1.000000 ang =  0  1 type = 0 axis = 3
  2       0.000000       0.000000       1.000000 ang =  1  2 type = 2 axis = 3
  3       1.000000      -0.000000       0.000000 ang =  1  2 type = 2 axis = 1
  4       0.000000       1.000000       0.000000 ang =  1  2 type = 2 axis = 2
  5       0.000000       0.000000       1.000000 ang =  1  2 type = 3 axis = 3
  6       0.000000       0.000000       1.000000 ang =  0  1 type = 1 axis = 3
  7       1.000000       0.000000       0.000000 ang =  0  1 type = 1 axis = 1
  8       0.000000       1.000000       0.000000 ang =  0  1 type = 1 axis = 2
irep =    1  sym =AG    1  eigs =   1   1   1   1   1   1   1   1
irep =    2  sym =B1G   1  eigs =   1   1  -1  -1   1   1  -1  -1
irep =    3  sym =B2G   1  eigs =   1  -1  -1   1   1  -1  -1   1
irep =    4  sym =B3G   1  eigs =   1  -1   1  -1   1  -1   1  -1
irep =    5  sym =AU    1  eigs =   1   1   1   1  -1  -1  -1  -1
irep =    6  sym =B1U   1  eigs =   1   1  -1  -1  -1  -1   1   1
irep =    7  sym =B2U   1  eigs =   1  -1  -1   1  -1   1   1  -1
irep =    8  sym =B3U   1  eigs =   1  -1   1  -1  -1   1  -1   1
 Number of symmetry operations in the abelian subgroup (excluding E) =    7
 The operations are -
     2     3     4     5     6     7     8
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 AG        1         1         92       1  1  1  1  1  1  1
 B1G       1         2         76       1 -1 -1  1  1 -1 -1
 B2G       1         3         78      -1 -1  1  1 -1 -1  1
 B3G       1         4         78      -1  1 -1  1 -1  1 -1
 AU        1         5         69       1  1  1 -1 -1 -1 -1
 B1U       1         6         84       1 -1 -1 -1 -1  1  1
 B2U       1         7         82      -1 -1  1 -1  1  1 -1
 B3U       1         8         82      -1  1 -1 -1  1 -1  1
Time Now =         0.9160  Delta time =         0.0162 End SymGen

+ Command ExpOrb
+
In GetRMax, RMaxEps =  0.10000000E-05  RMax =    9.6359862155 Angs

----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------

Maximum R in the grid (RMax) =     9.63599 Angs
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) =   10.0
In regions controlled by the wave length (HFacWave) =   10.0
Factor used to control the minimum exponent at each center (MinExpFac) =  300.0
Maximum asymptotic kinetic energy (EMAx) =  50.00000 eV
Maximum step size (MaxStep) =   9.63599 Angs
Factor to increase grid by (GridFac) =     1

    1  Center at =     0.00000 Angs  Alpha Max = 0.10000E+01
    2  Center at =     0.54700 Angs  Alpha Max = 0.14700E+05

Generated Grid

  irg  nin  ntot      step Angs     R end Angs
    1    8     8    0.18998E-02     0.01520
    2    8    16    0.26749E-02     0.03660
    3    8    24    0.43054E-02     0.07104
    4    8    32    0.57696E-02     0.11720
    5    8    40    0.67259E-02     0.17101
    6    8    48    0.68378E-02     0.22571
    7    8    56    0.62927E-02     0.27605
    8    8    64    0.61050E-02     0.32489
    9    8    72    0.67380E-02     0.37879
   10    8    80    0.77685E-02     0.44094
   11    8    88    0.48305E-02     0.47958
   12    8    96    0.30704E-02     0.50415
   13    8   104    0.19517E-02     0.51976
   14    8   112    0.12406E-02     0.52969
   15    8   120    0.78856E-03     0.53599
   16    8   128    0.54521E-03     0.54036
   17    8   136    0.45672E-03     0.54401
   18    8   144    0.37374E-03     0.54700
   19    8   152    0.43646E-03     0.55049
   20    8   160    0.46530E-03     0.55421
   21    8   168    0.57358E-03     0.55880
   22    8   176    0.87025E-03     0.56576
   23    8   184    0.13836E-02     0.57683
   24    8   192    0.21997E-02     0.59443
   25    8   200    0.34972E-02     0.62241
   26    8   208    0.55601E-02     0.66689
   27    8   216    0.88398E-02     0.73761
   28    8   224    0.14054E-01     0.85004
   29    8   232    0.17629E-01     0.99108
   30    8   240    0.20554E-01     1.15551
   31    8   248    0.29077E-01     1.38812
   32    8   256    0.41231E-01     1.71797
   33    8   264    0.46626E-01     2.09097
   34    8   272    0.51232E-01     2.50083
   35    8   280    0.55135E-01     2.94191
   36    8   288    0.58434E-01     3.40939
   37    8   296    0.61228E-01     3.89921
   38    8   304    0.63602E-01     4.40802
   39    8   312    0.65632E-01     4.93308
   40    8   320    0.67378E-01     5.47210
   41    8   328    0.68888E-01     6.02321
   42    8   336    0.70204E-01     6.58485
   43    8   344    0.71357E-01     7.15571
   44    8   352    0.72374E-01     7.73470
   45    8   360    0.73275E-01     8.32090
   46    8   368    0.74079E-01     8.91353
   47    8   376    0.74798E-01     9.51191
   48    8   384    0.15509E-01     9.63599
Time Now =         1.0157  Delta time =         0.0998 End GenGrid

----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------

Maximum scattering l (lmax) =   15
Maximum scattering m (mmaxs) =   15
Maximum numerical integration l (lmaxi) =   30
Maximum numerical integration m (mmaxi) =   30
Maximum l to include in the asymptotic region (lmasym) =   10
Parameter used to determine the cutoff points (PCutRd) =  0.10000000E-07 au
Maximum E used to determine grid (in eV) =       50.00000
Print flag (iprnfg) =    0
lmasymtyts =   10
 Actual value of lmasym found =     10
Number of regions of the same l expansion (NAngReg) =    8
Angular regions
    1 L =    2  from (    1)         0.00190  to (    7)         0.01330
    2 L =    4  from (    8)         0.01520  to (   15)         0.03392
    3 L =    6  from (   16)         0.03660  to (   23)         0.06674
    4 L =    7  from (   24)         0.07104  to (   31)         0.11143
    5 L =    9  from (   32)         0.11720  to (   39)         0.16428
    6 L =   10  from (   40)         0.17101  to (   47)         0.21887
    7 L =   15  from (   48)         0.22571  to (  248)         1.38812
    8 L =   10  from (  249)         1.42935  to (  384)         9.63599
Angular regions for computing spherical harmonics
    1 lval =   10
    2 lval =   15
Last grid points by processor WorkExp =     1.500
Proc id =   -1  Last grid point =       1
Proc id =    0  Last grid point =      56
Proc id =    1  Last grid point =      72
Proc id =    2  Last grid point =      88
Proc id =    3  Last grid point =     112
Proc id =    4  Last grid point =     128
Proc id =    5  Last grid point =     144
Proc id =    6  Last grid point =     168
Proc id =    7  Last grid point =     184
Proc id =    8  Last grid point =     200
Proc id =    9  Last grid point =     216
Proc id =   10  Last grid point =     240
Proc id =   11  Last grid point =     256
Proc id =   12  Last grid point =     288
Proc id =   13  Last grid point =     320
Proc id =   14  Last grid point =     352
Proc id =   15  Last grid point =     384
Time Now =         1.0231  Delta time =         0.0074 End AngGCt

----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------


 R of maximum density
     1  SG    1 at max irg =   19  r =   0.55049
     2  SU    1 at max irg =   19  r =   0.55049
     3  SG    1 at max irg =   18  r =   0.54700
     4  SU    1 at max irg =   29  r =   0.99108
     5  SG    1 at max irg =   29  r =   0.99108
     6  PU    1 at max irg =   26  r =   0.66689
     7  PU    2 at max irg =   26  r =   0.66689

Rotation coefficients for orbital     1  grp =    1 SG    1
     1  1.0000000000

Rotation coefficients for orbital     2  grp =    2 SU    1
     2  1.0000000000

Rotation coefficients for orbital     3  grp =    3 SG    1
     3  1.0000000000

Rotation coefficients for orbital     4  grp =    4 SU    1
     4  1.0000000000

Rotation coefficients for orbital     5  grp =    5 SG    1
     5  1.0000000000

Rotation coefficients for orbital     6  grp =    6 PU    1
     6  1.0000000000    7 -0.0000000000

Rotation coefficients for orbital     7  grp =    6 PU    2
     6  0.0000000000    7  1.0000000000
Number of orbital groups and degeneracis are         6
  1  1  1  1  1  2
Number of orbital groups and number of electrons when fully occupied
         6
  2  2  2  2  2  4
Time Now =         1.2714  Delta time =         0.2483 End RotOrb

----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------

 First orbital group to expand (mofr) =    1
 Last orbital group to expand (moto) =    6
Orbital     1 of  SG    1 symmetry normalization integral =  0.98788414
Orbital     2 of  SU    1 symmetry normalization integral =  0.99051993
Orbital     3 of  SG    1 symmetry normalization integral =  0.99928697
Orbital     4 of  SU    1 symmetry normalization integral =  0.99958573
Orbital     5 of  SG    1 symmetry normalization integral =  0.99994441
Orbital     6 of  PU    1 symmetry normalization integral =  0.99999093
Time Now =         2.2211  Delta time =         0.9497 End ExpOrb

+ Command GetPot
+

----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------

Total density =     14.00000000
Time Now =         2.2253  Delta time =         0.0042 End Den

----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------

 vasymp =  0.14000000E+02 facnorm =  0.10000000E+01
Time Now =         2.2408  Delta time =         0.0155 Electronic part
Time Now =         2.2415  Delta time =         0.0007 End StPot

+ Command FileName
+ 'MatrixElements' 'test15se.dat' 'REWIND'
Opening file test15se.dat at position REWIND
+ Data Record GrnType - 1
+ Data Record ScatContSym - 'SG'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =         2.2623  Delta time =         0.0208 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =SG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     3
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     3
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    7
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =    4
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    7
Time Now =         2.2740  Delta time =         0.0117 Energy independent setup

Compute solution for E =    3.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491190E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491191E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491191E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491192E-15
For potential     3
Number of asymptotic regions =      62
Final point in integration =   0.18302855E+03 Angstroms
Time Now =         3.2596  Delta time =         0.9856 End SolveHomo
iL =   1 Iter =   1 c.s. =     14.75766299 angs^2  rmsk=     0.32053967
iL =   1 Iter =   2 c.s. =     12.94566491 angs^2  rmsk=     0.05725211
iL =   1 Iter =   3 c.s. =     12.20735909 angs^2  rmsk=     0.01862853
iL =   1 Iter =   4 c.s. =     12.17216778 angs^2  rmsk=     0.00088526
iL =   1 Iter =   5 c.s. =     12.17310578 angs^2  rmsk=     0.00002427
iL =   1 Iter =   6 c.s. =     12.17250215 angs^2  rmsk=     0.00001466
iL =   1 Iter =   7 c.s. =     12.17250157 angs^2  rmsk=     0.00000001
iL =   1 Iter =   8 c.s. =     12.17250082 angs^2  rmsk=     0.00000001
iL =   2 Iter =   1 c.s. =     12.17250082 angs^2  rmsk=     0.04720446
iL =   2 Iter =   2 c.s. =     12.12103117 angs^2  rmsk=     0.00902263
iL =   2 Iter =   3 c.s. =     12.14482337 angs^2  rmsk=     0.00380162
iL =   2 Iter =   4 c.s. =     12.14717454 angs^2  rmsk=     0.00019901
iL =   2 Iter =   5 c.s. =     12.14720359 angs^2  rmsk=     0.00001136
iL =   2 Iter =   6 c.s. =     12.14721771 angs^2  rmsk=     0.00000283
iL =   2 Iter =   7 c.s. =     12.14721761 angs^2  rmsk=     0.00000001
iL =   2 Iter =   8 c.s. =     12.14721761 angs^2  rmsk=     0.00000000
iL =   3 Iter =   1 c.s. =     12.14721761 angs^2  rmsk=     0.00260020
iL =   3 Iter =   2 c.s. =     12.14719664 angs^2  rmsk=     0.00012775
iL =   3 Iter =   3 c.s. =     12.14718350 angs^2  rmsk=     0.00007730
iL =   3 Iter =   4 c.s. =     12.14718383 angs^2  rmsk=     0.00000230
iL =   3 Iter =   5 c.s. =     12.14718382 angs^2  rmsk=     0.00000018
iL =   3 Iter =   6 c.s. =     12.14718382 angs^2  rmsk=     0.00000004
      Final k matrix
     ROW  1
  (-0.41623329E+00, 0.74261040E+00) (-0.64825353E-01, 0.11697947E+00)
  (-0.32366814E-03, 0.18430565E-02)
     ROW  2
  (-0.64825353E-01, 0.11697947E+00) (-0.14872108E-01, 0.18470112E-01)
  (-0.45987603E-02, 0.33810211E-03)
     ROW  3
  (-0.32366821E-03, 0.18430576E-02) (-0.45987603E-02, 0.33810201E-03)
  (-0.58278325E-02, 0.62304590E-04)
 eigenphases
 -0.1060046E+01 -0.9774043E-02 -0.7135788E-03
 eigenphase sum-0.107053E+01  scattering length=   3.89579
 eps+pi 0.207106E+01  eps+2*pi 0.521265E+01

MaxIter =   8 c.s. =     12.14718382 angs^2  rmsk=     0.00000004
Time Now =        11.0375  Delta time =         7.7780 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =        11.0573  Delta time =         0.0198 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =SG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     3
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     3
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    7
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =    4
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    7
Time Now =        11.0687  Delta time =         0.0113 Energy independent setup

Compute solution for E =    4.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622043E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622045E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622048E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622052E-16
For potential     3
Number of asymptotic regions =      64
Final point in integration =   0.16629189E+03 Angstroms
Time Now =        12.0613  Delta time =         0.9926 End SolveHomo
iL =   1 Iter =   1 c.s. =     11.76897054 angs^2  rmsk=     0.33053055
iL =   1 Iter =   2 c.s. =     10.87534109 angs^2  rmsk=     0.05885647
iL =   1 Iter =   3 c.s. =     10.37896461 angs^2  rmsk=     0.02082481
iL =   1 Iter =   4 c.s. =     10.36038772 angs^2  rmsk=     0.00078036
iL =   1 Iter =   5 c.s. =     10.36084838 angs^2  rmsk=     0.00002356
iL =   1 Iter =   6 c.s. =     10.36043435 angs^2  rmsk=     0.00001736
iL =   1 Iter =   7 c.s. =     10.36043375 angs^2  rmsk=     0.00000002
iL =   1 Iter =   8 c.s. =     10.36043378 angs^2  rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =     10.36043378 angs^2  rmsk=     0.06254440
iL =   2 Iter =   2 c.s. =     10.31300328 angs^2  rmsk=     0.01217646
iL =   2 Iter =   3 c.s. =     10.34714415 angs^2  rmsk=     0.00588374
iL =   2 Iter =   4 c.s. =     10.34998724 angs^2  rmsk=     0.00023691
iL =   2 Iter =   5 c.s. =     10.35002943 angs^2  rmsk=     0.00002019
iL =   2 Iter =   6 c.s. =     10.35006951 angs^2  rmsk=     0.00000630
iL =   2 Iter =   7 c.s. =     10.35006938 angs^2  rmsk=     0.00000001
iL =   2 Iter =   8 c.s. =     10.35006938 angs^2  rmsk=     0.00000000
iL =   3 Iter =   1 c.s. =     10.35006938 angs^2  rmsk=     0.00306579
iL =   3 Iter =   2 c.s. =     10.35003594 angs^2  rmsk=     0.00024435
iL =   3 Iter =   3 c.s. =     10.35001320 angs^2  rmsk=     0.00016911
iL =   3 Iter =   4 c.s. =     10.35001408 angs^2  rmsk=     0.00000406
iL =   3 Iter =   5 c.s. =     10.35001408 angs^2  rmsk=     0.00000045
iL =   3 Iter =   6 c.s. =     10.35001410 angs^2  rmsk=     0.00000007
iL =   3 Iter =   7 c.s. =     10.35001410 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  (-0.32852697E+00, 0.83028514E+00) (-0.66917987E-01, 0.16879795E+00)
  (-0.34606187E-03, 0.32973086E-02)
     ROW  2
  (-0.66917988E-01, 0.16879795E+00) (-0.12890346E-01, 0.34340309E-01)
  (-0.48614784E-02, 0.69912340E-03)
     ROW  3
  (-0.34606188E-03, 0.32973086E-02) (-0.48614784E-02, 0.69912341E-03)
  (-0.66970722E-02, 0.84833727E-04)
 eigenphases
 -0.1193998E+01 -0.8969791E-02  0.2988102E-02
 eigenphase sum-0.119998E+01  scattering length=   4.74352
 eps+pi 0.194161E+01  eps+2*pi 0.508321E+01

MaxIter =   8 c.s. =     10.35001410 angs^2  rmsk=     0.00000000
Time Now =        20.4237  Delta time =         8.3625 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =        20.4435  Delta time =         0.0198 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =SG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     3
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     3
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    7
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =    4
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    7
Time Now =        20.4549  Delta time =         0.0114 Energy independent setup

Compute solution for E =    5.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334094E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334095E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334097E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334100E-16
For potential     3
Number of asymptotic regions =      66
Final point in integration =   0.15437122E+03 Angstroms
Time Now =        21.5481  Delta time =         1.0932 End SolveHomo
iL =   1 Iter =   1 c.s. =      9.58360512 angs^2  rmsk=     0.33347388
iL =   1 Iter =   2 c.s. =      9.22851307 angs^2  rmsk=     0.05926111
iL =   1 Iter =   3 c.s. =      8.90273811 angs^2  rmsk=     0.02234642
iL =   1 Iter =   4 c.s. =      8.89354405 angs^2  rmsk=     0.00064680
iL =   1 Iter =   5 c.s. =      8.89363152 angs^2  rmsk=     0.00002302
iL =   1 Iter =   6 c.s. =      8.89340255 angs^2  rmsk=     0.00002214
iL =   1 Iter =   7 c.s. =      8.89340203 angs^2  rmsk=     0.00000002
iL =   1 Iter =   8 c.s. =      8.89340202 angs^2  rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =      8.89340202 angs^2  rmsk=     0.07700592
iL =   2 Iter =   2 c.s. =      8.86096310 angs^2  rmsk=     0.01536651
iL =   2 Iter =   3 c.s. =      8.90254857 angs^2  rmsk=     0.00799048
iL =   2 Iter =   4 c.s. =      8.90564976 angs^2  rmsk=     0.00026469
iL =   2 Iter =   5 c.s. =      8.90566665 angs^2  rmsk=     0.00002971
iL =   2 Iter =   6 c.s. =      8.90577572 angs^2  rmsk=     0.00001369
iL =   2 Iter =   7 c.s. =      8.90577558 angs^2  rmsk=     0.00000001
iL =   2 Iter =   8 c.s. =      8.90577558 angs^2  rmsk=     0.00000000
iL =   3 Iter =   1 c.s. =      8.90577558 angs^2  rmsk=     0.00351125
iL =   3 Iter =   2 c.s. =      8.90574221 angs^2  rmsk=     0.00042958
iL =   3 Iter =   3 c.s. =      8.90570946 angs^2  rmsk=     0.00030475
iL =   3 Iter =   4 c.s. =      8.90571129 angs^2  rmsk=     0.00000637
iL =   3 Iter =   5 c.s. =      8.90571133 angs^2  rmsk=     0.00000085
iL =   3 Iter =   6 c.s. =      8.90571135 angs^2  rmsk=     0.00000010
iL =   3 Iter =   7 c.s. =      8.90571135 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  (-0.23998873E+00, 0.87528341E+00) (-0.61140793E-01, 0.21863951E+00)
  (-0.27260867E-03, 0.51245787E-02)
     ROW  2
  (-0.61140793E-01, 0.21863951E+00) (-0.10399257E-01, 0.54661419E-01)
  (-0.47224043E-02, 0.12917697E-02)
     ROW  3
  (-0.27260868E-03, 0.51245787E-02) (-0.47224043E-02, 0.12917697E-02)
  (-0.73440643E-02, 0.11043511E-03)
 eigenphases
 -0.1302897E+01 -0.8825772E-02  0.6356972E-02
 eigenphase sum-0.130537E+01  scattering length=   6.06813
 eps+pi 0.183623E+01  eps+2*pi 0.497782E+01

MaxIter =   8 c.s. =      8.90571135 angs^2  rmsk=     0.00000000
Time Now =        30.3128  Delta time =         8.7647 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =        30.3325  Delta time =         0.0198 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =SG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     3
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     3
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    7
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =    4
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    7
Time Now =        30.3440  Delta time =         0.0115 Energy independent setup

Compute solution for E =    6.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407236E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407238E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407242E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407248E-16
For potential     3
Number of asymptotic regions =      68
Final point in integration =   0.14526845E+03 Angstroms
Time Now =        31.4399  Delta time =         1.0959 End SolveHomo
iL =   1 Iter =   1 c.s. =      7.94391698 angs^2  rmsk=     0.33258706
iL =   1 Iter =   2 c.s. =      7.90565994 angs^2  rmsk=     0.05905601
iL =   1 Iter =   3 c.s. =      7.69991820 angs^2  rmsk=     0.02325515
iL =   1 Iter =   4 c.s. =      7.69576831 angs^2  rmsk=     0.00050939
iL =   1 Iter =   5 c.s. =      7.69539265 angs^2  rmsk=     0.00003330
iL =   1 Iter =   6 c.s. =      7.69549619 angs^2  rmsk=     0.00003671
iL =   1 Iter =   7 c.s. =      7.69549573 angs^2  rmsk=     0.00000002
iL =   1 Iter =   8 c.s. =      7.69549572 angs^2  rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =      7.69549572 angs^2  rmsk=     0.09045297
iL =   2 Iter =   2 c.s. =      7.68533088 angs^2  rmsk=     0.01866694
iL =   2 Iter =   3 c.s. =      7.73023988 angs^2  rmsk=     0.00993322
iL =   2 Iter =   4 c.s. =      7.73344047 angs^2  rmsk=     0.00029509
iL =   2 Iter =   5 c.s. =      7.73324784 angs^2  rmsk=     0.00004471
iL =   2 Iter =   6 c.s. =      7.73360631 angs^2  rmsk=     0.00003194
iL =   2 Iter =   7 c.s. =      7.73360618 angs^2  rmsk=     0.00000001
iL =   2 Iter =   8 c.s. =      7.73360618 angs^2  rmsk=     0.00000000
iL =   3 Iter =   1 c.s. =      7.73360618 angs^2  rmsk=     0.00396186
iL =   3 Iter =   2 c.s. =      7.73359922 angs^2  rmsk=     0.00072145
iL =   3 Iter =   3 c.s. =      7.73355501 angs^2  rmsk=     0.00047967
iL =   3 Iter =   4 c.s. =      7.73355813 angs^2  rmsk=     0.00000941
iL =   3 Iter =   5 c.s. =      7.73355825 angs^2  rmsk=     0.00000133
iL =   3 Iter =   6 c.s. =      7.73355829 angs^2  rmsk=     0.00000012
iL =   3 Iter =   7 c.s. =      7.73355829 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  (-0.15871986E+00, 0.89061842E+00) (-0.48901383E-01, 0.26416146E+00)
  (-0.92351312E-04, 0.72539874E-02)
     ROW  2
  (-0.48901383E-01, 0.26416146E+00) (-0.82492089E-02, 0.78411635E-01)
  (-0.42332339E-02, 0.21581241E-02)
     ROW  3
  (-0.92351316E-04, 0.72539874E-02) (-0.42332339E-02, 0.21581241E-02)
  (-0.77484168E-02, 0.14277952E-03)
 eigenphases
 -0.1393903E+01 -0.8818244E-02  0.7326329E-02
 eigenphase sum-0.139540E+01  scattering length=   8.49702
 eps+pi 0.174620E+01  eps+2*pi 0.488779E+01

MaxIter =   8 c.s. =      7.73355829 angs^2  rmsk=     0.00000000
Time Now =        39.6728  Delta time =         8.2329 End ScatStab
+ Data Record ScatContSym - 'SU'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =        39.6926  Delta time =         0.0198 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =SU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     2
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    5
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    3
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    5
Time Now =        39.7040  Delta time =         0.0114 Energy independent setup

Compute solution for E =    3.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491190E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491191E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491191E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491192E-15
For potential     3
Number of asymptotic regions =      62
Final point in integration =   0.18302855E+03 Angstroms
Time Now =        40.3968  Delta time =         0.6927 End SolveHomo
iL =   1 Iter =   1 c.s. =      4.38331850 angs^2  rmsk=     0.26203890
iL =   1 Iter =   2 c.s. =      2.54270248 angs^2  rmsk=     0.07035371
iL =   1 Iter =   3 c.s. =      2.02183053 angs^2  rmsk=     0.02337281
iL =   1 Iter =   4 c.s. =      2.04942145 angs^2  rmsk=     0.00129772
iL =   1 Iter =   5 c.s. =      2.04826961 angs^2  rmsk=     0.00005407
iL =   1 Iter =   6 c.s. =      2.04827466 angs^2  rmsk=     0.00000024
iL =   1 Iter =   7 c.s. =      2.04827374 angs^2  rmsk=     0.00000004
iL =   2 Iter =   1 c.s. =      2.04827374 angs^2  rmsk=     0.01078502
iL =   2 Iter =   2 c.s. =      2.04660080 angs^2  rmsk=     0.00183103
iL =   2 Iter =   3 c.s. =      2.04537534 angs^2  rmsk=     0.00126694
iL =   2 Iter =   4 c.s. =      2.04538183 angs^2  rmsk=     0.00002660
iL =   2 Iter =   5 c.s. =      2.04537815 angs^2  rmsk=     0.00000405
iL =   2 Iter =   6 c.s. =      2.04537818 angs^2  rmsk=     0.00000002
iL =   2 Iter =   7 c.s. =      2.04537817 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  (-0.33364453E+00, 0.12787902E+00) (-0.13401166E-01, 0.52632959E-02)
     ROW  2
  (-0.13401165E-01, 0.52632961E-02) (-0.87437192E-02, 0.29214013E-03)
 eigenphases
 -0.3660229E+00 -0.8192401E-02
 eigenphase sum-0.374215E+00  scattering length=   0.83634
 eps+pi 0.276738E+01  eps+2*pi 0.590897E+01

MaxIter =   7 c.s. =      2.04537817 angs^2  rmsk=     0.00000000
Time Now =        45.0628  Delta time =         4.6660 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =        45.0824  Delta time =         0.0196 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =SU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     2
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    5
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    3
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    5
Time Now =        45.0937  Delta time =         0.0114 Energy independent setup

Compute solution for E =    4.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622043E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622045E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622048E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622052E-16
For potential     3
Number of asymptotic regions =      64
Final point in integration =   0.16629189E+03 Angstroms
Time Now =        45.7818  Delta time =         0.6880 End SolveHomo
iL =   1 Iter =   1 c.s. =      4.79269845 angs^2  rmsk=     0.31639068
iL =   1 Iter =   2 c.s. =      3.03323920 angs^2  rmsk=     0.07855260
iL =   1 Iter =   3 c.s. =      2.46963958 angs^2  rmsk=     0.02806216
iL =   1 Iter =   4 c.s. =      2.49891342 angs^2  rmsk=     0.00150887
iL =   1 Iter =   5 c.s. =      2.49757666 angs^2  rmsk=     0.00006896
iL =   1 Iter =   6 c.s. =      2.49758120 angs^2  rmsk=     0.00000024
iL =   1 Iter =   7 c.s. =      2.49757992 angs^2  rmsk=     0.00000007
iL =   2 Iter =   1 c.s. =      2.49757992 angs^2  rmsk=     0.01413641
iL =   2 Iter =   2 c.s. =      2.49493182 angs^2  rmsk=     0.00279592
iL =   2 Iter =   3 c.s. =      2.49298722 angs^2  rmsk=     0.00212863
iL =   2 Iter =   4 c.s. =      2.49300136 angs^2  rmsk=     0.00004790
iL =   2 Iter =   5 c.s. =      2.49299558 angs^2  rmsk=     0.00000661
iL =   2 Iter =   6 c.s. =      2.49299562 angs^2  rmsk=     0.00000004
iL =   2 Iter =   7 c.s. =      2.49299562 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  (-0.40534742E+00, 0.20786426E+00) (-0.16585975E-01, 0.86627208E-02)
     ROW  2
  (-0.16585975E-01, 0.86627210E-02) (-0.81259560E-02, 0.42745800E-03)
 eigenphases
 -0.4738519E+00 -0.7435050E-02
 eigenphase sum-0.481287E+00  scattering length=   0.96318
 eps+pi 0.266031E+01  eps+2*pi 0.580190E+01

MaxIter =   7 c.s. =      2.49299562 angs^2  rmsk=     0.00000000
Time Now =        50.4728  Delta time =         4.6911 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =        50.4925  Delta time =         0.0197 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =SU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     2
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    5
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    3
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    5
Time Now =        50.5040  Delta time =         0.0115 Energy independent setup

Compute solution for E =    5.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334094E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334095E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334097E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334100E-16
For potential     3
Number of asymptotic regions =      66
Final point in integration =   0.15437122E+03 Angstroms
Time Now =        51.2567  Delta time =         0.7527 End SolveHomo
iL =   1 Iter =   1 c.s. =      4.94466804 angs^2  rmsk=     0.35929999
iL =   1 Iter =   2 c.s. =      3.36320123 angs^2  rmsk=     0.08342560
iL =   1 Iter =   3 c.s. =      2.80073658 angs^2  rmsk=     0.03155969
iL =   1 Iter =   4 c.s. =      2.82930812 angs^2  rmsk=     0.00163706
iL =   1 Iter =   5 c.s. =      2.82787818 angs^2  rmsk=     0.00008224
iL =   1 Iter =   6 c.s. =      2.82788178 angs^2  rmsk=     0.00000022
iL =   1 Iter =   7 c.s. =      2.82788011 angs^2  rmsk=     0.00000009
iL =   2 Iter =   1 c.s. =      2.82788011 angs^2  rmsk=     0.01764600
iL =   2 Iter =   2 c.s. =      2.82417826 angs^2  rmsk=     0.00402699
iL =   2 Iter =   3 c.s. =      2.82144833 angs^2  rmsk=     0.00313365
iL =   2 Iter =   4 c.s. =      2.82147873 angs^2  rmsk=     0.00007663
iL =   2 Iter =   5 c.s. =      2.82147079 angs^2  rmsk=     0.00000937
iL =   2 Iter =   6 c.s. =      2.82147085 angs^2  rmsk=     0.00000007
iL =   2 Iter =   7 c.s. =      2.82147085 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  (-0.45503157E+00, 0.29407822E+00) (-0.19496819E-01, 0.12738842E-01)
     ROW  2
  (-0.19496819E-01, 0.12738842E-01) (-0.57824686E-02, 0.58972995E-03)
 eigenphases
 -0.5737654E+00 -0.4938133E-02
 eigenphase sum-0.578704E+00  scattering length=   1.07770
 eps+pi 0.256289E+01  eps+2*pi 0.570448E+01

MaxIter =   7 c.s. =      2.82147085 angs^2  rmsk=     0.00000000
Time Now =        55.9329  Delta time =         4.6761 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =        55.9526  Delta time =         0.0197 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =SU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     2
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    5
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    3
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    5
Time Now =        55.9641  Delta time =         0.0115 Energy independent setup

Compute solution for E =    6.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407236E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407238E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407242E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407248E-16
For potential     3
Number of asymptotic regions =      68
Final point in integration =   0.14526845E+03 Angstroms
Time Now =        56.7223  Delta time =         0.7582 End SolveHomo
iL =   1 Iter =   1 c.s. =      4.93886427 angs^2  rmsk=     0.39336236
iL =   1 Iter =   2 c.s. =      3.56775472 angs^2  rmsk=     0.08623651
iL =   1 Iter =   3 c.s. =      3.03375755 angs^2  rmsk=     0.03417625
iL =   1 Iter =   4 c.s. =      3.06020852 angs^2  rmsk=     0.00170385
iL =   1 Iter =   5 c.s. =      3.05875150 angs^2  rmsk=     0.00009444
iL =   1 Iter =   6 c.s. =      3.05875401 angs^2  rmsk=     0.00000019
iL =   1 Iter =   7 c.s. =      3.05875207 angs^2  rmsk=     0.00000012
iL =   2 Iter =   1 c.s. =      3.05875207 angs^2  rmsk=     0.02135093
iL =   2 Iter =   2 c.s. =      3.05426083 angs^2  rmsk=     0.00552504
iL =   2 Iter =   3 c.s. =      3.05048216 angs^2  rmsk=     0.00418679
iL =   2 Iter =   4 c.s. =      3.05054283 angs^2  rmsk=     0.00011397
iL =   2 Iter =   5 c.s. =      3.05053290 angs^2  rmsk=     0.00001236
iL =   2 Iter =   6 c.s. =      3.05053298 angs^2  rmsk=     0.00000009
iL =   2 Iter =   7 c.s. =      3.05053298 angs^2  rmsk=     0.00000001
      Final k matrix
     ROW  1
  (-0.48493968E+00, 0.38149785E+00) (-0.22089487E-01, 0.17396551E-01)
     ROW  2
  (-0.22089487E-01, 0.17396550E-01) (-0.14825151E-02, 0.80872044E-03)
 eigenphases
 -0.6665740E+00 -0.4753441E-03
 eigenphase sum-0.667049E+00  scattering length=   1.18581
 eps+pi 0.247454E+01  eps+2*pi 0.561614E+01

MaxIter =   7 c.s. =      3.05053298 angs^2  rmsk=     0.00000001
Time Now =        61.4029  Delta time =         4.6806 End ScatStab
+ Data Record ScatContSym - 'PG'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =        61.4227  Delta time =         0.0198 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =PG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     2
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =    4
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    6
Time Now =        61.4342  Delta time =         0.0115 Energy independent setup

Compute solution for E =    3.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491190E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491191E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491191E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491192E-15
For potential     3
Number of asymptotic regions =      62
Final point in integration =   0.18302855E+03 Angstroms
Time Now =        62.2768  Delta time =         0.8426 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.25872553 angs^2  rmsk=     0.06366253
iL =   1 Iter =   2 c.s. =      1.83352974 angs^2  rmsk=     0.10825989
iL =   1 Iter =   3 c.s. =      1.79637742 angs^2  rmsk=     0.00183378
iL =   1 Iter =   4 c.s. =      1.81310373 angs^2  rmsk=     0.00082765
iL =   1 Iter =   5 c.s. =      1.81306283 angs^2  rmsk=     0.00000202
iL =   1 Iter =   6 c.s. =      1.81306296 angs^2  rmsk=     0.00000001
iL =   1 Iter =   7 c.s. =      1.81306296 angs^2  rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =      1.81306296 angs^2  rmsk=     0.00274279
iL =   2 Iter =   2 c.s. =      1.81295517 angs^2  rmsk=     0.00151277
iL =   2 Iter =   3 c.s. =      1.81295526 angs^2  rmsk=     0.00002434
iL =   2 Iter =   4 c.s. =      1.81295562 angs^2  rmsk=     0.00002011
iL =   2 Iter =   5 c.s. =      1.81295562 angs^2  rmsk=     0.00000007
iL =   2 Iter =   6 c.s. =      1.81295562 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.31729506E+00, 0.11357594E+00) ( 0.51048984E-03, 0.17997943E-03)
     ROW  2
  ( 0.51048985E-03, 0.17997943E-03) (-0.48033501E-02, 0.26639137E-04)
 eigenphases
 -0.4804265E-02  0.3437401E+00
 eigenphase sum 0.338936E+00  scattering length=  -0.75077
 eps+pi 0.348053E+01  eps+2*pi 0.662212E+01

MaxIter =   7 c.s. =      1.81295562 angs^2  rmsk=     0.00000000
Time Now =        66.5229  Delta time =         4.2461 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =        66.5427  Delta time =         0.0197 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =PG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     2
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =    4
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    6
Time Now =        66.5550  Delta time =         0.0124 Energy independent setup

Compute solution for E =    4.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622043E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622045E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622048E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622052E-16
For potential     3
Number of asymptotic regions =      64
Final point in integration =   0.16629189E+03 Angstroms
Time Now =        67.3992  Delta time =         0.8442 End SolveHomo
iL =   1 Iter =   1 c.s. =      1.99915576 angs^2  rmsk=     0.20434167
iL =   1 Iter =   2 c.s. =     11.93553909 angs^2  rmsk=     0.44535596
iL =   1 Iter =   3 c.s. =     11.88176883 angs^2  rmsk=     0.01679584
iL =   1 Iter =   4 c.s. =     11.89654845 angs^2  rmsk=     0.00386333
iL =   1 Iter =   5 c.s. =     11.89652368 angs^2  rmsk=     0.00000699
iL =   1 Iter =   6 c.s. =     11.89652385 angs^2  rmsk=     0.00000004
iL =   1 Iter =   7 c.s. =     11.89652385 angs^2  rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =     11.89652385 angs^2  rmsk=     0.00294669
iL =   2 Iter =   2 c.s. =     11.89981268 angs^2  rmsk=     0.00789671
iL =   2 Iter =   3 c.s. =     11.89978719 angs^2  rmsk=     0.00006814
iL =   2 Iter =   4 c.s. =     11.89977777 angs^2  rmsk=     0.00013309
iL =   2 Iter =   5 c.s. =     11.89977772 angs^2  rmsk=     0.00000057
iL =   2 Iter =   6 c.s. =     11.89977772 angs^2  rmsk=     0.00000000
iL =   2 Iter =   7 c.s. =     11.89977772 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.76217067E-01, 0.99387587E+00) ( 0.13638211E-02, 0.16604471E-01)
     ROW  2
  ( 0.13638211E-02, 0.16604471E-01) (-0.53773465E-02, 0.31100225E-03)
 eigenphases
 -0.5400289E-02  0.1494258E+01
 eigenphase sum 0.148886E+01  scattering length= -22.45783
 eps+pi 0.463045E+01  eps+2*pi 0.777204E+01

MaxIter =   7 c.s. =     11.89977772 angs^2  rmsk=     0.00000000
Time Now =        72.1430  Delta time =         4.7437 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =        72.1627  Delta time =         0.0197 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =PG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     2
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =    4
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    6
Time Now =        72.1742  Delta time =         0.0115 Energy independent setup

Compute solution for E =    5.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334094E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334095E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334097E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334100E-16
For potential     3
Number of asymptotic regions =      66
Final point in integration =   0.15437122E+03 Angstroms
Time Now =        73.0973  Delta time =         0.9232 End SolveHomo
iL =   1 Iter =   1 c.s. =      9.00090688 angs^2  rmsk=     0.48476557
iL =   1 Iter =   2 c.s. =      5.39717823 angs^2  rmsk=     0.41211787
iL =   1 Iter =   3 c.s. =      5.62703852 angs^2  rmsk=     0.01214451
iL =   1 Iter =   4 c.s. =      5.59968507 angs^2  rmsk=     0.00145056
iL =   1 Iter =   5 c.s. =      5.59971798 angs^2  rmsk=     0.00000177
iL =   1 Iter =   6 c.s. =      5.59971749 angs^2  rmsk=     0.00000003
iL =   1 Iter =   7 c.s. =      5.59971749 angs^2  rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =      5.59971749 angs^2  rmsk=     0.00924066
iL =   2 Iter =   2 c.s. =      5.60034012 angs^2  rmsk=     0.00844911
iL =   2 Iter =   3 c.s. =      5.60034943 angs^2  rmsk=     0.00008391
iL =   2 Iter =   4 c.s. =      5.60032613 angs^2  rmsk=     0.00005233
iL =   2 Iter =   5 c.s. =      5.60032594 angs^2  rmsk=     0.00000033
iL =   2 Iter =   6 c.s. =      5.60032594 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  (-0.49244327E+00, 0.58445309E+00) (-0.12262529E-01, 0.14727726E-01)
     ROW  2
  (-0.12262529E-01, 0.14727726E-01) (-0.61364960E-02, 0.41070000E-03)
 eigenphases
 -0.8706347E+00 -0.5827682E-02
 eigenphase sum-0.876462E+00  scattering length=   1.98113
 eps+pi 0.226513E+01  eps+2*pi 0.540672E+01

MaxIter =   7 c.s. =      5.60032594 angs^2  rmsk=     0.00000000
Time Now =        77.4230  Delta time =         4.3257 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =        77.4425  Delta time =         0.0195 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =PG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     2
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =    4
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    6
Time Now =        77.4539  Delta time =         0.0114 Energy independent setup

Compute solution for E =    6.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407236E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407238E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407242E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407248E-16
For potential     3
Number of asymptotic regions =      68
Final point in integration =   0.14526845E+03 Angstroms
Time Now =        78.3713  Delta time =         0.9174 End SolveHomo
iL =   1 Iter =   1 c.s. =      5.85332307 angs^2  rmsk=     0.42823337
iL =   1 Iter =   2 c.s. =      3.07714772 angs^2  rmsk=     0.17541094
iL =   1 Iter =   3 c.s. =      3.27662613 angs^2  rmsk=     0.01277356
iL =   1 Iter =   4 c.s. =      3.26537765 angs^2  rmsk=     0.00071699
iL =   1 Iter =   5 c.s. =      3.26538491 angs^2  rmsk=     0.00000052
iL =   1 Iter =   6 c.s. =      3.26538457 angs^2  rmsk=     0.00000002
iL =   2 Iter =   1 c.s. =      3.26538457 angs^2  rmsk=     0.01160643
iL =   2 Iter =   2 c.s. =      3.26441831 angs^2  rmsk=     0.00384071
iL =   2 Iter =   3 c.s. =      3.26452454 angs^2  rmsk=     0.00020413
iL =   2 Iter =   4 c.s. =      3.26451372 angs^2  rmsk=     0.00002735
iL =   2 Iter =   5 c.s. =      3.26451359 angs^2  rmsk=     0.00000023
iL =   2 Iter =   6 c.s. =      3.26451359 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  (-0.49119576E+00, 0.40867742E+00) (-0.15043197E-01, 0.12671936E-01)
     ROW  2
  (-0.15043197E-01, 0.12671936E-01) (-0.65283984E-02, 0.43646071E-03)
 eigenphases
 -0.6939597E+00 -0.6062164E-02
 eigenphase sum-0.700022E+00  scattering length=   1.26842
 eps+pi 0.244157E+01  eps+2*pi 0.558316E+01

MaxIter =   6 c.s. =      3.26451359 angs^2  rmsk=     0.00000000
Time Now =        82.2430  Delta time =         3.8717 End ScatStab
+ Data Record ScatContSym - 'PU'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =        82.2628  Delta time =         0.0198 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =PU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     2
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    3
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    6
Time Now =        82.2745  Delta time =         0.0117 Energy independent setup

Compute solution for E =    3.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491190E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491191E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491191E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491192E-15
For potential     3
Number of asymptotic regions =      62
Final point in integration =   0.18302855E+03 Angstroms
Time Now =        83.1186  Delta time =         0.8441 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.86656714 angs^2  rmsk=     0.11651058
iL =   1 Iter =   2 c.s. =      0.61018258 angs^2  rmsk=     0.01921799
iL =   1 Iter =   3 c.s. =      0.56062545 angs^2  rmsk=     0.00414001
iL =   1 Iter =   4 c.s. =      0.56192199 angs^2  rmsk=     0.00011060
iL =   1 Iter =   5 c.s. =      0.56170161 angs^2  rmsk=     0.00001878
iL =   1 Iter =   6 c.s. =      0.56170168 angs^2  rmsk=     0.00000001
iL =   1 Iter =   7 c.s. =      0.56170168 angs^2  rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =      0.56170168 angs^2  rmsk=     0.00621779
iL =   2 Iter =   2 c.s. =      0.56102252 angs^2  rmsk=     0.00100381
iL =   2 Iter =   3 c.s. =      0.56087564 angs^2  rmsk=     0.00025997
iL =   2 Iter =   4 c.s. =      0.56087474 angs^2  rmsk=     0.00000174
iL =   2 Iter =   5 c.s. =      0.56087450 angs^2  rmsk=     0.00000049
iL =   2 Iter =   6 c.s. =      0.56087450 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  (-0.18369894E+00, 0.35041436E-01) (-0.81050675E-02, 0.15927132E-02)
     ROW  2
  (-0.81050675E-02, 0.15927132E-02) (-0.58798155E-02, 0.10995347E-03)
 eigenphases
 -0.1885013E+00 -0.5511338E-02
 eigenphase sum-0.194013E+00  scattering length=   0.41843
 eps+pi 0.294758E+01  eps+2*pi 0.608917E+01

MaxIter =   7 c.s. =      0.56087450 angs^2  rmsk=     0.00000000
Time Now =        87.4230  Delta time =         4.3044 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =        87.4428  Delta time =         0.0197 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =PU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     2
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    3
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    6
Time Now =        87.4541  Delta time =         0.0113 Energy independent setup

Compute solution for E =    4.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622043E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622045E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622048E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622052E-16
For potential     3
Number of asymptotic regions =      64
Final point in integration =   0.16629189E+03 Angstroms
Time Now =        88.2938  Delta time =         0.8397 End SolveHomo
iL =   1 Iter =   1 c.s. =      1.13124786 angs^2  rmsk=     0.15371368
iL =   1 Iter =   2 c.s. =      0.84730798 angs^2  rmsk=     0.02162860
iL =   1 Iter =   3 c.s. =      0.78956825 angs^2  rmsk=     0.00479153
iL =   1 Iter =   4 c.s. =      0.79109259 angs^2  rmsk=     0.00012842
iL =   1 Iter =   5 c.s. =      0.79082386 angs^2  rmsk=     0.00002266
iL =   1 Iter =   6 c.s. =      0.79082393 angs^2  rmsk=     0.00000001
iL =   1 Iter =   7 c.s. =      0.79082393 angs^2  rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =      0.79082393 angs^2  rmsk=     0.00791912
iL =   2 Iter =   2 c.s. =      0.78970100 angs^2  rmsk=     0.00168356
iL =   2 Iter =   3 c.s. =      0.78948744 angs^2  rmsk=     0.00039473
iL =   2 Iter =   4 c.s. =      0.78948608 angs^2  rmsk=     0.00000287
iL =   2 Iter =   5 c.s. =      0.78948575 angs^2  rmsk=     0.00000069
iL =   2 Iter =   6 c.s. =      0.78948575 angs^2  rmsk=     0.00000000
iL =   2 Iter =   7 c.s. =      0.78948575 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  (-0.24773627E+00, 0.65819580E-01) (-0.10310396E-01, 0.27901115E-02)
     ROW  2
  (-0.10310396E-01, 0.27901115E-02) (-0.49938639E-02, 0.14847049E-03)
 eigenphases
 -0.2596928E+00 -0.4556869E-02
 eigenphase sum-0.264250E+00  scattering length=   0.49902
 eps+pi 0.287734E+01  eps+2*pi 0.601894E+01

MaxIter =   7 c.s. =      0.78948575 angs^2  rmsk=     0.00000000
Time Now =        93.0631  Delta time =         4.7693 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =        93.0828  Delta time =         0.0197 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =PU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     2
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    3
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    6
Time Now =        93.0941  Delta time =         0.0113 Energy independent setup

Compute solution for E =    5.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334094E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334095E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334097E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334100E-16
For potential     3
Number of asymptotic regions =      66
Final point in integration =   0.15437122E+03 Angstroms
Time Now =        94.0058  Delta time =         0.9117 End SolveHomo
iL =   1 Iter =   1 c.s. =      1.33136612 angs^2  rmsk=     0.18643926
iL =   1 Iter =   2 c.s. =      1.04367157 angs^2  rmsk=     0.02289746
iL =   1 Iter =   3 c.s. =      0.98288177 angs^2  rmsk=     0.00517817
iL =   1 Iter =   4 c.s. =      0.98450593 angs^2  rmsk=     0.00013957
iL =   1 Iter =   5 c.s. =      0.98421043 angs^2  rmsk=     0.00002550
iL =   1 Iter =   6 c.s. =      0.98421050 angs^2  rmsk=     0.00000001
iL =   1 Iter =   7 c.s. =      0.98421050 angs^2  rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =      0.98421050 angs^2  rmsk=     0.00985305
iL =   2 Iter =   2 c.s. =      0.98259632 angs^2  rmsk=     0.00249972
iL =   2 Iter =   3 c.s. =      0.98231973 angs^2  rmsk=     0.00051939
iL =   2 Iter =   4 c.s. =      0.98231793 angs^2  rmsk=     0.00000397
iL =   2 Iter =   5 c.s. =      0.98231751 angs^2  rmsk=     0.00000086
iL =   2 Iter =   6 c.s. =      0.98231751 angs^2  rmsk=     0.00000000
iL =   2 Iter =   7 c.s. =      0.98231751 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  (-0.30286604E+00, 0.10239563E+00) (-0.12801815E-01, 0.43606064E-02)
     ROW  2
  (-0.12801815E-01, 0.43606064E-02) (-0.27745425E-02, 0.20200534E-03)
 eigenphases
 -0.3260284E+00 -0.2229469E-02
 eigenphase sum-0.328258E+00  scattering length=   0.56182
 eps+pi 0.281333E+01  eps+2*pi 0.595493E+01

MaxIter =   7 c.s. =      0.98231751 angs^2  rmsk=     0.00000000
Time Now =        98.7831  Delta time =         4.7773 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =        98.8028  Delta time =         0.0197 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =PU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     2
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    3
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    6
Time Now =        98.8141  Delta time =         0.0113 Energy independent setup

Compute solution for E =    6.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407236E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407238E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407242E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407248E-16
For potential     3
Number of asymptotic regions =      68
Final point in integration =   0.14526845E+03 Angstroms
Time Now =        99.7337  Delta time =         0.9196 End SolveHomo
iL =   1 Iter =   1 c.s. =      1.47900625 angs^2  rmsk=     0.21526046
iL =   1 Iter =   2 c.s. =      1.20133630 angs^2  rmsk=     0.02342916
iL =   1 Iter =   3 c.s. =      1.14092226 angs^2  rmsk=     0.00537353
iL =   1 Iter =   4 c.s. =      1.14256401 angs^2  rmsk=     0.00014622
iL =   1 Iter =   5 c.s. =      1.14225781 angs^2  rmsk=     0.00002755
iL =   1 Iter =   6 c.s. =      1.14225787 angs^2  rmsk=     0.00000001
iL =   1 Iter =   7 c.s. =      1.14225787 angs^2  rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =      1.14225787 angs^2  rmsk=     0.01211684
iL =   2 Iter =   2 c.s. =      1.14017384 angs^2  rmsk=     0.00345475
iL =   2 Iter =   3 c.s. =      1.13984193 angs^2  rmsk=     0.00062526
iL =   2 Iter =   4 c.s. =      1.13983977 angs^2  rmsk=     0.00000495
iL =   2 Iter =   5 c.s. =      1.13983927 angs^2  rmsk=     0.00000098
iL =   2 Iter =   6 c.s. =      1.13983927 angs^2  rmsk=     0.00000000
iL =   2 Iter =   7 c.s. =      1.13983927 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  (-0.34921802E+00, 0.14255992E+00) (-0.15592997E-01, 0.63376373E-02)
     ROW  2
  (-0.15592997E-01, 0.63376373E-02) ( 0.88167178E-03, 0.29691600E-03)
 eigenphases
 -0.3875745E+00  0.1574834E-02
 eigenphase sum-0.386000E+00  scattering length=   0.61196
 eps+pi 0.275559E+01  eps+2*pi 0.589719E+01

MaxIter =   7 c.s. =      1.13983927 angs^2  rmsk=     0.00000000
Time Now =       104.5131  Delta time =         4.7794 End ScatStab
+ Data Record ScatContSym - 'DG'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =       104.5329  Delta time =         0.0198 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =DG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     2
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    7
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =    4
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    7
Time Now =       104.5442  Delta time =         0.0113 Energy independent setup

Compute solution for E =    3.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491190E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491191E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491191E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491192E-15
For potential     3
Number of asymptotic regions =      62
Final point in integration =   0.18302855E+03 Angstroms
Time Now =       105.5402  Delta time =         0.9960 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.01781876 angs^2  rmsk=     0.01670718
iL =   1 Iter =   2 c.s. =      0.02804366 angs^2  rmsk=     0.00427928
iL =   1 Iter =   3 c.s. =      0.02803903 angs^2  rmsk=     0.00000174
iL =   1 Iter =   4 c.s. =      0.02803903 angs^2  rmsk=     0.00000000
iL =   1 Iter =   5 c.s. =      0.02803903 angs^2  rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =      0.02803903 angs^2  rmsk=     0.00148034
iL =   2 Iter =   2 c.s. =      0.02803016 angs^2  rmsk=     0.00006511
iL =   2 Iter =   3 c.s. =      0.02803016 angs^2  rmsk=     0.00000001
iL =   2 Iter =   4 c.s. =      0.02803016 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.41726637E-01, 0.17481526E-02) (-0.19944315E-02,-0.79237480E-04)
     ROW  2
  (-0.19944315E-02,-0.79237480E-04) (-0.20556733E-02, 0.10689344E-04)
 eigenphases
 -0.2146356E-02  0.4186621E-01
 eigenphase sum 0.397199E-01  scattering length=  -0.08463
 eps+pi 0.318131E+01  eps+2*pi 0.632291E+01

MaxIter =   5 c.s. =      0.02803016 angs^2  rmsk=     0.00000000
Time Now =       108.1531  Delta time =         2.6129 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =       108.1728  Delta time =         0.0196 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =DG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     2
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    7
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =    4
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    7
Time Now =       108.1841  Delta time =         0.0113 Energy independent setup

Compute solution for E =    4.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622043E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622045E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622048E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622052E-16
For potential     3
Number of asymptotic regions =      64
Final point in integration =   0.16629189E+03 Angstroms
Time Now =       109.1821  Delta time =         0.9980 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.02667237 angs^2  rmsk=     0.02360285
iL =   1 Iter =   2 c.s. =      0.04728714 angs^2  rmsk=     0.00785852
iL =   1 Iter =   3 c.s. =      0.04727758 angs^2  rmsk=     0.00000319
iL =   1 Iter =   4 c.s. =      0.04727759 angs^2  rmsk=     0.00000000
iL =   1 Iter =   5 c.s. =      0.04727759 angs^2  rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =      0.04727759 angs^2  rmsk=     0.00148140
iL =   2 Iter =   2 c.s. =      0.04726316 angs^2  rmsk=     0.00015783
iL =   2 Iter =   3 c.s. =      0.04726316 angs^2  rmsk=     0.00000002
iL =   2 Iter =   4 c.s. =      0.04726316 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.62633112E-01, 0.39410898E-02) (-0.16250695E-02,-0.98534844E-04)
     ROW  2
  (-0.16250695E-02,-0.98534845E-04) (-0.22186080E-02, 0.10866506E-04)
 eigenphases
 -0.2259326E-02  0.6283910E-01
 eigenphase sum 0.605798E-01  scattering length=  -0.11186
 eps+pi 0.320217E+01  eps+2*pi 0.634377E+01

MaxIter =   5 c.s. =      0.04726316 angs^2  rmsk=     0.00000000
Time Now =       111.8232  Delta time =         2.6410 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =       111.8428  Delta time =         0.0196 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =DG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     2
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    7
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =    4
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    7
Time Now =       111.8541  Delta time =         0.0113 Energy independent setup

Compute solution for E =    5.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334094E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334095E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334097E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334100E-16
For potential     3
Number of asymptotic regions =      66
Final point in integration =   0.15437122E+03 Angstroms
Time Now =       112.9472  Delta time =         1.0931 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.03847322 angs^2  rmsk=     0.03169333
iL =   1 Iter =   2 c.s. =      0.07400235 angs^2  rmsk=     0.01231458
iL =   1 Iter =   3 c.s. =      0.07398580 angs^2  rmsk=     0.00000494
iL =   1 Iter =   4 c.s. =      0.07398581 angs^2  rmsk=     0.00000000
iL =   1 Iter =   5 c.s. =      0.07398581 angs^2  rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =      0.07398581 angs^2  rmsk=     0.00135648
iL =   2 Iter =   2 c.s. =      0.07397014 angs^2  rmsk=     0.00030608
iL =   2 Iter =   3 c.s. =      0.07397014 angs^2  rmsk=     0.00000005
iL =   2 Iter =   4 c.s. =      0.07397014 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.87514864E-01, 0.77191917E-02) (-0.86515976E-03,-0.74326304E-04)
     ROW  2
  (-0.86515976E-03,-0.74326306E-04) (-0.22291154E-02, 0.98133433E-05)
 eigenphases
 -0.2237481E-02  0.8797645E-01
 eigenphase sum 0.857390E-01  scattering length=  -0.14178
 eps+pi 0.322733E+01  eps+2*pi 0.636892E+01

MaxIter =   5 c.s. =      0.07397014 angs^2  rmsk=     0.00000000
Time Now =       115.5432  Delta time =         2.5960 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =       115.5629  Delta time =         0.0197 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =DG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     2
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    7
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =    4
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    7
Time Now =       115.5742  Delta time =         0.0113 Energy independent setup

Compute solution for E =    6.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407236E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407238E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407242E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407248E-16
For potential     3
Number of asymptotic regions =      68
Final point in integration =   0.14526845E+03 Angstroms
Time Now =       116.6635  Delta time =         1.0893 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.05315898 angs^2  rmsk=     0.04081009
iL =   1 Iter =   2 c.s. =      0.10792839 angs^2  rmsk=     0.01743618
iL =   1 Iter =   3 c.s. =      0.10790321 angs^2  rmsk=     0.00000683
iL =   1 Iter =   4 c.s. =      0.10790324 angs^2  rmsk=     0.00000001
iL =   1 Iter =   5 c.s. =      0.10790324 angs^2  rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =      0.10790324 angs^2  rmsk=     0.00113939
iL =   2 Iter =   2 c.s. =      0.10789650 angs^2  rmsk=     0.00051473
iL =   2 Iter =   3 c.s. =      0.10789650 angs^2  rmsk=     0.00000011
iL =   2 Iter =   4 c.s. =      0.10789650 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.11547460E+00, 0.13517182E-01) ( 0.28843103E-03, 0.33180439E-04)
     ROW  2
  ( 0.28843102E-03, 0.33180435E-04) (-0.20651179E-02, 0.92053173E-05)
 eigenphases
 -0.2065852E-02  0.1165273E+00
 eigenphase sum 0.114461E+00  scattering length=  -0.17312
 eps+pi 0.325605E+01  eps+2*pi 0.639765E+01

MaxIter =   5 c.s. =      0.10789650 angs^2  rmsk=     0.00000000
Time Now =       119.2532  Delta time =         2.5897 End ScatStab
+ Data Record ScatContSym - 'DU'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =       119.2730  Delta time =         0.0198 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =DU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     1
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     1
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    5
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    3
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    5
Time Now =       119.2843  Delta time =         0.0114 Energy independent setup

Compute solution for E =    3.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491190E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491191E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491191E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491192E-15
For potential     3
Number of asymptotic regions =      62
Final point in integration =   0.18302855E+03 Angstroms
Time Now =       119.9678  Delta time =         0.6835 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00004912 angs^2  rmsk=     0.00175447
iL =   1 Iter =   2 c.s. =      0.00006095 angs^2  rmsk=     0.00019978
iL =   1 Iter =   3 c.s. =      0.00006095 angs^2  rmsk=     0.00000000
iL =   1 Iter =   4 c.s. =      0.00006095 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.19542262E-02, 0.81654408E-05)
 eigenphases
  0.1954248E-02
 eigenphase sum 0.195425E-02  scattering length=  -0.00416
 eps+pi 0.314355E+01  eps+2*pi 0.628514E+01

MaxIter =   4 c.s. =      0.00006095 angs^2  rmsk=     0.00000000
Time Now =       121.0032  Delta time =         1.0353 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =       121.0228  Delta time =         0.0196 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =DU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     1
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     1
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    5
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    3
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    5
Time Now =       121.0341  Delta time =         0.0113 Energy independent setup

Compute solution for E =    4.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622043E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622045E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622048E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622052E-16
For potential     3
Number of asymptotic regions =      64
Final point in integration =   0.16629189E+03 Angstroms
Time Now =       121.7216  Delta time =         0.6876 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00013540 angs^2  rmsk=     0.00336332
iL =   1 Iter =   2 c.s. =      0.00017660 angs^2  rmsk=     0.00047786
iL =   1 Iter =   3 c.s. =      0.00017660 angs^2  rmsk=     0.00000000
iL =   1 Iter =   4 c.s. =      0.00017660 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.38411282E-02, 0.20242777E-04)
 eigenphases
  0.3841208E-02
 eigenphase sum 0.384121E-02  scattering length=  -0.00708
 eps+pi 0.314543E+01  eps+2*pi 0.628703E+01

MaxIter =   4 c.s. =      0.00017660 angs^2  rmsk=     0.00000000
Time Now =       122.7532  Delta time =         1.0315 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =       122.7729  Delta time =         0.0197 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =DU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     1
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     1
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    5
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    3
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    5
Time Now =       122.7842  Delta time =         0.0113 Energy independent setup

Compute solution for E =    5.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334094E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334095E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334097E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334100E-16
For potential     3
Number of asymptotic regions =      66
Final point in integration =   0.15437122E+03 Angstroms
Time Now =       123.5329  Delta time =         0.7487 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00030741 angs^2  rmsk=     0.00566606
iL =   1 Iter =   2 c.s. =      0.00041513 angs^2  rmsk=     0.00091828
iL =   1 Iter =   3 c.s. =      0.00041513 angs^2  rmsk=     0.00000001
iL =   1 Iter =   4 c.s. =      0.00041513 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.65841400E-02, 0.49699172E-04)
 eigenphases
  0.6584414E-02
 eigenphase sum 0.658441E-02  scattering length=  -0.01086
 eps+pi 0.314818E+01  eps+2*pi 0.628977E+01

MaxIter =   4 c.s. =      0.00041513 angs^2  rmsk=     0.00000000
Time Now =       124.6475  Delta time =         1.1146 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =       124.6670  Delta time =         0.0195 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =DU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     1
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     1
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    5
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    3
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    5
Time Now =       124.6783  Delta time =         0.0113 Energy independent setup

Compute solution for E =    6.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407236E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407238E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407242E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407248E-16
For potential     3
Number of asymptotic regions =      68
Final point in integration =   0.14526845E+03 Angstroms
Time Now =       125.4342  Delta time =         0.7558 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00060609 angs^2  rmsk=     0.00871522
iL =   1 Iter =   2 c.s. =      0.00083887 angs^2  rmsk=     0.00153796
iL =   1 Iter =   3 c.s. =      0.00083887 angs^2  rmsk=     0.00000001
iL =   1 Iter =   4 c.s. =      0.00083887 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.10252517E-01, 0.11195534E-03)
 eigenphases
  0.1025338E-01
 eigenphase sum 0.102534E-01  scattering length=  -0.01544
 eps+pi 0.315185E+01  eps+2*pi 0.629344E+01

MaxIter =   4 c.s. =      0.00083887 angs^2  rmsk=     0.00000000
Time Now =       126.4623  Delta time =         1.0281 End ScatStab
+ Data Record ScatContSym - 'FG'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =       126.4819  Delta time =         0.0196 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =FG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     1
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     1
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =    4
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    6
Time Now =       126.4934  Delta time =         0.0115 Energy independent setup

Compute solution for E =    3.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491190E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491191E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491191E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491192E-15
For potential     3
Number of asymptotic regions =      62
Final point in integration =   0.18302855E+03 Angstroms
Time Now =       127.3144  Delta time =         0.8211 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00008291 angs^2  rmsk=     0.00227922
iL =   1 Iter =   2 c.s. =      0.00008311 angs^2  rmsk=     0.00000281
iL =   1 Iter =   3 c.s. =      0.00008311 angs^2  rmsk=     0.00000000
iL =   1 Iter =   4 c.s. =      0.00008311 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.22820208E-02, 0.66614003E-05)
 eigenphases
  0.2282035E-02
 eigenphase sum 0.228204E-02  scattering length=  -0.00486
 eps+pi 0.314387E+01  eps+2*pi 0.628547E+01

MaxIter =   4 c.s. =      0.00008311 angs^2  rmsk=     0.00000000
Time Now =       128.3445  Delta time =         1.0301 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =       128.3641  Delta time =         0.0195 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =FG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     1
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     1
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =    4
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    6
Time Now =       128.3753  Delta time =         0.0113 Energy independent setup

Compute solution for E =    4.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622043E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622045E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622048E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622052E-16
For potential     3
Number of asymptotic regions =      64
Final point in integration =   0.16629189E+03 Angstroms
Time Now =       129.1946  Delta time =         0.8193 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00009311 angs^2  rmsk=     0.00278908
iL =   1 Iter =   2 c.s. =      0.00009368 angs^2  rmsk=     0.00000859
iL =   1 Iter =   3 c.s. =      0.00009368 angs^2  rmsk=     0.00000000
iL =   1 Iter =   4 c.s. =      0.00009368 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.27976541E-02, 0.96998324E-05)
 eigenphases
  0.2797679E-02
 eigenphase sum 0.279768E-02  scattering length=  -0.00516
 eps+pi 0.314439E+01  eps+2*pi 0.628598E+01

MaxIter =   4 c.s. =      0.00009368 angs^2  rmsk=     0.00000000
Time Now =       130.2085  Delta time =         1.0138 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =       130.2280  Delta time =         0.0195 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =FG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     1
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     1
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =    4
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    6
Time Now =       130.2393  Delta time =         0.0113 Energy independent setup

Compute solution for E =    5.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334094E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334095E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334097E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334100E-16
For potential     3
Number of asymptotic regions =      66
Final point in integration =   0.15437122E+03 Angstroms
Time Now =       131.1389  Delta time =         0.8996 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00010656 angs^2  rmsk=     0.00333590
iL =   1 Iter =   2 c.s. =      0.00010784 angs^2  rmsk=     0.00002006
iL =   1 Iter =   3 c.s. =      0.00010784 angs^2  rmsk=     0.00000000
iL =   1 Iter =   4 c.s. =      0.00010784 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.33559259E-02, 0.13518002E-04)
 eigenphases
  0.3355966E-02
 eigenphase sum 0.335597E-02  scattering length=  -0.00554
 eps+pi 0.314495E+01  eps+2*pi 0.628654E+01

MaxIter =   4 c.s. =      0.00010784 angs^2  rmsk=     0.00000000
Time Now =       132.1542  Delta time =         1.0153 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =       132.1737  Delta time =         0.0195 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =FG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     1
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     1
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =    4
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    6
Time Now =       132.1850  Delta time =         0.0113 Energy independent setup

Compute solution for E =    6.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407236E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407238E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407242E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407248E-16
For potential     3
Number of asymptotic regions =      68
Final point in integration =   0.14526845E+03 Angstroms
Time Now =       133.0871  Delta time =         0.9021 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00012430 angs^2  rmsk=     0.00394680
iL =   1 Iter =   2 c.s. =      0.00012680 angs^2  rmsk=     0.00003955
iL =   1 Iter =   3 c.s. =      0.00012680 angs^2  rmsk=     0.00000000
iL =   1 Iter =   4 c.s. =      0.00012680 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.39863117E-02, 0.18488158E-04)
 eigenphases
  0.3986375E-02
 eigenphase sum 0.398637E-02  scattering length=  -0.00600
 eps+pi 0.314558E+01  eps+2*pi 0.628717E+01

MaxIter =   4 c.s. =      0.00012680 angs^2  rmsk=     0.00000000
Time Now =       134.1027  Delta time =         1.0156 End ScatStab
+ Data Record ScatContSym - 'FU'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =       134.1223  Delta time =         0.0196 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =FU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     1
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     1
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    3
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    6
Time Now =       134.1338  Delta time =         0.0115 Energy independent setup

Compute solution for E =    3.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491190E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491191E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491191E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491192E-15
For potential     3
Number of asymptotic regions =      62
Final point in integration =   0.18302855E+03 Angstroms
Time Now =       134.9616  Delta time =         0.8278 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00237463 angs^2  rmsk=     0.01219809
iL =   1 Iter =   2 c.s. =      0.00242059 angs^2  rmsk=     0.00011749
iL =   1 Iter =   3 c.s. =      0.00242059 angs^2  rmsk=     0.00000000
iL =   1 Iter =   4 c.s. =      0.00242059 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.12314619E-01, 0.15320147E-03)
 eigenphases
  0.1231590E-01
 eigenphase sum 0.123159E-01  scattering length=  -0.02623
 eps+pi 0.315391E+01  eps+2*pi 0.629550E+01

MaxIter =   4 c.s. =      0.00242059 angs^2  rmsk=     0.00000000
Time Now =       136.0105  Delta time =         1.0489 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =       136.0300  Delta time =         0.0195 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =FU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     1
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     1
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    3
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    6
Time Now =       136.0413  Delta time =         0.0113 Energy independent setup

Compute solution for E =    4.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622043E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622045E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622048E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622052E-16
For potential     3
Number of asymptotic regions =      64
Final point in integration =   0.16629189E+03 Angstroms
Time Now =       136.9526  Delta time =         0.9112 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00252228 angs^2  rmsk=     0.01451644
iL =   1 Iter =   2 c.s. =      0.00261850 angs^2  rmsk=     0.00027433
iL =   1 Iter =   3 c.s. =      0.00261850 angs^2  rmsk=     0.00000000
iL =   1 Iter =   4 c.s. =      0.00261850 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.14789089E-01, 0.22055226E-03)
 eigenphases
  0.1479130E-01
 eigenphase sum 0.147913E-01  scattering length=  -0.02728
 eps+pi 0.315638E+01  eps+2*pi 0.629798E+01

MaxIter =   4 c.s. =      0.00261850 angs^2  rmsk=     0.00000000
Time Now =       138.0120  Delta time =         1.0595 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =       138.0318  Delta time =         0.0197 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =FU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     1
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     1
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    3
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    6
Time Now =       138.0433  Delta time =         0.0115 Energy independent setup

Compute solution for E =    5.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334094E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334095E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334097E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334100E-16
For potential     3
Number of asymptotic regions =      66
Final point in integration =   0.15437122E+03 Angstroms
Time Now =       138.9479  Delta time =         0.9046 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00274674 angs^2  rmsk=     0.01693666
iL =   1 Iter =   2 c.s. =      0.00291682 angs^2  rmsk=     0.00051657
iL =   1 Iter =   3 c.s. =      0.00291682 angs^2  rmsk=     0.00000000
iL =   1 Iter =   4 c.s. =      0.00291682 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.17450452E-01, 0.30652357E-03)
 eigenphases
  0.1745406E-01
 eigenphase sum 0.174541E-01  scattering length=  -0.02879
 eps+pi 0.315905E+01  eps+2*pi 0.630064E+01

MaxIter =   4 c.s. =      0.00291682 angs^2  rmsk=     0.00000000
Time Now =       139.9970  Delta time =         1.0491 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =       140.0165  Delta time =         0.0195 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =FU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     1
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     1
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    3
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    6
Time Now =       140.0278  Delta time =         0.0113 Energy independent setup

Compute solution for E =    6.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407236E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407238E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407242E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407248E-16
For potential     3
Number of asymptotic regions =      68
Final point in integration =   0.14526845E+03 Angstroms
Time Now =       140.9267  Delta time =         0.8988 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00304974 angs^2  rmsk=     0.01954972
iL =   1 Iter =   2 c.s. =      0.00332069 angs^2  rmsk=     0.00085013
iL =   1 Iter =   3 c.s. =      0.00332069 angs^2  rmsk=     0.00000000
iL =   1 Iter =   4 c.s. =      0.00332069 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.20395396E-01, 0.41804616E-03)
 eigenphases
  0.2040113E-01
 eigenphase sum 0.204011E-01  scattering length=  -0.03073
 eps+pi 0.316199E+01  eps+2*pi 0.630359E+01

MaxIter =   4 c.s. =      0.00332069 angs^2  rmsk=     0.00000000
Time Now =       141.9773  Delta time =         1.0506 End ScatStab
+ Data Record ScatContSym - 'GG'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =       141.9969  Delta time =         0.0196 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =GG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     7
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     1
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     1
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    7
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   10
Higest l included in the K matrix (lna) =    4
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    7
Time Now =       142.0082  Delta time =         0.0113 Energy independent setup

Compute solution for E =    3.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491190E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491191E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491191E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491192E-15
For potential     3
Number of asymptotic regions =      62
Final point in integration =   0.18302855E+03 Angstroms
Time Now =       142.9745  Delta time =         0.9664 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00095683 angs^2  rmsk=     0.00774306
iL =   1 Iter =   2 c.s. =      0.00095740 angs^2  rmsk=     0.00000227
iL =   1 Iter =   3 c.s. =      0.00095740 angs^2  rmsk=     0.00000000
iL =   1 Iter =   4 c.s. =      0.00095740 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.77450980E-02, 0.60521832E-04)
 eigenphases
  0.7745416E-02
 eigenphase sum 0.774542E-02  scattering length=  -0.01650
 eps+pi 0.314934E+01  eps+2*pi 0.629093E+01

MaxIter =   4 c.s. =      0.00095740 angs^2  rmsk=     0.00000000
Time Now =       144.0040  Delta time =         1.0294 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =       144.0237  Delta time =         0.0198 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =GG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     7
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     1
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     1
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    7
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   10
Higest l included in the K matrix (lna) =    4
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    7
Time Now =       144.0352  Delta time =         0.0114 Energy independent setup

Compute solution for E =    4.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622043E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622045E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622048E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622052E-16
For potential     3
Number of asymptotic regions =      64
Final point in integration =   0.16629189E+03 Angstroms
Time Now =       145.0011  Delta time =         0.9660 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00095059 angs^2  rmsk=     0.00891169
iL =   1 Iter =   2 c.s. =      0.00095199 angs^2  rmsk=     0.00000658
iL =   1 Iter =   3 c.s. =      0.00095199 angs^2  rmsk=     0.00000000
iL =   1 Iter =   4 c.s. =      0.00095199 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.89179050E-02, 0.80190491E-04)
 eigenphases
  0.8918390E-02
 eigenphase sum 0.891839E-02  scattering length=  -0.01645
 eps+pi 0.315051E+01  eps+2*pi 0.629210E+01

MaxIter =   4 c.s. =      0.00095199 angs^2  rmsk=     0.00000000
Time Now =       146.0246  Delta time =         1.0235 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =       146.0442  Delta time =         0.0195 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =GG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     7
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     1
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     1
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    7
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   10
Higest l included in the K matrix (lna) =    4
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    7
Time Now =       146.0555  Delta time =         0.0113 Energy independent setup

Compute solution for E =    5.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334094E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334095E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334097E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334100E-16
For potential     3
Number of asymptotic regions =      66
Final point in integration =   0.15437122E+03 Angstroms
Time Now =       147.1135  Delta time =         1.0581 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00094968 angs^2  rmsk=     0.00995881
iL =   1 Iter =   2 c.s. =      0.00095248 angs^2  rmsk=     0.00001466
iL =   1 Iter =   3 c.s. =      0.00095248 angs^2  rmsk=     0.00000000
iL =   1 Iter =   4 c.s. =      0.00095248 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.99729578E-02, 0.10022366E-03)
 eigenphases
  0.9973634E-02
 eigenphase sum 0.997363E-02  scattering length=  -0.01645
 eps+pi 0.315157E+01  eps+2*pi 0.629316E+01

MaxIter =   4 c.s. =      0.00095248 angs^2  rmsk=     0.00000000
Time Now =       148.1422  Delta time =         1.0287 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =       148.1619  Delta time =         0.0197 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =GG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     7
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     1
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     1
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    7
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   10
Higest l included in the K matrix (lna) =    4
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   10
Number of partial waves in the homogeneous solution (npHomo) =    7
Time Now =       148.1735  Delta time =         0.0116 Energy independent setup

Compute solution for E =    6.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407236E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407238E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407242E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407248E-16
For potential     3
Number of asymptotic regions =      68
Final point in integration =   0.14526845E+03 Angstroms
Time Now =       149.2419  Delta time =         1.0684 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00095500 angs^2  rmsk=     0.01093987
iL =   1 Iter =   2 c.s. =      0.00095987 angs^2  rmsk=     0.00002786
iL =   1 Iter =   3 c.s. =      0.00095987 angs^2  rmsk=     0.00000000
iL =   1 Iter =   4 c.s. =      0.00095987 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.10967052E-01, 0.12111920E-03)
 eigenphases
  0.1096795E-01
 eigenphase sum 0.109679E-01  scattering length=  -0.01652
 eps+pi 0.315256E+01  eps+2*pi 0.629415E+01

MaxIter =   4 c.s. =      0.00095987 angs^2  rmsk=     0.00000000
Time Now =       150.2746  Delta time =         1.0327 End ScatStab
+ Data Record ScatContSym - 'GU'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =       150.2943  Delta time =         0.0196 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =GU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =       150.3157  Delta time =         0.0214 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =GU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =       150.3371  Delta time =         0.0214 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =GU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =       150.3585  Delta time =         0.0214 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =GU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK
+ Data Record ScatContSym - 'A2G'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =       150.3800  Delta time =         0.0215 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A2G   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =       150.4014  Delta time =         0.0214 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A2G   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =       150.4231  Delta time =         0.0217 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A2G   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =       150.4445  Delta time =         0.0214 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A2G   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK
+ Data Record ScatContSym - 'A2U'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =       150.4660  Delta time =         0.0215 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A2U   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =       150.4874  Delta time =         0.0214 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A2U   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =       150.5089  Delta time =         0.0214 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A2U   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =       150.5303  Delta time =         0.0214 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A2U   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK
+ Data Record ScatContSym - 'B1G'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =       150.5517  Delta time =         0.0215 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =B1G   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =       150.5735  Delta time =         0.0218 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =B1G   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =       150.5949  Delta time =         0.0214 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =B1G   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =       150.6163  Delta time =         0.0214 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =B1G   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK
+ Data Record ScatContSym - 'B1U'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =       150.6378  Delta time =         0.0215 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =B1U   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =       150.6592  Delta time =         0.0215 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =B1U   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =       150.6809  Delta time =         0.0217 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =B1U   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =       150.7023  Delta time =         0.0214 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =B1U   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK
+ Data Record ScatContSym - 'B2G'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =       150.7239  Delta time =         0.0216 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =B2G   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =       150.7454  Delta time =         0.0215 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =B2G   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =       150.7668  Delta time =         0.0214 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =B2G   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =       150.7882  Delta time =         0.0214 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =B2G   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK
+ Data Record ScatContSym - 'B2U'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =       150.8097  Delta time =         0.0215 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =B2U   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =       150.8311  Delta time =         0.0214 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =B2U   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =       150.8526  Delta time =         0.0215 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =B2U   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =       150.8741  Delta time =         0.0214 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =B2U   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

+ Command FileName
+ 'MatrixElements' 'test15loc.dat' 'REWIND'
Opening file test15loc.dat at position REWIND
+ Data Record LMaxK - 10
+ Data Record IterMax - -1
+ Data Record ScatContSym - 'SG'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =       150.8957  Delta time =         0.0217 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =SG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     7
Number of asymptotic solutions on the left (NAsymL) =     7
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     7
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    7
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    9
Time Now =       150.9071  Delta time =         0.0113 Energy independent setup

Compute solution for E =    3.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491190E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491191E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491191E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491192E-15
For potential     3
Number of asymptotic regions =      62
Final point in integration =   0.18302855E+03 Angstroms
Time Now =       151.9992  Delta time =         1.0921 End SolveHomo
iL =   1 Iter =   1 c.s. =     14.15028590 angs^2  rmsk=     0.13451751
iL =   2 Iter =   1 c.s. =     14.15028590 angs^2  rmsk=     0.02057265
iL =   3 Iter =   1 c.s. =     14.15028590 angs^2  rmsk=     0.00114831
iL =   4 Iter =   1 c.s. =     14.15028590 angs^2  rmsk=     0.00048916
iL =   5 Iter =   1 c.s. =     14.15028590 angs^2  rmsk=     0.00027557
iL =   6 Iter =   1 c.s. =     14.15028590 angs^2  rmsk=     0.00024301
iL =   7 Iter =   1 c.s. =     14.15028590 angs^2  rmsk=     0.00016738
      Final k matrix
     ROW  1
  (-0.31068381E+00, 0.86583027E+00) (-0.44816837E-01, 0.13278494E+00)
  ( 0.73137928E-04, 0.18400136E-02) ( 0.55014053E-05, 0.85638637E-05)
  ( 0.23265960E-07, 0.14552553E-07) ( 0.20867038E-20,-0.14004200E-19)
  ( 0.42096838E-10, 0.46617090E-11)
     ROW  2
  (-0.44816837E-01, 0.13278494E+00) (-0.25385866E-01, 0.20738464E-01)
  (-0.48361615E-02, 0.40045105E-03) (-0.33317621E-04, 0.11205637E-04)
  (-0.42088886E-07, 0.73391022E-07) ( 0.19978779E-19,-0.25576767E-20)
  ( 0.13003809E-10, 0.15234095E-09)
     ROW  3
  ( 0.73137928E-04, 0.18400136E-02) (-0.48361615E-02, 0.40045105E-03)
  (-0.58391039E-02, 0.64612048E-04) (-0.18901310E-02, 0.16286406E-04)
  (-0.74330701E-05, 0.19318111E-05) ( 0.16055453E-19,-0.22552752E-21)
  (-0.67747380E-08, 0.92422501E-08)
     ROW  4
  ( 0.55014053E-05, 0.85638637E-05) (-0.33317621E-04, 0.11205637E-04)
  (-0.18901310E-02, 0.16286406E-04) (-0.26767068E-02, 0.11724778E-04)
  (-0.99280259E-03, 0.41978381E-05) ( 0.18844849E-19,-0.75335355E-22)
  (-0.24449475E-05, 0.61820008E-06)
     ROW  5
  ( 0.23265960E-07, 0.14552553E-07) (-0.42088885E-07, 0.73391022E-07)
  (-0.74330701E-05, 0.19318111E-05) (-0.99280259E-03, 0.41978381E-05)
  (-0.15358010E-02, 0.37209446E-05) ( 0.26015848E-19,-0.60182292E-23)
  (-0.61360412E-03, 0.15572556E-05)
     ROW  6
  ( 0.22902241E-20,-0.14493808E-19) ( 0.19816589E-19,-0.26339932E-20)
  ( 0.16973205E-19,-0.22952990E-21) ( 0.18884203E-19,-0.76815394E-22)
  ( 0.25721234E-19,-0.63265144E-23) ( 0.17010452E-02, 0.28935632E-05)
  (-0.13526117E-19,-0.25337107E-22)
     ROW  7
  ( 0.42096838E-10, 0.46617092E-11) ( 0.13003809E-10, 0.15234095E-09)
  (-0.67747379E-08, 0.92422501E-08) (-0.24449475E-05, 0.61820008E-06)
  (-0.61360412E-03, 0.15572556E-05) (-0.13874377E-19,-0.25762585E-22)
  (-0.99810899E-03, 0.13727422E-05)
 eigenphases
 -0.1226715E+01 -0.2014759E-01 -0.5470051E-02 -0.2430860E-02 -0.1187580E-02
 -0.3291505E-03  0.1701048E-02
 eigenphase sum-0.125458E+01  scattering length=   6.50865
 eps+pi 0.188701E+01  eps+2*pi 0.502861E+01

MaxIter =   1 c.s. =     14.15028590 angs^2  rmsk=     0.00016738
Time Now =       152.0002  Delta time =         0.0010 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =       152.0199  Delta time =         0.0196 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =SG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     7
Number of asymptotic solutions on the left (NAsymL) =     7
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     7
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    7
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    9
Time Now =       152.0312  Delta time =         0.0113 Energy independent setup

Compute solution for E =    4.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622043E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622045E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622048E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622052E-16
For potential     3
Number of asymptotic regions =      64
Final point in integration =   0.16629189E+03 Angstroms
Time Now =       153.1221  Delta time =         1.0909 End SolveHomo
iL =   1 Iter =   1 c.s. =     11.47857887 angs^2  rmsk=     0.13989740
iL =   2 Iter =   1 c.s. =     11.47857887 angs^2  rmsk=     0.02737164
iL =   3 Iter =   1 c.s. =     11.47857887 angs^2  rmsk=     0.00135609
iL =   4 Iter =   1 c.s. =     11.47857887 angs^2  rmsk=     0.00056898
iL =   5 Iter =   1 c.s. =     11.47857887 angs^2  rmsk=     0.00031947
iL =   6 Iter =   1 c.s. =     11.47857887 angs^2  rmsk=     0.00028010
iL =   7 Iter =   1 c.s. =     11.47857887 angs^2  rmsk=     0.00019378
      Final k matrix
     ROW  1
  (-0.19319115E+00, 0.92216505E+00) (-0.33654033E-01, 0.18251380E+00)
  ( 0.41019217E-03, 0.31302278E-02) ( 0.12571146E-04, 0.18131777E-04)
  ( 0.64043422E-07, 0.40269717E-07) (-0.56550621E-20, 0.26808200E-20)
  ( 0.14645384E-09, 0.22510566E-10)
     ROW  2
  (-0.33654033E-01, 0.18251380E+00) (-0.29826144E-01, 0.36711124E-01)
  (-0.54146155E-02, 0.78443507E-03) (-0.47673027E-04, 0.17039112E-04)
  (-0.72175689E-07, 0.13164814E-06) ( 0.25283196E-19,-0.17545695E-21)
  ( 0.45118853E-10, 0.34676001E-09)
     ROW  3
  ( 0.41019217E-03, 0.31302278E-02) (-0.54146155E-02, 0.78443507E-03)
  (-0.67334665E-02, 0.90110601E-04) (-0.22050626E-02, 0.22053169E-04)
  (-0.11490875E-04, 0.26406156E-05) ( 0.26378110E-19,-0.30436264E-21)
  (-0.14294472E-07, 0.16630607E-07)
     ROW  4
  ( 0.12571146E-04, 0.18131777E-04) (-0.47673027E-04, 0.17039112E-04)
  (-0.22050626E-02, 0.22053169E-04) (-0.31094107E-02, 0.15863273E-04)
  (-0.11526932E-02, 0.56636939E-05) ( 0.21371575E-19,-0.11841120E-21)
  (-0.37756769E-05, 0.83538421E-06)
     ROW  5
  ( 0.64043422E-07, 0.40269717E-07) (-0.72175689E-07, 0.13164814E-06)
  (-0.11490875E-04, 0.26406156E-05) (-0.11526932E-02, 0.56636939E-05)
  (-0.17795631E-02, 0.50008465E-05) ( 0.29946985E-19,-0.74345412E-23)
  (-0.71070359E-03, 0.20902430E-05)
     ROW  6
  (-0.55792797E-20, 0.21080516E-20) ( 0.25541663E-19,-0.29164543E-21)
  ( 0.25939292E-19,-0.30582869E-21) ( 0.21512321E-19,-0.11738244E-21)
  ( 0.29730398E-19,-0.82126682E-23) ( 0.19606694E-02, 0.38442393E-05)
  (-0.16183838E-19,-0.34244151E-22)
     ROW  7
  ( 0.14645384E-09, 0.22510566E-10) ( 0.45118852E-10, 0.34676001E-09)
  (-0.14294472E-07, 0.16630607E-07) (-0.37756769E-05, 0.83538421E-06)
  (-0.71070359E-03, 0.20902430E-05) (-0.17002253E-19,-0.35056623E-22)
  (-0.11553758E-02, 0.18400156E-05)
 eigenphases
 -0.1365197E+01 -0.2480729E-01 -0.6521958E-02 -0.2848428E-02 -0.1387586E-02
 -0.3856061E-03  0.1960674E-02
 eigenphase sum-0.139919E+01  scattering length=  10.64133
 eps+pi 0.174241E+01  eps+2*pi 0.488400E+01

MaxIter =   1 c.s. =     11.47857887 angs^2  rmsk=     0.00019378
Time Now =       153.1234  Delta time =         0.0013 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =       153.1430  Delta time =         0.0196 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =SG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     7
Number of asymptotic solutions on the left (NAsymL) =     7
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     7
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    7
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    9
Time Now =       153.1544  Delta time =         0.0113 Energy independent setup

Compute solution for E =    5.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334094E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334095E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334097E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334100E-16
For potential     3
Number of asymptotic regions =      66
Final point in integration =   0.15437122E+03 Angstroms
Time Now =       154.3397  Delta time =         1.1853 End SolveHomo
iL =   1 Iter =   1 c.s. =      9.49803599 angs^2  rmsk=     0.14227791
iL =   2 Iter =   1 c.s. =      9.49803599 angs^2  rmsk=     0.03380901
iL =   3 Iter =   1 c.s. =      9.49803599 angs^2  rmsk=     0.00155716
iL =   4 Iter =   1 c.s. =      9.49803599 angs^2  rmsk=     0.00064048
iL =   5 Iter =   1 c.s. =      9.49803599 angs^2  rmsk=     0.00035859
iL =   6 Iter =   1 c.s. =      9.49803599 angs^2  rmsk=     0.00031258
iL =   7 Iter =   1 c.s. =      9.49803599 angs^2  rmsk=     0.00021722
      Final k matrix
     ROW  1
  (-0.91611123E-01, 0.93574551E+00) (-0.14938426E-01, 0.22690850E+00)
  ( 0.95066570E-03, 0.46605696E-02) ( 0.23517695E-04, 0.32297396E-04)
  ( 0.13899110E-06, 0.89131670E-07) (-0.83155298E-20,-0.35180289E-20)
  ( 0.38206189E-09, 0.74979546E-10)
     ROW  2
  (-0.14938426E-01, 0.22690850E+00) (-0.33570529E-01, 0.56009421E-01)
  (-0.57377771E-02, 0.13547727E-02) (-0.59953940E-04, 0.24905833E-04)
  (-0.92159524E-07, 0.20786042E-06) ( 0.34730086E-19,-0.22126279E-20)
  ( 0.15897126E-09, 0.63976138E-09)
     ROW  3
  ( 0.95066570E-03, 0.46605696E-02) (-0.57377771E-02, 0.13547727E-02)
  (-0.74314966E-02, 0.11881244E-03) (-0.24875638E-02, 0.27759638E-04)
  (-0.16094174E-04, 0.33772814E-05) ( 0.56459992E-19,-0.52533229E-21)
  (-0.25259042E-07, 0.26255978E-07)
     ROW  4
  ( 0.23517695E-04, 0.32297396E-04) (-0.59953940E-04, 0.24905833E-04)
  (-0.24875638E-02, 0.27759638E-04) (-0.34965749E-02, 0.20100341E-04)
  (-0.12958648E-02, 0.71628051E-05) ( 0.83117088E-21,-0.19055396E-21)
  (-0.52923409E-05, 0.10583774E-05)
     ROW  5
  ( 0.13899110E-06, 0.89131670E-07) (-0.92159524E-07, 0.20786042E-06)
  (-0.16094174E-04, 0.33772814E-05) (-0.12958648E-02, 0.71628051E-05)
  (-0.19964741E-02, 0.63008860E-05) ( 0.35999266E-19, 0.19568505E-22)
  (-0.79708413E-03, 0.26303778E-05)
     ROW  6
  (-0.82627603E-20,-0.35077882E-20) ( 0.34526424E-19,-0.21985767E-20)
  ( 0.55529877E-19,-0.51949174E-21) ( 0.95296306E-21,-0.18997260E-21)
  ( 0.37223194E-19, 0.19470350E-22) ( 0.21880807E-02, 0.47877202E-05)
  (-0.18159787E-19,-0.45897223E-22)
     ROW  7
  ( 0.38206189E-09, 0.74979548E-10) ( 0.15897126E-09, 0.63976138E-09)
  (-0.25259042E-07, 0.26255978E-07) (-0.52923409E-05, 0.10583774E-05)
  (-0.79708413E-03, 0.26303778E-05) (-0.18397983E-19,-0.45133779E-22)
  (-0.12948835E-02, 0.23121079E-05)
 eigenphases
 -0.1474979E+01 -0.3139321E-01 -0.7558822E-02 -0.3231951E-02 -0.1568873E-02
 -0.4367901E-03  0.2188088E-02
 eigenphase sum-0.151698E+01  scattering length=  30.62264
 eps+pi 0.162461E+01  eps+2*pi 0.476621E+01

MaxIter =   1 c.s. =      9.49803599 angs^2  rmsk=     0.00021722
Time Now =       154.3406  Delta time =         0.0009 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =       154.3602  Delta time =         0.0196 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =SG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     7
Number of asymptotic solutions on the left (NAsymL) =     7
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     7
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    7
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    9
Time Now =       154.3715  Delta time =         0.0113 Energy independent setup

Compute solution for E =    6.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407236E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407238E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407242E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407248E-16
For potential     3
Number of asymptotic regions =      68
Final point in integration =   0.14526845E+03 Angstroms
Time Now =       155.5607  Delta time =         1.1892 End SolveHomo
iL =   1 Iter =   1 c.s. =      7.99318360 angs^2  rmsk=     0.14297862
iL =   2 Iter =   1 c.s. =      7.99318360 angs^2  rmsk=     0.03981276
iL =   3 Iter =   1 c.s. =      7.99318360 angs^2  rmsk=     0.00176267
iL =   4 Iter =   1 c.s. =      7.99318360 angs^2  rmsk=     0.00070583
iL =   5 Iter =   1 c.s. =      7.99318360 angs^2  rmsk=     0.00039438
iL =   6 Iter =   1 c.s. =      7.99318360 angs^2  rmsk=     0.00034178
iL =   7 Iter =   1 c.s. =      7.99318360 angs^2  rmsk=     0.00023858
      Final k matrix
     ROW  1
  (-0.84402595E-02, 0.92384090E+00) ( 0.89190007E-02, 0.26488626E+00)
  ( 0.16897407E-02, 0.63655241E-02) ( 0.38725394E-04, 0.51415881E-04)
  ( 0.25888175E-06, 0.17043848E-06) ( 0.13122800E-19, 0.74813544E-19)
  ( 0.82838422E-09, 0.19637254E-09)
     ROW  2
  ( 0.89190007E-02, 0.26488626E+00) (-0.36778051E-01, 0.77667731E-01)
  (-0.58325829E-02, 0.21276968E-02) (-0.68587789E-04, 0.35594339E-04)
  (-0.83750472E-07, 0.30474053E-06) (-0.48381247E-19, 0.23329227E-19)
  ( 0.44972671E-09, 0.10346048E-08)
     ROW  3
  ( 0.16897407E-02, 0.63655241E-02) (-0.58325829E-02, 0.21276968E-02)
  (-0.79224591E-02, 0.15224287E-03) (-0.27443637E-02, 0.33215500E-04)
  (-0.21146905E-04, 0.41348837E-05) ( 0.14817009E-19, 0.90353135E-21)
  (-0.39821475E-07, 0.38107190E-07)
     ROW  4
  ( 0.38725394E-04, 0.51415881E-04) (-0.68587790E-04, 0.35594339E-04)
  (-0.27443637E-02, 0.33215500E-04) (-0.38510927E-02, 0.24411850E-04)
  (-0.14273973E-02, 0.86940595E-05) (-0.57404618E-19,-0.11263894E-21)
  (-0.69768401E-05, 0.12873196E-05)
     ROW  5
  ( 0.25888175E-06, 0.17043848E-06) (-0.83750472E-07, 0.30474053E-06)
  (-0.21146905E-04, 0.41348837E-05) (-0.14273973E-02, 0.86940595E-05)
  (-0.21944965E-02, 0.76212105E-05) ( 0.11525332E-18, 0.13861781E-21)
  (-0.87597048E-03, 0.31778093E-05)
     ROW  6
  ( 0.13057371E-19, 0.75176390E-19) (-0.48153086E-19, 0.23427322E-19)
  ( 0.14338704E-19, 0.90701891E-21) (-0.57320095E-19,-0.11166205E-21)
  ( 0.11540372E-18, 0.13829992E-21) ( 0.23924392E-02, 0.57237983E-05)
  (-0.38711019E-19,-0.13826456E-21)
     ROW  7
  ( 0.82838423E-09, 0.19637254E-09) ( 0.44972671E-09, 0.10346048E-08)
  (-0.39821475E-07, 0.38107190E-07) (-0.69768401E-05, 0.12873196E-05)
  (-0.87597048E-03, 0.31778093E-05) (-0.38981801E-19,-0.13839506E-21)
  (-0.14218414E-02, 0.27890255E-05)
 eigenphases
 -0.1564929E+01 -0.4053756E-01 -0.8471702E-02 -0.3568802E-02 -0.1727335E-02
 -0.4808820E-03  0.2392448E-02
 eigenphase sum-0.161732E+01  scattering length= -32.34198
 eps+pi 0.152427E+01  eps+2*pi 0.466586E+01

MaxIter =   1 c.s. =      7.99318360 angs^2  rmsk=     0.00023858
Time Now =       155.5616  Delta time =         0.0009 End ScatStab
+ Data Record ScatContSym - 'SU'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =       155.5813  Delta time =         0.0197 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =SU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     5
Number of asymptotic solutions on the left (NAsymL) =     5
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     5
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    5
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    9
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    8
Time Now =       155.5926  Delta time =         0.0113 Energy independent setup

Compute solution for E =    3.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491190E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491191E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491191E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491192E-15
For potential     3
Number of asymptotic regions =      62
Final point in integration =   0.18302855E+03 Angstroms
Time Now =       156.4270  Delta time =         0.8344 End SolveHomo
iL =   1 Iter =   1 c.s. =      2.99544231 angs^2  rmsk=     0.08664724
iL =   2 Iter =   1 c.s. =      2.99544231 angs^2  rmsk=     0.00386682
iL =   3 Iter =   1 c.s. =      2.99544231 angs^2  rmsk=     0.00099292
iL =   4 Iter =   1 c.s. =      2.99544231 angs^2  rmsk=     0.00050280
iL =   5 Iter =   1 c.s. =      2.99544231 angs^2  rmsk=     0.00028917
      Final k matrix
     ROW  1
  (-0.38978271E+00, 0.18728673E+00) (-0.15014445E-01, 0.73756207E-02)
  (-0.10759090E-03, 0.10584494E-03) (-0.74955386E-07, 0.52698878E-06)
  ( 0.44344404E-09, 0.10621921E-08)
     ROW  2
  (-0.15014445E-01, 0.73756207E-02) (-0.92458635E-02, 0.37380698E-03)
  (-0.28889549E-02, 0.40143084E-04) (-0.14981751E-04, 0.40271063E-05)
  (-0.16799121E-07, 0.23592963E-07)
     ROW  3
  (-0.10759090E-03, 0.10584494E-03) (-0.28889549E-02, 0.40143084E-04)
  (-0.38076430E-02, 0.24647061E-04) (-0.13333336E-02, 0.77739362E-05)
  (-0.40965052E-05, 0.10459981E-05)
     ROW  4
  (-0.74955387E-07, 0.52698878E-06) (-0.14981751E-04, 0.40271063E-05)
  (-0.13333336E-02, 0.77739362E-05) (-0.19876324E-02, 0.63201167E-05)
  (-0.76896555E-03, 0.24754187E-05)
     ROW  5
  ( 0.44344404E-09, 0.10621921E-08) (-0.16799121E-07, 0.23592963E-07)
  (-0.40965052E-05, 0.10459981E-05) (-0.76896555E-03, 0.24754187E-05)
  (-0.12243807E-02, 0.20904444E-05)
 eigenphases
 -0.4479315E+00 -0.1004014E-01 -0.3539651E-02 -0.1633605E-02 -0.4612129E-03
 eigenphase sum-0.463606E+00  scattering length=   1.06469
 eps+pi 0.267799E+01  eps+2*pi 0.581958E+01

MaxIter =   1 c.s. =      2.99544231 angs^2  rmsk=     0.00028917
Time Now =       156.4277  Delta time =         0.0007 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =       156.4474  Delta time =         0.0197 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =SU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     5
Number of asymptotic solutions on the left (NAsymL) =     5
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     5
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    5
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    9
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    8
Time Now =       156.4587  Delta time =         0.0113 Energy independent setup

Compute solution for E =    4.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622043E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622045E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622048E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622052E-16
For potential     3
Number of asymptotic regions =      64
Final point in integration =   0.16629189E+03 Angstroms
Time Now =       157.2873  Delta time =         0.8287 End SolveHomo
iL =   1 Iter =   1 c.s. =      3.46406434 angs^2  rmsk=     0.10759364
iL =   2 Iter =   1 c.s. =      3.46406434 angs^2  rmsk=     0.00490117
iL =   3 Iter =   1 c.s. =      3.46406434 angs^2  rmsk=     0.00115497
iL =   4 Iter =   1 c.s. =      3.46406434 angs^2  rmsk=     0.00058368
iL =   5 Iter =   1 c.s. =      3.46406434 angs^2  rmsk=     0.00033500
      Final k matrix
     ROW  1
  (-0.45263455E+00, 0.28876456E+00) (-0.18774839E-01, 0.12206317E-01)
  (-0.15844870E-03, 0.19127395E-03) (-0.91139443E-07, 0.11065168E-05)
  ( 0.12668848E-08, 0.27400084E-08)
     ROW  2
  (-0.18774839E-01, 0.12206317E-01) (-0.93503939E-02, 0.60053619E-03)
  (-0.33546549E-02, 0.51605829E-04) (-0.22940045E-04, 0.54904498E-05)
  (-0.34579778E-07, 0.42189794E-07)
     ROW  3
  (-0.15844870E-03, 0.19127395E-03) (-0.33546549E-02, 0.51605829E-04)
  (-0.44298232E-02, 0.33349057E-04) (-0.15512555E-02, 0.10531761E-04)
  (-0.63316363E-05, 0.14201244E-05)
     ROW  4
  (-0.91139443E-07, 0.11065168E-05) (-0.22940045E-04, 0.54904498E-05)
  (-0.15512555E-02, 0.10531761E-04) (-0.23054990E-02, 0.85171847E-05)
  (-0.89146674E-03, 0.33293115E-05)
     ROW  5
  ( 0.12668848E-08, 0.27400085E-08) (-0.34579777E-07, 0.42189794E-07)
  (-0.63316363E-05, 0.14201244E-05) (-0.89146674E-03, 0.33293115E-05)
  (-0.14180676E-02, 0.28056898E-05)
 eigenphases
 -0.5678827E+00 -0.1050063E-01 -0.3893966E-02 -0.1811093E-02 -0.5049469E-03
 eigenphase sum-0.584593E+00  scattering length=   1.22047
 eps+pi 0.255700E+01  eps+2*pi 0.569859E+01

MaxIter =   1 c.s. =      3.46406434 angs^2  rmsk=     0.00033500
Time Now =       157.2880  Delta time =         0.0007 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =       157.3076  Delta time =         0.0196 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =SU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     5
Number of asymptotic solutions on the left (NAsymL) =     5
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     5
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    5
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    9
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    8
Time Now =       157.3190  Delta time =         0.0113 Energy independent setup

Compute solution for E =    5.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334094E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334095E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334097E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334100E-16
For potential     3
Number of asymptotic regions =      66
Final point in integration =   0.15437122E+03 Angstroms
Time Now =       158.2071  Delta time =         0.8881 End SolveHomo
iL =   1 Iter =   1 c.s. =      3.74415742 angs^2  rmsk=     0.12506209
iL =   2 Iter =   1 c.s. =      3.74415742 angs^2  rmsk=     0.00595849
iL =   3 Iter =   1 c.s. =      3.74415742 angs^2  rmsk=     0.00129549
iL =   4 Iter =   1 c.s. =      3.74415742 angs^2  rmsk=     0.00065604
iL =   5 Iter =   1 c.s. =      3.74415742 angs^2  rmsk=     0.00037577
      Final k matrix
     ROW  1
  (-0.48693861E+00, 0.39006930E+00) (-0.22027101E-01, 0.17908221E-01)
  (-0.20843126E-03, 0.30473787E-03) (-0.53242991E-07, 0.19890094E-05)
  ( 0.28954897E-08, 0.57609738E-08)
     ROW  2
  (-0.22027101E-01, 0.17908221E-01) (-0.81824594E-02, 0.88758977E-03)
  (-0.37345913E-02, 0.59320775E-04) (-0.31554866E-04, 0.69094605E-05)
  (-0.58607622E-07, 0.65552338E-07)
     ROW  3
  (-0.20843126E-03, 0.30473787E-03) (-0.37345913E-02, 0.59320775E-04)
  (-0.49814852E-02, 0.41957520E-04) (-0.17473706E-02, 0.13357061E-04)
  (-0.88804625E-05, 0.18075198E-05)
     ROW  4
  (-0.53242992E-07, 0.19890094E-05) (-0.31554866E-04, 0.69094605E-05)
  (-0.17473706E-02, 0.13357061E-04) (-0.25890839E-02, 0.10759654E-04)
  (-0.10008174E-02, 0.41981941E-05)
     ROW  5
  ( 0.28954897E-08, 0.57609738E-08) (-0.58607622E-07, 0.65552338E-07)
  (-0.88804625E-05, 0.18075198E-05) (-0.10008174E-02, 0.41981941E-05)
  (-0.15900902E-02, 0.35301344E-05)
 eigenphases
 -0.6754050E+00 -0.1011623E-01 -0.3930019E-02 -0.1811135E-02 -0.4748625E-03
 eigenphase sum-0.691737E+00  scattering length=   1.36629
 eps+pi 0.244986E+01  eps+2*pi 0.559145E+01

MaxIter =   1 c.s. =      3.74415742 angs^2  rmsk=     0.00037577
Time Now =       158.2077  Delta time =         0.0007 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =       158.2274  Delta time =         0.0196 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =SU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     5
Number of asymptotic solutions on the left (NAsymL) =     5
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     5
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    5
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    9
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    8
Time Now =       158.2387  Delta time =         0.0113 Energy independent setup

Compute solution for E =    6.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407236E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407238E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407242E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407248E-16
For potential     3
Number of asymptotic regions =      68
Final point in integration =   0.14526845E+03 Angstroms
Time Now =       159.1315  Delta time =         0.8928 End SolveHomo
iL =   1 Iter =   1 c.s. =      3.88981368 angs^2  rmsk=     0.13963801
iL =   2 Iter =   1 c.s. =      3.88981368 angs^2  rmsk=     0.00706743
iL =   3 Iter =   1 c.s. =      3.88981368 angs^2  rmsk=     0.00141629
iL =   4 Iter =   1 c.s. =      3.88981368 angs^2  rmsk=     0.00072239
iL =   5 Iter =   1 c.s. =      3.88981368 angs^2  rmsk=     0.00041298
      Final k matrix
     ROW  1
  (-0.49860634E+00, 0.48615316E+00) (-0.24692566E-01, 0.24289892E-01)
  (-0.25476935E-03, 0.44619255E-03) ( 0.65570439E-07, 0.32301807E-05)
  ( 0.56541947E-08, 0.10655416E-07)
     ROW  2
  (-0.24692566E-01, 0.24289892E-01) (-0.55899676E-02, 0.12487150E-02)
  (-0.40225374E-02, 0.61797009E-04) (-0.40312440E-04, 0.81841676E-05)
  (-0.86829647E-07, 0.92534458E-07)
     ROW  3
  (-0.25476935E-03, 0.44619255E-03) (-0.40225374E-02, 0.61797009E-04)
  (-0.54751892E-02, 0.50146679E-04) (-0.19280669E-02, 0.16226845E-04)
  (-0.11709662E-04, 0.22078194E-05)
     ROW  4
  ( 0.65570437E-07, 0.32301807E-05) (-0.40312440E-04, 0.81841676E-05)
  (-0.19280669E-02, 0.16226845E-04) (-0.28486027E-02, 0.13046215E-04)
  (-0.11009424E-02, 0.50820615E-05)
     ROW  5
  ( 0.56541947E-08, 0.10655416E-07) (-0.86829647E-07, 0.92534458E-07)
  (-0.11709662E-04, 0.22078194E-05) (-0.11009424E-02, 0.50820615E-05)
  (-0.17468752E-02, 0.42638332E-05)
 eigenphases
 -0.7727641E+00 -0.9318313E-02 -0.3633087E-02 -0.1426186E-02 -0.4957071E-04
 eigenphase sum-0.787191E+00  scattering length=   1.51127
 eps+pi 0.235440E+01  eps+2*pi 0.549599E+01

MaxIter =   1 c.s. =      3.88981368 angs^2  rmsk=     0.00041298
Time Now =       159.1322  Delta time =         0.0007 End ScatStab
+ Data Record ScatContSym - 'PG'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =       159.1519  Delta time =         0.0197 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =PG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     6
Number of asymptotic solutions on the left (NAsymL) =     6
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     6
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    8
Time Now =       159.1635  Delta time =         0.0116 Energy independent setup

Compute solution for E =    3.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491190E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491191E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491191E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491192E-15
For potential     3
Number of asymptotic regions =      62
Final point in integration =   0.18302855E+03 Angstroms
Time Now =       160.1029  Delta time =         0.9394 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.31602330 angs^2  rmsk=     0.02345322
iL =   2 Iter =   1 c.s. =      0.31602330 angs^2  rmsk=     0.00095105
iL =   3 Iter =   1 c.s. =      0.31602330 angs^2  rmsk=     0.00053642
iL =   4 Iter =   1 c.s. =      0.31602330 angs^2  rmsk=     0.00031071
iL =   5 Iter =   1 c.s. =      0.31602330 angs^2  rmsk=     0.00019963
iL =   6 Iter =   1 c.s. =      0.31602330 angs^2  rmsk=     0.00019071
      Final k matrix
     ROW  1
  ( 0.13912895E+00, 0.19752794E-01) (-0.23766633E-02,-0.32553571E-03)
  (-0.21397343E-04, 0.13997523E-05) (-0.26259190E-07, 0.33941268E-07)
  (-0.23286771E-20,-0.32997480E-21) ( 0.63037697E-11, 0.82205522E-10)
     ROW  2
  (-0.23766633E-02,-0.32553571E-03) (-0.48509522E-02, 0.32561522E-04)
  (-0.18094176E-02, 0.13318028E-04) (-0.70077925E-05, 0.18044203E-05)
  (-0.13325672E-20, 0.24106502E-22) (-0.63054237E-08, 0.85843795E-08)
     ROW  3
  (-0.21397343E-04, 0.13997523E-05) (-0.18094176E-02, 0.13318028E-04)
  (-0.24775023E-02, 0.10358845E-04) (-0.97266134E-03, 0.38540923E-05)
  (-0.74624927E-20, 0.24847661E-22) (-0.23700614E-05, 0.59785579E-06)
     ROW  4
  (-0.26259190E-07, 0.33941268E-07) (-0.70077925E-05, 0.18044203E-05)
  (-0.97266134E-03, 0.38540923E-05) (-0.14703225E-02, 0.34755187E-05)
  (-0.13221476E-19, 0.48897738E-23) (-0.60623322E-03, 0.14820193E-05)
     ROW  5
  (-0.30105379E-20,-0.42682355E-21) (-0.16517698E-20, 0.26054906E-22)
  (-0.69818631E-20, 0.24799930E-22) (-0.13195120E-19, 0.46534632E-23)
  ( 0.11977888E-02, 0.14347002E-05) ( 0.94773106E-20, 0.10170063E-22)
     ROW  6
  ( 0.63037698E-11, 0.82205522E-10) (-0.63054237E-08, 0.85843795E-08)
  (-0.23700614E-05, 0.59785579E-06) (-0.60623322E-03, 0.14820193E-05)
  ( 0.98667788E-20, 0.10275703E-22) (-0.97049486E-03, 0.13093889E-05)
 eigenphases
 -0.5910295E-02 -0.2441239E-02 -0.1164690E-02 -0.2924178E-03  0.1197790E-02
  0.1410308E+00
 eigenphase sum 0.132420E+00  scattering length=  -0.28366
 eps+pi 0.327401E+01  eps+2*pi 0.641561E+01

MaxIter =   1 c.s. =      0.31602330 angs^2  rmsk=     0.00019071
Time Now =       160.1038  Delta time =         0.0008 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =       160.1234  Delta time =         0.0197 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =PG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     6
Number of asymptotic solutions on the left (NAsymL) =     6
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     6
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    8
Time Now =       160.1349  Delta time =         0.0115 Energy independent setup

Compute solution for E =    4.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622043E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622045E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622048E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622052E-16
For potential     3
Number of asymptotic regions =      64
Final point in integration =   0.16629189E+03 Angstroms
Time Now =       161.0749  Delta time =         0.9400 End SolveHomo
iL =   1 Iter =   1 c.s. =      2.76867850 angs^2  rmsk=     0.08015832
iL =   2 Iter =   1 c.s. =      2.76867850 angs^2  rmsk=     0.00113170
iL =   3 Iter =   1 c.s. =      2.76867850 angs^2  rmsk=     0.00062284
iL =   4 Iter =   1 c.s. =      2.76867850 angs^2  rmsk=     0.00036005
iL =   5 Iter =   1 c.s. =      2.76867850 angs^2  rmsk=     0.00023056
iL =   6 Iter =   1 c.s. =      2.76867850 angs^2  rmsk=     0.00022076
      Final k matrix
     ROW  1
  ( 0.42161411E+00, 0.23124445E+00) ( 0.30453015E-02, 0.16486441E-02)
  ( 0.10244685E-04,-0.27167385E-05) ( 0.79363076E-07,-0.92732036E-08)
  (-0.82942938E-20,-0.46143241E-20) ( 0.20234479E-09,-0.32975537E-10)
     ROW  2
  ( 0.30453015E-02, 0.16486441E-02) (-0.54484589E-02, 0.46106765E-04)
  (-0.21039521E-02, 0.17551866E-04) (-0.10810678E-04, 0.24519707E-05)
  (-0.12749934E-19, 0.24157970E-22) (-0.13271165E-07, 0.15392727E-07)
     ROW  3
  ( 0.10244685E-04,-0.27167385E-05) (-0.21039521E-02, 0.17551866E-04)
  (-0.28748674E-02, 0.13965535E-04) (-0.11284506E-02, 0.51914846E-05)
  (-0.23942912E-20, 0.46419660E-22) (-0.36580704E-05, 0.80681524E-06)
     ROW  4
  ( 0.79363077E-07,-0.92732034E-08) (-0.10810678E-04, 0.24519707E-05)
  (-0.11284506E-02, 0.51914846E-05) (-0.17031173E-02, 0.46669469E-05)
  (-0.14293385E-19, 0.71625977E-24) (-0.70197017E-03, 0.19881753E-05)
     ROW  5
  (-0.84930188E-20,-0.47227970E-20) (-0.12528715E-19, 0.22381772E-22)
  (-0.23484507E-20, 0.46260595E-22) (-0.14631078E-19,-0.10277037E-24)
  ( 0.13833298E-02, 0.19136051E-05) ( 0.10779448E-19, 0.13082867E-22)
     ROW  6
  ( 0.20234479E-09,-0.32975537E-10) (-0.13271165E-07, 0.15392727E-07)
  (-0.36580704E-05, 0.80681524E-06) (-0.70197017E-03, 0.19881753E-05)
  ( 0.95359821E-20, 0.12522594E-22) (-0.11232567E-02, 0.17544887E-05)
 eigenphases
 -0.6710933E-02 -0.2795741E-02 -0.1332431E-02 -0.3325266E-03  0.1383332E-02
  0.5016707E+00
 eigenphase sum 0.491882E+00  scattering length=  -0.98819
 eps+pi 0.363348E+01  eps+2*pi 0.677507E+01

MaxIter =   1 c.s. =      2.76867850 angs^2  rmsk=     0.00022076
Time Now =       161.0757  Delta time =         0.0008 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =       161.0953  Delta time =         0.0196 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =PG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     6
Number of asymptotic solutions on the left (NAsymL) =     6
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     6
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    8
Time Now =       161.1066  Delta time =         0.0113 Energy independent setup

Compute solution for E =    5.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334094E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334095E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334097E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334100E-16
For potential     3
Number of asymptotic regions =      66
Final point in integration =   0.15437122E+03 Angstroms
Time Now =       162.1211  Delta time =         1.0145 End SolveHomo
iL =   1 Iter =   1 c.s. =      9.57299241 angs^2  rmsk=     0.16664460
iL =   2 Iter =   1 c.s. =      9.57299241 angs^2  rmsk=     0.00339373
iL =   3 Iter =   1 c.s. =      9.57299241 angs^2  rmsk=     0.00070022
iL =   4 Iter =   1 c.s. =      9.57299241 angs^2  rmsk=     0.00040398
iL =   5 Iter =   1 c.s. =      9.57299241 angs^2  rmsk=     0.00025780
iL =   6 Iter =   1 c.s. =      9.57299241 angs^2  rmsk=     0.00024742
      Final k matrix
     ROW  1
  (-0.18253227E-01, 0.99929241E+00) (-0.23849620E-03, 0.19334585E-01)
  ( 0.43591421E-04, 0.14365181E-03) ( 0.46563954E-06, 0.50997455E-06)
  (-0.33185596E-22, 0.10580293E-19) ( 0.16165183E-08, 0.81831455E-09)
     ROW  2
  (-0.23849620E-03, 0.19334585E-01) (-0.59142319E-02, 0.41462641E-03)
  (-0.23648403E-02, 0.24419617E-04) (-0.15102552E-04, 0.31271922E-05)
  (-0.92175437E-20, 0.21480915E-21) (-0.23368903E-07, 0.24231891E-07)
     ROW  3
  ( 0.43591421E-04, 0.14365181E-03) (-0.23648403E-02, 0.24419617E-04)
  (-0.32292371E-02, 0.17650885E-04) (-0.12676470E-02, 0.65548959E-05)
  ( 0.12892490E-19, 0.33251255E-22) (-0.51247548E-05, 0.10208185E-05)
     ROW  4
  ( 0.46563954E-06, 0.50997455E-06) (-0.15102552E-04, 0.31271922E-05)
  (-0.12676470E-02, 0.65548959E-05) (-0.19100646E-02, 0.58750759E-05)
  (-0.24998077E-19,-0.17752921E-22) (-0.78706939E-03, 0.25005716E-05)
     ROW  5
  (-0.36521784E-22, 0.10408286E-19) (-0.88693446E-20, 0.20982108E-21)
  ( 0.12950158E-19, 0.31976694E-22) (-0.24734019E-19,-0.17063450E-22)
  ( 0.15468234E-02, 0.23926683E-05) ( 0.12415244E-19, 0.22978299E-22)
     ROW  6
  ( 0.16165183E-08, 0.81831456E-09) (-0.23368903E-07, 0.24231891E-07)
  (-0.51247548E-05, 0.10208185E-05) (-0.78706939E-03, 0.25005716E-05)
  ( 0.13512806E-19, 0.23502655E-22) (-0.12587131E-02, 0.22038752E-05)
 eigenphases
 -0.1552534E+01 -0.7370785E-02 -0.3097582E-02 -0.1474295E-02 -0.3652652E-03
  0.1546826E-02
 eigenphase sum-0.156330E+01  scattering length= 219.91758
 eps+pi 0.157830E+01  eps+2*pi 0.471989E+01

MaxIter =   1 c.s. =      9.57299241 angs^2  rmsk=     0.00024742
Time Now =       162.1220  Delta time =         0.0008 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =       162.1415  Delta time =         0.0196 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =PG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     6
Number of asymptotic solutions on the left (NAsymL) =     6
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     6
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    8
Time Now =       162.1528  Delta time =         0.0113 Energy independent setup

Compute solution for E =    6.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407236E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407238E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407242E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407248E-16
For potential     3
Number of asymptotic regions =      68
Final point in integration =   0.14526845E+03 Angstroms
Time Now =       163.1731  Delta time =         1.0203 End SolveHomo
iL =   1 Iter =   1 c.s. =      4.85716948 angs^2  rmsk=     0.13003182
iL =   2 Iter =   1 c.s. =      4.85716948 angs^2  rmsk=     0.00369511
iL =   3 Iter =   1 c.s. =      4.85716948 angs^2  rmsk=     0.00077084
iL =   4 Iter =   1 c.s. =      4.85716948 angs^2  rmsk=     0.00044410
iL =   5 Iter =   1 c.s. =      4.85716948 angs^2  rmsk=     0.00028244
iL =   6 Iter =   1 c.s. =      4.85716948 angs^2  rmsk=     0.00027170
      Final k matrix
     ROW  1
  (-0.48770576E+00, 0.60817228E+00) (-0.13047709E-01, 0.16479246E-01)
  (-0.80522205E-04, 0.18894946E-03) ( 0.80667907E-07, 0.10103015E-05)
  ( 0.10747928E-18,-0.13344303E-18) ( 0.14647839E-08, 0.26876196E-08)
     ROW  2
  (-0.13047709E-01, 0.16479246E-01) (-0.65350180E-02, 0.49153692E-03)
  (-0.26036999E-02, 0.30472952E-04) (-0.19815093E-04, 0.38216787E-05)
  ( 0.13452293E-20,-0.30445401E-20) (-0.36771784E-07, 0.35098534E-07)
     ROW  3
  (-0.80522205E-04, 0.18894946E-03) (-0.26036999E-02, 0.30472952E-04)
  (-0.35526533E-02, 0.21391015E-04) (-0.13952540E-02, 0.79431816E-05)
  (-0.21723049E-18, 0.31413097E-21) (-0.67523131E-05, 0.12399792E-05)
     ROW  4
  ( 0.80667905E-07, 0.10103015E-05) (-0.19815093E-04, 0.38216787E-05)
  (-0.13952540E-02, 0.79431816E-05) (-0.20988048E-02, 0.70999920E-05)
  ( 0.37225029E-19, 0.27543357E-21) (-0.86472310E-03, 0.30193367E-05)
     ROW  5
  ( 0.10719679E-18,-0.13310385E-18) ( 0.16866523E-20,-0.30382456E-20)
  (-0.21671710E-18, 0.31276095E-21) ( 0.36948461E-19, 0.27481903E-21)
  ( 0.16946240E-02, 0.28717588E-05) ( 0.14405525E-19,-0.25981680E-22)
     ROW  6
  ( 0.14647839E-08, 0.26876197E-08) (-0.36771784E-07, 0.35098534E-07)
  (-0.67523131E-05, 0.12399792E-05) (-0.86472310E-03, 0.30193367E-05)
  ( 0.14401385E-19,-0.26218649E-22) (-0.13819342E-02, 0.26575515E-05)
 eigenphases
 -0.8948901E+00 -0.7884251E-02 -0.3349951E-02 -0.1591153E-02 -0.3898131E-03
  0.1694627E-02
 eigenphase sum-0.906411E+00  scattering length=   1.92281
 eps+pi 0.223518E+01  eps+2*pi 0.537677E+01

MaxIter =   1 c.s. =      4.85716948 angs^2  rmsk=     0.00027170
Time Now =       163.1740  Delta time =         0.0009 End ScatStab
+ Data Record ScatContSym - 'PU'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =       163.1936  Delta time =         0.0197 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =PU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     6
Number of asymptotic solutions on the left (NAsymL) =     6
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     6
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    9
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    9
Time Now =       163.2051  Delta time =         0.0115 Energy independent setup

Compute solution for E =    3.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491190E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491191E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491191E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491192E-15
For potential     3
Number of asymptotic regions =      62
Final point in integration =   0.18302855E+03 Angstroms
Time Now =       164.2000  Delta time =         0.9950 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.79994568 angs^2  rmsk=     0.03731412
iL =   2 Iter =   1 c.s. =      0.79994568 angs^2  rmsk=     0.00209500
iL =   3 Iter =   1 c.s. =      0.79994568 angs^2  rmsk=     0.00075351
iL =   4 Iter =   1 c.s. =      0.79994568 angs^2  rmsk=     0.00040065
iL =   5 Iter =   1 c.s. =      0.79994568 angs^2  rmsk=     0.00034132
iL =   6 Iter =   1 c.s. =      0.79994568 angs^2  rmsk=     0.00023407
      Final k matrix
     ROW  1
  (-0.21755376E+00, 0.49933988E-01) (-0.10251813E-01, 0.24163110E-02)
  (-0.81279852E-04, 0.47866586E-04) (-0.97212606E-07, 0.29018576E-06)
  (-0.53073472E-20, 0.12333062E-20) ( 0.16648698E-09, 0.64236148E-09)
     ROW  2
  (-0.10251813E-01, 0.24163110E-02) (-0.63143769E-02, 0.15800528E-03)
  (-0.26776476E-02, 0.26991661E-04) (-0.13662688E-04, 0.35835893E-05)
  (-0.29724025E-20,-0.12251787E-22) (-0.15059786E-07, 0.21019269E-07)
     ROW  3
  (-0.81279852E-04, 0.47866586E-04) (-0.26776476E-02, 0.26991661E-04)
  (-0.34031796E-02, 0.20440133E-04) (-0.12956069E-02, 0.68820757E-05)
  ( 0.30535638E-19,-0.85535118E-22) (-0.39298336E-05, 0.99911297E-06)
     ROW  4
  (-0.97212606E-07, 0.29018576E-06) (-0.13662688E-04, 0.35835893E-05)
  (-0.12956069E-02, 0.68820757E-05) (-0.18779090E-02, 0.57787511E-05)
  ( 0.40670730E-19,-0.14419728E-22) (-0.75718289E-03, 0.23226643E-05)
     ROW  5
  (-0.38936065E-20, 0.88990666E-21) (-0.88436626E-21,-0.40044093E-22)
  ( 0.31860027E-19,-0.93969409E-22) ( 0.41379926E-19,-0.15514308E-22)
  ( 0.20479402E-02, 0.41940768E-05) (-0.24718244E-19,-0.52841549E-22)
     ROW  6
  ( 0.16648698E-09, 0.64236148E-09) (-0.15059786E-07, 0.21019269E-07)
  (-0.39298336E-05, 0.99911297E-06) (-0.75718289E-03, 0.23226643E-05)
  (-0.24018732E-19,-0.51694156E-22) (-0.11828412E-02, 0.19724649E-05)
 eigenphases
 -0.2256305E+00 -0.7634906E-02 -0.2983283E-02 -0.1357281E-02 -0.3065739E-03
  0.2047946E-02
 eigenphase sum-0.235865E+00  scattering length=   0.51183
 eps+pi 0.290573E+01  eps+2*pi 0.604732E+01

MaxIter =   1 c.s. =      0.79994568 angs^2  rmsk=     0.00023407
Time Now =       164.2009  Delta time =         0.0009 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =       164.2205  Delta time =         0.0196 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =PU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     6
Number of asymptotic solutions on the left (NAsymL) =     6
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     6
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    9
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    9
Time Now =       164.2318  Delta time =         0.0113 Energy independent setup

Compute solution for E =    4.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622043E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622045E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622048E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622052E-16
For potential     3
Number of asymptotic regions =      64
Final point in integration =   0.16629189E+03 Angstroms
Time Now =       165.2235  Delta time =         0.9917 End SolveHomo
iL =   1 Iter =   1 c.s. =      1.05441611 angs^2  rmsk=     0.04946732
iL =   2 Iter =   1 c.s. =      1.05441611 angs^2  rmsk=     0.00264970
iL =   3 Iter =   1 c.s. =      1.05441611 angs^2  rmsk=     0.00087281
iL =   4 Iter =   1 c.s. =      1.05441611 angs^2  rmsk=     0.00046474
iL =   5 Iter =   1 c.s. =      1.05441611 angs^2  rmsk=     0.00039328
iL =   6 Iter =   1 c.s. =      1.05441611 angs^2  rmsk=     0.00027110
      Final k matrix
     ROW  1
  (-0.28263295E+00, 0.87796401E-01) (-0.13709529E-01, 0.43399778E-02)
  (-0.13028000E-03, 0.87491672E-04) (-0.19781932E-06, 0.61364914E-06)
  ( 0.45698738E-19,-0.14481649E-19) ( 0.42286884E-09, 0.16981429E-08)
     ROW  2
  (-0.13709529E-01, 0.43399778E-02) (-0.60306099E-02, 0.25275295E-03)
  (-0.30875043E-02, 0.33020495E-04) (-0.20830158E-04, 0.48253311E-05)
  ( 0.28775733E-19,-0.88238488E-21) (-0.30838367E-07, 0.37311217E-07)
     ROW  3
  (-0.13028000E-03, 0.87491672E-04) (-0.30875043E-02, 0.33020495E-04)
  (-0.39496369E-02, 0.27424622E-04) (-0.15052285E-02, 0.92921530E-05)
  ( 0.27925648E-19,-0.20812163E-21) (-0.60681549E-05, 0.13531557E-05)
     ROW  4
  (-0.19781932E-06, 0.61364914E-06) (-0.20830158E-04, 0.48253311E-05)
  (-0.15052285E-02, 0.92921530E-05) (-0.21769713E-02, 0.77753893E-05)
  ( 0.45034015E-19,-0.10164910E-22) (-0.87741563E-03, 0.31210600E-05)
     ROW  5
  ( 0.44523228E-19,-0.14110836E-19) ( 0.28137395E-19,-0.86332611E-21)
  ( 0.28262152E-19,-0.20473954E-21) ( 0.43862747E-19,-0.11320184E-22)
  ( 0.23596676E-02, 0.55680621E-05) (-0.27144775E-19,-0.65532326E-22)
     ROW  6
  ( 0.42286884E-09, 0.16981429E-08) (-0.30838367E-07, 0.37311217E-07)
  (-0.60681549E-05, 0.13531557E-05) (-0.87741563E-03, 0.31210600E-05)
  (-0.27656098E-19,-0.67064213E-22) (-0.13696719E-02, 0.26459146E-05)
 eigenphases
 -0.3012003E+00 -0.7974516E-02 -0.3197879E-02 -0.1411459E-02 -0.2652735E-03
  0.2359676E-02
 eigenphase sum-0.311690E+00  scattering length=   0.59422
 eps+pi 0.282990E+01  eps+2*pi 0.597150E+01

MaxIter =   1 c.s. =      1.05441611 angs^2  rmsk=     0.00027110
Time Now =       165.2243  Delta time =         0.0009 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =       165.2440  Delta time =         0.0196 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =PU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     6
Number of asymptotic solutions on the left (NAsymL) =     6
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     6
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    9
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    9
Time Now =       165.2553  Delta time =         0.0113 Energy independent setup

Compute solution for E =    5.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334094E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334095E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334097E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334100E-16
For potential     3
Number of asymptotic regions =      66
Final point in integration =   0.15437122E+03 Angstroms
Time Now =       166.3200  Delta time =         1.0647 End SolveHomo
iL =   1 Iter =   1 c.s. =      1.24988224 angs^2  rmsk=     0.06021462
iL =   2 Iter =   1 c.s. =      1.24988224 angs^2  rmsk=     0.00327955
iL =   3 Iter =   1 c.s. =      1.24988224 angs^2  rmsk=     0.00097495
iL =   4 Iter =   1 c.s. =      1.24988224 angs^2  rmsk=     0.00052194
iL =   5 Iter =   1 c.s. =      1.24988224 angs^2  rmsk=     0.00043872
iL =   6 Iter =   1 c.s. =      1.24988224 angs^2  rmsk=     0.00030402
      Final k matrix
     ROW  1
  (-0.33587482E+00, 0.13008732E+00) (-0.17485020E-01, 0.68506077E-02)
  (-0.19082546E-03, 0.14359209E-03) (-0.35467277E-06, 0.11322993E-05)
  ( 0.30545348E-19,-0.12880294E-19) ( 0.84783979E-09, 0.37254823E-08)
     ROW  2
  (-0.17485020E-01, 0.68506077E-02) (-0.47665374E-02, 0.38719545E-03)
  (-0.34156660E-02, 0.35796382E-04) (-0.28543199E-04, 0.60057525E-05)
  ( 0.59307850E-19,-0.48724495E-21) (-0.52013451E-07, 0.57592322E-07)
     ROW  3
  (-0.19082546E-03, 0.14359209E-03) (-0.34156660E-02, 0.35796382E-04)
  (-0.44300933E-02, 0.34218868E-04) (-0.16931238E-02, 0.11744390E-04)
  (-0.77371940E-19,-0.21472492E-21) (-0.85027308E-05, 0.17180705E-05)
     ROW  4
  (-0.35467278E-06, 0.11322993E-05) (-0.28543199E-04, 0.60057525E-05)
  (-0.16931238E-02, 0.11744390E-04) (-0.24433292E-02, 0.98070719E-05)
  ( 0.84961890E-19, 0.18091393E-21) (-0.98460368E-03, 0.39320426E-05)
     ROW  5
  ( 0.30119120E-19,-0.12745488E-19) ( 0.60719878E-19,-0.48372915E-21)
  (-0.76833609E-19,-0.22094128E-21) ( 0.85287561E-19, 0.18295160E-21)
  ( 0.26323183E-02, 0.69291476E-05) (-0.39107681E-19,-0.12621922E-21)
     ROW  6
  ( 0.84783977E-09, 0.37254824E-08) (-0.52013451E-07, 0.57592322E-07)
  (-0.85027308E-05, 0.17180705E-05) (-0.98460368E-03, 0.39320426E-05)
  (-0.36134278E-19,-0.12263259E-21) (-0.15355030E-02, 0.33273156E-05)
 eigenphases
 -0.3695290E+00 -0.7866957E-02 -0.3180695E-02 -0.1242554E-02  0.3558841E-04
  0.2632330E-02
 eigenphase sum-0.379151E+00  scattering length=   0.65724
 eps+pi 0.276244E+01  eps+2*pi 0.590403E+01

MaxIter =   1 c.s. =      1.24988224 angs^2  rmsk=     0.00030402
Time Now =       166.3209  Delta time =         0.0008 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =       166.3405  Delta time =         0.0196 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =PU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     6
Number of asymptotic solutions on the left (NAsymL) =     6
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     6
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    9
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    9
Time Now =       166.3518  Delta time =         0.0113 Energy independent setup

Compute solution for E =    6.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407236E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407238E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407242E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407248E-16
For potential     3
Number of asymptotic regions =      68
Final point in integration =   0.14526845E+03 Angstroms
Time Now =       167.4241  Delta time =         1.0723 End SolveHomo
iL =   1 Iter =   1 c.s. =      1.39637757 angs^2  rmsk=     0.06972033
iL =   2 Iter =   1 c.s. =      1.39637757 angs^2  rmsk=     0.00401926
iL =   3 Iter =   1 c.s. =      1.39637757 angs^2  rmsk=     0.00106165
iL =   4 Iter =   1 c.s. =      1.39637757 angs^2  rmsk=     0.00057427
iL =   5 Iter =   1 c.s. =      1.39637757 angs^2  rmsk=     0.00047951
iL =   6 Iter =   1 c.s. =      1.39637757 angs^2  rmsk=     0.00033403
      Final k matrix
     ROW  1
  (-0.37866637E+00, 0.17434698E+00) (-0.21516429E-01, 0.99403141E-02)
  (-0.26431733E-03, 0.21859044E-03) (-0.59646313E-06, 0.19087467E-05)
  ( 0.30045225E-19,-0.15400947E-19) ( 0.13925951E-08, 0.72645856E-08)
     ROW  2
  (-0.21516429E-01, 0.99403141E-02) (-0.24607328E-02, 0.58155918E-03)
  (-0.36601377E-02, 0.34728793E-04) (-0.36352239E-04, 0.70519218E-05)
  ( 0.66267727E-19,-0.67357121E-21) (-0.76724106E-07, 0.80866524E-07)
     ROW  3
  (-0.26431733E-03, 0.21859044E-03) (-0.36601377E-02, 0.34728793E-04)
  (-0.48557255E-02, 0.40575849E-04) (-0.18655672E-02, 0.14217601E-04)
  (-0.29514829E-19,-0.66763626E-21) (-0.11200860E-04, 0.20934322E-05)
     ROW  4
  (-0.59646313E-06, 0.19087467E-05) (-0.36352239E-04, 0.70519218E-05)
  (-0.18655672E-02, 0.14217601E-04) (-0.26866697E-02, 0.11872350E-04)
  ( 0.25363802E-18, 0.20269406E-21) (-0.10826237E-02, 0.47555587E-05)
     ROW  5
  ( 0.31024812E-19,-0.15856138E-19) ( 0.66619288E-19,-0.69770395E-21)
  (-0.29880372E-19,-0.66859400E-21) ( 0.25366275E-18, 0.20444473E-21)
  ( 0.28770567E-02, 0.82775237E-05) (-0.95037172E-19,-0.38743919E-21)
     ROW  6
  ( 0.13925950E-08, 0.72645856E-08) (-0.76724106E-07, 0.80866524E-07)
  (-0.11200860E-04, 0.20934322E-05) (-0.10826237E-02, 0.47555587E-05)
  (-0.94041072E-19,-0.38623061E-21) (-0.16865525E-02, 0.40167021E-05)
 eigenphases
 -0.4314928E+00 -0.7661934E-02 -0.3094083E-02 -0.1001401E-02  0.1294608E-02
  0.2877073E-02
 eigenphase sum-0.439079E+00  scattering length=   0.70724
 eps+pi 0.270251E+01  eps+2*pi 0.584411E+01

MaxIter =   1 c.s. =      1.39637757 angs^2  rmsk=     0.00033403
Time Now =       167.4249  Delta time =         0.0008 End ScatStab
+ Data Record ScatContSym - 'DG'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =       167.4446  Delta time =         0.0197 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =DG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     7
Number of asymptotic solutions on the left (NAsymL) =     7
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     7
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    7
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    9
Time Now =       167.4560  Delta time =         0.0113 Energy independent setup

Compute solution for E =    3.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491190E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491191E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491191E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491192E-15
For potential     3
Number of asymptotic regions =      62
Final point in integration =   0.18302855E+03 Angstroms
Time Now =       168.5286  Delta time =         1.0726 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.01814127 angs^2  rmsk=     0.00481648
iL =   2 Iter =   1 c.s. =      0.01814127 angs^2  rmsk=     0.00047905
iL =   3 Iter =   1 c.s. =      0.01814127 angs^2  rmsk=     0.00037423
iL =   4 Iter =   1 c.s. =      0.01814127 angs^2  rmsk=     0.00035968
iL =   5 Iter =   1 c.s. =      0.01814127 angs^2  rmsk=     0.00023897
iL =   6 Iter =   1 c.s. =      0.01814127 angs^2  rmsk=     0.00010867
iL =   7 Iter =   1 c.s. =      0.01814127 angs^2  rmsk=     0.00015182
      Final k matrix
     ROW  1
  ( 0.33196870E-01, 0.11077746E-02) (-0.21238247E-02,-0.66175860E-04)
  (-0.15164037E-04, 0.28722234E-05) (-0.80631804E-20,-0.79029249E-22)
  (-0.17602262E-07, 0.25564531E-07) (-0.51260191E-21,-0.33899961E-23)
  ( 0.40261666E-11, 0.54922285E-10)
     ROW  2
  (-0.21238247E-02,-0.66175860E-04) (-0.20616706E-02, 0.11245173E-04)
  (-0.15746350E-02, 0.62504487E-05) (-0.98081734E-19, 0.36333519E-22)
  (-0.58129464E-05, 0.14566636E-05) (-0.59059122E-20, 0.43828866E-22)
  (-0.50263791E-08, 0.68055579E-08)
     ROW  3
  (-0.15164037E-04, 0.28722234E-05) (-0.15746350E-02, 0.62504487E-05)
  (-0.18840120E-02, 0.68623647E-05) (-0.39807066E-19, 0.10191110E-21)
  (-0.91271594E-03, 0.28931072E-05) (-0.12078338E-19, 0.72918266E-22)
  (-0.21526280E-05, 0.53917878E-06)
     ROW  4
  (-0.69713955E-20,-0.41417592E-22) (-0.97343773E-19, 0.37969423E-22)
  (-0.41994048E-19, 0.10049687E-21) ( 0.25126628E-02, 0.63390035E-05)
  ( 0.31066376E-19, 0.85116538E-22) (-0.15965238E-03,-0.51989383E-06)
  (-0.54426381E-21,-0.27251224E-22)
     ROW  5
  (-0.17602262E-07, 0.25564531E-07) (-0.58129464E-05, 0.14566636E-05)
  (-0.91271594E-03, 0.28931072E-05) ( 0.32389068E-19, 0.85393575E-22)
  (-0.12743182E-02, 0.27982648E-05) (-0.47764685E-19, 0.41063391E-24)
  (-0.58418650E-03, 0.12650100E-05)
     ROW  6
  (-0.12444226E-20,-0.26133894E-22) (-0.69891236E-20, 0.46031148E-22)
  (-0.11661572E-19, 0.73402860E-22) (-0.15965238E-03,-0.51989383E-06)
  (-0.46551190E-19, 0.20490577E-25) ( 0.74372620E-03, 0.57861815E-06)
  ( 0.52045005E-19, 0.19812078E-22)
     ROW  7
  ( 0.40261665E-11, 0.54922285E-10) (-0.50263791E-08, 0.68055579E-08)
  (-0.21526280E-05, 0.53917878E-06) (-0.12925419E-20,-0.29358406E-22)
  (-0.58418650E-03, 0.12650100E-05) ( 0.52758192E-19, 0.20538643E-22)
  (-0.88772884E-03, 0.11293442E-05)
 eigenphases
 -0.3785948E-02 -0.1785888E-02 -0.7237986E-03  0.6021626E-04  0.7294328E-03
  0.2526967E-02  0.3334924E-01
 eigenphase sum 0.303702E-01  scattering length=  -0.06470
 eps+pi 0.317196E+01  eps+2*pi 0.631356E+01

MaxIter =   1 c.s. =      0.01814127 angs^2  rmsk=     0.00015182
Time Now =       168.5296  Delta time =         0.0010 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =       168.5492  Delta time =         0.0196 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =DG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     7
Number of asymptotic solutions on the left (NAsymL) =     7
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     7
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    7
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    9
Time Now =       168.5605  Delta time =         0.0113 Energy independent setup

Compute solution for E =    4.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622043E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622045E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622048E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622052E-16
For potential     3
Number of asymptotic regions =      64
Final point in integration =   0.16629189E+03 Angstroms
Time Now =       169.6479  Delta time =         1.0874 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.02699494 angs^2  rmsk=     0.00678433
iL =   2 Iter =   1 c.s. =      0.02699494 angs^2  rmsk=     0.00049636
iL =   3 Iter =   1 c.s. =      0.02699494 angs^2  rmsk=     0.00043221
iL =   4 Iter =   1 c.s. =      0.02699494 angs^2  rmsk=     0.00041419
iL =   5 Iter =   1 c.s. =      0.02699494 angs^2  rmsk=     0.00027653
iL =   6 Iter =   1 c.s. =      0.02699494 angs^2  rmsk=     0.00012570
iL =   7 Iter =   1 c.s. =      0.02699494 angs^2  rmsk=     0.00017564
      Final k matrix
     ROW  1
  ( 0.47020893E-01, 0.22196625E-02) (-0.19398938E-02,-0.87032803E-04)
  (-0.19877607E-04, 0.26347359E-05) ( 0.37685716E-19, 0.19150460E-20)
  (-0.26763895E-07, 0.37001087E-07) ( 0.30555572E-20, 0.17537582E-21)
  ( 0.16392613E-10, 0.10631331E-09)
     ROW  2
  (-0.19398938E-02,-0.87032803E-04) (-0.22376857E-02, 0.12072528E-04)
  (-0.18150025E-02, 0.80618744E-05) (-0.15175861E-19,-0.42501276E-23)
  (-0.89164749E-05, 0.19507386E-05) (-0.18311718E-19, 0.22654242E-22)
  (-0.10504572E-07, 0.12090579E-07)
     ROW  3
  (-0.19877607E-04, 0.26347359E-05) (-0.18150025E-02, 0.80618744E-05)
  (-0.21777046E-02, 0.91533677E-05) (-0.41852076E-19,-0.39779901E-22)
  (-0.10564842E-02, 0.38769360E-05) (-0.70534437E-22, 0.10030196E-21)
  (-0.33171290E-05, 0.72471447E-06)
     ROW  4
  ( 0.39178672E-19, 0.19891556E-20) (-0.14942919E-19,-0.62682664E-23)
  (-0.42303341E-19,-0.40709001E-22) ( 0.28935939E-02, 0.84059194E-05)
  ( 0.34871529E-19, 0.10576560E-21) (-0.18155599E-03,-0.68167068E-06)
  (-0.17940659E-20,-0.37679587E-22)
     ROW  5
  (-0.26763895E-07, 0.37001087E-07) (-0.89164749E-05, 0.19507386E-05)
  (-0.10564842E-02, 0.38769360E-05) ( 0.34680364E-19, 0.10549778E-21)
  (-0.14744493E-02, 0.37470809E-05) (-0.56443816E-19,-0.11801832E-22)
  (-0.67587429E-03, 0.16941932E-05)
     ROW  6
  ( 0.37873177E-20, 0.20930927E-21) (-0.17840290E-19, 0.21045083E-22)
  (-0.34882002E-21, 0.99829367E-22) (-0.18155599E-03,-0.68167068E-06)
  (-0.56396703E-19,-0.11791072E-22) ( 0.86097482E-03, 0.77424128E-06)
  ( 0.60049224E-19, 0.28473574E-22)
     ROW  7
  ( 0.16392613E-10, 0.10631331E-09) (-0.10504572E-07, 0.12090579E-07)
  (-0.33171290E-05, 0.72471447E-06) (-0.24887973E-20,-0.38790796E-22)
  (-0.67587429E-03, 0.16941932E-05) ( 0.59730515E-19, 0.28683552E-22)
  (-0.10270172E-02, 0.15115872E-05)
 eigenphases
 -0.4279109E-02 -0.2023004E-02 -0.8006570E-03  0.1095225E-03  0.8448858E-03
  0.2909700E-02  0.4716715E-01
 eigenphase sum 0.439285E-01  scattering length=  -0.08107
 eps+pi 0.318552E+01  eps+2*pi 0.632711E+01

MaxIter =   1 c.s. =      0.02699494 angs^2  rmsk=     0.00017564
Time Now =       169.6489  Delta time =         0.0010 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =       169.6685  Delta time =         0.0196 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =DG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     7
Number of asymptotic solutions on the left (NAsymL) =     7
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     7
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    7
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    9
Time Now =       169.6798  Delta time =         0.0113 Energy independent setup

Compute solution for E =    5.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334094E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334095E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334097E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334100E-16
For potential     3
Number of asymptotic regions =      66
Final point in integration =   0.15437122E+03 Angstroms
Time Now =       170.8550  Delta time =         1.1752 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.03879587 angs^2  rmsk=     0.00909313
iL =   2 Iter =   1 c.s. =      0.03879587 angs^2  rmsk=     0.00048346
iL =   3 Iter =   1 c.s. =      0.03879587 angs^2  rmsk=     0.00048302
iL =   4 Iter =   1 c.s. =      0.03879587 angs^2  rmsk=     0.00046180
iL =   5 Iter =   1 c.s. =      0.03879587 angs^2  rmsk=     0.00030984
iL =   6 Iter =   1 c.s. =      0.03879587 angs^2  rmsk=     0.00014079
iL =   7 Iter =   1 c.s. =      0.03879587 angs^2  rmsk=     0.00019674
      Final k matrix
     ROW  1
  ( 0.63185340E-01, 0.40106578E-02) (-0.14753460E-02,-0.90182434E-04)
  (-0.21880945E-04, 0.16613179E-05) (-0.12861727E-19,-0.11408560E-20)
  (-0.25307693E-07, 0.42593851E-07) (-0.30184868E-19,-0.19926323E-20)
  ( 0.67944264E-10, 0.15255014E-09)
     ROW  2
  (-0.14753460E-02,-0.90182434E-04) (-0.22748858E-02, 0.11453034E-04)
  (-0.20230589E-02, 0.95784357E-05) ( 0.19843380E-18, 0.63323809E-21)
  (-0.12392702E-04, 0.24442752E-05) ( 0.34852211E-19, 0.13698555E-22)
  (-0.18390460E-07, 0.18846830E-07)
     ROW  3
  (-0.21880945E-04, 0.16613179E-05) (-0.20230589E-02, 0.95784357E-05)
  (-0.24364937E-02, 0.11432083E-04) (-0.21404112E-18,-0.63242609E-21)
  (-0.11840879E-02, 0.48695634E-05) (-0.26410617E-19, 0.94978998E-22)
  (-0.46396677E-05, 0.91326240E-06)
     ROW  4
  (-0.11644534E-19,-0.10587039E-20) ( 0.19779311E-18, 0.63012597E-21)
  (-0.21364721E-18,-0.62928719E-21) ( 0.32263683E-02, 0.10449521E-04)
  ( 0.55929417E-19, 0.35504637E-21) (-0.19989515E-03,-0.83784744E-06)
  (-0.32876241E-20,-0.62021804E-22)
     ROW  5
  (-0.25307693E-07, 0.42593851E-07) (-0.12392702E-04, 0.24442752E-05)
  (-0.11840879E-02, 0.48695634E-05) ( 0.56993996E-19, 0.35743951E-21)
  (-0.16517793E-02, 0.47039615E-05) (-0.70517604E-19, 0.15746798E-22)
  (-0.75717404E-03, 0.21272253E-05)
     ROW  6
  (-0.30429621E-19,-0.20079830E-20) ( 0.34429914E-19, 0.17752745E-22)
  (-0.27902799E-19, 0.97155755E-22) (-0.19989515E-03,-0.83784744E-06)
  (-0.69843454E-19, 0.16993016E-22) ( 0.96501843E-03, 0.97122028E-06)
  ( 0.69213268E-19, 0.40841340E-22)
     ROW  7
  ( 0.67944264E-10, 0.15255014E-09) (-0.18390460E-07, 0.18846830E-07)
  (-0.46396677E-05, 0.91326240E-06) (-0.34508262E-20,-0.63092081E-22)
  (-0.75717404E-03, 0.21272253E-05) ( 0.68849088E-19, 0.41444979E-22)
  (-0.11503674E-02, 0.18966882E-05)
 eigenphases
 -0.4670090E-02 -0.2211182E-02 -0.8486658E-03  0.1830931E-03  0.9474849E-03
  0.3243925E-02  0.6338825E-01
 eigenphase sum 0.600328E-01  scattering length=  -0.09915
 eps+pi 0.320163E+01  eps+2*pi 0.634322E+01

MaxIter =   1 c.s. =      0.03879587 angs^2  rmsk=     0.00019674
Time Now =       170.8560  Delta time =         0.0010 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =       170.8756  Delta time =         0.0196 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =DG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     7
Number of asymptotic solutions on the left (NAsymL) =     7
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     7
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    7
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    9
Time Now =       170.8869  Delta time =         0.0113 Energy independent setup

Compute solution for E =    6.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407236E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407238E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407242E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407248E-16
For potential     3
Number of asymptotic regions =      68
Final point in integration =   0.14526845E+03 Angstroms
Time Now =       172.0685  Delta time =         1.1816 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.05348170 angs^2  rmsk=     0.01169537
iL =   2 Iter =   1 c.s. =      0.05348170 angs^2  rmsk=     0.00045303
iL =   3 Iter =   1 c.s. =      0.05348170 angs^2  rmsk=     0.00052842
iL =   4 Iter =   1 c.s. =      0.05348170 angs^2  rmsk=     0.00050446
iL =   5 Iter =   1 c.s. =      0.05348170 angs^2  rmsk=     0.00034013
iL =   6 Iter =   1 c.s. =      0.05348170 angs^2  rmsk=     0.00015449
iL =   7 Iter =   1 c.s. =      0.05348170 angs^2  rmsk=     0.00021593
      Final k matrix
     ROW  1
  ( 0.81314886E-01, 0.66569666E-02) (-0.73279803E-03,-0.58352207E-04)
  (-0.19790227E-04, 0.59420973E-07) (-0.54886673E-18,-0.46751115E-19)
  ( 0.85573281E-11, 0.37656039E-07) (-0.12916682E-18,-0.10594159E-19)
  ( 0.21212280E-09, 0.15845575E-09)
     ROW  2
  (-0.73279803E-03,-0.58352207E-04) (-0.21569000E-02, 0.10056540E-04)
  (-0.22053207E-02, 0.10679869E-04) (-0.12436951E-18, 0.10461593E-20)
  (-0.16160265E-04, 0.29318561E-05) ( 0.83094439E-20, 0.57782271E-21)
  (-0.28729774E-07, 0.27009742E-07)
     ROW  3
  (-0.19790227E-04, 0.59420972E-07) (-0.22053207E-02, 0.10679869E-04)
  (-0.26696477E-02, 0.13681996E-04) (-0.37084653E-18,-0.36758844E-21)
  (-0.13002967E-02, 0.58696063E-05) (-0.21083739E-18, 0.39345126E-21)
  (-0.61033893E-05, 0.11048759E-05)
     ROW  4
  (-0.54998399E-18,-0.46845372E-19) (-0.12573078E-18, 0.10458006E-20)
  (-0.37119473E-18,-0.36499449E-21) ( 0.35246324E-02, 0.12469685E-04)
  ( 0.29330604E-18, 0.10245372E-20) (-0.21562621E-03,-0.98852277E-06)
  (-0.47219715E-19,-0.36364115E-21)
     ROW  5
  ( 0.85573791E-11, 0.37656039E-07) (-0.16160265E-04, 0.29318561E-05)
  (-0.13002967E-02, 0.58696063E-05) ( 0.29332647E-18, 0.10239363E-20)
  (-0.18129806E-02, 0.56688732E-05) ( 0.75034037E-20, 0.14650191E-21)
  (-0.83117993E-03, 0.25641844E-05)
     ROW  6
  (-0.12987924E-18,-0.10653315E-19) ( 0.87237102E-20, 0.57657146E-21)
  (-0.21009938E-18, 0.39238532E-21) (-0.21562621E-03,-0.98852277E-06)
  ( 0.67734372E-20, 0.14574376E-21) ( 0.10597328E-02, 0.11695305E-05)
  ( 0.70939879E-19,-0.85443653E-23)
     ROW  7
  ( 0.21212280E-09, 0.15845575E-09) (-0.28729774E-07, 0.27009742E-07)
  (-0.61033893E-05, 0.11048759E-05) (-0.47215376E-19,-0.36356070E-21)
  (-0.83117993E-03, 0.25641844E-05) ( 0.70523535E-19,-0.90631241E-23)
  (-0.12624314E-02, 0.22846435E-05)
 eigenphases
 -0.4977846E-02 -0.2357678E-02 -0.8688468E-03  0.2958871E-03  0.1041013E-02
  0.3543383E-02  0.8168418E-01
 eigenphase sum 0.783601E-01  scattering length=  -0.11824
 eps+pi 0.321995E+01  eps+2*pi 0.636155E+01

MaxIter =   1 c.s. =      0.05348170 angs^2  rmsk=     0.00021593
Time Now =       172.0695  Delta time =         0.0010 End ScatStab
+ Data Record ScatContSym - 'DU'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =       172.0892  Delta time =         0.0197 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =DU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     5
Number of asymptotic solutions on the left (NAsymL) =     5
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     5
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    5
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    9
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    8
Time Now =       172.1004  Delta time =         0.0113 Energy independent setup

Compute solution for E =    3.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491190E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491191E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491191E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491192E-15
For potential     3
Number of asymptotic regions =      62
Final point in integration =   0.18302855E+03 Angstroms
Time Now =       172.9297  Delta time =         0.8293 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00041384 angs^2  rmsk=     0.00101846
iL =   2 Iter =   1 c.s. =      0.00041384 angs^2  rmsk=     0.00065216
iL =   3 Iter =   1 c.s. =      0.00041384 angs^2  rmsk=     0.00041597
iL =   4 Iter =   1 c.s. =      0.00041384 angs^2  rmsk=     0.00027530
iL =   5 Iter =   1 c.s. =      0.00041384 angs^2  rmsk=     0.00025624
      Final k matrix
     ROW  1
  ( 0.17544674E-02, 0.74363465E-05) (-0.20875886E-02, 0.95761994E-06)
  (-0.10112880E-04, 0.24698036E-05) (-0.12576584E-20,-0.70365074E-22)
  (-0.10555294E-07, 0.14505333E-07)
     ROW  2
  (-0.20875886E-02, 0.95761994E-06) (-0.22074385E-02, 0.10632956E-04)
  (-0.11840603E-02, 0.44726657E-05) ( 0.31482463E-19,-0.10585662E-21)
  (-0.34516105E-05, 0.86620691E-06)
     ROW  3
  (-0.10112880E-04, 0.24698036E-05) (-0.11840603E-02, 0.44726657E-05)
  (-0.15499641E-02, 0.43258244E-05) ( 0.69696532E-19,-0.64934548E-23)
  (-0.72200158E-03, 0.18873426E-05)
     ROW  4
  (-0.24781105E-20,-0.76370969E-22) ( 0.32533829E-19,-0.10298969E-21)
  ( 0.68695643E-19,-0.59573790E-23) ( 0.13764797E-02, 0.18947000E-05)
  (-0.61576062E-19,-0.69297293E-22)
     ROW  5
  (-0.10555294E-07, 0.14505333E-07) (-0.34516105E-05, 0.86620691E-06)
  (-0.72200158E-03, 0.18873426E-05) (-0.59366963E-19,-0.69313647E-22)
  (-0.10583964E-02, 0.16415082E-05)
 eigenphases
 -0.3719672E-02 -0.1651532E-02 -0.3951574E-03  0.1376481E-02  0.2705005E-02
 eigenphase sum-0.168487E-02  scattering length=   0.00359
 eps+pi 0.313991E+01  eps+2*pi 0.628150E+01

MaxIter =   1 c.s. =      0.00041384 angs^2  rmsk=     0.00025624
Time Now =       172.9304  Delta time =         0.0007 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =       172.9500  Delta time =         0.0196 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =DU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     5
Number of asymptotic solutions on the left (NAsymL) =     5
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     5
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    5
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    9
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    8
Time Now =       172.9613  Delta time =         0.0113 Energy independent setup

Compute solution for E =    4.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622043E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622045E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622048E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622052E-16
For potential     3
Number of asymptotic regions =      64
Final point in integration =   0.16629189E+03 Angstroms
Time Now =       173.7897  Delta time =         0.8284 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00049319 angs^2  rmsk=     0.00128381
iL =   2 Iter =   1 c.s. =      0.00049319 angs^2  rmsk=     0.00074412
iL =   3 Iter =   1 c.s. =      0.00049319 angs^2  rmsk=     0.00048127
iL =   4 Iter =   1 c.s. =      0.00049319 angs^2  rmsk=     0.00031807
iL =   5 Iter =   1 c.s. =      0.00049319 angs^2  rmsk=     0.00029652
      Final k matrix
     ROW  1
  ( 0.33633287E-02, 0.16843229E-04) (-0.23517483E-02,-0.19228149E-05)
  (-0.15206721E-04, 0.31975517E-05) ( 0.88493304E-20,-0.19384484E-23)
  (-0.21244922E-07, 0.25164343E-07)
     ROW  2
  (-0.23517483E-02,-0.19228149E-05) (-0.25368777E-02, 0.13842992E-04)
  (-0.13697674E-02, 0.59716480E-05) ( 0.18952228E-19,-0.14700920E-21)
  (-0.53142719E-05, 0.11645512E-05)
     ROW  3
  (-0.15206721E-04, 0.31975517E-05) (-0.13697674E-02, 0.59716480E-05)
  (-0.17932966E-02, 0.57905971E-05) ( 0.79295343E-19, 0.14423655E-22)
  (-0.83552665E-03, 0.25289681E-05)
     ROW  4
  ( 0.89082161E-20,-0.66209641E-23) ( 0.21064361E-19,-0.14976977E-21)
  ( 0.79749884E-19, 0.11409872E-22) ( 0.15903246E-02, 0.25291386E-05)
  (-0.67725738E-19,-0.91504440E-22)
     ROW  5
  (-0.21244922E-07, 0.25164343E-07) (-0.53142719E-05, 0.11645512E-05)
  (-0.83552665E-03, 0.25289681E-05) (-0.67758579E-19,-0.91125426E-22)
  (-0.12247534E-02, 0.21981665E-05)
 eigenphases
 -0.4160996E-02 -0.1839947E-02 -0.4105349E-03  0.1590327E-02  0.4219877E-02
 eigenphase sum-0.601274E-03  scattering length=   0.00111
 eps+pi 0.314099E+01  eps+2*pi 0.628258E+01

MaxIter =   1 c.s. =      0.00049319 angs^2  rmsk=     0.00029652
Time Now =       173.7904  Delta time =         0.0007 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =       173.8100  Delta time =         0.0196 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =DU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     5
Number of asymptotic solutions on the left (NAsymL) =     5
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     5
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    5
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    9
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    8
Time Now =       173.8213  Delta time =         0.0113 Energy independent setup

Compute solution for E =    5.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334094E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334095E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334097E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334100E-16
For potential     3
Number of asymptotic regions =      66
Final point in integration =   0.15437122E+03 Angstroms
Time Now =       174.7144  Delta time =         0.8931 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00065585 angs^2  rmsk=     0.00165520
iL =   2 Iter =   1 c.s. =      0.00065585 angs^2  rmsk=     0.00081826
iL =   3 Iter =   1 c.s. =      0.00065585 angs^2  rmsk=     0.00053911
iL =   4 Iter =   1 c.s. =      0.00065585 angs^2  rmsk=     0.00035578
iL =   5 Iter =   1 c.s. =      0.00065585 angs^2  rmsk=     0.00033224
      Final k matrix
     ROW  1
  ( 0.56660308E-02, 0.38563284E-04) (-0.25411421E-02,-0.72124367E-05)
  (-0.20556411E-04, 0.38235188E-05) (-0.25967755E-19,-0.19574799E-21)
  (-0.35201257E-07, 0.37967529E-07)
     ROW  2
  (-0.25411421E-02,-0.72124367E-05) (-0.28155000E-02, 0.16738567E-04)
  (-0.15341703E-02, 0.74605873E-05) ( 0.63012142E-22,-0.10178623E-21)
  (-0.74249097E-05, 0.14677399E-05)
     ROW  3
  (-0.20556411E-04, 0.38235188E-05) (-0.15341703E-02, 0.74605873E-05)
  (-0.20087639E-02, 0.72660998E-05) ( 0.10969832E-18, 0.49332013E-22)
  (-0.93634045E-03, 0.31770925E-05)
     ROW  4
  (-0.26756374E-19,-0.19582336E-21) (-0.22074671E-20,-0.95473281E-22)
  ( 0.10841767E-18, 0.51929204E-22) ( 0.17789101E-02, 0.31645313E-05)
  (-0.77871359E-19,-0.13317663E-21)
     ROW  5
  (-0.35201257E-07, 0.37967529E-07) (-0.74249097E-05, 0.14677399E-05)
  (-0.93634045E-03, 0.31770925E-05) (-0.79149490E-19,-0.13491261E-21)
  (-0.13721194E-02, 0.27595202E-05)
 eigenphases
 -0.4516128E-02 -0.1988607E-02 -0.4135597E-03  0.1778914E-02  0.6388049E-02
 eigenphase sum 0.124867E-02  scattering length=  -0.00206
 eps+pi 0.314284E+01  eps+2*pi 0.628443E+01

MaxIter =   1 c.s. =      0.00065585 angs^2  rmsk=     0.00033224
Time Now =       174.7151  Delta time =         0.0007 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =       174.7346  Delta time =         0.0196 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =DU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     5
Number of asymptotic solutions on the left (NAsymL) =     5
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     5
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    5
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    9
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    8
Time Now =       174.7459  Delta time =         0.0113 Energy independent setup

Compute solution for E =    6.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407236E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407238E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407242E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407248E-16
For potential     3
Number of asymptotic regions =      68
Final point in integration =   0.14526845E+03 Angstroms
Time Now =       175.6421  Delta time =         0.8962 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00094240 angs^2  rmsk=     0.00217348
iL =   2 Iter =   1 c.s. =      0.00094240 angs^2  rmsk=     0.00087636
iL =   3 Iter =   1 c.s. =      0.00094240 angs^2  rmsk=     0.00059163
iL =   4 Iter =   1 c.s. =      0.00094240 angs^2  rmsk=     0.00038992
iL =   5 Iter =   1 c.s. =      0.00094240 angs^2  rmsk=     0.00036472
      Final k matrix
     ROW  1
  ( 0.87150221E-02, 0.83023058E-04) (-0.26577516E-02,-0.15014190E-04)
  (-0.25827866E-04, 0.43056738E-05) ( 0.44152796E-18, 0.36803507E-20)
  (-0.50920904E-07, 0.52103693E-07)
     ROW  2
  (-0.26577516E-02,-0.15014190E-04) (-0.30500202E-02, 0.19200184E-04)
  (-0.16831949E-02, 0.89231786E-05) ( 0.38856556E-18,-0.13399912E-20)
  (-0.97529387E-05, 0.17752619E-05)
     ROW  3
  (-0.25827866E-04, 0.43056738E-05) (-0.16831949E-02, 0.89231786E-05)
  (-0.22044605E-02, 0.87507902E-05) (-0.15477131E-18,-0.55733266E-21)
  (-0.10281743E-02, 0.38315667E-05)
     ROW  4
  ( 0.44267434E-18, 0.36926869E-20) ( 0.38853040E-18,-0.13419549E-20)
  (-0.15539337E-18,-0.55740943E-21) ( 0.19495875E-02, 0.38009060E-05)
  (-0.66519198E-19, 0.12645472E-21)
     ROW  5
  (-0.50920904E-07, 0.52103693E-07) (-0.97529387E-05, 0.17752619E-05)
  (-0.10281743E-02, 0.38315667E-05) (-0.66776855E-19, 0.12570058E-21)
  (-0.15060844E-02, 0.33255567E-05)
 eigenphases
 -0.4818556E-02 -0.2113438E-02 -0.4108545E-03  0.1949592E-02  0.9297761E-02
 eigenphase sum 0.390450E-02  scattering length=  -0.00588
 eps+pi 0.314550E+01  eps+2*pi 0.628709E+01

MaxIter =   1 c.s. =      0.00094240 angs^2  rmsk=     0.00036472
Time Now =       175.6428  Delta time =         0.0007 End ScatStab
+ Data Record ScatContSym - 'FG'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =       175.6625  Delta time =         0.0197 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =FG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     6
Number of asymptotic solutions on the left (NAsymL) =     6
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     6
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    8
Time Now =       175.6739  Delta time =         0.0115 Energy independent setup

Compute solution for E =    3.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491190E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491191E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491191E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491192E-15
For potential     3
Number of asymptotic regions =      62
Final point in integration =   0.18302855E+03 Angstroms
Time Now =       176.5935  Delta time =         0.9196 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00024096 angs^2  rmsk=     0.00064761
iL =   2 Iter =   1 c.s. =      0.00024096 angs^2  rmsk=     0.00028588
iL =   3 Iter =   1 c.s. =      0.00024096 angs^2  rmsk=     0.00026852
iL =   4 Iter =   1 c.s. =      0.00024096 angs^2  rmsk=     0.00022754
iL =   5 Iter =   1 c.s. =      0.00024096 angs^2  rmsk=     0.00007177
iL =   6 Iter =   1 c.s. =      0.00024096 angs^2  rmsk=     0.00015478
      Final k matrix
     ROW  1
  ( 0.22792079E-02, 0.66486123E-05) (-0.12057193E-02,-0.16494302E-05)
  (-0.50737882E-19,-0.19845050E-21) (-0.40781379E-05, 0.97648294E-06)
  ( 0.80455426E-20, 0.33929165E-22) (-0.32884396E-08, 0.44157612E-08)
     ROW  2
  (-0.12057193E-02,-0.16494302E-05) (-0.90846023E-03, 0.29422722E-05)
  (-0.78510540E-22, 0.33696562E-22) (-0.81436845E-03, 0.15186364E-05)
  ( 0.51635292E-21, 0.53513516E-23) (-0.18139842E-05, 0.44901226E-06)
     ROW  3
  (-0.51854818E-19,-0.20329200E-21) ( 0.48118188E-21, 0.34668962E-22)
  ( 0.15893345E-02, 0.25957487E-05) ( 0.34430002E-19, 0.27793552E-22)
  (-0.26411686E-03,-0.50959728E-06) (-0.22492843E-20,-0.30199865E-22)
     ROW  4
  (-0.40781379E-05, 0.97648294E-06) (-0.81436845E-03, 0.15186364E-05)
  ( 0.33514650E-19, 0.27772941E-22) (-0.94907707E-03, 0.18638985E-05)
  (-0.18902104E-19,-0.18454803E-22) (-0.54765958E-03, 0.93201809E-06)
     ROW  5
  ( 0.74472469E-20, 0.32604263E-22) ( 0.55636192E-21, 0.49982589E-23)
  (-0.26411686E-03,-0.50959728E-06) (-0.17787867E-19,-0.18350771E-22)
  ( 0.34009878E-03, 0.18542520E-06) ( 0.35799941E-19,-0.43411302E-23)
     ROW  6
  (-0.32884395E-08, 0.44157612E-08) (-0.18139842E-05, 0.44901226E-06)
  (-0.19204621E-20,-0.29930112E-22) (-0.54765958E-03, 0.93201809E-06)
  ( 0.37725373E-19,-0.46069984E-23) (-0.75003974E-03, 0.86249574E-06)
 eigenphases
 -0.2031333E-02 -0.9387423E-03 -0.6124864E-04  0.2865536E-03  0.1642883E-02
  0.2702962E-02
 eigenphase sum 0.160107E-02  scattering length=  -0.00341
 eps+pi 0.314319E+01  eps+2*pi 0.628479E+01

MaxIter =   1 c.s. =      0.00024096 angs^2  rmsk=     0.00015478
Time Now =       176.5943  Delta time =         0.0008 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =       176.6140  Delta time =         0.0196 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =FG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     6
Number of asymptotic solutions on the left (NAsymL) =     6
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     6
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    8
Time Now =       176.6254  Delta time =         0.0114 Energy independent setup

Compute solution for E =    4.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622043E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622045E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622048E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622052E-16
For potential     3
Number of asymptotic regions =      64
Final point in integration =   0.16629189E+03 Angstroms
Time Now =       177.5422  Delta time =         0.9168 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00024934 angs^2  rmsk=     0.00076070
iL =   2 Iter =   1 c.s. =      0.00024934 angs^2  rmsk=     0.00032618
iL =   3 Iter =   1 c.s. =      0.00024934 angs^2  rmsk=     0.00031036
iL =   4 Iter =   1 c.s. =      0.00024934 angs^2  rmsk=     0.00026260
iL =   5 Iter =   1 c.s. =      0.00024934 angs^2  rmsk=     0.00008290
iL =   6 Iter =   1 c.s. =      0.00024934 angs^2  rmsk=     0.00017889
      Final k matrix
     ROW  1
  ( 0.27890609E-02, 0.96520542E-05) (-0.13685959E-02,-0.23921118E-05)
  ( 0.39640269E-19, 0.23474728E-21) (-0.61950537E-05, 0.12746785E-05)
  ( 0.62479968E-20, 0.33993101E-23) (-0.67884339E-08, 0.77223134E-08)
     ROW  2
  (-0.13685959E-02,-0.23921118E-05) (-0.10369737E-02, 0.38301822E-05)
  (-0.39053906E-19,-0.11983416E-21) (-0.93903163E-03, 0.20127678E-05)
  ( 0.34224949E-20, 0.22915410E-22) (-0.27877870E-05, 0.59947238E-06)
     ROW  3
  ( 0.39132332E-19, 0.23211123E-21) (-0.38717850E-19,-0.11905684E-21)
  ( 0.18375288E-02, 0.34675312E-05) ( 0.35602492E-19, 0.70331627E-22)
  (-0.30167289E-03,-0.67364550E-06) (-0.14267195E-20,-0.36360260E-22)
     ROW  4
  (-0.61950537E-05, 0.12746785E-05) (-0.93903163E-03, 0.20127678E-05)
  ( 0.35448673E-19, 0.70563857E-22) (-0.10955583E-02, 0.24824223E-05)
  (-0.23422852E-19,-0.23552836E-22) (-0.63272598E-03, 0.12443923E-05)
     ROW  5
  ( 0.56683184E-20, 0.15078295E-23) ( 0.35651313E-20, 0.22990108E-22)
  (-0.30167289E-03,-0.67364550E-06) (-0.22864501E-19,-0.24452589E-22)
  ( 0.39549581E-03, 0.24742399E-06) ( 0.41622920E-19,-0.47384541E-23)
     ROW  6
  (-0.67884338E-08, 0.77223134E-08) (-0.27877870E-05, 0.59947238E-06)
  (-0.12141405E-20,-0.35897342E-22) (-0.63272598E-03, 0.12443923E-05)
  ( 0.41098025E-19,-0.42014089E-23) (-0.86701114E-03, 0.11520615E-05)
 eigenphases
 -0.2328317E-02 -0.1070201E-02 -0.5953921E-04  0.3349298E-03  0.1898099E-02
  0.3247589E-02
 eigenphase sum 0.202256E-02  scattering length=  -0.00373
 eps+pi 0.314362E+01  eps+2*pi 0.628521E+01

MaxIter =   1 c.s. =      0.00024934 angs^2  rmsk=     0.00017889
Time Now =       177.5430  Delta time =         0.0008 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =       177.5627  Delta time =         0.0197 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =FG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     6
Number of asymptotic solutions on the left (NAsymL) =     6
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     6
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    8
Time Now =       177.5741  Delta time =         0.0114 Energy independent setup

Compute solution for E =    5.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334094E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334095E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334097E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334100E-16
For potential     3
Number of asymptotic regions =      66
Final point in integration =   0.15437122E+03 Angstroms
Time Now =       178.5672  Delta time =         0.9931 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00026089 angs^2  rmsk=     0.00086996
iL =   2 Iter =   1 c.s. =      0.00026089 angs^2  rmsk=     0.00036006
iL =   3 Iter =   1 c.s. =      0.00026089 angs^2  rmsk=     0.00034730
iL =   4 Iter =   1 c.s. =      0.00026089 angs^2  rmsk=     0.00029342
iL =   5 Iter =   1 c.s. =      0.00026089 angs^2  rmsk=     0.00009273
iL =   6 Iter =   1 c.s. =      0.00026089 angs^2  rmsk=     0.00020018
      Final k matrix
     ROW  1
  ( 0.33358721E-02, 0.13384642E-04) (-0.15021100E-02,-0.32816760E-05)
  (-0.25626224E-18,-0.11659287E-20) (-0.85283003E-05, 0.15568312E-05)
  (-0.55162581E-19,-0.13135911E-21) (-0.11742571E-07, 0.11850509E-07)
     ROW  2
  (-0.15021100E-02,-0.32816760E-05) (-0.11452457E-02, 0.46671197E-05)
  (-0.13208504E-18, 0.17096979E-21) (-0.10484002E-02, 0.24999509E-05)
  ( 0.56317111E-20, 0.14554581E-21) (-0.38888446E-05, 0.75035334E-06)
     ROW  3
  (-0.25740540E-18,-0.11723533E-20) (-0.13199337E-18, 0.17280936E-21)
  ( 0.20569320E-02, 0.43422945E-05) ( 0.87544764E-19, 0.22174552E-21)
  (-0.33362527E-03,-0.83480608E-06) (-0.11462861E-20,-0.78476019E-22)
     ROW  4
  (-0.85283003E-05, 0.15568312E-05) (-0.10484002E-02, 0.24999509E-05)
  ( 0.87444740E-19, 0.22180051E-21) (-0.12244337E-02, 0.30995123E-05)
  (-0.21690813E-19,-0.50636458E-22) (-0.70784045E-03, 0.15576377E-05)
     ROW  5
  (-0.54799578E-19,-0.12894494E-21) ( 0.51962790E-20, 0.14602395E-21)
  (-0.33362527E-03,-0.83480608E-06) (-0.22408321E-19,-0.50206244E-22)
  ( 0.44528312E-03, 0.30958367E-06) ( 0.47295850E-19,-0.86086796E-23)
     ROW  6
  (-0.11742571E-07, 0.11850509E-07) (-0.38888446E-05, 0.75035334E-06)
  (-0.15577816E-20,-0.78593301E-22) (-0.70784045E-03, 0.15576377E-05)
  ( 0.46520421E-19,-0.85738190E-23) (-0.97034276E-03, 0.14426234E-05)
 eigenphases
 -0.2583085E-02 -0.1179873E-02 -0.5257093E-04  0.3789500E-03  0.2123272E-02
  0.3811403E-02
 eigenphase sum 0.249810E-02  scattering length=  -0.00412
 eps+pi 0.314409E+01  eps+2*pi 0.628568E+01

MaxIter =   1 c.s. =      0.00026089 angs^2  rmsk=     0.00020018
Time Now =       178.5680  Delta time =         0.0008 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =       178.5876  Delta time =         0.0196 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =FG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     6
Number of asymptotic solutions on the left (NAsymL) =     6
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     6
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    8
Time Now =       178.5989  Delta time =         0.0113 Energy independent setup

Compute solution for E =    6.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407236E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407238E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407242E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407248E-16
For potential     3
Number of asymptotic regions =      68
Final point in integration =   0.14526845E+03 Angstroms
Time Now =       179.5918  Delta time =         0.9929 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00027661 angs^2  rmsk=     0.00098128
iL =   2 Iter =   1 c.s. =      0.00027661 angs^2  rmsk=     0.00038899
iL =   3 Iter =   1 c.s. =      0.00027661 angs^2  rmsk=     0.00038078
iL =   4 Iter =   1 c.s. =      0.00027661 angs^2  rmsk=     0.00032124
iL =   5 Iter =   1 c.s. =      0.00027661 angs^2  rmsk=     0.00010164
iL =   6 Iter =   1 c.s. =      0.00027661 angs^2  rmsk=     0.00021948
      Final k matrix
     ROW  1
  ( 0.39467625E-02, 0.18176755E-04) (-0.16122489E-02,-0.43547869E-05)
  ( 0.45989083E-19,-0.71932957E-21) (-0.11016663E-04, 0.18203340E-05)
  (-0.36363410E-20, 0.50177049E-22) (-0.18128009E-07, 0.16721480E-07)
     ROW  2
  (-0.16122489E-02,-0.43547869E-05) (-0.12379228E-02, 0.54471415E-05)
  ( 0.62306801E-18, 0.43962980E-21) (-0.11468468E-02, 0.29790882E-05)
  (-0.51651670E-19,-0.21608558E-21) (-0.51020280E-05, 0.90166118E-06)
     ROW  3
  ( 0.45510905E-19,-0.72225520E-21) ( 0.62320326E-18, 0.44050521E-21)
  ( 0.22559207E-02, 0.52198936E-05) ( 0.12162454E-18,-0.55716639E-21)
  (-0.36150688E-03,-0.99309887E-06) (-0.74305150E-19,-0.20083750E-21)
     ROW  4
  (-0.11016663E-04, 0.18203340E-05) (-0.11468468E-02, 0.29790882E-05)
  ( 0.12169098E-18,-0.55757393E-21) (-0.13407535E-02, 0.37150994E-05)
  ( 0.30577284E-19,-0.42060774E-22) (-0.77593237E-03, 0.18717814E-05)
     ROW  5
  (-0.43492801E-20, 0.46688645E-22) (-0.51340429E-19,-0.21474206E-21)
  (-0.36150688E-03,-0.99309887E-06) ( 0.30161523E-19,-0.42251414E-22)
  ( 0.49117310E-03, 0.37193937E-06) ( 0.40707125E-19,-0.19597236E-22)
     ROW  6
  (-0.18128009E-07, 0.16721480E-07) (-0.51020280E-05, 0.90166118E-06)
  (-0.73702155E-19,-0.20006770E-21) (-0.77593237E-03, 0.18717814E-05)
  ( 0.40425161E-19,-0.19974739E-22) (-0.10639883E-02, 0.17341756E-05)
 eigenphases
 -0.2806738E-02 -0.1272810E-02 -0.4054646E-04  0.4199901E-03  0.2327112E-02
  0.4424235E-02
 eigenphase sum 0.305124E-02  scattering length=  -0.00459
 eps+pi 0.314464E+01  eps+2*pi 0.628624E+01

MaxIter =   1 c.s. =      0.00027661 angs^2  rmsk=     0.00021948
Time Now =       179.5926  Delta time =         0.0008 End ScatStab
+ Data Record ScatContSym - 'FU'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =       179.6122  Delta time =         0.0197 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =FU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     6
Number of asymptotic solutions on the left (NAsymL) =     6
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     6
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    9
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    9
Time Now =       179.6238  Delta time =         0.0116 Energy independent setup

Compute solution for E =    3.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491190E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491191E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491191E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491192E-15
For potential     3
Number of asymptotic regions =      62
Final point in integration =   0.18302855E+03 Angstroms
Time Now =       180.5979  Delta time =         0.9741 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00266864 angs^2  rmsk=     0.00215520
iL =   2 Iter =   1 c.s. =      0.00266864 angs^2  rmsk=     0.00026934
iL =   3 Iter =   1 c.s. =      0.00266864 angs^2  rmsk=     0.00052704
iL =   4 Iter =   1 c.s. =      0.00266864 angs^2  rmsk=     0.00026155
iL =   5 Iter =   1 c.s. =      0.00266864 angs^2  rmsk=     0.00013459
iL =   6 Iter =   1 c.s. =      0.00266864 angs^2  rmsk=     0.00017997
      Final k matrix
     ROW  1
  ( 0.12197163E-01, 0.15032428E-03) (-0.12371894E-02,-0.14750713E-04)
  ( 0.39174912E-18, 0.58168790E-20) (-0.54208246E-05, 0.11809254E-05)
  ( 0.10515622E-19, 0.24609310E-22) (-0.51176819E-08, 0.69053661E-08)
     ROW  2
  (-0.12371894E-02,-0.14750713E-04) (-0.27182880E-03, 0.26116100E-05)
  ( 0.15903767E-18, 0.14673058E-21) (-0.10034179E-02, 0.12921604E-05)
  ( 0.20493612E-19,-0.17973531E-21) (-0.27253995E-05, 0.66925482E-06)
     ROW  3
  ( 0.39149106E-18, 0.58123678E-20) ( 0.15923311E-18, 0.14706879E-21)
  ( 0.31546274E-02, 0.99996335E-05) (-0.17638756E-18,-0.57656366E-21)
  (-0.21876645E-03,-0.86018690E-06) ( 0.74977107E-20, 0.18387264E-21)
     ROW  4
  (-0.54208245E-05, 0.11809254E-05) (-0.10034179E-02, 0.12921604E-05)
  (-0.17690882E-18,-0.57779826E-21) (-0.10074531E-02, 0.24626306E-05)
  ( 0.14242744E-18, 0.13694719E-21) (-0.66391357E-03, 0.12369683E-05)
     ROW  5
  ( 0.11905803E-19, 0.42586450E-22) ( 0.20593882E-19,-0.18049893E-21)
  (-0.21876645E-03,-0.86018690E-06) ( 0.14148160E-18, 0.13683744E-21)
  ( 0.77731800E-03, 0.65208320E-06) (-0.22824932E-18,-0.78681138E-22)
     ROW  6
  (-0.51176819E-08, 0.69053661E-08) (-0.27253995E-05, 0.66925482E-06)
  ( 0.76530602E-20, 0.18461172E-21) (-0.66391357E-03, 0.12369683E-05)
  (-0.22840786E-18,-0.79331029E-22) (-0.85156619E-03, 0.11659570E-05)
 eigenphases
 -0.2008836E-02 -0.7175050E-03  0.4732661E-03  0.7573545E-03  0.3174613E-02
  0.1232063E-01
 eigenphase sum 0.139995E-01  scattering length=  -0.02982
 eps+pi 0.315559E+01  eps+2*pi 0.629718E+01

MaxIter =   1 c.s. =      0.00266864 angs^2  rmsk=     0.00017997
Time Now =       180.5987  Delta time =         0.0008 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =       180.6183  Delta time =         0.0196 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =FU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     6
Number of asymptotic solutions on the left (NAsymL) =     6
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     6
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    9
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    9
Time Now =       180.6296  Delta time =         0.0113 Energy independent setup

Compute solution for E =    4.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622043E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622045E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622048E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622052E-16
For potential     3
Number of asymptotic regions =      64
Final point in integration =   0.16629189E+03 Angstroms
Time Now =       181.6040  Delta time =         0.9744 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00280869 angs^2  rmsk=     0.00255308
iL =   2 Iter =   1 c.s. =      0.00280869 angs^2  rmsk=     0.00029805
iL =   3 Iter =   1 c.s. =      0.00280869 angs^2  rmsk=     0.00060651
iL =   4 Iter =   1 c.s. =      0.00280869 angs^2  rmsk=     0.00030101
iL =   5 Iter =   1 c.s. =      0.00280869 angs^2  rmsk=     0.00015579
iL =   6 Iter =   1 c.s. =      0.00280869 angs^2  rmsk=     0.00020791
      Final k matrix
     ROW  1
  ( 0.14514883E-01, 0.21252298E-03) (-0.13399878E-02,-0.19080358E-04)
  ( 0.10722916E-18, 0.15796107E-20) (-0.79753478E-05, 0.14380566E-05)
  (-0.21268125E-20,-0.21483461E-22) (-0.10000876E-07, 0.11561963E-07)
     ROW  2
  (-0.13399878E-02,-0.19080358E-04) (-0.27189143E-03, 0.31980459E-05)
  ( 0.27498217E-18, 0.10030816E-20) (-0.11524575E-02, 0.16642477E-05)
  (-0.29356308E-19,-0.29162554E-21) (-0.41758872E-05, 0.88871779E-06)
     ROW  3
  ( 0.10876656E-18, 0.16090628E-20) ( 0.27387094E-18, 0.99703909E-21)
  ( 0.36306058E-02, 0.13242965E-04) (-0.18742708E-18,-0.82925445E-21)
  (-0.24797191E-03,-0.11237881E-05) ( 0.61646172E-20, 0.22410212E-21)
     ROW  4
  (-0.79753478E-05, 0.14380566E-05) (-0.11524575E-02, 0.16642477E-05)
  (-0.18737508E-18,-0.83040914E-21) (-0.11601570E-02, 0.32618515E-05)
  ( 0.18126879E-18, 0.23424198E-21) (-0.76658162E-03, 0.16485826E-05)
     ROW  5
  (-0.23643080E-20,-0.27202096E-22) (-0.28107555E-19,-0.29046658E-21)
  (-0.24797191E-03,-0.11237881E-05) ( 0.18146450E-18, 0.23362418E-21)
  ( 0.90124715E-03, 0.87373852E-06) (-0.26313919E-18,-0.11871286E-21)
     ROW  6
  (-0.10000876E-07, 0.11561963E-07) (-0.41758872E-05, 0.88871779E-06)
  ( 0.62471165E-20, 0.22399868E-21) (-0.76658162E-03, 0.16485826E-05)
  (-0.26202096E-18,-0.11867075E-21) (-0.98411644E-03, 0.15561559E-05)
 eigenphases
 -0.2301008E-02 -0.8111798E-03  0.5749861E-03  0.8789014E-03  0.3652984E-02
  0.1463800E-01
 eigenphase sum 0.166327E-01  scattering length=  -0.03068
 eps+pi 0.315823E+01  eps+2*pi 0.629982E+01

MaxIter =   1 c.s. =      0.00280869 angs^2  rmsk=     0.00020791
Time Now =       181.6049  Delta time =         0.0008 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =       181.6246  Delta time =         0.0197 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =FU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     6
Number of asymptotic solutions on the left (NAsymL) =     6
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     6
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    9
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    9
Time Now =       181.6358  Delta time =         0.0113 Energy independent setup

Compute solution for E =    5.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334094E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334095E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334097E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334100E-16
For potential     3
Number of asymptotic regions =      66
Final point in integration =   0.15437122E+03 Angstroms
Time Now =       182.6806  Delta time =         1.0448 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00302549 angs^2  rmsk=     0.00296255
iL =   2 Iter =   1 c.s. =      0.00302549 angs^2  rmsk=     0.00031800
iL =   3 Iter =   1 c.s. =      0.00302549 angs^2  rmsk=     0.00067578
iL =   4 Iter =   1 c.s. =      0.00302549 angs^2  rmsk=     0.00033541
iL =   5 Iter =   1 c.s. =      0.00302549 angs^2  rmsk=     0.00017461
iL =   6 Iter =   1 c.s. =      0.00302549 angs^2  rmsk=     0.00023256
      Final k matrix
     ROW  1
  ( 0.16934195E-01, 0.28878557E-03) (-0.13908830E-02,-0.23196928E-04)
  ( 0.27208437E-19,-0.58939533E-21) (-0.10556406E-04, 0.16176907E-05)
  ( 0.82213273E-19, 0.13608968E-20) (-0.16075749E-07, 0.16852361E-07)
     ROW  2
  (-0.13908830E-02,-0.23196928E-04) (-0.25150101E-03, 0.36405366E-05)
  ( 0.82055043E-18, 0.35050127E-20) (-0.12814593E-02, 0.19993766E-05)
  ( 0.75723308E-19,-0.54274810E-21) (-0.58063382E-05, 0.11062839E-05)
     ROW  3
  ( 0.26322585E-19,-0.60658880E-21) ( 0.81954565E-18, 0.35039798E-20)
  ( 0.40455081E-02, 0.16440468E-04) (-0.35264834E-18,-0.20924754E-20)
  (-0.27213903E-03,-0.13762786E-05) ( 0.17901722E-19, 0.42964135E-21)
     ROW  4
  (-0.10556406E-04, 0.16176907E-05) (-0.12814593E-02, 0.19993766E-05)
  (-0.35140194E-18,-0.20896370E-20) (-0.12934071E-02, 0.40498784E-05)
  ( 0.20625407E-18, 0.18873375E-21) (-0.85714628E-03, 0.20598721E-05)
     ROW  5
  ( 0.82264678E-19, 0.13618311E-20) ( 0.75889789E-19,-0.54217214E-21)
  (-0.27213903E-03,-0.13762786E-05) ( 0.20606626E-18, 0.18991627E-21)
  ( 0.10116659E-02, 0.10975307E-05) (-0.29180280E-18,-0.15585569E-21)
     ROW  6
  (-0.16075749E-07, 0.16852361E-07) (-0.58063382E-05, 0.11062839E-05)
  ( 0.17019450E-19, 0.42565044E-21) (-0.85714628E-03, 0.20598721E-05)
  (-0.29063114E-18,-0.15588035E-21) (-0.11010695E-02, 0.19470968E-05)
 eigenphases
 -0.2551231E-02 -0.8862110E-03  0.6791463E-03  0.9874487E-03  0.4069771E-02
  0.1704981E-01
 eigenphase sum 0.193487E-01  scattering length=  -0.03192
 eps+pi 0.316094E+01  eps+2*pi 0.630253E+01

MaxIter =   1 c.s. =      0.00302549 angs^2  rmsk=     0.00023256
Time Now =       182.6815  Delta time =         0.0008 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =       182.7011  Delta time =         0.0196 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =FU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     6
Number of asymptotic solutions on the left (NAsymL) =     6
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     6
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    9
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    9
Time Now =       182.7124  Delta time =         0.0113 Energy independent setup

Compute solution for E =    6.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407236E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407238E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407242E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407248E-16
For potential     3
Number of asymptotic regions =      68
Final point in integration =   0.14526845E+03 Angstroms
Time Now =       183.7630  Delta time =         1.0507 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00332078 angs^2  rmsk=     0.00339999
iL =   2 Iter =   1 c.s. =      0.00332078 angs^2  rmsk=     0.00033078
iL =   3 Iter =   1 c.s. =      0.00332078 angs^2  rmsk=     0.00073773
iL =   4 Iter =   1 c.s. =      0.00332078 angs^2  rmsk=     0.00036612
iL =   5 Iter =   1 c.s. =      0.00332078 angs^2  rmsk=     0.00019174
iL =   6 Iter =   1 c.s. =      0.00332078 angs^2  rmsk=     0.00025488
      Final k matrix
     ROW  1
  ( 0.19545947E-01, 0.38413876E-03) (-0.13950767E-02,-0.26968357E-04)
  (-0.87118754E-18,-0.20527120E-19) (-0.12993949E-04, 0.17121629E-05)
  (-0.17391924E-18,-0.35045795E-20) (-0.22493721E-07, 0.22356354E-07)
     ROW  2
  (-0.13950767E-02,-0.26968357E-04) (-0.20935347E-03, 0.39389586E-05)
  (-0.21427569E-18, 0.10633735E-20) (-0.13957375E-02, 0.22890835E-05)
  ( 0.11825851E-18, 0.38755482E-21) (-0.75903380E-05, 0.13215229E-05)
     ROW  3
  (-0.87175503E-18,-0.20539759E-19) (-0.21510574E-18, 0.10587311E-20)
  ( 0.44166658E-02, 0.19592927E-04) (-0.56134354E-18,-0.16222488E-20)
  (-0.29258067E-03,-0.16177953E-05) ( 0.25719362E-18, 0.14336278E-20)
     ROW  4
  (-0.12993949E-04, 0.17121629E-05) (-0.13957375E-02, 0.22890835E-05)
  (-0.56278940E-18,-0.16281165E-20) (-0.14126210E-02, 0.48256842E-05)
  ( 0.19165725E-19, 0.25191618E-21) (-0.93909337E-03, 0.24706510E-05)
     ROW  5
  (-0.17332253E-18,-0.34917578E-20) ( 0.11801702E-18, 0.38530090E-21)
  (-0.29258067E-03,-0.16177953E-05) ( 0.20193833E-19, 0.25016943E-21)
  ( 0.11126174E-02, 0.13235254E-05) (-0.27096254E-18,-0.69542558E-22)
     ROW  6
  (-0.22493721E-07, 0.22356354E-07) (-0.75903380E-05, 0.13215229E-05)
  ( 0.25789540E-18, 0.14376508E-20) (-0.93909337E-03, 0.24706510E-05)
  (-0.27239433E-18,-0.68649127E-22) (-0.12069649E-02, 0.23387316E-05)
 eigenphases
 -0.2770334E-02 -0.9464376E-03  0.7894430E-03  0.1086910E-02  0.4442433E-02
  0.1964938E-01
 eigenphase sum 0.222514E-01  scattering length=  -0.03351
 eps+pi 0.316384E+01  eps+2*pi 0.630544E+01

MaxIter =   1 c.s. =      0.00332078 angs^2  rmsk=     0.00025488
Time Now =       183.7639  Delta time =         0.0008 End ScatStab
+ Data Record ScatContSym - 'GG'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =       183.7836  Delta time =         0.0197 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =GG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     7
Number of asymptotic solutions on the right (NAsymR) =     7
Number of asymptotic solutions on the left (NAsymL) =     7
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     7
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    7
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   10
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    7
Time Now =       183.7951  Delta time =         0.0115 Energy independent setup

Compute solution for E =    3.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491190E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491191E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491191E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491192E-15
For potential     3
Number of asymptotic regions =      62
Final point in integration =   0.18302855E+03 Angstroms
Time Now =       184.7785  Delta time =         0.9835 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00129033 angs^2  rmsk=     0.00128454
iL =   2 Iter =   1 c.s. =      0.00129033 angs^2  rmsk=     0.00058417
iL =   3 Iter =   1 c.s. =      0.00129033 angs^2  rmsk=     0.00015505
iL =   4 Iter =   1 c.s. =      0.00129033 angs^2  rmsk=     0.00012981
iL =   5 Iter =   1 c.s. =      0.00129033 angs^2  rmsk=     0.00013967
iL =   6 Iter =   1 c.s. =      0.00129033 angs^2  rmsk=     0.00005072
iL =   7 Iter =   1 c.s. =      0.00129033 angs^2  rmsk=     0.00010673
      Final k matrix
     ROW  1
  ( 0.77428245E-02, 0.60486621E-04) ( 0.16923914E-17, 0.20328077E-19)
  (-0.72910308E-03,-0.59572005E-05) (-0.39982249E-19,-0.11850032E-20)
  (-0.21384979E-05, 0.48019017E-06) (-0.67156958E-20,-0.25396921E-22)
  (-0.15508272E-08, 0.20623834E-08)
     ROW  2
  ( 0.16947885E-17, 0.20356416E-19) ( 0.40773469E-02, 0.16721672E-04)
  (-0.42426950E-18,-0.32801713E-20) (-0.31085696E-03,-0.15087482E-05)
  (-0.74549607E-20, 0.36408090E-21) (-0.46726720E-06, 0.10839712E-06)
  ( 0.32902770E-20, 0.13471102E-22)
     ROW  3
  (-0.72910308E-03,-0.59572005E-05) (-0.42474036E-18,-0.32794344E-20)
  ( 0.42925313E-03, 0.11780382E-05) ( 0.44068436E-18, 0.93622635E-21)
  (-0.67981599E-03, 0.48121372E-07) (-0.18800250E-19,-0.34469382E-21)
  (-0.13885479E-05, 0.33802775E-06)
     ROW  4
  (-0.41106560E-19,-0.11965913E-20) (-0.31085696E-03,-0.15087482E-05)
  ( 0.44191909E-18, 0.93699618E-21) ( 0.77661373E-03, 0.82565260E-06)
  (-0.34652044E-18,-0.49520038E-21) (-0.35480787E-03,-0.27115073E-06)
  ( 0.81571935E-20, 0.27581379E-21)
     ROW  5
  (-0.21384979E-05, 0.48019017E-06) (-0.85236514E-20, 0.36142294E-21)
  (-0.67981599E-03, 0.48121372E-07) (-0.34856706E-18,-0.49540669E-21)
  (-0.49673418E-03, 0.95587887E-06) ( 0.27358673E-18, 0.14181296E-21)
  (-0.49696906E-03, 0.52501960E-06)
     ROW  6
  (-0.57038002E-20,-0.17172010E-22) (-0.46726720E-06, 0.10839712E-06)
  (-0.18797806E-19,-0.34408905E-21) (-0.35480787E-03,-0.27115073E-06)
  ( 0.27097013E-18, 0.14280132E-21) (-0.11987062E-04, 0.12603264E-06)
  (-0.29158024E-18, 0.28607443E-22)
     ROW  7
  (-0.15508272E-08, 0.20623834E-08) ( 0.28708030E-20, 0.12604742E-22)
  (-0.13885479E-05, 0.33802775E-06) ( 0.79043021E-20, 0.27663086E-21)
  (-0.49696906E-03, 0.52501960E-06) (-0.29080007E-18, 0.26952468E-22)
  (-0.55780798E-03, 0.55813062E-06)
 eigenphases
 -0.1187140E-02 -0.2876831E-03 -0.1511337E-03  0.7770477E-03  0.8864810E-03
  0.4106673E-02  0.7815628E-02
 eigenphase sum 0.119599E-01  scattering length=  -0.02547
 eps+pi 0.315355E+01  eps+2*pi 0.629515E+01

MaxIter =   1 c.s. =      0.00129033 angs^2  rmsk=     0.00010673
Time Now =       184.7795  Delta time =         0.0010 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =       184.7992  Delta time =         0.0197 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =GG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     7
Number of asymptotic solutions on the right (NAsymR) =     7
Number of asymptotic solutions on the left (NAsymL) =     7
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     7
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    7
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   10
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    7
Time Now =       184.8105  Delta time =         0.0113 Energy independent setup

Compute solution for E =    4.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622043E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622045E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622048E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622052E-16
For potential     3
Number of asymptotic regions =      64
Final point in integration =   0.16629189E+03 Angstroms
Time Now =       185.7911  Delta time =         0.9806 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00128050 angs^2  rmsk=     0.00147760
iL =   2 Iter =   1 c.s. =      0.00128050 angs^2  rmsk=     0.00067165
iL =   3 Iter =   1 c.s. =      0.00128050 angs^2  rmsk=     0.00017669
iL =   4 Iter =   1 c.s. =      0.00128050 angs^2  rmsk=     0.00015012
iL =   5 Iter =   1 c.s. =      0.00128050 angs^2  rmsk=     0.00016041
iL =   6 Iter =   1 c.s. =      0.00128050 angs^2  rmsk=     0.00005814
iL =   7 Iter =   1 c.s. =      0.00128050 angs^2  rmsk=     0.00012313
      Final k matrix
     ROW  1
  ( 0.89113301E-02, 0.80073287E-04) ( 0.93634116E-18, 0.13153799E-19)
  (-0.80932216E-03,-0.76283016E-05) (-0.81599076E-19,-0.14908257E-20)
  (-0.32048482E-05, 0.60428870E-06) (-0.90167682E-21, 0.37758118E-22)
  (-0.31445210E-08, 0.35283305E-08)
     ROW  2
  ( 0.94196707E-18, 0.13228350E-19) ( 0.46883872E-02, 0.22104562E-04)
  (-0.47806105E-18,-0.34180911E-20) (-0.35084771E-03,-0.19615329E-05)
  ( 0.13370511E-19, 0.55760176E-21) (-0.70768002E-06, 0.13941359E-06)
  ( 0.45699206E-20, 0.87689008E-23)
     ROW  3
  (-0.80932216E-03,-0.76283016E-05) (-0.48171756E-18,-0.34331236E-20)
  ( 0.51653198E-03, 0.15296954E-05) ( 0.44840967E-18, 0.11796369E-20)
  (-0.77962970E-03, 0.45297190E-07) (-0.17598189E-19,-0.43281747E-21)
  (-0.21259254E-05, 0.44702509E-06)
     ROW  4
  (-0.84423302E-19,-0.15195529E-20) (-0.35084771E-03,-0.19615329E-05)
  ( 0.44708908E-18, 0.11784231E-20) ( 0.90314214E-03, 0.11042390E-05)
  (-0.38665943E-18,-0.61389418E-21) (-0.40678496E-03,-0.36249312E-06)
  ( 0.94138741E-20, 0.35845758E-21)
     ROW  5
  (-0.32048482E-05, 0.60428870E-06) ( 0.13489279E-19, 0.56073750E-21)
  (-0.77962970E-03, 0.45297190E-07) (-0.38586525E-18,-0.61515075E-21)
  (-0.56974877E-03, 0.12608118E-05) ( 0.31207656E-18, 0.18159435E-21)
  (-0.57302962E-03, 0.69707297E-06)
     ROW  6
  (-0.64607015E-21, 0.39267771E-22) (-0.70768002E-06, 0.13941359E-06)
  (-0.15234548E-19,-0.43063084E-21) (-0.40678496E-03,-0.36249312E-06)
  ( 0.31122698E-18, 0.18127531E-21) (-0.11416274E-04, 0.16560501E-06)
  (-0.33679203E-18, 0.38537553E-22)
     ROW  7
  (-0.31445210E-08, 0.35283305E-08) ( 0.44703915E-20, 0.82467411E-23)
  (-0.21259254E-05, 0.44702509E-06) ( 0.95804786E-20, 0.35757544E-21)
  (-0.57302962E-03, 0.69707297E-06) (-0.33555708E-18, 0.37178860E-22)
  (-0.64382567E-03, 0.74288020E-06)
 eigenphases
 -0.1362866E-02 -0.3243213E-03 -0.1694620E-03  0.9122984E-03  0.1028659E-02
  0.4720987E-02  0.8989659E-02
 eigenphase sum 0.137950E-01  scattering length=  -0.02544
 eps+pi 0.315539E+01  eps+2*pi 0.629698E+01

MaxIter =   1 c.s. =      0.00128050 angs^2  rmsk=     0.00012313
Time Now =       185.7920  Delta time =         0.0010 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =       185.8117  Delta time =         0.0196 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =GG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     7
Number of asymptotic solutions on the right (NAsymR) =     7
Number of asymptotic solutions on the left (NAsymL) =     7
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     7
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    7
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   10
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    7
Time Now =       185.8230  Delta time =         0.0113 Energy independent setup

Compute solution for E =    5.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334094E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334095E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334097E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334100E-16
For potential     3
Number of asymptotic regions =      66
Final point in integration =   0.15437122E+03 Angstroms
Time Now =       186.8993  Delta time =         1.0763 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00127609 angs^2  rmsk=     0.00164916
iL =   2 Iter =   1 c.s. =      0.00127609 angs^2  rmsk=     0.00074771
iL =   3 Iter =   1 c.s. =      0.00127609 angs^2  rmsk=     0.00019508
iL =   4 Iter =   1 c.s. =      0.00127609 angs^2  rmsk=     0.00016811
iL =   5 Iter =   1 c.s. =      0.00127609 angs^2  rmsk=     0.00017837
iL =   6 Iter =   1 c.s. =      0.00127609 angs^2  rmsk=     0.00006453
iL =   7 Iter =   1 c.s. =      0.00127609 angs^2  rmsk=     0.00013754
      Final k matrix
     ROW  1
  ( 0.99583049E-02, 0.99931719E-04) ( 0.69132995E-18, 0.98392975E-20)
  (-0.86821190E-03,-0.91650876E-05) ( 0.42944058E-18, 0.37446056E-20)
  (-0.43531520E-05, 0.71107123E-06) (-0.44831759E-20,-0.23338670E-21)
  (-0.53438367E-08, 0.52968789E-08)
     ROW  2
  ( 0.69515630E-18, 0.98992769E-20) ( 0.52198674E-02, 0.27394689E-04)
  ( 0.56292992E-18, 0.24663425E-20) (-0.38329709E-03,-0.23901424E-05)
  (-0.12236809E-18,-0.88074049E-21) (-0.97286134E-06, 0.16802674E-06)
  ( 0.27069809E-20, 0.90253253E-22)
     ROW  3
  (-0.86821190E-03,-0.91650876E-05) ( 0.56551422E-18, 0.24859531E-20)
  ( 0.60124057E-03, 0.18647768E-05) ( 0.81536781E-18, 0.11230459E-20)
  (-0.86567788E-03, 0.32872588E-07) (-0.83399581E-20,-0.64964471E-21)
  (-0.29544341E-05, 0.55420749E-06)
     ROW  4
  ( 0.43034210E-18, 0.37526073E-20) (-0.38329709E-03,-0.23901424E-05)
  ( 0.81633796E-18, 0.11257102E-20) ( 0.10168428E-02, 0.13848187E-05)
  (-0.45132491E-18,-0.97975065E-21) (-0.45158043E-03,-0.45428282E-06)
  (-0.28124367E-20, 0.45508898E-21)
     ROW  5
  (-0.43531520E-05, 0.71107123E-06) (-0.12336929E-18,-0.88700728E-21)
  (-0.86567789E-03, 0.32872588E-07) (-0.45002857E-18,-0.97808007E-21)
  (-0.63267124E-03, 0.15590250E-05) ( 0.32457307E-18, 0.24513767E-21)
  (-0.63978999E-03, 0.86764154E-06)
     ROW  6
  (-0.53910800E-20,-0.24328277E-21) (-0.97286134E-06, 0.16802674E-06)
  (-0.78184927E-20,-0.64887414E-21) (-0.45158043E-03,-0.45428282E-06)
  ( 0.32443897E-18, 0.24393747E-21) (-0.10035264E-04, 0.20402681E-06)
  (-0.37783586E-18, 0.69347959E-22)
     ROW  7
  (-0.53438367E-08, 0.52968789E-08) ( 0.10757467E-20, 0.83550306E-22)
  (-0.29544341E-05, 0.55420749E-06) (-0.28211728E-20, 0.45588977E-21)
  (-0.63978999E-03, 0.86764154E-06) (-0.38006057E-18, 0.70892147E-22)
  (-0.71946269E-03, 0.92696844E-06)
 eigenphases
 -0.1514981E-02 -0.3537478E-03 -0.1838611E-03  0.1037425E-02  0.1155698E-02
  0.5254935E-02  0.1003939E-01
 eigenphase sum 0.154349E-01  scattering length=  -0.02546
 eps+pi 0.315703E+01  eps+2*pi 0.629862E+01

MaxIter =   1 c.s. =      0.00127609 angs^2  rmsk=     0.00013754
Time Now =       186.9003  Delta time =         0.0010 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =       186.9199  Delta time =         0.0196 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =GG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     7
Number of asymptotic solutions on the right (NAsymR) =     7
Number of asymptotic solutions on the left (NAsymL) =     7
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     7
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    7
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   10
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    7
Time Now =       186.9312  Delta time =         0.0113 Energy independent setup

Compute solution for E =    6.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407236E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407238E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407242E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407248E-16
For potential     3
Number of asymptotic regions =      68
Final point in integration =   0.14526845E+03 Angstroms
Time Now =       188.0023  Delta time =         1.0712 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00127802 angs^2  rmsk=     0.00180792
iL =   2 Iter =   1 c.s. =      0.00127802 angs^2  rmsk=     0.00081562
iL =   3 Iter =   1 c.s. =      0.00127802 angs^2  rmsk=     0.00021119
iL =   4 Iter =   1 c.s. =      0.00127802 angs^2  rmsk=     0.00018448
iL =   5 Iter =   1 c.s. =      0.00127802 angs^2  rmsk=     0.00019434
iL =   6 Iter =   1 c.s. =      0.00127802 angs^2  rmsk=     0.00007018
iL =   7 Iter =   1 c.s. =      0.00127802 angs^2  rmsk=     0.00015054
      Final k matrix
     ROW  1
  ( 0.10939202E-01, 0.12050943E-03) ( 0.17922143E-17, 0.30281125E-19)
  (-0.91029527E-03,-0.10577900E-04) (-0.14110836E-18,-0.33701446E-20)
  (-0.55491160E-05, 0.80049608E-06) ( 0.14060116E-19, 0.27733815E-21)
  (-0.81047813E-08, 0.73117058E-08)
     ROW  2
  ( 0.17957770E-17, 0.30344148E-19) ( 0.56944618E-02, 0.32596194E-04)
  (-0.44984413E-18,-0.46131796E-20) (-0.41015453E-03,-0.27951306E-05)
  (-0.33041654E-18,-0.10041433E-20) (-0.12578223E-05, 0.19432267E-06)
  ( 0.75307916E-19, 0.59231115E-21)
     ROW  3
  (-0.91029527E-03,-0.10577900E-04) (-0.44564266E-18,-0.45856849E-20)
  ( 0.68540864E-03, 0.21854593E-05) ( 0.10212824E-17, 0.28550768E-20)
  (-0.94175621E-03, 0.10433399E-07) (-0.64695853E-19,-0.95685013E-21)
  (-0.38615598E-05, 0.65958264E-06)
     ROW  4
  (-0.14089283E-18,-0.33692797E-20) (-0.41015453E-03,-0.27951306E-05)
  ( 0.10216139E-17, 0.28559875E-20) ( 0.11216340E-02, 0.16675765E-05)
  (-0.70598291E-18,-0.13591434E-20) (-0.49119862E-03,-0.54650650E-06)
  ( 0.26199345E-19, 0.67421280E-21)
     ROW  5
  (-0.55491160E-05, 0.80049608E-06) (-0.32755704E-18,-0.99236313E-21)
  (-0.94175621E-03, 0.10433399E-07) (-0.70783392E-18,-0.13610279E-20)
  (-0.68826174E-03, 0.18505689E-05) ( 0.42552565E-18, 0.40559536E-21)
  (-0.69994568E-03, 0.10367269E-05)
     ROW  6
  ( 0.13981187E-19, 0.27734026E-21) (-0.12578223E-05, 0.19432267E-06)
  (-0.65767453E-19,-0.95770054E-21) (-0.49119862E-03,-0.54650650E-06)
  ( 0.42557171E-18, 0.40650138E-21) (-0.79891068E-05, 0.24134188E-06)
  (-0.41967779E-18, 0.23342024E-22)
     ROW  7
  (-0.81047813E-08, 0.73117058E-08) ( 0.74390255E-19, 0.58564519E-21)
  (-0.38615598E-05, 0.65958264E-06) ( 0.26549981E-19, 0.67541785E-21)
  (-0.69994568E-03, 0.10367269E-05) (-0.41848616E-18, 0.22250884E-22)
  (-0.78769152E-03, 0.11103995E-05)
 eigenphases
 -0.1650079E-02 -0.3776747E-03 -0.1953247E-03  0.1156508E-02  0.1272160E-02
  0.5731399E-02  0.1102079E-01
 eigenphase sum 0.169578E-01  scattering length=  -0.02554
 eps+pi 0.315855E+01  eps+2*pi 0.630014E+01

MaxIter =   1 c.s. =      0.00127802 angs^2  rmsk=     0.00015054
Time Now =       188.0033  Delta time =         0.0010 End ScatStab
+ Data Record ScatContSym - 'GU'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =       188.0230  Delta time =         0.0197 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =GU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     5
Number of asymptotic solutions on the right (NAsymR) =     5
Number of asymptotic solutions on the left (NAsymL) =     5
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     5
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    5
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =    9
Higest l included in the K matrix (lna) =    9
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    5
Time Now =       188.0343  Delta time =         0.0113 Energy independent setup

Compute solution for E =    3.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491190E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491191E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491191E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491192E-15
For potential     3
Number of asymptotic regions =      62
Final point in integration =   0.18302855E+03 Angstroms
Time Now =       188.7061  Delta time =         0.6718 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00018055 angs^2  rmsk=     0.00067270
iL =   2 Iter =   1 c.s. =      0.00018055 angs^2  rmsk=     0.00037424
iL =   3 Iter =   1 c.s. =      0.00018055 angs^2  rmsk=     0.00019852
iL =   4 Iter =   1 c.s. =      0.00018055 angs^2  rmsk=     0.00008814
iL =   5 Iter =   1 c.s. =      0.00018055 angs^2  rmsk=     0.00016223
      Final k matrix
     ROW  1
  ( 0.23228427E-02, 0.59743964E-05) ( 0.70407028E-18, 0.35458931E-20)
  (-0.76076026E-03,-0.15709984E-05) ( 0.12867723E-19,-0.49595948E-21)
  (-0.18509502E-05, 0.44080548E-06)
     ROW  2
  ( 0.70433596E-18, 0.35460837E-20) ( 0.18360458E-02, 0.35013157E-05)
  (-0.81650324E-18,-0.19784677E-20) (-0.36088582E-03,-0.75388180E-06)
  ( 0.37974915E-19, 0.75445421E-21)
     ROW  3
  (-0.76076026E-03,-0.15709984E-05) (-0.81815524E-18,-0.19812523E-20)
  (-0.25639924E-03, 0.98521306E-06) ( 0.36305187E-18, 0.65869033E-21)
  (-0.58370596E-03, 0.47982111E-06)
     ROW  4
  ( 0.11919240E-19,-0.49776279E-21) (-0.36088582E-03,-0.75388180E-06)
  ( 0.36208011E-18, 0.65767609E-21) ( 0.25292240E-03, 0.19420892E-06)
  (-0.63959463E-18,-0.26614914E-22)
     ROW  5
  (-0.18509502E-05, 0.44080548E-06) ( 0.38020146E-19, 0.75618324E-21)
  (-0.58370596E-03, 0.47982111E-06) (-0.64155281E-18,-0.26592605E-22)
  (-0.56321358E-03, 0.65792646E-06)
 eigenphases
 -0.1082891E-02  0.4790259E-04  0.1745367E-03  0.1914436E-02  0.2538228E-02
 eigenphase sum 0.359221E-02  scattering length=  -0.00765
 eps+pi 0.314518E+01  eps+2*pi 0.628678E+01

MaxIter =   1 c.s. =      0.00018055 angs^2  rmsk=     0.00016223
Time Now =       188.7068  Delta time =         0.0007 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =       188.7265  Delta time =         0.0196 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =GU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     5
Number of asymptotic solutions on the right (NAsymR) =     5
Number of asymptotic solutions on the left (NAsymL) =     5
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     5
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    5
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =    9
Higest l included in the K matrix (lna) =    9
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    5
Time Now =       188.7377  Delta time =         0.0113 Energy independent setup

Compute solution for E =    4.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622043E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622045E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622048E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622052E-16
For potential     3
Number of asymptotic regions =      64
Final point in integration =   0.16629189E+03 Angstroms
Time Now =       189.4127  Delta time =         0.6750 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00018258 angs^2  rmsk=     0.00078112
iL =   2 Iter =   1 c.s. =      0.00018258 angs^2  rmsk=     0.00043307
iL =   3 Iter =   1 c.s. =      0.00018258 angs^2  rmsk=     0.00022641
iL =   4 Iter =   1 c.s. =      0.00018258 angs^2  rmsk=     0.00010141
iL =   5 Iter =   1 c.s. =      0.00018258 angs^2  rmsk=     0.00018684
      Final k matrix
     ROW  1
  ( 0.27213574E-02, 0.81537733E-05) ( 0.11893217E-17, 0.66082448E-20)
  (-0.86481685E-03,-0.21035043E-05) ( 0.17658154E-19,-0.81621549E-21)
  (-0.28168373E-05, 0.57518494E-06)
     ROW  2
  ( 0.11884129E-17, 0.66028144E-20) ( 0.21258545E-02, 0.46886714E-05)
  (-0.98216308E-18,-0.30456227E-20) (-0.41157145E-03,-0.99684867E-06)
  ( 0.45065010E-19, 0.10301904E-20)
     ROW  3
  (-0.86481685E-03,-0.21035043E-05) (-0.98361886E-18,-0.30490364E-20)
  (-0.28687976E-03, 0.12815833E-05) ( 0.44182651E-18, 0.89584895E-21)
  (-0.67183971E-03, 0.63126092E-06)
     ROW  4
  ( 0.17084275E-19,-0.81660625E-21) (-0.41157145E-03,-0.99684867E-06)
  ( 0.44070446E-18, 0.89490597E-21) ( 0.29618848E-03, 0.25711973E-06)
  (-0.74622258E-18,-0.51332855E-22)
     ROW  5
  (-0.28168373E-05, 0.57518494E-06) ( 0.44303989E-19, 0.10305503E-20)
  (-0.67183971E-03, 0.63126092E-06) (-0.74745750E-18,-0.51339283E-22)
  (-0.64909456E-03, 0.87270178E-06)
 eigenphases
 -0.1240403E-02  0.6518844E-04  0.2078712E-03  0.2214179E-02  0.2960614E-02
 eigenphase sum 0.420745E-02  scattering length=  -0.00776
 eps+pi 0.314580E+01  eps+2*pi 0.628739E+01

MaxIter =   1 c.s. =      0.00018258 angs^2  rmsk=     0.00018684
Time Now =       189.4135  Delta time =         0.0007 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =       189.4331  Delta time =         0.0197 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =GU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     5
Number of asymptotic solutions on the right (NAsymR) =     5
Number of asymptotic solutions on the left (NAsymL) =     5
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     5
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    5
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =    9
Higest l included in the K matrix (lna) =    9
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    5
Time Now =       189.4444  Delta time =         0.0113 Energy independent setup

Compute solution for E =    5.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334094E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334095E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334097E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334100E-16
For potential     3
Number of asymptotic regions =      66
Final point in integration =   0.15437122E+03 Angstroms
Time Now =       190.1858  Delta time =         0.7414 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00018485 angs^2  rmsk=     0.00087872
iL =   2 Iter =   1 c.s. =      0.00018485 angs^2  rmsk=     0.00048520
iL =   3 Iter =   1 c.s. =      0.00018485 angs^2  rmsk=     0.00025002
iL =   4 Iter =   1 c.s. =      0.00018485 angs^2  rmsk=     0.00011302
iL =   5 Iter =   1 c.s. =      0.00018485 angs^2  rmsk=     0.00020835
      Final k matrix
     ROW  1
  ( 0.30895362E-02, 0.10451033E-04) ( 0.10088022E-17, 0.66969114E-20)
  (-0.95166534E-03,-0.26419513E-05) (-0.59433748E-19,-0.10990615E-20)
  (-0.38902236E-05, 0.70343750E-06)
     ROW  2
  ( 0.10114922E-17, 0.67119776E-20) ( 0.23830589E-02, 0.58855717E-05)
  (-0.12082834E-17,-0.37160373E-20) (-0.45449525E-03,-0.12357030E-05)
  ( 0.52305658E-19, 0.13770683E-20)
     ROW  3
  (-0.95166534E-03,-0.26419513E-05) (-0.12075831E-17,-0.37124379E-20)
  (-0.31037310E-03, 0.15627508E-05) ( 0.46265174E-18, 0.12574210E-20)
  (-0.74882734E-03, 0.77843751E-06)
     ROW  4
  (-0.58726007E-19,-0.10969246E-20) (-0.45449525E-03,-0.12357030E-05)
  ( 0.46167643E-18, 0.12584073E-20) ( 0.33577114E-03, 0.31930982E-06)
  (-0.85684009E-18,-0.36419118E-22)
     ROW  5
  (-0.38902236E-05, 0.70343750E-06) ( 0.52264089E-19, 0.13756561E-20)
  (-0.74882734E-03, 0.77843751E-06) (-0.85501543E-18,-0.37836614E-22)
  (-0.72422469E-03, 0.10852612E-05)
 eigenphases
 -0.1375760E-02  0.8418834E-04  0.2394093E-03  0.2479431E-02  0.3346533E-02
 eigenphase sum 0.477380E-02  scattering length=  -0.00787
 eps+pi 0.314637E+01  eps+2*pi 0.628796E+01

MaxIter =   1 c.s. =      0.00018485 angs^2  rmsk=     0.00020835
Time Now =       190.1865  Delta time =         0.0007 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =       190.2061  Delta time =         0.0196 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =GU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     5
Number of asymptotic solutions on the right (NAsymR) =     5
Number of asymptotic solutions on the left (NAsymL) =     5
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     5
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    5
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =    9
Higest l included in the K matrix (lna) =    9
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    5
Time Now =       190.2174  Delta time =         0.0113 Energy independent setup

Compute solution for E =    6.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407236E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407238E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407242E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407248E-16
For potential     3
Number of asymptotic regions =      68
Final point in integration =   0.14526845E+03 Angstroms
Time Now =       190.9553  Delta time =         0.7379 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00018746 angs^2  rmsk=     0.00096937
iL =   2 Iter =   1 c.s. =      0.00018746 angs^2  rmsk=     0.00053262
iL =   3 Iter =   1 c.s. =      0.00018746 angs^2  rmsk=     0.00027046
iL =   4 Iter =   1 c.s. =      0.00018746 angs^2  rmsk=     0.00012343
iL =   5 Iter =   1 c.s. =      0.00018746 angs^2  rmsk=     0.00022765
      Final k matrix
     ROW  1
  ( 0.34412902E-02, 0.12894690E-04) (-0.41687017E-18,-0.26657457E-20)
  (-0.10256749E-02,-0.31886312E-05) ( 0.21607767E-18, 0.83519823E-21)
  (-0.50512644E-05, 0.82542536E-06)
     ROW  2
  (-0.41837952E-18,-0.26741116E-20) ( 0.26173074E-02, 0.70921475E-05)
  ( 0.32195300E-19, 0.39871824E-21) (-0.49172875E-03,-0.14703757E-05)
  ( 0.13253816E-19, 0.39869161E-21)
     ROW  3
  (-0.10256749E-02,-0.31886312E-05) ( 0.32879474E-19, 0.39713423E-21)
  (-0.32849516E-03, 0.18287351E-05) ( 0.19310172E-18, 0.43431040E-21)
  (-0.81780348E-03, 0.92125202E-06)
     ROW  4
  ( 0.21591974E-18, 0.83885789E-21) (-0.49172875E-03,-0.14703757E-05)
  ( 0.18966744E-18, 0.43422457E-21) ( 0.37288740E-03, 0.38084448E-06)
  (-0.81083265E-18, 0.17684064E-21)
     ROW  5
  (-0.50512644E-05, 0.82542536E-06) ( 0.13147532E-19, 0.39819006E-21)
  (-0.81780348E-03, 0.92125202E-06) (-0.81136063E-18, 0.17430464E-21)
  (-0.79166492E-03, 0.12955646E-05)
 eigenphases
 -0.1494987E-02  0.1049423E-03  0.2698821E-03  0.2720326E-02  0.3711207E-02
 eigenphase sum 0.531137E-02  scattering length=  -0.00800
 eps+pi 0.314690E+01  eps+2*pi 0.628850E+01

MaxIter =   1 c.s. =      0.00018746 angs^2  rmsk=     0.00022765
Time Now =       190.9560  Delta time =         0.0007 End ScatStab
+ Data Record ScatContSym - 'A2G'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =       190.9757  Delta time =         0.0197 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A2G   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     1
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     1
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     1
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    1
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   10
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    1
Time Now =       190.9869  Delta time =         0.0113 Energy independent setup

Compute solution for E =    3.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491190E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491191E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491191E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491192E-15
For potential     3
Number of asymptotic regions =      62
Final point in integration =   0.18302855E+03 Angstroms
Time Now =       191.1172  Delta time =         0.1303 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00004618 angs^2  rmsk=     0.00170105
      Final k matrix
     ROW  1
  ( 0.17010452E-02, 0.28935632E-05)
 eigenphases
  0.1701048E-02
 eigenphase sum 0.170105E-02  scattering length=  -0.00362
 eps+pi 0.314329E+01  eps+2*pi 0.628489E+01

MaxIter =   1 c.s. =      0.00004618 angs^2  rmsk=     0.00170105
Time Now =       191.1175  Delta time =         0.0003 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =       191.1485  Delta time =         0.0310 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A2G   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     1
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     1
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     1
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    1
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   10
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    1
Time Now =       191.1598  Delta time =         0.0113 Energy independent setup

Compute solution for E =    4.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622043E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622045E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622048E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622052E-16
For potential     3
Number of asymptotic regions =      64
Final point in integration =   0.16629189E+03 Angstroms
Time Now =       191.2915  Delta time =         0.1317 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00004601 angs^2  rmsk=     0.00196067
      Final k matrix
     ROW  1
  ( 0.19606694E-02, 0.38442393E-05)
 eigenphases
  0.1960674E-02
 eigenphase sum 0.196067E-02  scattering length=  -0.00362
 eps+pi 0.314355E+01  eps+2*pi 0.628515E+01

MaxIter =   1 c.s. =      0.00004601 angs^2  rmsk=     0.00196067
Time Now =       191.2918  Delta time =         0.0003 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =       191.3230  Delta time =         0.0312 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A2G   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     1
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     1
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     1
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    1
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   10
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    1
Time Now =       191.3343  Delta time =         0.0113 Energy independent setup

Compute solution for E =    5.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334094E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334095E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334097E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334100E-16
For potential     3
Number of asymptotic regions =      66
Final point in integration =   0.15437122E+03 Angstroms
Time Now =       191.4767  Delta time =         0.1424 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00004584 angs^2  rmsk=     0.00218809
      Final k matrix
     ROW  1
  ( 0.21880807E-02, 0.47877202E-05)
 eigenphases
  0.2188088E-02
 eigenphase sum 0.218809E-02  scattering length=  -0.00361
 eps+pi 0.314378E+01  eps+2*pi 0.628537E+01

MaxIter =   1 c.s. =      0.00004584 angs^2  rmsk=     0.00218809
Time Now =       191.4771  Delta time =         0.0003 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =       191.5081  Delta time =         0.0310 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A2G   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     1
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     1
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     1
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    1
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   10
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    1
Time Now =       191.5193  Delta time =         0.0113 Energy independent setup

Compute solution for E =    6.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407236E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407238E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407242E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407248E-16
For potential     3
Number of asymptotic regions =      68
Final point in integration =   0.14526845E+03 Angstroms
Time Now =       191.6653  Delta time =         0.1460 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00004567 angs^2  rmsk=     0.00239245
      Final k matrix
     ROW  1
  ( 0.23924392E-02, 0.57237983E-05)
 eigenphases
  0.2392448E-02
 eigenphase sum 0.239245E-02  scattering length=  -0.00360
 eps+pi 0.314399E+01  eps+2*pi 0.628558E+01

MaxIter =   1 c.s. =      0.00004567 angs^2  rmsk=     0.00239245
Time Now =       191.6656  Delta time =         0.0003 End ScatStab
+ Data Record ScatContSym - 'A2U'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =       191.6967  Delta time =         0.0311 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A2U   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =       191.7182  Delta time =         0.0215 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A2U   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =       191.7397  Delta time =         0.0215 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A2U   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =       191.7612  Delta time =         0.0216 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A2U   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK
+ Data Record ScatContSym - 'B1G'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =       191.7827  Delta time =         0.0215 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =B1G   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     3
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     3
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     3
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    3
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   10
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    3
Time Now =       191.7941  Delta time =         0.0114 Energy independent setup

Compute solution for E =    3.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491190E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491191E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491191E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491192E-15
For potential     3
Number of asymptotic regions =      62
Final point in integration =   0.18302855E+03 Angstroms
Time Now =       192.1874  Delta time =         0.3933 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00008651 angs^2  rmsk=     0.00077607
iL =   2 Iter =   1 c.s. =      0.00008651 angs^2  rmsk=     0.00022490
iL =   3 Iter =   1 c.s. =      0.00008651 angs^2  rmsk=     0.00017769
      Final k matrix
     ROW  1
  ( 0.21022158E-02, 0.46811153E-05) (-0.51164441E-03,-0.11159972E-05)
  (-0.92196543E-06, 0.21965238E-06)
     ROW  2
  (-0.51164441E-03,-0.11159972E-05) ( 0.79749362E-04, 0.45522492E-06)
  (-0.43253150E-03, 0.10073875E-06)
     ROW  3
  (-0.92196543E-06, 0.21965238E-06) (-0.43253150E-03, 0.10073875E-06)
  (-0.31156415E-03, 0.28415671E-06)
 eigenphases
 -0.6211540E-03  0.2632508E-03  0.2228311E-02
 eigenphase sum 0.187041E-02  scattering length=  -0.00398
 eps+pi 0.314346E+01  eps+2*pi 0.628506E+01

MaxIter =   1 c.s. =      0.00008651 angs^2  rmsk=     0.00017769
Time Now =       192.1879  Delta time =         0.0005 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =       192.2075  Delta time =         0.0196 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =B1G   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     3
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     3
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     3
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    3
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   10
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    3
Time Now =       192.2188  Delta time =         0.0113 Energy independent setup

Compute solution for E =    4.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622043E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622045E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622048E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622052E-16
For potential     3
Number of asymptotic regions =      64
Final point in integration =   0.16629189E+03 Angstroms
Time Now =       192.6164  Delta time =         0.3976 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00008706 angs^2  rmsk=     0.00089898
iL =   2 Iter =   1 c.s. =      0.00008706 angs^2  rmsk=     0.00025746
iL =   3 Iter =   1 c.s. =      0.00008706 angs^2  rmsk=     0.00020435
      Final k matrix
     ROW  1
  ( 0.24416277E-02, 0.63010260E-05) (-0.58261143E-03,-0.14791667E-05)
  (-0.14047081E-05, 0.28689980E-06)
     ROW  2
  (-0.58261143E-03,-0.14791667E-05) ( 0.98410526E-04, 0.59658749E-06)
  (-0.49745776E-03, 0.13009171E-06)
     ROW  3
  (-0.14047081E-05, 0.28689980E-06) (-0.49745776E-03, 0.13009171E-06)
  (-0.35827903E-03, 0.37583030E-06)
 eigenphases
 -0.7111911E-03  0.3100274E-03  0.2582934E-02
 eigenphase sum 0.218177E-02  scattering length=  -0.00402
 eps+pi 0.314377E+01  eps+2*pi 0.628537E+01

MaxIter =   1 c.s. =      0.00008706 angs^2  rmsk=     0.00020435
Time Now =       192.6168  Delta time =         0.0005 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =       192.6364  Delta time =         0.0196 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =B1G   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     3
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     3
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     3
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    3
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   10
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    3
Time Now =       192.6477  Delta time =         0.0113 Energy independent setup

Compute solution for E =    5.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334094E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334095E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334097E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334100E-16
For potential     3
Number of asymptotic regions =      66
Final point in integration =   0.15437122E+03 Angstroms
Time Now =       193.0796  Delta time =         0.4319 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00008762 angs^2  rmsk=     0.00100835
iL =   2 Iter =   1 c.s. =      0.00008762 angs^2  rmsk=     0.00028541
iL =   3 Iter =   1 c.s. =      0.00008762 angs^2  rmsk=     0.00022755
      Final k matrix
     ROW  1
  ( 0.27457520E-02, 0.79517459E-05) (-0.64227822E-03,-0.18376921E-05)
  (-0.19426739E-05, 0.35125964E-06)
     ROW  2
  (-0.64227822E-03,-0.18376921E-05) ( 0.11710775E-03, 0.73314523E-06)
  (-0.55399076E-03, 0.15734269E-06)
     ROW  3
  (-0.19426739E-05, 0.35125964E-06) (-0.55399076E-03, 0.15734269E-06)
  (-0.39887311E-03, 0.46600965E-06)
 eigenphases
 -0.7884385E-03  0.3534082E-03  0.2899033E-02
 eigenphase sum 0.246400E-02  scattering length=  -0.00406
 eps+pi 0.314406E+01  eps+2*pi 0.628565E+01

MaxIter =   1 c.s. =      0.00008762 angs^2  rmsk=     0.00022755
Time Now =       193.0801  Delta time =         0.0005 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =       193.0997  Delta time =         0.0196 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =B1G   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     3
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     3
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     3
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    3
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   10
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    3
Time Now =       193.1109  Delta time =         0.0112 Energy independent setup

Compute solution for E =    6.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407236E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407238E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407242E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407248E-16
For potential     3
Number of asymptotic regions =      68
Final point in integration =   0.14526845E+03 Angstroms
Time Now =       193.5425  Delta time =         0.4316 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00008822 angs^2  rmsk=     0.00110832
iL =   2 Iter =   1 c.s. =      0.00008822 angs^2  rmsk=     0.00031004
iL =   3 Iter =   1 c.s. =      0.00008822 angs^2  rmsk=     0.00024827
      Final k matrix
     ROW  1
  ( 0.30256046E-02, 0.96355420E-05) (-0.69365292E-03,-0.21915935E-05)
  (-0.25268212E-05, 0.41278465E-06)
     ROW  2
  (-0.69365292E-03,-0.21915935E-05) ( 0.13606029E-03, 0.86511618E-06)
  (-0.60451949E-03, 0.18249778E-06)
     ROW  3
  (-0.25268212E-05, 0.41278465E-06) (-0.60451949E-03, 0.18249778E-06)
  (-0.43505096E-03, 0.55472005E-06)
 eigenphases
 -0.8564335E-03  0.3946193E-03  0.3188449E-02
 eigenphase sum 0.272664E-02  scattering length=  -0.00411
 eps+pi 0.314432E+01  eps+2*pi 0.628591E+01

MaxIter =   1 c.s. =      0.00008822 angs^2  rmsk=     0.00024827
Time Now =       193.5430  Delta time =         0.0005 End ScatStab
+ Data Record ScatContSym - 'B1U'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =       193.5627  Delta time =         0.0197 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =B1U   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     3
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     3
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     3
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    3
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =    9
Higest l included in the K matrix (lna) =    9
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    3
Time Now =       193.5741  Delta time =         0.0114 Energy independent setup

Compute solution for E =    3.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491190E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491191E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491191E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491192E-15
For potential     3
Number of asymptotic regions =      62
Final point in integration =   0.18302855E+03 Angstroms
Time Now =       193.9681  Delta time =         0.3940 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00050049 angs^2  rmsk=     0.00186668
iL =   2 Iter =   1 c.s. =      0.00050049 angs^2  rmsk=     0.00032135
iL =   3 Iter =   1 c.s. =      0.00050049 angs^2  rmsk=     0.00017338
      Final k matrix
     ROW  1
  ( 0.54722698E-02, 0.30160447E-04) (-0.46237542E-03,-0.28511804E-05)
  (-0.95269386E-06, 0.21801982E-06)
     ROW  2
  (-0.46237542E-03,-0.28511804E-05) ( 0.69490759E-03, 0.92938689E-06)
  (-0.48237979E-03,-0.24092769E-06)
     ROW  3
  (-0.95269386E-06, 0.21801982E-06) (-0.48237979E-03,-0.24092769E-06)
  (-0.19453985E-03, 0.27053710E-06)
 eigenphases
 -0.4119654E-03  0.8676351E-03  0.5517080E-02
 eigenphase sum 0.597275E-02  scattering length=  -0.01272
 eps+pi 0.314757E+01  eps+2*pi 0.628916E+01

MaxIter =   1 c.s. =      0.00050049 angs^2  rmsk=     0.00017338
Time Now =       193.9685  Delta time =         0.0005 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =       193.9881  Delta time =         0.0196 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =B1U   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     3
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     3
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     3
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    3
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =    9
Higest l included in the K matrix (lna) =    9
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    3
Time Now =       193.9994  Delta time =         0.0113 Energy independent setup

Compute solution for E =    4.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622043E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622045E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622048E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622052E-16
For potential     3
Number of asymptotic regions =      64
Final point in integration =   0.16629189E+03 Angstroms
Time Now =       194.3959  Delta time =         0.3965 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00049532 angs^2  rmsk=     0.00214431
iL =   2 Iter =   1 c.s. =      0.00049532 angs^2  rmsk=     0.00037071
iL =   3 Iter =   1 c.s. =      0.00049532 angs^2  rmsk=     0.00019856
      Final k matrix
     ROW  1
  ( 0.62865228E-02, 0.39790827E-04) (-0.51851572E-03,-0.36809690E-05)
  (-0.14371769E-05, 0.27800194E-06)
     ROW  2
  (-0.51851572E-03,-0.36809690E-05) ( 0.81376837E-03, 0.12368310E-05)
  (-0.55293605E-03,-0.32672055E-06)
     ROW  3
  (-0.14371769E-05, 0.27800194E-06) (-0.55293605E-03,-0.32672055E-06)
  (-0.22154039E-03, 0.35482080E-06)
 eigenphases
 -0.4678434E-03  0.1010990E-02  0.6335774E-02
 eigenphase sum 0.687892E-02  scattering length=  -0.01269
 eps+pi 0.314847E+01  eps+2*pi 0.629006E+01

MaxIter =   1 c.s. =      0.00049532 angs^2  rmsk=     0.00019856
Time Now =       194.3964  Delta time =         0.0005 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =       194.4160  Delta time =         0.0196 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =B1U   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     3
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     3
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     3
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    3
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =    9
Higest l included in the K matrix (lna) =    9
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    3
Time Now =       194.4272  Delta time =         0.0113 Energy independent setup

Compute solution for E =    5.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334094E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334095E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334097E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334100E-16
For potential     3
Number of asymptotic regions =      66
Final point in integration =   0.15437122E+03 Angstroms
Time Now =       194.8606  Delta time =         0.4333 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00049054 angs^2  rmsk=     0.00238580
iL =   2 Iter =   1 c.s. =      0.00049054 angs^2  rmsk=     0.00041424
iL =   3 Iter =   1 c.s. =      0.00049054 angs^2  rmsk=     0.00022018
      Final k matrix
     ROW  1
  ( 0.69948964E-02, 0.49247661E-04) (-0.56270444E-03,-0.44541661E-05)
  (-0.19675232E-05, 0.33209728E-06)
     ROW  2
  (-0.56270444E-03,-0.44541661E-05) ( 0.92248785E-03, 0.15443344E-05)
  (-0.61375227E-03,-0.41520825E-06)
     ROW  3
  (-0.19675232E-05, 0.33209728E-06) (-0.61375227E-03,-0.41520825E-06)
  (-0.24417983E-03, 0.43631998E-06)
 eigenphases
 -0.5143950E-03  0.1140594E-02  0.7047239E-02
 eigenphase sum 0.767344E-02  scattering length=  -0.01266
 eps+pi 0.314927E+01  eps+2*pi 0.629086E+01

MaxIter =   1 c.s. =      0.00049054 angs^2  rmsk=     0.00022018
Time Now =       194.8610  Delta time =         0.0005 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =       194.8806  Delta time =         0.0196 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =B1U   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     3
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     3
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     3
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    3
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =    9
Higest l included in the K matrix (lna) =    9
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    3
Time Now =       194.8919  Delta time =         0.0113 Energy independent setup

Compute solution for E =    6.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407236E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407238E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407242E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407248E-16
For potential     3
Number of asymptotic regions =      68
Final point in integration =   0.14526845E+03 Angstroms
Time Now =       195.3249  Delta time =         0.4330 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00048630 angs^2  rmsk=     0.00260219
iL =   2 Iter =   1 c.s. =      0.00048630 angs^2  rmsk=     0.00045369
iL =   3 Iter =   1 c.s. =      0.00048630 angs^2  rmsk=     0.00023922
      Final k matrix
     ROW  1
  ( 0.76298211E-02, 0.58575108E-04) (-0.59789091E-03,-0.51729268E-05)
  (-0.25324570E-05, 0.38046077E-06)
     ROW  2
  (-0.59789091E-03,-0.51729268E-05) ( 0.10244407E-02, 0.18525349E-05)
  (-0.66749685E-03,-0.50634505E-06)
     ROW  3
  (-0.25324570E-05, 0.38046077E-06) (-0.66749685E-03,-0.50634505E-06)
  (-0.26360416E-03, 0.51504627E-06)
 eigenphases
 -0.5540616E-03  0.1260802E-02  0.7684221E-02
 eigenphase sum 0.839096E-02  scattering length=  -0.01264
 eps+pi 0.314998E+01  eps+2*pi 0.629158E+01

MaxIter =   1 c.s. =      0.00048630 angs^2  rmsk=     0.00023922
Time Now =       195.3254  Delta time =         0.0005 End ScatStab
+ Data Record ScatContSym - 'B2G'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =       195.3450  Delta time =         0.0196 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =B2G   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     3
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     3
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     3
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    3
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   10
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    3
Time Now =       195.3563  Delta time =         0.0113 Energy independent setup

Compute solution for E =    3.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491190E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491191E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491191E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491192E-15
For potential     3
Number of asymptotic regions =      62
Final point in integration =   0.18302855E+03 Angstroms
Time Now =       195.7519  Delta time =         0.3957 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00008651 angs^2  rmsk=     0.00077607
iL =   2 Iter =   1 c.s. =      0.00008651 angs^2  rmsk=     0.00022490
iL =   3 Iter =   1 c.s. =      0.00008651 angs^2  rmsk=     0.00017769
      Final k matrix
     ROW  1
  ( 0.21022158E-02, 0.46811153E-05) (-0.51164441E-03,-0.11159972E-05)
  (-0.92196543E-06, 0.21965238E-06)
     ROW  2
  (-0.51164441E-03,-0.11159972E-05) ( 0.79749362E-04, 0.45522492E-06)
  (-0.43253150E-03, 0.10073875E-06)
     ROW  3
  (-0.92196543E-06, 0.21965238E-06) (-0.43253150E-03, 0.10073875E-06)
  (-0.31156415E-03, 0.28415671E-06)
 eigenphases
 -0.6211540E-03  0.2632508E-03  0.2228311E-02
 eigenphase sum 0.187041E-02  scattering length=  -0.00398
 eps+pi 0.314346E+01  eps+2*pi 0.628506E+01

MaxIter =   1 c.s. =      0.00008651 angs^2  rmsk=     0.00017769
Time Now =       195.7524  Delta time =         0.0005 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =       195.7720  Delta time =         0.0196 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =B2G   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     3
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     3
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     3
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    3
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   10
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    3
Time Now =       195.7833  Delta time =         0.0113 Energy independent setup

Compute solution for E =    4.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622043E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622045E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622048E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622052E-16
For potential     3
Number of asymptotic regions =      64
Final point in integration =   0.16629189E+03 Angstroms
Time Now =       196.1842  Delta time =         0.4009 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00008706 angs^2  rmsk=     0.00089898
iL =   2 Iter =   1 c.s. =      0.00008706 angs^2  rmsk=     0.00025746
iL =   3 Iter =   1 c.s. =      0.00008706 angs^2  rmsk=     0.00020435
      Final k matrix
     ROW  1
  ( 0.24416277E-02, 0.63010260E-05) (-0.58261143E-03,-0.14791667E-05)
  (-0.14047081E-05, 0.28689980E-06)
     ROW  2
  (-0.58261143E-03,-0.14791667E-05) ( 0.98410526E-04, 0.59658749E-06)
  (-0.49745776E-03, 0.13009171E-06)
     ROW  3
  (-0.14047081E-05, 0.28689980E-06) (-0.49745776E-03, 0.13009171E-06)
  (-0.35827903E-03, 0.37583030E-06)
 eigenphases
 -0.7111911E-03  0.3100274E-03  0.2582934E-02
 eigenphase sum 0.218177E-02  scattering length=  -0.00402
 eps+pi 0.314377E+01  eps+2*pi 0.628537E+01

MaxIter =   1 c.s. =      0.00008706 angs^2  rmsk=     0.00020435
Time Now =       196.1846  Delta time =         0.0005 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =       196.2042  Delta time =         0.0196 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =B2G   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     3
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     3
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     3
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    3
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   10
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    3
Time Now =       196.2155  Delta time =         0.0113 Energy independent setup

Compute solution for E =    5.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334094E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334095E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334097E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334100E-16
For potential     3
Number of asymptotic regions =      66
Final point in integration =   0.15437122E+03 Angstroms
Time Now =       196.6475  Delta time =         0.4320 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00008762 angs^2  rmsk=     0.00100835
iL =   2 Iter =   1 c.s. =      0.00008762 angs^2  rmsk=     0.00028541
iL =   3 Iter =   1 c.s. =      0.00008762 angs^2  rmsk=     0.00022755
      Final k matrix
     ROW  1
  ( 0.27457520E-02, 0.79517459E-05) (-0.64227822E-03,-0.18376921E-05)
  (-0.19426739E-05, 0.35125964E-06)
     ROW  2
  (-0.64227822E-03,-0.18376921E-05) ( 0.11710775E-03, 0.73314523E-06)
  (-0.55399076E-03, 0.15734269E-06)
     ROW  3
  (-0.19426739E-05, 0.35125964E-06) (-0.55399076E-03, 0.15734269E-06)
  (-0.39887311E-03, 0.46600965E-06)
 eigenphases
 -0.7884385E-03  0.3534082E-03  0.2899033E-02
 eigenphase sum 0.246400E-02  scattering length=  -0.00406
 eps+pi 0.314406E+01  eps+2*pi 0.628565E+01

MaxIter =   1 c.s. =      0.00008762 angs^2  rmsk=     0.00022755
Time Now =       196.6479  Delta time =         0.0005 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =       196.6675  Delta time =         0.0196 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =B2G   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     3
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     3
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     3
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    3
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   10
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    3
Time Now =       196.6788  Delta time =         0.0113 Energy independent setup

Compute solution for E =    6.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407236E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407238E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407242E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407248E-16
For potential     3
Number of asymptotic regions =      68
Final point in integration =   0.14526845E+03 Angstroms
Time Now =       197.1119  Delta time =         0.4332 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00008822 angs^2  rmsk=     0.00110832
iL =   2 Iter =   1 c.s. =      0.00008822 angs^2  rmsk=     0.00031004
iL =   3 Iter =   1 c.s. =      0.00008822 angs^2  rmsk=     0.00024827
      Final k matrix
     ROW  1
  ( 0.30256046E-02, 0.96355420E-05) (-0.69365292E-03,-0.21915935E-05)
  (-0.25268212E-05, 0.41278465E-06)
     ROW  2
  (-0.69365292E-03,-0.21915935E-05) ( 0.13606029E-03, 0.86511618E-06)
  (-0.60451949E-03, 0.18249778E-06)
     ROW  3
  (-0.25268212E-05, 0.41278465E-06) (-0.60451949E-03, 0.18249778E-06)
  (-0.43505096E-03, 0.55472005E-06)
 eigenphases
 -0.8564335E-03  0.3946193E-03  0.3188449E-02
 eigenphase sum 0.272664E-02  scattering length=  -0.00411
 eps+pi 0.314432E+01  eps+2*pi 0.628591E+01

MaxIter =   1 c.s. =      0.00008822 angs^2  rmsk=     0.00024827
Time Now =       197.1124  Delta time =         0.0005 End ScatStab
+ Data Record ScatContSym - 'B2U'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =       197.1320  Delta time =         0.0197 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =B2U   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     3
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     3
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     3
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    3
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =    9
Higest l included in the K matrix (lna) =    9
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    3
Time Now =       197.1436  Delta time =         0.0116 Energy independent setup

Compute solution for E =    3.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491190E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491191E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491191E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11491192E-15
For potential     3
Number of asymptotic regions =      62
Final point in integration =   0.18302855E+03 Angstroms
Time Now =       197.5654  Delta time =         0.4218 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00050049 angs^2  rmsk=     0.00186668
iL =   2 Iter =   1 c.s. =      0.00050049 angs^2  rmsk=     0.00032135
iL =   3 Iter =   1 c.s. =      0.00050049 angs^2  rmsk=     0.00017338
      Final k matrix
     ROW  1
  ( 0.54722698E-02, 0.30160447E-04) (-0.46237542E-03,-0.28511804E-05)
  (-0.95269386E-06, 0.21801982E-06)
     ROW  2
  (-0.46237542E-03,-0.28511804E-05) ( 0.69490759E-03, 0.92938689E-06)
  (-0.48237979E-03,-0.24092769E-06)
     ROW  3
  (-0.95269386E-06, 0.21801982E-06) (-0.48237979E-03,-0.24092769E-06)
  (-0.19453985E-03, 0.27053710E-06)
 eigenphases
 -0.4119654E-03  0.8676351E-03  0.5517080E-02
 eigenphase sum 0.597275E-02  scattering length=  -0.01272
 eps+pi 0.314757E+01  eps+2*pi 0.628916E+01

MaxIter =   1 c.s. =      0.00050049 angs^2  rmsk=     0.00017338
Time Now =       197.5659  Delta time =         0.0005 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =       197.5855  Delta time =         0.0196 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =B2U   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     3
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     3
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     3
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    3
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =    9
Higest l included in the K matrix (lna) =    9
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    3
Time Now =       197.5968  Delta time =         0.0113 Energy independent setup

Compute solution for E =    4.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622043E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622045E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622048E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.83622052E-16
For potential     3
Number of asymptotic regions =      64
Final point in integration =   0.16629189E+03 Angstroms
Time Now =       197.9940  Delta time =         0.3973 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00049532 angs^2  rmsk=     0.00214431
iL =   2 Iter =   1 c.s. =      0.00049532 angs^2  rmsk=     0.00037071
iL =   3 Iter =   1 c.s. =      0.00049532 angs^2  rmsk=     0.00019856
      Final k matrix
     ROW  1
  ( 0.62865228E-02, 0.39790827E-04) (-0.51851572E-03,-0.36809690E-05)
  (-0.14371769E-05, 0.27800194E-06)
     ROW  2
  (-0.51851572E-03,-0.36809690E-05) ( 0.81376837E-03, 0.12368310E-05)
  (-0.55293605E-03,-0.32672055E-06)
     ROW  3
  (-0.14371769E-05, 0.27800194E-06) (-0.55293605E-03,-0.32672055E-06)
  (-0.22154039E-03, 0.35482080E-06)
 eigenphases
 -0.4678434E-03  0.1010990E-02  0.6335774E-02
 eigenphase sum 0.687892E-02  scattering length=  -0.01269
 eps+pi 0.314847E+01  eps+2*pi 0.629006E+01

MaxIter =   1 c.s. =      0.00049532 angs^2  rmsk=     0.00019856
Time Now =       197.9945  Delta time =         0.0005 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =       198.0141  Delta time =         0.0196 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =B2U   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     3
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     3
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     3
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    3
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =    9
Higest l included in the K matrix (lna) =    9
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    3
Time Now =       198.0254  Delta time =         0.0113 Energy independent setup

Compute solution for E =    5.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334094E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334095E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334097E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.86334100E-16
For potential     3
Number of asymptotic regions =      66
Final point in integration =   0.15437122E+03 Angstroms
Time Now =       198.4566  Delta time =         0.4312 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00049054 angs^2  rmsk=     0.00238580
iL =   2 Iter =   1 c.s. =      0.00049054 angs^2  rmsk=     0.00041424
iL =   3 Iter =   1 c.s. =      0.00049054 angs^2  rmsk=     0.00022018
      Final k matrix
     ROW  1
  ( 0.69948964E-02, 0.49247661E-04) (-0.56270444E-03,-0.44541661E-05)
  (-0.19675232E-05, 0.33209728E-06)
     ROW  2
  (-0.56270444E-03,-0.44541661E-05) ( 0.92248785E-03, 0.15443344E-05)
  (-0.61375227E-03,-0.41520825E-06)
     ROW  3
  (-0.19675232E-05, 0.33209728E-06) (-0.61375227E-03,-0.41520825E-06)
  (-0.24417983E-03, 0.43631998E-06)
 eigenphases
 -0.5143950E-03  0.1140594E-02  0.7047239E-02
 eigenphase sum 0.767344E-02  scattering length=  -0.01266
 eps+pi 0.314927E+01  eps+2*pi 0.629086E+01

MaxIter =   1 c.s. =      0.00049054 angs^2  rmsk=     0.00022018
Time Now =       198.4571  Delta time =         0.0005 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =       198.4766  Delta time =         0.0196 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =B2U   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   -1
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     3
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     3
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     3
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    3
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =    9
Higest l included in the K matrix (lna) =    9
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   15
Number of partial waves in the homogeneous solution (npHomo) =    3
Time Now =       198.4879  Delta time =         0.0113 Energy independent setup

Compute solution for E =    6.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.15929463E-18
 i =  3  lval =   3  stpote =  0.24254330E-03
 i =  4  lval =   5  stpote = -0.18115340E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407236E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407238E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407242E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.75407248E-16
For potential     3
Number of asymptotic regions =      68
Final point in integration =   0.14526845E+03 Angstroms
Time Now =       198.9222  Delta time =         0.4344 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00048630 angs^2  rmsk=     0.00260219
iL =   2 Iter =   1 c.s. =      0.00048630 angs^2  rmsk=     0.00045369
iL =   3 Iter =   1 c.s. =      0.00048630 angs^2  rmsk=     0.00023922
      Final k matrix
     ROW  1
  ( 0.76298211E-02, 0.58575108E-04) (-0.59789091E-03,-0.51729268E-05)
  (-0.25324570E-05, 0.38046077E-06)
     ROW  2
  (-0.59789091E-03,-0.51729268E-05) ( 0.10244407E-02, 0.18525349E-05)
  (-0.66749685E-03,-0.50634505E-06)
     ROW  3
  (-0.25324570E-05, 0.38046077E-06) (-0.66749685E-03,-0.50634505E-06)
  (-0.26360416E-03, 0.51504627E-06)
 eigenphases
 -0.5540616E-03  0.1260802E-02  0.7684221E-02
 eigenphase sum 0.839096E-02  scattering length=  -0.01264
 eps+pi 0.314998E+01  eps+2*pi 0.629158E+01

MaxIter =   1 c.s. =      0.00048630 angs^2  rmsk=     0.00023922
Time Now =       198.9227  Delta time =         0.0005 End ScatStab

+ Command MatrixElementsCollect
+ 'test15loc.dat'

+ Command MatrixElementsCombine
+ 'test15se.dat'

+ Command TotalCrossSection
+
Symmetry SG -
        E (eV)      XS(angs^2)    EPS(radians)
       3.000000      12.147555      -1.074043
       4.000000      10.350390      -1.204063
       5.000000       8.906091      -1.309966
       6.000000       7.733942      -1.400470
Symmetry A2G -
        E (eV)      XS(angs^2)    EPS(radians)
       3.000000       0.000046       0.001701
       4.000000       0.000046       0.001961
       5.000000       0.000046       0.002188
       6.000000       0.000046       0.002392
Symmetry B1G -
        E (eV)      XS(angs^2)    EPS(radians)
       3.000000       0.000087       0.001870
       4.000000       0.000087       0.002182
       5.000000       0.000088       0.002464
       6.000000       0.000088       0.002727
Symmetry B2G -
        E (eV)      XS(angs^2)    EPS(radians)
       3.000000       0.000087       0.001870
       4.000000       0.000087       0.002182
       5.000000       0.000088       0.002464
       6.000000       0.000088       0.002727
Symmetry PG -
        E (eV)      XS(angs^2)    EPS(radians)
       3.000000       1.813272       0.335215
       4.000000      11.900098       1.484540
       5.000000       5.600649       2.260279
       6.000000       3.264839       2.436232
Symmetry DG -
        E (eV)      XS(angs^2)    EPS(radians)
       3.000000       0.028352       0.038930
       4.000000       0.047585       0.059655
       5.000000       0.074291       0.084692
       6.000000       0.108217       0.113301
Symmetry FG -
        E (eV)      XS(angs^2)    EPS(radians)
       3.000000       0.000241       0.001604
       4.000000       0.000250       0.002031
       5.000000       0.000262       0.002518
       6.000000       0.000279       0.003091
Symmetry GG -
        E (eV)      XS(angs^2)    EPS(radians)
       3.000000       0.001291       0.011962
       4.000000       0.001282       0.013802
       5.000000       0.001279       0.015450
       6.000000       0.001283       0.016986
Symmetry SU -
        E (eV)      XS(angs^2)    EPS(radians)
       3.000000       2.046039      -0.381235
       4.000000       2.493666      -0.489441
       5.000000       2.822144      -0.587865
       6.000000       3.051203      -0.677121
Symmetry A2U -
        E (eV)      XS(angs^2)    EPS(radians)
       3.000000       0.000000       0.000000
       4.000000       0.000000       0.000000
       5.000000       0.000000       0.000000
       6.000000       0.000000       0.000000
Symmetry B1U -
        E (eV)      XS(angs^2)    EPS(radians)
       3.000000       0.000500       0.005973
       4.000000       0.000495       0.006879
       5.000000       0.000491       0.007673
       6.000000       0.000486       0.008391
Symmetry B2U -
        E (eV)      XS(angs^2)    EPS(radians)
       3.000000       0.000500       0.005973
       4.000000       0.000495       0.006879
       5.000000       0.000491       0.007673
       6.000000       0.000486       0.008391
Symmetry PU -
        E (eV)      XS(angs^2)    EPS(radians)
       3.000000       0.561506      -0.198429
       4.000000       0.790120      -0.269387
       5.000000       0.982950      -0.334035
       6.000000       1.140464      -0.392352
Symmetry DU -
        E (eV)      XS(angs^2)    EPS(radians)
       3.000000       0.000426      -0.001485
       4.000000       0.000534      -0.000123
       5.000000       0.000764       0.002167
       6.000000       0.001175       0.005442
Symmetry FU -
        E (eV)      XS(angs^2)    EPS(radians)
       3.000000       0.002715       0.014117
       4.000000       0.002905       0.016907
       5.000000       0.003196       0.019865
       6.000000       0.003592       0.023102
Symmetry GU -
        E (eV)      XS(angs^2)    EPS(radians)
       3.000000       0.000181       0.003592
       4.000000       0.000183       0.004207
       5.000000       0.000185       0.004774
       6.000000       0.000187       0.005311

 Total Cross Sections

 Energy      Total Cross Section
   3.00000    19.01078
   4.00000    38.33118
   5.00000    25.05659
   6.00000    19.82641

+ Command EDCS
+
All symmetries found for E =       3.000000

----------------------------------------------------------------------
EDCS - differential cross section program
----------------------------------------------------------------------

 Title -
 Maximum l to use from k matrices (lmax) =   10
Minimum l to compute in the expansion of the DCS (lbigl) =    0
Maximum l to use in the expansion of the DCS (lbig) =   20
Unit to write DCS in plot format (iuplt) =    0
Number of angles at which to compute the DCS (nang) =  181
Print flag (iprint) =    0
Energy to compute the EDCS at (eV) =      3.00000000


  Energy (eV)= 3.0000      Energy (ryd)=0.2204960  xk=0.4695700


 AL coefficients
        -1     0.30000000000000E+01
         0     0.54024139702667E+01
         1     0.20001650397666E+01
         2     0.16217303863001E+01
         3    -0.23809592325873E+01
         4     0.13484180228401E+01
         5     0.18365857457487E-01
         6    -0.54365471232419E-02
         7    -0.93590163433953E-02
         8    -0.11746922380159E-01
         9    -0.12283287440587E-01
        10    -0.23835235242555E-02
        11    -0.76078219517902E-02
        12    -0.75374221031237E-02
        13     0.33432420523475E-02
        14     0.30033210974235E-02
        15     0.26056309951991E-02
        16     0.20828132795502E-02
        17     0.16250251678017E-02
        18     0.10940533236135E-02
        19     0.64990710983516E-03
        20     0.29032054309118E-03

For comparison
        -1        3.00000     alcoef
         0        5.40241     alcoef
         1        2.00017     alcoef
         2        1.62173     alcoef
         3       -2.38096     alcoef
         4        1.34842     alcoef
         5        0.01837     alcoef
         6       -0.00544     alcoef
         7       -0.00936     alcoef
         8       -0.01175     alcoef
         9       -0.01228     alcoef
        10       -0.00238     alcoef
        11       -0.00761     alcoef
        12       -0.00754     alcoef
        13        0.00334     alcoef
        14        0.00300     alcoef
        15        0.00261     alcoef
        16        0.00208     alcoef
        17        0.00163     alcoef
        18        0.00109     alcoef
        19        0.00065     alcoef
        20        0.00029     alcoef
 Total Cross Section (Angstrom^2) =  0.1901078216E+02
 Momentum Transfer Cross Section (Angstrom^2) =  0.1666462715E+02
 Differential Cross Section
   Ang   Cross Section (Angstrom^2)
     0.0    0.2231399912E+01
     1.0    0.2231161267E+01
     2.0    0.2230448701E+01
     3.0    0.2229272059E+01
     4.0    0.2227646904E+01
     5.0    0.2225593337E+01
     6.0    0.2223134480E+01
     7.0    0.2220294785E+01
     8.0    0.2217098289E+01
     9.0    0.2213566999E+01
    10.0    0.2209719526E+01
    11.0    0.2205570102E+01
    12.0    0.2201128070E+01
    13.0    0.2196397884E+01
    14.0    0.2191379628E+01
    15.0    0.2186070008E+01
    16.0    0.2180463739E+01
    17.0    0.2174555207E+01
    18.0    0.2168340271E+01
    19.0    0.2161818054E+01
    20.0    0.2154992580E+01
    21.0    0.2147874123E+01
    22.0    0.2140480157E+01
    23.0    0.2132835839E+01
    24.0    0.2124973983E+01
    25.0    0.2116934525E+01
    26.0    0.2108763531E+01
    27.0    0.2100511802E+01
    28.0    0.2092233193E+01
    29.0    0.2083982757E+01
    30.0    0.2075814825E+01
    31.0    0.2067781155E+01
    32.0    0.2059929256E+01
    33.0    0.2052300959E+01
    34.0    0.2044931317E+01
    35.0    0.2037847862E+01
    36.0    0.2031070210E+01
    37.0    0.2024610033E+01
    38.0    0.2018471314E+01
    39.0    0.2012650862E+01
    40.0    0.2007139010E+01
    41.0    0.2001920423E+01
    42.0    0.1996974958E+01
    43.0    0.1992278511E+01
    44.0    0.1987803808E+01
    45.0    0.1983521101E+01
    46.0    0.1979398758E+01
    47.0    0.1975403726E+01
    48.0    0.1971501885E+01
    49.0    0.1967658294E+01
    50.0    0.1963837354E+01
    51.0    0.1960002908E+01
    52.0    0.1956118290E+01
    53.0    0.1952146349E+01
    54.0    0.1948049463E+01
    55.0    0.1943789537E+01
    56.0    0.1939328011E+01
    57.0    0.1934625872E+01
    58.0    0.1929643662E+01
    59.0    0.1924341505E+01
    60.0    0.1918679131E+01
    61.0    0.1912615920E+01
    62.0    0.1906110960E+01
    63.0    0.1899123136E+01
    64.0    0.1891611254E+01
    65.0    0.1883534212E+01
    66.0    0.1874851234E+01
    67.0    0.1865522168E+01
    68.0    0.1855507848E+01
    69.0    0.1844770534E+01
    70.0    0.1833274408E+01
    71.0    0.1820986122E+01
    72.0    0.1807875382E+01
    73.0    0.1793915537E+01
    74.0    0.1779084163E+01
    75.0    0.1763363609E+01
    76.0    0.1746741483E+01
    77.0    0.1729211056E+01
    78.0    0.1710771570E+01
    79.0    0.1691428440E+01
    80.0    0.1671193339E+01
    81.0    0.1650084181E+01
    82.0    0.1628124987E+01
    83.0    0.1605345675E+01
    84.0    0.1581781762E+01
    85.0    0.1557474020E+01
    86.0    0.1532468089E+01
    87.0    0.1506814073E+01
    88.0    0.1480566138E+01
    89.0    0.1453782124E+01
    90.0    0.1426523177E+01
    91.0    0.1398853426E+01
    92.0    0.1370839690E+01
    93.0    0.1342551233E+01
    94.0    0.1314059559E+01
    95.0    0.1285438246E+01
    96.0    0.1256762821E+01
    97.0    0.1228110658E+01
    98.0    0.1199560913E+01
    99.0    0.1171194468E+01
   100.0    0.1143093899E+01
   101.0    0.1115343434E+01
   102.0    0.1088028925E+01
   103.0    0.1061237787E+01
   104.0    0.1035058925E+01
   105.0    0.1009582622E+01
   106.0    0.9849003793E+00
   107.0    0.9611047016E+00
   108.0    0.9382888154E+00
   109.0    0.9165463176E+00
   110.0    0.8959707480E+00
   111.0    0.8766550862E+00
   112.0    0.8586911788E+00
   113.0    0.8421691032E+00
   114.0    0.8271764821E+00
   115.0    0.8137977627E+00
   116.0    0.8021134817E+00
   117.0    0.7921995331E+00
   118.0    0.7841264631E+00
   119.0    0.7779588080E+00
   120.0    0.7737544974E+00
   121.0    0.7715643332E+00
   122.0    0.7714315594E+00
   123.0    0.7733915269E+00
   124.0    0.7774714578E+00
   125.0    0.7836903058E+00
   126.0    0.7920587092E+00
   127.0    0.8025790262E+00
   128.0    0.8152454435E+00
   129.0    0.8300441450E+00
   130.0    0.8469535295E+00
   131.0    0.8659444632E+00
   132.0    0.8869805584E+00
   133.0    0.9100184654E+00
   134.0    0.9350081706E+00
   135.0    0.9618932935E+00
   136.0    0.9906113749E+00
   137.0    0.1021094154E+01
   138.0    0.1053267827E+01
   139.0    0.1087053289E+01
   140.0    0.1122366354E+01
   141.0    0.1159117950E+01
   142.0    0.1197214296E+01
   143.0    0.1236557054E+01
   144.0    0.1277043465E+01
   145.0    0.1318566473E+01
   146.0    0.1361014837E+01
   147.0    0.1404273253E+01
   148.0    0.1448222477E+01
   149.0    0.1492739477E+01
   150.0    0.1537697623E+01
   151.0    0.1582966907E+01
   152.0    0.1628414240E+01
   153.0    0.1673903793E+01
   154.0    0.1719297420E+01
   155.0    0.1764455149E+01
   156.0    0.1809235736E+01
   157.0    0.1853497295E+01
   158.0    0.1897097971E+01
   159.0    0.1939896657E+01
   160.0    0.1981753739E+01
   161.0    0.2022531848E+01
   162.0    0.2062096600E+01
   163.0    0.2100317316E+01
   164.0    0.2137067696E+01
   165.0    0.2172226439E+01
   166.0    0.2205677806E+01
   167.0    0.2237312108E+01
   168.0    0.2267026126E+01
   169.0    0.2294723463E+01
   170.0    0.2320314823E+01
   171.0    0.2343718241E+01
   172.0    0.2364859253E+01
   173.0    0.2383671025E+01
   174.0    0.2400094450E+01
   175.0    0.2414078212E+01
   176.0    0.2425578838E+01
   177.0    0.2434560723E+01
   178.0    0.2440996157E+01
   179.0    0.2444865341E+01
   180.0    0.2446156390E+01
Time Now =       199.1796  Delta time =         0.2569 End EDCS
All symmetries found for E =       4.000000

----------------------------------------------------------------------
EDCS - differential cross section program
----------------------------------------------------------------------

 Title -
 Maximum l to use from k matrices (lmax) =   10
Minimum l to compute in the expansion of the DCS (lbigl) =    0
Maximum l to use in the expansion of the DCS (lbig) =   20
Unit to write DCS in plot format (iuplt) =    0
Number of angles at which to compute the DCS (nang) =  181
Print flag (iprint) =    0
Energy to compute the EDCS at (eV) =      4.00000000


  Energy (eV)= 4.0000      Energy (ryd)=0.2939946  xk=0.5422127


 AL coefficients
        -1     0.40000000000000E+01
         0     0.10892813079327E+02
         1     0.52795230100499E+01
         2     0.16583636917688E+02
         3     0.19107799767767E+01
         4     0.79778067755521E+01
         5     0.17750560463747E-01
         6     0.55645034607696E-02
         7    -0.76793346829635E-02
         8    -0.10831048023581E-01
         9    -0.15362170102409E-01
        10    -0.58042003802859E-02
        11     0.35215688458516E-02
        12     0.28595446341767E-02
        13     0.32174981289757E-02
        14     0.29899866433692E-02
        15     0.26059931995857E-02
        16     0.20834461719307E-02
        17     0.16255698697163E-02
        18     0.10945024937651E-02
        19     0.65028466522396E-03
        20     0.29047949823049E-03

For comparison
        -1        4.00000     alcoef
         0       10.89281     alcoef
         1        5.27952     alcoef
         2       16.58364     alcoef
         3        1.91078     alcoef
         4        7.97781     alcoef
         5        0.01775     alcoef
         6        0.00556     alcoef
         7       -0.00768     alcoef
         8       -0.01083     alcoef
         9       -0.01536     alcoef
        10       -0.00580     alcoef
        11        0.00352     alcoef
        12        0.00286     alcoef
        13        0.00322     alcoef
        14        0.00299     alcoef
        15        0.00261     alcoef
        16        0.00208     alcoef
        17        0.00163     alcoef
        18        0.00109     alcoef
        19        0.00065     alcoef
        20        0.00029     alcoef
 Total Cross Section (Angstrom^2) =  0.3833117894E+02
 Momentum Transfer Cross Section (Angstrom^2) =  0.3213840027E+02
 Differential Cross Section
   Ang   Cross Section (Angstrom^2)
     0.0    0.1194297460E+02
     1.0    0.1193669323E+02
     2.0    0.1191787214E+02
     3.0    0.1188657996E+02
     4.0    0.1184292980E+02
     5.0    0.1178707735E+02
     6.0    0.1171921840E+02
     7.0    0.1163958601E+02
     8.0    0.1154844734E+02
     9.0    0.1144610051E+02
    10.0    0.1133287145E+02
    11.0    0.1120911112E+02
    12.0    0.1107519306E+02
    13.0    0.1093151139E+02
    14.0    0.1077847934E+02
    15.0    0.1061652822E+02
    16.0    0.1044610683E+02
    17.0    0.1026768120E+02
    18.0    0.1008173446E+02
    19.0    0.9888766886E+01
    20.0    0.9689295745E+01
    21.0    0.9483855003E+01
    22.0    0.9272994665E+01
    23.0    0.9057279713E+01
    24.0    0.8837288578E+01
    25.0    0.8613611134E+01
    26.0    0.8386846248E+01
    27.0    0.8157598916E+01
    28.0    0.7926477109E+01
    29.0    0.7694088380E+01
    30.0    0.7461036390E+01
    31.0    0.7227917426E+01
    32.0    0.6995317033E+01
    33.0    0.6763806837E+01
    34.0    0.6533941632E+01
    35.0    0.6306256769E+01
    36.0    0.6081265869E+01
    37.0    0.5859458862E+01
    38.0    0.5641300327E+01
    39.0    0.5427228113E+01
    40.0    0.5217652191E+01
    41.0    0.5012953703E+01
    42.0    0.4813484169E+01
    43.0    0.4619564819E+01
    44.0    0.4431486040E+01
    45.0    0.4249506907E+01
    46.0    0.4073854823E+01
    47.0    0.3904725255E+01
    48.0    0.3742281598E+01
    49.0    0.3586655176E+01
    50.0    0.3437945399E+01
    51.0    0.3296220100E+01
    52.0    0.3161516051E+01
    53.0    0.3033839667E+01
    54.0    0.2913167890E+01
    55.0    0.2799449245E+01
    56.0    0.2692605045E+01
    57.0    0.2592530719E+01
    58.0    0.2499097238E+01
    59.0    0.2412152627E+01
    60.0    0.2331523508E+01
    61.0    0.2257016687E+01
    62.0    0.2188420746E+01
    63.0    0.2125507647E+01
    64.0    0.2068034333E+01
    65.0    0.2015744330E+01
    66.0    0.1968369358E+01
    67.0    0.1925630956E+01
    68.0    0.1887242119E+01
    69.0    0.1852908969E+01
    70.0    0.1822332439E+01
    71.0    0.1795209999E+01
    72.0    0.1771237384E+01
    73.0    0.1750110352E+01
    74.0    0.1731526430E+01
    75.0    0.1715186657E+01
    76.0    0.1700797299E+01
    77.0    0.1688071523E+01
    78.0    0.1676731026E+01
    79.0    0.1666507594E+01
    80.0    0.1657144603E+01
    81.0    0.1648398434E+01
    82.0    0.1640039818E+01
    83.0    0.1631855097E+01
    84.0    0.1623647406E+01
    85.0    0.1615237771E+01
    86.0    0.1606466122E+01
    87.0    0.1597192217E+01
    88.0    0.1587296476E+01
    89.0    0.1576680705E+01
    90.0    0.1565268714E+01
    91.0    0.1553006812E+01
    92.0    0.1539864168E+01
    93.0    0.1525833030E+01
    94.0    0.1510928793E+01
    95.0    0.1495189903E+01
    96.0    0.1478677609E+01
    97.0    0.1461475542E+01
    98.0    0.1443689140E+01
    99.0    0.1425444917E+01
   100.0    0.1406889583E+01
   101.0    0.1388189031E+01
   102.0    0.1369527196E+01
   103.0    0.1351104803E+01
   104.0    0.1333138008E+01
   105.0    0.1315856947E+01
   106.0    0.1299504212E+01
   107.0    0.1284333240E+01
   108.0    0.1270606648E+01
   109.0    0.1258594501E+01
   110.0    0.1248572543E+01
   111.0    0.1240820374E+01
   112.0    0.1235619604E+01
   113.0    0.1233251982E+01
   114.0    0.1233997519E+01
   115.0    0.1238132609E+01
   116.0    0.1245928172E+01
   117.0    0.1257647828E+01
   118.0    0.1273546110E+01
   119.0    0.1293866741E+01
   120.0    0.1318840973E+01
   121.0    0.1348686005E+01
   122.0    0.1383603489E+01
   123.0    0.1423778116E+01
   124.0    0.1469376297E+01
   125.0    0.1520544934E+01
   126.0    0.1577410285E+01
   127.0    0.1640076911E+01
   128.0    0.1708626720E+01
   129.0    0.1783118089E+01
   130.0    0.1863585091E+01
   131.0    0.1950036799E+01
   132.0    0.2042456695E+01
   133.0    0.2140802183E+01
   134.0    0.2245004203E+01
   135.0    0.2354966974E+01
   136.0    0.2470567846E+01
   137.0    0.2591657292E+01
   138.0    0.2718059029E+01
   139.0    0.2849570278E+01
   140.0    0.2985962162E+01
   141.0    0.3126980239E+01
   142.0    0.3272345172E+01
   143.0    0.3421753525E+01
   144.0    0.3574878687E+01
   145.0    0.3731371907E+01
   146.0    0.3890863453E+01
   147.0    0.4052963865E+01
   148.0    0.4217265315E+01
   149.0    0.4383343067E+01
   150.0    0.4550757029E+01
   151.0    0.4719053396E+01
   152.0    0.4887766381E+01
   153.0    0.5056420029E+01
   154.0    0.5224530118E+01
   155.0    0.5391606122E+01
   156.0    0.5557153245E+01
   157.0    0.5720674503E+01
   158.0    0.5881672853E+01
   159.0    0.6039653338E+01
   160.0    0.6194125249E+01
   161.0    0.6344604272E+01
   162.0    0.6490614615E+01
   163.0    0.6631691092E+01
   164.0    0.6767381148E+01
   165.0    0.6897246823E+01
   166.0    0.7020866628E+01
   167.0    0.7137837339E+01
   168.0    0.7247775702E+01
   169.0    0.7350320030E+01
   170.0    0.7445131711E+01
   171.0    0.7531896611E+01
   172.0    0.7610326373E+01
   173.0    0.7680159616E+01
   174.0    0.7741163024E+01
   175.0    0.7793132325E+01
   176.0    0.7835893158E+01
   177.0    0.7869301820E+01
   178.0    0.7893245881E+01
   179.0    0.7907644682E+01
   180.0    0.7912449683E+01
Time Now =       199.7253  Delta time =         0.5457 End EDCS
All symmetries found for E =       5.000000

----------------------------------------------------------------------
EDCS - differential cross section program
----------------------------------------------------------------------

 Title -
 Maximum l to use from k matrices (lmax) =   10
Minimum l to compute in the expansion of the DCS (lbigl) =    0
Maximum l to use in the expansion of the DCS (lbig) =   20
Unit to write DCS in plot format (iuplt) =    0
Number of angles at which to compute the DCS (nang) =  181
Print flag (iprint) =    0
Energy to compute the EDCS at (eV) =      5.00000000


  Energy (eV)= 5.0000      Energy (ryd)=0.3674933  xk=0.6062122


 AL coefficients
        -1     0.50000000000000E+01
         0     0.71204887668488E+01
         1     0.70970747687814E+01
         2     0.10550454590076E+02
         3     0.47815027520552E+01
         4     0.33962270903408E+01
         5    -0.86176693463001E-01
         6    -0.48170343294567E-02
         7    -0.93174184883295E-02
         8    -0.11913632902947E-01
         9    -0.22448149995024E-01
        10    -0.12922849927476E-01
        11     0.22713614794899E-01
        12     0.20746506738766E-01
        13     0.30569962643822E-02
        14     0.29898522086984E-02
        15     0.26055497353577E-02
        16     0.20838958703590E-02
        17     0.16260073070769E-02
        18     0.10948637820201E-02
        19     0.65058680263711E-03
        20     0.29061573450022E-03

For comparison
        -1        5.00000     alcoef
         0        7.12049     alcoef
         1        7.09707     alcoef
         2       10.55045     alcoef
         3        4.78150     alcoef
         4        3.39623     alcoef
         5       -0.08618     alcoef
         6       -0.00482     alcoef
         7       -0.00932     alcoef
         8       -0.01191     alcoef
         9       -0.02245     alcoef
        10       -0.01292     alcoef
        11        0.02271     alcoef
        12        0.02075     alcoef
        13        0.00306     alcoef
        14        0.00299     alcoef
        15        0.00261     alcoef
        16        0.00208     alcoef
        17        0.00163     alcoef
        18        0.00109     alcoef
        19        0.00065     alcoef
        20        0.00029     alcoef
 Total Cross Section (Angstrom^2) =  0.2505658796E+02
 Momentum Transfer Cross Section (Angstrom^2) =  0.1673185614E+02
 Differential Cross Section
   Ang   Cross Section (Angstrom^2)
     0.0    0.9200619971E+01
     1.0    0.9196248841E+01
     2.0    0.9183153237E+01
     3.0    0.9161386037E+01
     4.0    0.9131033820E+01
     5.0    0.9092214633E+01
     6.0    0.9045075080E+01
     7.0    0.8989786897E+01
     8.0    0.8926543230E+01
     9.0    0.8855554847E+01
    10.0    0.8777046479E+01
    11.0    0.8691253509E+01
    12.0    0.8598419151E+01
    13.0    0.8498792257E+01
    14.0    0.8392625802E+01
    15.0    0.8280176070E+01
    16.0    0.8161702500E+01
    17.0    0.8037468120E+01
    18.0    0.7907740429E+01
    19.0    0.7772792606E+01
    20.0    0.7632904877E+01
    21.0    0.7488365888E+01
    22.0    0.7339473937E+01
    23.0    0.7186537950E+01
    24.0    0.7029878097E+01
    25.0    0.6869825999E+01
    26.0    0.6706724491E+01
    27.0    0.6540926949E+01
    28.0    0.6372796222E+01
    29.0    0.6202703204E+01
    30.0    0.6031025139E+01
    31.0    0.5858143717E+01
    32.0    0.5684443037E+01
    33.0    0.5510307516E+01
    34.0    0.5336119777E+01
    35.0    0.5162258589E+01
    36.0    0.4989096857E+01
    37.0    0.4816999696E+01
    38.0    0.4646322595E+01
    39.0    0.4477409658E+01
    40.0    0.4310591931E+01
    41.0    0.4146185805E+01
    42.0    0.3984491503E+01
    43.0    0.3825791666E+01
    44.0    0.3670350038E+01
    45.0    0.3518410302E+01
    46.0    0.3370195074E+01
    47.0    0.3225905105E+01
    48.0    0.3085718715E+01
    49.0    0.2949791491E+01
    50.0    0.2818256278E+01
    51.0    0.2691223456E+01
    52.0    0.2568781513E+01
    53.0    0.2450997895E+01
    54.0    0.2337920093E+01
    55.0    0.2229576941E+01
    56.0    0.2125980050E+01
    57.0    0.2027125335E+01
    58.0    0.1932994569E+01
    59.0    0.1843556896E+01
    60.0    0.1758770262E+01
    61.0    0.1678582702E+01
    62.0    0.1602933461E+01
    63.0    0.1531753916E+01
    64.0    0.1464968289E+01
    65.0    0.1402494165E+01
    66.0    0.1344242812E+01
    67.0    0.1290119337E+01
    68.0    0.1240022707E+01
    69.0    0.1193845664E+01
    70.0    0.1151474587E+01
    71.0    0.1112789313E+01
    72.0    0.1077662987E+01
    73.0    0.1045961943E+01
    74.0    0.1017545672E+01
    75.0    0.9922668884E+00
    76.0    0.9699717214E+00
    77.0    0.9505000457E+00
    78.0    0.9336859684E+00
    79.0    0.9193584747E+00
    80.0    0.9073422367E+00
    81.0    0.8974585814E+00
    82.0    0.8895266114E+00
    83.0    0.8833644625E+00
    84.0    0.8787906799E+00
    85.0    0.8756256882E+00
    86.0    0.8736933240E+00
    87.0    0.8728223972E+00
    88.0    0.8728482420E+00
    89.0    0.8736142179E+00
    90.0    0.8749731184E+00
    91.0    0.8767884497E+00
    92.0    0.8789355407E+00
    93.0    0.8813024559E+00
    94.0    0.8837906842E+00
    95.0    0.8863155907E+00
    96.0    0.8888066205E+00
    97.0    0.8912072614E+00
    98.0    0.8934747722E+00
    99.0    0.8955796995E+00
   100.0    0.8975052084E+00
   101.0    0.8992462588E+00
   102.0    0.9008086627E+00
   103.0    0.9022080608E+00
   104.0    0.9034688539E+00
   105.0    0.9046231249E+00
   106.0    0.9057095819E+00
   107.0    0.9067725510E+00
   108.0    0.9078610391E+00
   109.0    0.9090278838E+00
   110.0    0.9103290021E+00
   111.0    0.9118227412E+00
   112.0    0.9135693348E+00
   113.0    0.9156304582E+00
   114.0    0.9180688775E+00
   115.0    0.9209481796E+00
   116.0    0.9243325707E+00
   117.0    0.9282867278E+00
   118.0    0.9328756839E+00
   119.0    0.9381647310E+00
   120.0    0.9442193197E+00
   121.0    0.9511049363E+00
   122.0    0.9588869406E+00
   123.0    0.9676303460E+00
   124.0    0.9773995279E+00
   125.0    0.9882578499E+00
   126.0    0.1000267200E+01
   127.0    0.1013487435E+01
   128.0    0.1027975737E+01
   129.0    0.1043785886E+01
   130.0    0.1060967475E+01
   131.0    0.1079565064E+01
   132.0    0.1099617323E+01
   133.0    0.1121156163E+01
   134.0    0.1144205911E+01
   135.0    0.1168782523E+01
   136.0    0.1194892896E+01
   137.0    0.1222534273E+01
   138.0    0.1251693776E+01
   139.0    0.1282348082E+01
   140.0    0.1314463241E+01
   141.0    0.1347994640E+01
   142.0    0.1382887122E+01
   143.0    0.1419075233E+01
   144.0    0.1456483604E+01
   145.0    0.1495027430E+01
   146.0    0.1534613052E+01
   147.0    0.1575138607E+01
   148.0    0.1616494728E+01
   149.0    0.1658565294E+01
   150.0    0.1701228186E+01
   151.0    0.1744356063E+01
   152.0    0.1787817127E+01
   153.0    0.1831475886E+01
   154.0    0.1875193886E+01
   155.0    0.1918830435E+01
   156.0    0.1962243283E+01
   157.0    0.2005289295E+01
   158.0    0.2047825077E+01
   159.0    0.2089707582E+01
   160.0    0.2130794691E+01
   161.0    0.2170945764E+01
   162.0    0.2210022167E+01
   163.0    0.2247887788E+01
   164.0    0.2284409531E+01
   165.0    0.2319457806E+01
   166.0    0.2352907016E+01
   167.0    0.2384636045E+01
   168.0    0.2414528753E+01
   169.0    0.2442474488E+01
   170.0    0.2468368608E+01
   171.0    0.2492113017E+01
   172.0    0.2513616713E+01
   173.0    0.2532796341E+01
   174.0    0.2549576743E+01
   175.0    0.2563891491E+01
   176.0    0.2575683395E+01
   177.0    0.2584904963E+01
   178.0    0.2591518803E+01
   179.0    0.2595497960E+01
   180.0    0.2596826160E+01
Time Now =       200.1535  Delta time =         0.4282 End EDCS
All symmetries found for E =       6.000000

----------------------------------------------------------------------
EDCS - differential cross section program
----------------------------------------------------------------------

 Title -
 Maximum l to use from k matrices (lmax) =   10
Minimum l to compute in the expansion of the DCS (lbigl) =    0
Maximum l to use in the expansion of the DCS (lbig) =   20
Unit to write DCS in plot format (iuplt) =    0
Number of angles at which to compute the DCS (nang) =  181
Print flag (iprint) =    0
Energy to compute the EDCS at (eV) =      6.00000000


  Energy (eV)= 6.0000      Energy (ryd)=0.4409919  xk=0.6640722


 AL coefficients
        -1     0.60000000000000E+01
         0     0.56341966549555E+01
         1     0.61875262529865E+01
         2     0.74894920451316E+01
         3     0.40119884249425E+01
         4     0.17903380148818E+01
         5    -0.11853318491737E+00
         6    -0.80395750647855E-02
         7    -0.94318767438665E-02
         8    -0.11920914242183E-01
         9    -0.21262336705511E-01
        10    -0.12740278688820E-01
        11     0.21525987823595E-01
        12     0.20151262346131E-01
        13     0.28250100370761E-02
        14     0.29712623721893E-02
        15     0.26040053560036E-02
        16     0.20841618437225E-02
        17     0.16263681850107E-02
        18     0.10951699525354E-02
        19     0.65084139558065E-03
        20     0.29072821810147E-03

For comparison
        -1        6.00000     alcoef
         0        5.63420     alcoef
         1        6.18753     alcoef
         2        7.48949     alcoef
         3        4.01199     alcoef
         4        1.79034     alcoef
         5       -0.11853     alcoef
         6       -0.00804     alcoef
         7       -0.00943     alcoef
         8       -0.01192     alcoef
         9       -0.02126     alcoef
        10       -0.01274     alcoef
        11        0.02153     alcoef
        12        0.02015     alcoef
        13        0.00283     alcoef
        14        0.00297     alcoef
        15        0.00260     alcoef
        16        0.00208     alcoef
        17        0.00163     alcoef
        18        0.00110     alcoef
        19        0.00065     alcoef
        20        0.00029     alcoef
 Total Cross Section (Angstrom^2) =  0.1982641202E+02
 Momentum Transfer Cross Section (Angstrom^2) =  0.1256856307E+02
 Differential Cross Section
   Ang   Cross Section (Angstrom^2)
     0.0    0.6997195233E+01
     1.0    0.6994163374E+01
     2.0    0.6985081240E+01
     3.0    0.6969988707E+01
     4.0    0.6948950760E+01
     5.0    0.6922055387E+01
     6.0    0.6889410824E+01
     7.0    0.6851142342E+01
     8.0    0.6807388775E+01
     9.0    0.6758299006E+01
    10.0    0.6704028632E+01
    11.0    0.6644736996E+01
    12.0    0.6580584735E+01
    13.0    0.6511731978E+01
    14.0    0.6438337239E+01
    15.0    0.6360557023E+01
    16.0    0.6278546107E+01
    17.0    0.6192458406E+01
    18.0    0.6102448302E+01
    19.0    0.6008672304E+01
    20.0    0.5911290853E+01
    21.0    0.5810470152E+01
    22.0    0.5706383842E+01
    23.0    0.5599214430E+01
    24.0    0.5489154351E+01
    25.0    0.5376406624E+01
    26.0    0.5261185066E+01
    27.0    0.5143714069E+01
    28.0    0.5024227976E+01
    29.0    0.4902970116E+01
    30.0    0.4780191551E+01
    31.0    0.4656149628E+01
    32.0    0.4531106394E+01
    33.0    0.4405326943E+01
    34.0    0.4279077759E+01
    35.0    0.4152625073E+01
    36.0    0.4026233290E+01
    37.0    0.3900163462E+01
    38.0    0.3774671850E+01
    39.0    0.3650008528E+01
    40.0    0.3526416060E+01
    41.0    0.3404128219E+01
    42.0    0.3283368762E+01
    43.0    0.3164350260E+01
    44.0    0.3047273003E+01
    45.0    0.2932324008E+01
    46.0    0.2819676142E+01
    47.0    0.2709487416E+01
    48.0    0.2601900467E+01
    49.0    0.2497042257E+01
    50.0    0.2395024026E+01
    51.0    0.2295941491E+01
    52.0    0.2199875296E+01
    53.0    0.2106891710E+01
    54.0    0.2017043526E+01
    55.0    0.1930371127E+01
    56.0    0.1846903684E+01
    57.0    0.1766660399E+01
    58.0    0.1689651768E+01
    59.0    0.1615880780E+01
    60.0    0.1545344016E+01
    61.0    0.1478032600E+01
    62.0    0.1413932967E+01
    63.0    0.1353027425E+01
    64.0    0.1295294516E+01
    65.0    0.1240709160E+01
    66.0    0.1189242610E+01
    67.0    0.1140862250E+01
    68.0    0.1095531236E+01
    69.0    0.1053208064E+01
    70.0    0.1013846048E+01
    71.0    0.9773927995E+00
    72.0    0.9437897065E+00
    73.0    0.9129714653E+00
    74.0    0.8848656932E+00
    75.0    0.8593926459E+00
    76.0    0.8364650642E+00
    77.0    0.8159881664E+00
    78.0    0.7978597998E+00
    79.0    0.7819707608E+00
    80.0    0.7682052850E+00
    81.0    0.7564417078E+00
    82.0    0.7465532892E+00
    83.0    0.7384091893E+00
    84.0    0.7318755783E+00
    85.0    0.7268168581E+00
    86.0    0.7230969671E+00
    87.0    0.7205807343E+00
    88.0    0.7191352486E+00
    89.0    0.7186312026E+00
    90.0    0.7189441718E+00
    91.0    0.7199557922E+00
    92.0    0.7215547995E+00
    93.0    0.7236379007E+00
    94.0    0.7261104538E+00
    95.0    0.7288869406E+00
    96.0    0.7318912237E+00
    97.0    0.7350565919E+00
    98.0    0.7383256026E+00
    99.0    0.7416497404E+00
   100.0    0.7449889179E+00
   101.0    0.7483108481E+00
   102.0    0.7515903225E+00
   103.0    0.7548084312E+00
   104.0    0.7579517579E+00
   105.0    0.7610115844E+00
   106.0    0.7639831332E+00
   107.0    0.7668648723E+00
   108.0    0.7696579035E+00
   109.0    0.7723654471E+00
   110.0    0.7749924314E+00
   111.0    0.7775451921E+00
   112.0    0.7800312782E+00
   113.0    0.7824593595E+00
   114.0    0.7848392263E+00
   115.0    0.7871818683E+00
   116.0    0.7894996173E+00
   117.0    0.7918063370E+00
   118.0    0.7941176397E+00
   119.0    0.7964511113E+00
   120.0    0.7988265227E+00
   121.0    0.8012660086E+00
   122.0    0.8037941930E+00
   123.0    0.8064382441E+00
   124.0    0.8092278430E+00
   125.0    0.8121950548E+00
   126.0    0.8153740933E+00
   127.0    0.8188009767E+00
   128.0    0.8225130773E+00
   129.0    0.8265485720E+00
   130.0    0.8309458073E+00
   131.0    0.8357425976E+00
   132.0    0.8409754774E+00
   133.0    0.8466789354E+00
   134.0    0.8528846541E+00
   135.0    0.8596207855E+00
   136.0    0.8669112853E+00
   137.0    0.8747753308E+00
   138.0    0.8832268404E+00
   139.0    0.8922741076E+00
   140.0    0.9019195596E+00
   141.0    0.9121596408E+00
   142.0    0.9229848188E+00
   143.0    0.9343797046E+00
   144.0    0.9463232752E+00
   145.0    0.9587891810E+00
   146.0    0.9717461240E+00
   147.0    0.9851582848E+00
   148.0    0.9989857844E+00
   149.0    0.1013185162E+01
   150.0    0.1027709855E+01
   151.0    0.1042510669E+01
   152.0    0.1057536227E+01
   153.0    0.1072733395E+01
   154.0    0.1088047674E+01
   155.0    0.1103423554E+01
   156.0    0.1118804841E+01
   157.0    0.1134134938E+01
   158.0    0.1149357106E+01
   159.0    0.1164414676E+01
   160.0    0.1179251252E+01
   161.0    0.1193810875E+01
   162.0    0.1208038177E+01
   163.0    0.1221878525E+01
   164.0    0.1235278147E+01
   165.0    0.1248184276E+01
   166.0    0.1260545292E+01
   167.0    0.1272310886E+01
   168.0    0.1283432246E+01
   169.0    0.1293862275E+01
   170.0    0.1303555835E+01
   171.0    0.1312470033E+01
   172.0    0.1320564530E+01
   173.0    0.1327801883E+01
   174.0    0.1334147900E+01
   175.0    0.1339572003E+01
   176.0    0.1344047588E+01
   177.0    0.1347552358E+01
   178.0    0.1350068629E+01
   179.0    0.1351583576E+01
   180.0    0.1352089426E+01
Time Now =       200.7254  Delta time =         0.5719 End EDCS
Time Now =       200.7268  Delta time =         0.0014 Finalize