----------------------------------------------------------------------
ePolyScat Version E2
----------------------------------------------------------------------

Authors: R. R. Lucchese, N. Sanna, A. P. P. Natalense, and F. A. Gianturco
http://www.chem.tamu.edu/rgroup/lucchese/ePolyScat.E2.manual/manual.html
Please cite the following two papers when reporting results obtained with  this program
F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 100, 6464 (1994).
A. P. P. Natalense and R. R. Lucchese, J. Chem. Phys. 111, 5344 (1999).

----------------------------------------------------------------------

Starting at 2009-03-13  11:37:19.864 (GMT -0500)
Using    16 processors

----------------------------------------------------------------------


+ Start of Input Records
#
# input file for test13
#
# N2 molden SCF, (3-sigma-g)^-1 photoionization
#
  LMax   22     # maximum l to be used for wave functions
  EMax  50.0    # EMax, maximum asymptotic energy in eV
  FegeEng 13.0   # Energy correction (in eV) used in the fege potential

  ScatEng  10.0   # list of scattering energies

 InitSym 'SG'      # Initial state symmetry
 InitSpinDeg 1     # Initial state spin degeneracy
 OrbOccInit 2 2 2 2 2 4  # Orbital occupation of initial state
 OrbOcc     2 2 2 2 1 4  # occupation of the orbital groups of target
 SpinDeg 1         # Spin degeneracy of the total scattering state (=1 singlet)
 TargSym 'SG'      # Symmetry of the target state
 TargSpinDeg 2     # Target spin degeneracy
 IPot 15.581    # ionization potentail

Convert '/scratch/rrl581a/ePolyScat.E2/tests/test13.molden' 'molden'
GetBlms
ExpOrb

 ScatSym     'SU'  # Scattering symmetry of total final state
 ScatContSym 'SU'  # Scattering symmetry of continuum electron

FileName 'MatrixElements' 'test13SU.idy' 'REWIND'
GenFormPhIon
DipoleOp
GetPot
PhIon
GetCro
#
 ScatSym     'PU'  # Scattering symmetry of total final state
 ScatContSym 'PU'  # Scattering symmetry of continuum electron

FileName 'MatrixElements' 'test13PU.idy' 'REWIND'
GenFormPhIon
DipoleOp
GetPot
PhIon
GetCro
#
GetCro 'test13PU.idy' 'test13SU.idy'
#
#
+ End of input reached
+ Data Record LMax - 22
+ Data Record EMax - 50.0
+ Data Record FegeEng - 13.0
+ Data Record ScatEng - 10.0
+ Data Record InitSym - 'SG'
+ Data Record InitSpinDeg - 1
+ Data Record OrbOccInit - 2 2 2 2 2 4
+ Data Record OrbOcc - 2 2 2 2 1 4
+ Data Record SpinDeg - 1
+ Data Record TargSym - 'SG'
+ Data Record TargSpinDeg - 2
+ Data Record IPot - 15.581

+ Command Convert
+ '/scratch/rrl581a/ePolyScat.E2/tests/test13.molden' 'molden'

----------------------------------------------------------------------
MoldenCnv - Molden (from Molpro) conversion program
----------------------------------------------------------------------

Expansion center is (in Angstroms) -
     0.0000000000   0.0000000000   0.0000000000
Convert from Angstroms to Bohr radii
Found    110 basis functions
Selecting orbitals
Number of orbitals selected is     7
Selecting    1   1 Ene =     -15.6842 Spin =Alpha Occup =   2.000000
Selecting    2   2 Ene =     -15.6806 Spin =Alpha Occup =   2.000000
Selecting    3   3 Ene =      -1.4752 Spin =Alpha Occup =   2.000000
Selecting    4   4 Ene =      -0.7786 Spin =Alpha Occup =   2.000000
Selecting    5   5 Ene =      -0.6350 Spin =Alpha Occup =   2.000000
Selecting    6   6 Ene =      -0.6161 Spin =Alpha Occup =   2.000000
Selecting    7   7 Ene =      -0.6161 Spin =Alpha Occup =   2.000000

Atoms found    2  Coordinates in Angstroms
Z =  7 ZS =  7 r =   0.0000000000   0.0000000000  -0.5470000000
Z =  7 ZS =  7 r =   0.0000000000   0.0000000000   0.5470000000
Maximum distance from expansion center is    0.5470000000

+ Command GetBlms
+

----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------

Found point group  DAh
Reduce angular grid using nthd =  2  nphid =  4
Found point group for abelian subgroup D2h
Time Now =         0.0644  Delta time =         0.0644 End GetPGroup
List of unique axes
  N  Vector                      Z   R
  1  0.00000  0.00000  1.00000   7  1.03368   7  1.03368
List of corresponding x axes
  N  Vector
  1  1.00000 -0.00000 -0.00000
Computed default value of LMaxA =    9
Determineing angular grid in GetAxMax  LMax =   22  LMaxA =    9  LMaxAb =   44
MMax =    3  MMaxAbFlag =    2
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9   3   3   3   3   3   3   3   3   3   3
   3   3   3
On the double L grid used for products
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  12
  12  12  12  12  12  12  12  12  12  12  12  12   6   6   6   6   6   6   6   6
   6   6   6   6   6

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is DAh
LMax = =   22
 The dimension of each irreducable representation is
    SG    (  1)    A2G   (  1)    B1G   (  1)    B2G   (  1)    PG    (  2)
    DG    (  2)    FG    (  2)    GG    (  2)    SU    (  1)    A2U   (  1)
    B1U   (  1)    B2U   (  1)    PU    (  2)    DU    (  2)    FU    (  2)
    GU    (  2)
 Number of symmetry operations in the abelian subgroup (excluding E) =    7
 The operations are -
    12    22    32     2     3    21    31
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 SG        1         1         12       1  1  1  1  1  1  1
 A2G       1         2          0       1 -1 -1  1  1 -1 -1
 B1G       1         3          2      -1  1 -1  1 -1  1 -1
 B2G       1         4          2      -1 -1  1  1 -1 -1  1
 PG        1         5         11      -1 -1  1  1 -1 -1  1
 PG        2         6         11      -1  1 -1  1 -1  1 -1
 DG        1         7         12       1 -1 -1  1  1 -1 -1
 DG        2         8         12       1  1  1  1  1  1  1
 FG        1         9         11      -1 -1  1  1 -1 -1  1
 FG        2        10         11      -1  1 -1  1 -1  1 -1
 GG        1        11          5       1 -1 -1  1  1 -1 -1
 GG        2        12          5       1  1  1  1  1  1  1
 SU        1        13         11       1 -1 -1 -1 -1  1  1
 A2U       1        14          0       1  1  1 -1 -1 -1 -1
 B1U       1        15          3      -1 -1  1 -1  1  1 -1
 B2U       1        16          3      -1  1 -1 -1  1 -1  1
 PU        1        17         12      -1 -1  1 -1  1  1 -1
 PU        2        18         12      -1  1 -1 -1  1 -1  1
 DU        1        19         11       1 -1 -1 -1 -1  1  1
 DU        2        20         11       1  1  1 -1 -1 -1 -1
 FU        1        21         12      -1 -1  1 -1  1  1 -1
 FU        2        22         12      -1  1 -1 -1  1 -1  1
 GU        1        23          5       1 -1 -1 -1 -1  1  1
 GU        2        24          5       1  1  1 -1 -1 -1 -1
Time Now =         3.0065  Delta time =         2.9422 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
SG    1    0(   1)    1(   1)    2(   2)    3(   2)    4(   3)    5(   3)    6(   4)    7(   4)    8(   5)    9(   5)
A2G   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   0)    7(   0)    8(   0)    9(   0)
B1G   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   1)    7(   1)    8(   2)    9(   2)
B2G   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   1)    7(   1)    8(   2)    9(   2)
PG    1    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)    6(   3)    7(   3)    8(   4)    9(   4)
PG    2    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)    6(   3)    7(   3)    8(   4)    9(   4)
DG    1    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)    6(   3)    7(   3)    8(   5)    9(   5)
DG    2    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)    6(   3)    7(   3)    8(   5)    9(   5)
FG    1    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   1)    6(   2)    7(   2)    8(   4)    9(   4)
FG    2    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   1)    6(   2)    7(   2)    8(   4)    9(   4)
GG    1    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   1)    6(   3)    7(   3)    8(   5)    9(   5)
GG    2    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   1)    6(   3)    7(   3)    8(   5)    9(   5)
SU    1    0(   0)    1(   1)    2(   1)    3(   2)    4(   2)    5(   3)    6(   3)    7(   4)    8(   4)    9(   5)
A2U   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   0)    7(   0)    8(   0)    9(   0)
B1U   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   1)    6(   1)    7(   2)    8(   2)    9(   3)
B2U   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   1)    6(   1)    7(   2)    8(   2)    9(   3)
PU    1    0(   0)    1(   1)    2(   1)    3(   2)    4(   2)    5(   3)    6(   3)    7(   4)    8(   4)    9(   6)
PU    2    0(   0)    1(   1)    2(   1)    3(   2)    4(   2)    5(   3)    6(   3)    7(   4)    8(   4)    9(   6)
DU    1    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   2)    6(   2)    7(   3)    8(   3)    9(   5)
DU    2    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   2)    6(   2)    7(   3)    8(   3)    9(   5)
FU    1    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   2)    6(   2)    7(   4)    8(   4)    9(   6)
FU    2    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   2)    6(   2)    7(   4)    8(   4)    9(   6)
GU    1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   1)    6(   1)    7(   3)    8(   3)    9(   5)
GU    2    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   1)    6(   1)    7(   3)    8(   3)    9(   5)

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is D2h
LMax = =   44
 The dimension of each irreducable representation is
    AG    (  1)    B1G   (  1)    B2G   (  1)    B3G   (  1)    AU    (  1)
    B1U   (  1)    B2U   (  1)    B3U   (  1)
Abelian axes
    1       1.000000      -0.000000       0.000000
    2       0.000000       1.000000      -0.000000
    3       0.000000       0.000000       1.000000
Symmetry operation directions
  1       0.000000       0.000000       1.000000 ang =  0  1 type = 0 axis = 3
  2       0.000000       0.000000       1.000000 ang =  1  2 type = 2 axis = 3
  3       1.000000      -0.000000       0.000000 ang =  1  2 type = 2 axis = 1
  4       0.000000       1.000000       0.000000 ang =  1  2 type = 2 axis = 2
  5       0.000000       0.000000       1.000000 ang =  1  2 type = 3 axis = 3
  6       0.000000       0.000000       1.000000 ang =  0  1 type = 1 axis = 3
  7       1.000000       0.000000       0.000000 ang =  0  1 type = 1 axis = 1
  8       0.000000       1.000000       0.000000 ang =  0  1 type = 1 axis = 2
irep =    1  sym =AG    1  eigs =   1   1   1   1   1   1   1   1
irep =    2  sym =B1G   1  eigs =   1   1  -1  -1   1   1  -1  -1
irep =    3  sym =B2G   1  eigs =   1  -1  -1   1   1  -1  -1   1
irep =    4  sym =B3G   1  eigs =   1  -1   1  -1   1  -1   1  -1
irep =    5  sym =AU    1  eigs =   1   1   1   1  -1  -1  -1  -1
irep =    6  sym =B1U   1  eigs =   1   1  -1  -1  -1  -1   1   1
irep =    7  sym =B2U   1  eigs =   1  -1  -1   1  -1   1   1  -1
irep =    8  sym =B3U   1  eigs =   1  -1   1  -1  -1   1  -1   1
 Number of symmetry operations in the abelian subgroup (excluding E) =    7
 The operations are -
     2     3     4     5     6     7     8
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 AG        1         1        125       1  1  1  1  1  1  1
 B1G       1         2        102       1 -1 -1  1  1 -1 -1
 B2G       1         3        102      -1 -1  1  1 -1 -1  1
 B3G       1         4        102      -1  1 -1  1 -1  1 -1
 AU        1         5         96       1  1  1 -1 -1 -1 -1
 B1U       1         6        118       1 -1 -1 -1 -1  1  1
 B2U       1         7        105      -1 -1  1 -1  1  1 -1
 B3U       1         8        105      -1  1 -1 -1  1 -1  1
Time Now =         3.0277  Delta time =         0.0212 End SymGen

+ Command ExpOrb
+
In GetRMax, RMaxEps =  0.10000000E-05  RMax =    9.6359862155 Angs

----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------

Maximum R in the grid (RMax) =     9.63599 Angs
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) =   10.0
In regions controlled by the wave length (HFacWave) =   10.0
Factor used to control the minimum exponent at each center (MinExpFac) =  300.0
Maximum asymptotic kinetic energy (EMAx) =  50.00000 eV
Maximum step size (MaxStep) =   9.63599 Angs
Factor to increase grid by (GridFac) =     1

    1  Center at =     0.00000 Angs  Alpha Max = 0.10000E+01
    2  Center at =     0.54700 Angs  Alpha Max = 0.14700E+05

Generated Grid

  irg  nin  ntot      step Angs     R end Angs
    1    8     8    0.18998E-02     0.01520
    2    8    16    0.26749E-02     0.03660
    3    8    24    0.43054E-02     0.07104
    4    8    32    0.57696E-02     0.11720
    5    8    40    0.67259E-02     0.17101
    6    8    48    0.68378E-02     0.22571
    7    8    56    0.62927E-02     0.27605
    8    8    64    0.55946E-02     0.32081
    9    8    72    0.49428E-02     0.36035
   10    8    80    0.49699E-02     0.40011
   11    8    88    0.55183E-02     0.44425
   12    8    96    0.46796E-02     0.48169
   13    8   104    0.29745E-02     0.50549
   14    8   112    0.18907E-02     0.52061
   15    8   120    0.12018E-02     0.53023
   16    8   128    0.76392E-03     0.53634
   17    8   136    0.53578E-03     0.54062
   18    8   144    0.45350E-03     0.54425
   19    8   152    0.34340E-03     0.54700
   20    8   160    0.43646E-03     0.55049
   21    8   168    0.46530E-03     0.55421
   22    8   176    0.57358E-03     0.55880
   23    8   184    0.87025E-03     0.56576
   24    8   192    0.13836E-02     0.57683
   25    8   200    0.21997E-02     0.59443
   26    8   208    0.34972E-02     0.62241
   27    8   216    0.55601E-02     0.66689
   28    8   224    0.88398E-02     0.73761
   29    8   232    0.10173E-01     0.81899
   30    8   240    0.11296E-01     0.90936
   31    8   248    0.15091E-01     1.03009
   32    8   256    0.21623E-01     1.20307
   33    8   264    0.32069E-01     1.45962
   34    8   272    0.42541E-01     1.79995
   35    8   280    0.47749E-01     2.18194
   36    8   288    0.52186E-01     2.59943
   37    8   296    0.55941E-01     3.04696
   38    8   304    0.59116E-01     3.51989
   39    8   312    0.61806E-01     4.01434
   40    8   320    0.64096E-01     4.52711
   41    8   328    0.66056E-01     5.05556
   42    8   336    0.67743E-01     5.59750
   43    8   344    0.69206E-01     6.15115
   44    8   352    0.70482E-01     6.71501
   45    8   360    0.71602E-01     7.28782
   46    8   368    0.72590E-01     7.86855
   47    8   376    0.73468E-01     8.45629
   48    8   384    0.74251E-01     9.05029
   49    8   392    0.73212E-01     9.63599
Time Now =         3.1275  Delta time =         0.0998 End GenGrid

----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------

Maximum scattering l (lmax) =   22
Maximum scattering m (mmaxs) =   22
Maximum numerical integration l (lmaxi) =   44
Maximum numerical integration m (mmaxi) =   44
Maximum l to include in the asymptotic region (lmasym) =    9
Parameter used to determine the cutoff points (PCutRd) =  0.10000000E-07 au
Maximum E used to determine grid (in eV) =       50.00000
Print flag (iprnfg) =    0
lmasymtyts =    8
 Actual value of lmasym found =      9
Number of regions of the same l expansion (NAngReg) =    9
Angular regions
    1 L =    2  from (    1)         0.00190  to (    7)         0.01330
    2 L =    4  from (    8)         0.01520  to (   15)         0.03392
    3 L =    6  from (   16)         0.03660  to (   23)         0.06674
    4 L =    7  from (   24)         0.07104  to (   31)         0.11143
    5 L =    9  from (   32)         0.11720  to (   47)         0.21887
    6 L =   17  from (   48)         0.22571  to (   63)         0.31521
    7 L =   22  from (   64)         0.32081  to (  240)         0.90936
    8 L =   17  from (  241)         0.92445  to (  264)         1.45962
    9 L =    9  from (  265)         1.50216  to (  392)         9.63599
Angular regions for computing spherical harmonics
    1 lval =    9
    2 lval =   22
Last grid points by processor WorkExp =     1.500
Proc id =   -1  Last grid point =       1
Proc id =    0  Last grid point =      64
Proc id =    1  Last grid point =      80
Proc id =    2  Last grid point =      96
Proc id =    3  Last grid point =     112
Proc id =    4  Last grid point =     128
Proc id =    5  Last grid point =     144
Proc id =    6  Last grid point =     160
Proc id =    7  Last grid point =     168
Proc id =    8  Last grid point =     184
Proc id =    9  Last grid point =     200
Proc id =   10  Last grid point =     216
Proc id =   11  Last grid point =     232
Proc id =   12  Last grid point =     248
Proc id =   13  Last grid point =     280
Proc id =   14  Last grid point =     336
Proc id =   15  Last grid point =     392
Time Now =         3.1381  Delta time =         0.0106 End AngGCt

----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------


 R of maximum density
     1  SG    1 at max irg =   20  r =   0.55049
     2  SU    1 at max irg =   20  r =   0.55049
     3  SG    1 at max irg =   19  r =   0.54700
     4  SU    1 at max irg =   30  r =   0.90936
     5  SG    1 at max irg =   30  r =   0.90936
     6  PU    1 at max irg =   27  r =   0.66689
     7  PU    2 at max irg =   27  r =   0.66689

Rotation coefficients for orbital     1  grp =    1 SG    1
     1  1.0000000000

Rotation coefficients for orbital     2  grp =    2 SU    1
     2  1.0000000000

Rotation coefficients for orbital     3  grp =    3 SG    1
     3  1.0000000000

Rotation coefficients for orbital     4  grp =    4 SU    1
     4  1.0000000000

Rotation coefficients for orbital     5  grp =    5 SG    1
     5  1.0000000000

Rotation coefficients for orbital     6  grp =    6 PU    1
     6  1.0000000000    7 -0.0000000000

Rotation coefficients for orbital     7  grp =    6 PU    2
     6  0.0000000000    7  1.0000000000
Number of orbital groups and degeneracis are         6
  1  1  1  1  1  2
Number of orbital groups and number of electrons when fully occupied
         6
  2  2  2  2  2  4
Time Now =         3.7341  Delta time =         0.5960 End RotOrb

----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------

 First orbital group to expand (mofr) =    1
 Last orbital group to expand (moto) =    6
Orbital     1 of  SG    1 symmetry normalization integral =  0.99799208
Orbital     2 of  SU    1 symmetry normalization integral =  0.99757112
Orbital     3 of  SG    1 symmetry normalization integral =  0.99989261
Orbital     4 of  SU    1 symmetry normalization integral =  0.99989735
Orbital     5 of  SG    1 symmetry normalization integral =  0.99999034
Orbital     6 of  PU    1 symmetry normalization integral =  0.99999965
Time Now =         5.2480  Delta time =         1.5139 End ExpOrb
+ Data Record ScatSym - 'SU'
+ Data Record ScatContSym - 'SU'

+ Command FileName
+ 'MatrixElements' 'test13SU.idy' 'REWIND'
Opening file test13SU.idy at position REWIND

+ Command GenFormPhIon
+

----------------------------------------------------------------------
SymProd - Construct products of symmetry types
----------------------------------------------------------------------

Number of sets of degenerate orbitals =    6
Set    1  has degeneracy     1
Orbital     1  is num     1  type =   1  name - SG    1
Set    2  has degeneracy     1
Orbital     1  is num     2  type =  13  name - SU    1
Set    3  has degeneracy     1
Orbital     1  is num     3  type =   1  name - SG    1
Set    4  has degeneracy     1
Orbital     1  is num     4  type =  13  name - SU    1
Set    5  has degeneracy     1
Orbital     1  is num     5  type =   1  name - SG    1
Set    6  has degeneracy     2
Orbital     1  is num     6  type =  17  name - PU    1
Orbital     2  is num     7  type =  18  name - PU    2
Orbital occupations by degenerate group
    1  SG       occ = 2
    2  SU       occ = 2
    3  SG       occ = 2
    4  SU       occ = 2
    5  SG       occ = 1
    6  PU       occ = 4
The dimension of each irreducable representation is
    SG    (  1)    A2G   (  1)    B1G   (  1)    B2G   (  1)    PG    (  2)
    DG    (  2)    FG    (  2)    GG    (  2)    SU    (  1)    A2U   (  1)
    B1U   (  1)    B2U   (  1)    PU    (  2)    DU    (  2)    FU    (  2)
    GU    (  2)
Symmetry of the continuum orbital is SU
Symmetry of the total state is SU
Spin degeneracy of the total state is =    1
Symmetry of the target state is SG
Spin degeneracy of the target state is =    2
Symmetry of the initial state is SG
Spin degeneracy of the initial state is =    1
Orbital occupations of initial state by degenerate group
    1  SG       occ = 2
    2  SU       occ = 2
    3  SG       occ = 2
    4  SU       occ = 2
    5  SG       occ = 2
    6  PU       occ = 4
Open shell symmetry types
    1  SG     iele =    1
Use only configuration of type SG
MS2 =    1  SDGN =    2
NumAlpha =    1
List of determinants found
    1:   1.00000   0.00000    1
Spin adapted configurations
Configuration    1
    1:   1.00000   0.00000    1
 Each irreducable representation is present the number of times indicated
    SG    (  1)

 representation SG     component     1  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1
Open shell symmetry types
    1  SG     iele =    1
    2  SU     iele =    1
Use only configuration of type SU
 Each irreducable representation is present the number of times indicated
    SU    (  1)

 representation SU     component     1  fun    1
Symmeterized Function from AddNewShell
    1:  -0.70711   0.00000    1    4
    2:   0.70711   0.00000    2    3
Open shell symmetry types
    1  SG     iele =    1
Use only configuration of type SG
MS2 =    1  SDGN =    2
NumAlpha =    1
List of determinants found
    1:   1.00000   0.00000    1
Spin adapted configurations
Configuration    1
    1:   1.00000   0.00000    1
 Each irreducable representation is present the number of times indicated
    SG    (  1)

 representation SG     component     1  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1
Direct product basis set
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   11
                             12   13   14   16
    2:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   11
                             12   13   14   15
Closed shell target
Time Now =         5.2538  Delta time =         0.0058 End SymProd

----------------------------------------------------------------------
MatEle - Program to compute Matrix Elements over Determinants
----------------------------------------------------------------------

Configuration     1
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   11
                             12   13   14   16
    2:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   11
                             12   13   14   15
Direct product Configuration Cont sym =    1  Targ sym =    1
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   11
                             12   13   14   16
    2:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   11
                             12   13   14   15
Overlap of Direct Product expansion and Symmeterized states
Symmetry of Continuum =    9
Symmetry of target =    1
Symmetry of total states =    9

Total symmetry component =    1

Cont      Target Component
Comp        1
   1   0.10000000E+01
Initial State Configuration
    1:   1.00000   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14
One electron matrix elements between initial and final states
    1:   -1.414213562    0.000000000  <    9|   15>

Reduced formula list
    1    5    1 -0.1414213562E+01
Time Now =         5.2545  Delta time =         0.0007 End MatEle

+ Command DipoleOp
+

----------------------------------------------------------------------
DipoleOp - Dipole Operator Program
----------------------------------------------------------------------

Number of orbitals in formula for the dipole operator (NOrbSel) =    1
Symmetry of the continuum orbital (iContSym) =     9 or SU
Symmetry of total final state (iTotalSym) =     9 or SU
Symmetry of the initial state (iInitSym) =     1 or SG
Symmetry of the ionized target state (iTargSym) =     1 or SG
List of unique symmetry types
In the product of the symmetry types SU    SG
 Each irreducable representation is present the number of times indicated
    SU    (  1)
In the product of the symmetry types SU    SG
 Each irreducable representation is present the number of times indicated
    SU    (  1)
In the product of the symmetry types SU    A2G
 Each irreducable representation is present the number of times indicated
    A2U   (  1)
In the product of the symmetry types SU    B1G
 Each irreducable representation is present the number of times indicated
    B1U   (  1)
In the product of the symmetry types SU    B2G
 Each irreducable representation is present the number of times indicated
    B2U   (  1)
In the product of the symmetry types SU    PG
 Each irreducable representation is present the number of times indicated
    PU    (  1)
In the product of the symmetry types SU    DG
 Each irreducable representation is present the number of times indicated
    DU    (  1)
In the product of the symmetry types SU    FG
 Each irreducable representation is present the number of times indicated
    FU    (  1)
In the product of the symmetry types SU    GG
 Each irreducable representation is present the number of times indicated
    GU    (  1)
In the product of the symmetry types SU    SU
 Each irreducable representation is present the number of times indicated
    SG    (  1)
Unique dipole matrix type     1 Dipole symmetry type =SU
     Final state symmetry type = SU     Target sym =SG
     Continuum type =SU
In the product of the symmetry types SU    A2U
 Each irreducable representation is present the number of times indicated
    A2G   (  1)
In the product of the symmetry types SU    B1U
 Each irreducable representation is present the number of times indicated
    B1G   (  1)
In the product of the symmetry types SU    B2U
 Each irreducable representation is present the number of times indicated
    B2G   (  1)
In the product of the symmetry types SU    PU
 Each irreducable representation is present the number of times indicated
    PG    (  1)
In the product of the symmetry types SU    DU
 Each irreducable representation is present the number of times indicated
    DG    (  1)
In the product of the symmetry types SU    FU
 Each irreducable representation is present the number of times indicated
    FG    (  1)
In the product of the symmetry types SU    GU
 Each irreducable representation is present the number of times indicated
    GG    (  1)
In the product of the symmetry types PU    SG
 Each irreducable representation is present the number of times indicated
    PU    (  1)
In the product of the symmetry types PU    SG
 Each irreducable representation is present the number of times indicated
    PU    (  1)
In the product of the symmetry types PU    A2G
 Each irreducable representation is present the number of times indicated
    PU    (  1)
In the product of the symmetry types PU    B1G
 Each irreducable representation is present the number of times indicated
    GU    (  1)
In the product of the symmetry types PU    B2G
 Each irreducable representation is present the number of times indicated
    GU    (  1)
In the product of the symmetry types PU    PG
 Each irreducable representation is present the number of times indicated
    SU    (  1)
    A2U   (  1)
    DU    (  1)
In the product of the symmetry types PU    DG
 Each irreducable representation is present the number of times indicated
    PU    (  1)
    FU    (  1)
In the product of the symmetry types PU    FG
 Each irreducable representation is present the number of times indicated
    DU    (  1)
    GU    (  1)
In the product of the symmetry types PU    GG
 Each irreducable representation is present the number of times indicated
    B1U   (  1)
    B2U   (  1)
    FU    (  1)
In the product of the symmetry types PU    SU
 Each irreducable representation is present the number of times indicated
    PG    (  1)
In the product of the symmetry types PU    A2U
 Each irreducable representation is present the number of times indicated
    PG    (  1)
In the product of the symmetry types PU    B1U
 Each irreducable representation is present the number of times indicated
    GG    (  1)
In the product of the symmetry types PU    B2U
 Each irreducable representation is present the number of times indicated
    GG    (  1)
In the product of the symmetry types PU    PU
 Each irreducable representation is present the number of times indicated
    SG    (  1)
    A2G   (  1)
    DG    (  1)
Unique dipole matrix type     2 Dipole symmetry type =PU
     Final state symmetry type = PU     Target sym =SG
     Continuum type =PU
In the product of the symmetry types PU    DU
 Each irreducable representation is present the number of times indicated
    PG    (  1)
    FG    (  1)
In the product of the symmetry types PU    FU
 Each irreducable representation is present the number of times indicated
    DG    (  1)
    GG    (  1)
In the product of the symmetry types PU    GU
 Each irreducable representation is present the number of times indicated
    B1G   (  1)
    B2G   (  1)
    FG    (  1)
In the product of the symmetry types SU    SG
 Each irreducable representation is present the number of times indicated
    SU    (  1)
In the product of the symmetry types PU    SG
 Each irreducable representation is present the number of times indicated
    PU    (  1)
In the product of the symmetry types PU    SG
 Each irreducable representation is present the number of times indicated
    PU    (  1)
Irreducible representation containing the dipole operator is SU
Number of different dipole operators in this representation is     1
In the product of the symmetry types SU    SG
 Each irreducable representation is present the number of times indicated
    SU    (  1)
Vector of the total symmetry
ie =    1  ij =    1
    1 (  0.10000000E+01, -0.00000000E+00)
Component Dipole Op Sym =  1 goes to Total Sym component   1 phase = 1.0

Dipole operator types by symmetry components (x=1, y=2, z=3)
sym comp =  1
  coefficients =  0.00000000  0.00000000  1.00000000

Formula for dipole operator

Dipole operator sym comp 1  index =    1
  1  Cont comp  1  Orb  5  Coef =  -1.4142135620
Symmetry type to write out (SymTyp) =SU
Time Now =        10.5969  Delta time =         5.3425 End DipoleOp

+ Command GetPot
+

----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------

Total density =     13.00000000
Time Now =        10.6057  Delta time =         0.0088 End Den

----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------

 vasymp =  0.13000000E+02 facnorm =  0.10000000E+01
Time Now =        10.6282  Delta time =         0.0225 Electronic part
Time Now =        10.6292  Delta time =         0.0010 End StPot

+ Command PhIon
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.10000000E+02 eV (  0.36749326E+00 AU)
Time Now =        10.6672  Delta time =         0.0380 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =SU    1
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =     T
Maximum l for computed scattering solutions (LMaxK) =    9
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    49
Number of partial waves (np) =    11
Number of asymptotic solutions on the right (NAsymR) =     5
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =    9
Number of partial waves in the asymptotic region (npasym) =    5
Number of orthogonality constraints (NOrthUse) =    2
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   55
Maximum l used in usual function (lmax) =   22
Maximum m used in usual function (LMax) =   22
Maxamum l used in expanding static potential (lpotct) =   44
Maximum l used in exapnding the exchange potential (lmaxab) =   44
Higest l included in the expansion of the wave function (lnp) =   21
Higest l included in the K matrix (lna) =    9
Highest l used at large r (lpasym) =    9
Higest l used in the asymptotic potential (lpzb) =   18
Maximum L used in the homogeneous solution (LMaxHomo) =   11
Number of partial waves in the homogeneous solution (npHomo) =    6
Time Now =        10.6870  Delta time =         0.0198 Energy independent setup

Compute solution for E =   10.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.49960036E-15
 i =  2  lval =   3  stpote =  0.72593991E-20
 i =  3  lval =   3  stpote = -0.50362585E-03
 i =  4  lval =   5  stpote = -0.25815922E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.81960898E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.81960896E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.81960890E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.81960882E-16
For potential     3
Number of asymptotic regions =     121
Final point in integration =   0.19680760E+03 Angstroms
Time Now =        11.9588  Delta time =         1.2718 End SolveHomo
iL =   1 Iter =   1 c.s. =      7.20795809 rmsk=     0.84899694
iL =   1 Iter =   2 c.s. =      3.39876862 rmsk=     0.49699067
iL =   1 Iter =   3 c.s. =      3.50062438 rmsk=     0.03206660
iL =   1 Iter =   4 c.s. =      3.56953787 rmsk=     0.03943889
iL =   1 Iter =   5 c.s. =      3.56703612 rmsk=     0.00122255
iL =   1 Iter =   6 c.s. =      3.56707232 rmsk=     0.00000314
iL =   1 Iter =   7 c.s. =      3.56707192 rmsk=     0.00000006
iL =   2 Iter =   1 c.s. =      9.64947721 rmsk=     0.77989777
iL =   2 Iter =   2 c.s. =      5.99269486 rmsk=     0.48058508
iL =   2 Iter =   3 c.s. =      6.10418348 rmsk=     0.03384053
iL =   2 Iter =   4 c.s. =      6.27806673 rmsk=     0.03691314
iL =   2 Iter =   5 c.s. =      6.27671866 rmsk=     0.00078461
iL =   2 Iter =   6 c.s. =      6.27673521 rmsk=     0.00000171
iL =   2 Iter =   7 c.s. =      6.27673484 rmsk=     0.00000006
      Final k matrix
     ROW  1
  (-0.30136895E+00, 0.11417839E+01) ( 0.13244581E+01,-0.64592547E+00)
  ( 0.25999753E-01,-0.22206385E-01) ( 0.21971224E-03,-0.18309674E-03)
  ( 0.11010755E-05,-0.93055239E-06)
     ROW  2
  (-0.26445956E+00, 0.99908959E+00) ( 0.11510366E+01,-0.56198199E+00)
  ( 0.21520006E-01,-0.19283907E-01) ( 0.16805054E-03,-0.15388564E-03)
  ( 0.81954274E-06,-0.74614312E-06)
MaxIter =   7 c.s. =      6.27673484 rmsk=     0.00000006
Time Now =        18.7804  Delta time =         6.8216 End ScatStab

+ Command GetCro
+

----------------------------------------------------------------------
CnvIdy - read in and convert dynamical matrix elements and convert to raw form
----------------------------------------------------------------------

Time Now =        18.7820  Delta time =         0.0015 End CnvIdy
Found     1 energies :
    10.00000
List of matrix element types found   Number =    1
    1  Cont Sym SU     Targ Sym SG     Total Sym SU
Keeping     1 energies :
    10.00000
Time Now =        18.7822  Delta time =         0.0002 End SelIdy

----------------------------------------------------------------------
CrossSection - compute photoionization cross section
----------------------------------------------------------------------

Ionization potential (IPot) =     15.5810 eV
Label -
Cross section by partial wave      F
Cross Sections for

     Sigma LENGTH   at all energies
      Eng
    25.5810  0.57407014E+01

     Sigma MIXED    at all energies
      Eng
    25.5810  0.53222735E+01

     Sigma VELOCITY at all energies
      Eng
    25.5810  0.49344024E+01

     Beta LENGTH   at all energies
      Eng
    25.5810  0.47433563E+00

     Beta MIXED    at all energies
      Eng
    25.5810  0.47537873E+00

     Beta VELOCITY at all energies
      Eng
    25.5810  0.47642429E+00

          COMPOSITE CROSS SECTIONS AT ALL ENERGIES
         Energy  SIGMA LEN  SIGMA MIX  SIGMA VEL   BETA LEN   BETA MIX   BETA VEL
EPhi     25.5810     5.7407     5.3223     4.9344     0.4743     0.4754     0.4764
Time Now =        18.7991  Delta time =         0.0170 End CrossSection
+ Data Record ScatSym - 'PU'
+ Data Record ScatContSym - 'PU'

+ Command FileName
+ 'MatrixElements' 'test13PU.idy' 'REWIND'
Opening file test13PU.idy at position REWIND

+ Command GenFormPhIon
+

----------------------------------------------------------------------
SymProd - Construct products of symmetry types
----------------------------------------------------------------------

Number of sets of degenerate orbitals =    6
Set    1  has degeneracy     1
Orbital     1  is num     1  type =   1  name - SG    1
Set    2  has degeneracy     1
Orbital     1  is num     2  type =  13  name - SU    1
Set    3  has degeneracy     1
Orbital     1  is num     3  type =   1  name - SG    1
Set    4  has degeneracy     1
Orbital     1  is num     4  type =  13  name - SU    1
Set    5  has degeneracy     1
Orbital     1  is num     5  type =   1  name - SG    1
Set    6  has degeneracy     2
Orbital     1  is num     6  type =  17  name - PU    1
Orbital     2  is num     7  type =  18  name - PU    2
Orbital occupations by degenerate group
    1  SG       occ = 2
    2  SU       occ = 2
    3  SG       occ = 2
    4  SU       occ = 2
    5  SG       occ = 1
    6  PU       occ = 4
The dimension of each irreducable representation is
    SG    (  1)    A2G   (  1)    B1G   (  1)    B2G   (  1)    PG    (  2)
    DG    (  2)    FG    (  2)    GG    (  2)    SU    (  1)    A2U   (  1)
    B1U   (  1)    B2U   (  1)    PU    (  2)    DU    (  2)    FU    (  2)
    GU    (  2)
Symmetry of the continuum orbital is PU
Symmetry of the total state is PU
Spin degeneracy of the total state is =    1
Symmetry of the target state is SG
Spin degeneracy of the target state is =    2
Symmetry of the initial state is SG
Spin degeneracy of the initial state is =    1
Orbital occupations of initial state by degenerate group
    1  SG       occ = 2
    2  SU       occ = 2
    3  SG       occ = 2
    4  SU       occ = 2
    5  SG       occ = 2
    6  PU       occ = 4
Open shell symmetry types
    1  SG     iele =    1
Use only configuration of type SG
MS2 =    1  SDGN =    2
NumAlpha =    1
List of determinants found
    1:   1.00000   0.00000    1
Spin adapted configurations
Configuration    1
    1:   1.00000   0.00000    1
 Each irreducable representation is present the number of times indicated
    SG    (  1)

 representation SG     component     1  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1
Open shell symmetry types
    1  SG     iele =    1
    2  PU     iele =    1
Use only configuration of type PU
 Each irreducable representation is present the number of times indicated
    PU    (  1)

 representation PU     component     1  fun    1
Symmeterized Function from AddNewShell
    1:  -0.70711   0.00000    1    5
    2:   0.70711   0.00000    2    3

 representation PU     component     2  fun    1
Symmeterized Function from AddNewShell
    1:  -0.70711   0.00000    1    6
    2:   0.70711   0.00000    2    4
Open shell symmetry types
    1  SG     iele =    1
Use only configuration of type SG
MS2 =    1  SDGN =    2
NumAlpha =    1
List of determinants found
    1:   1.00000   0.00000    1
Spin adapted configurations
Configuration    1
    1:   1.00000   0.00000    1
 Each irreducable representation is present the number of times indicated
    SG    (  1)

 representation SG     component     1  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1
Direct product basis set
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   11
                             12   13   14   17
    2:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   11
                             12   13   14   15
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   11
                             12   13   14   18
    2:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   11
                             12   13   14   16
Closed shell target
Time Now =        18.8070  Delta time =         0.0079 End SymProd

----------------------------------------------------------------------
MatEle - Program to compute Matrix Elements over Determinants
----------------------------------------------------------------------

Configuration     1
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   11
                             12   13   14   17
    2:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   11
                             12   13   14   15
Configuration     2
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   11
                             12   13   14   18
    2:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   11
                             12   13   14   16
Direct product Configuration Cont sym =    1  Targ sym =    1
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   11
                             12   13   14   17
    2:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   11
                             12   13   14   15
Direct product Configuration Cont sym =    2  Targ sym =    1
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   11
                             12   13   14   18
    2:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   11
                             12   13   14   16
Overlap of Direct Product expansion and Symmeterized states
Symmetry of Continuum =   13
Symmetry of target =    1
Symmetry of total states =   13

Total symmetry component =    1

Cont      Target Component
Comp        1
   1   0.10000000E+01
   2   0.00000000E+00

Total symmetry component =    2

Cont      Target Component
Comp        1
   1   0.00000000E+00
   2   0.10000000E+01
Initial State Configuration
    1:   1.00000   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14
One electron matrix elements between initial and final states
    1:   -1.414213562    0.000000000  <    9|   15>

Reduced formula list
    1    5    1 -0.1414213562E+01
Time Now =        18.8074  Delta time =         0.0004 End MatEle

+ Command DipoleOp
+

----------------------------------------------------------------------
DipoleOp - Dipole Operator Program
----------------------------------------------------------------------

Number of orbitals in formula for the dipole operator (NOrbSel) =    1
Symmetry of the continuum orbital (iContSym) =    13 or PU
Symmetry of total final state (iTotalSym) =    13 or PU
Symmetry of the initial state (iInitSym) =     1 or SG
Symmetry of the ionized target state (iTargSym) =     1 or SG
List of unique symmetry types
In the product of the symmetry types SU    SG
 Each irreducable representation is present the number of times indicated
    SU    (  1)
In the product of the symmetry types SU    SG
 Each irreducable representation is present the number of times indicated
    SU    (  1)
In the product of the symmetry types SU    A2G
 Each irreducable representation is present the number of times indicated
    A2U   (  1)
In the product of the symmetry types SU    B1G
 Each irreducable representation is present the number of times indicated
    B1U   (  1)
In the product of the symmetry types SU    B2G
 Each irreducable representation is present the number of times indicated
    B2U   (  1)
In the product of the symmetry types SU    PG
 Each irreducable representation is present the number of times indicated
    PU    (  1)
In the product of the symmetry types SU    DG
 Each irreducable representation is present the number of times indicated
    DU    (  1)
In the product of the symmetry types SU    FG
 Each irreducable representation is present the number of times indicated
    FU    (  1)
In the product of the symmetry types SU    GG
 Each irreducable representation is present the number of times indicated
    GU    (  1)
In the product of the symmetry types SU    SU
 Each irreducable representation is present the number of times indicated
    SG    (  1)
Unique dipole matrix type     1 Dipole symmetry type =SU
     Final state symmetry type = SU     Target sym =SG
     Continuum type =SU
In the product of the symmetry types SU    A2U
 Each irreducable representation is present the number of times indicated
    A2G   (  1)
In the product of the symmetry types SU    B1U
 Each irreducable representation is present the number of times indicated
    B1G   (  1)
In the product of the symmetry types SU    B2U
 Each irreducable representation is present the number of times indicated
    B2G   (  1)
In the product of the symmetry types SU    PU
 Each irreducable representation is present the number of times indicated
    PG    (  1)
In the product of the symmetry types SU    DU
 Each irreducable representation is present the number of times indicated
    DG    (  1)
In the product of the symmetry types SU    FU
 Each irreducable representation is present the number of times indicated
    FG    (  1)
In the product of the symmetry types SU    GU
 Each irreducable representation is present the number of times indicated
    GG    (  1)
In the product of the symmetry types PU    SG
 Each irreducable representation is present the number of times indicated
    PU    (  1)
In the product of the symmetry types PU    SG
 Each irreducable representation is present the number of times indicated
    PU    (  1)
In the product of the symmetry types PU    A2G
 Each irreducable representation is present the number of times indicated
    PU    (  1)
In the product of the symmetry types PU    B1G
 Each irreducable representation is present the number of times indicated
    GU    (  1)
In the product of the symmetry types PU    B2G
 Each irreducable representation is present the number of times indicated
    GU    (  1)
In the product of the symmetry types PU    PG
 Each irreducable representation is present the number of times indicated
    SU    (  1)
    A2U   (  1)
    DU    (  1)
In the product of the symmetry types PU    DG
 Each irreducable representation is present the number of times indicated
    PU    (  1)
    FU    (  1)
In the product of the symmetry types PU    FG
 Each irreducable representation is present the number of times indicated
    DU    (  1)
    GU    (  1)
In the product of the symmetry types PU    GG
 Each irreducable representation is present the number of times indicated
    B1U   (  1)
    B2U   (  1)
    FU    (  1)
In the product of the symmetry types PU    SU
 Each irreducable representation is present the number of times indicated
    PG    (  1)
In the product of the symmetry types PU    A2U
 Each irreducable representation is present the number of times indicated
    PG    (  1)
In the product of the symmetry types PU    B1U
 Each irreducable representation is present the number of times indicated
    GG    (  1)
In the product of the symmetry types PU    B2U
 Each irreducable representation is present the number of times indicated
    GG    (  1)
In the product of the symmetry types PU    PU
 Each irreducable representation is present the number of times indicated
    SG    (  1)
    A2G   (  1)
    DG    (  1)
Unique dipole matrix type     2 Dipole symmetry type =PU
     Final state symmetry type = PU     Target sym =SG
     Continuum type =PU
In the product of the symmetry types PU    DU
 Each irreducable representation is present the number of times indicated
    PG    (  1)
    FG    (  1)
In the product of the symmetry types PU    FU
 Each irreducable representation is present the number of times indicated
    DG    (  1)
    GG    (  1)
In the product of the symmetry types PU    GU
 Each irreducable representation is present the number of times indicated
    B1G   (  1)
    B2G   (  1)
    FG    (  1)
In the product of the symmetry types SU    SG
 Each irreducable representation is present the number of times indicated
    SU    (  1)
In the product of the symmetry types PU    SG
 Each irreducable representation is present the number of times indicated
    PU    (  1)
In the product of the symmetry types PU    SG
 Each irreducable representation is present the number of times indicated
    PU    (  1)
Irreducible representation containing the dipole operator is PU
Number of different dipole operators in this representation is     1
In the product of the symmetry types PU    SG
 Each irreducable representation is present the number of times indicated
    PU    (  1)
Vector of the total symmetry
ie =    1  ij =    1
    1 (  0.10000000E+01, -0.00000000E+00)
    2 (  0.16487820E-15, -0.00000000E+00)
Vector of the total symmetry
ie =    2  ij =    1
    1 (  0.16487820E-15,  0.00000000E+00)
    2 (  0.10000000E+01,  0.00000000E+00)
Component Dipole Op Sym =  1 goes to Total Sym component   1 phase = 1.0
Component Dipole Op Sym =  2 goes to Total Sym component   2 phase = 1.0

Dipole operator types by symmetry components (x=1, y=2, z=3)
sym comp =  1
  coefficients =  0.00000000  1.00000000  0.00000000
sym comp =  2
  coefficients =  1.00000000  0.00000000  0.00000000

Formula for dipole operator

Dipole operator sym comp 1  index =    1
  1  Cont comp  1  Orb  5  Coef =  -1.4142135620
Symmetry type to write out (SymTyp) =PU
Time Now =        24.1563  Delta time =         5.3489 End DipoleOp

+ Command GetPot
+

----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------

Total density =     13.00000000
Time Now =        24.3072  Delta time =         0.1509 End Den

----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------

 vasymp =  0.13000000E+02 facnorm =  0.10000000E+01
Time Now =        24.3297  Delta time =         0.0225 Electronic part
Time Now =        24.3307  Delta time =         0.0010 End StPot

+ Command PhIon
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.10000000E+02 eV (  0.36749326E+00 AU)
Time Now =        24.3675  Delta time =         0.0368 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =PU    1
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =     T
Maximum l for computed scattering solutions (LMaxK) =    9
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    49
Number of partial waves (np) =    12
Number of asymptotic solutions on the right (NAsymR) =     6
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =    9
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    1
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   55
Maximum l used in usual function (lmax) =   22
Maximum m used in usual function (LMax) =   22
Maxamum l used in expanding static potential (lpotct) =   44
Maximum l used in exapnding the exchange potential (lmaxab) =   44
Higest l included in the expansion of the wave function (lnp) =   21
Higest l included in the K matrix (lna) =    9
Highest l used at large r (lpasym) =    9
Higest l used in the asymptotic potential (lpzb) =   18
Maximum L used in the homogeneous solution (LMaxHomo) =   11
Number of partial waves in the homogeneous solution (npHomo) =    7
Time Now =        24.3874  Delta time =         0.0199 Energy independent setup

Compute solution for E =   10.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.49960036E-15
 i =  2  lval =   3  stpote =  0.72593991E-20
 i =  3  lval =   3  stpote = -0.50362585E-03
 i =  4  lval =   5  stpote = -0.25815922E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.81960898E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.81960896E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.81960890E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.81960882E-16
For potential     3
Number of asymptotic regions =     121
Final point in integration =   0.19680760E+03 Angstroms
Time Now =        25.8588  Delta time =         1.4714 End SolveHomo
iL =   1 Iter =   1 c.s. =      1.03039521 rmsk=     0.29302947
iL =   1 Iter =   2 c.s. =      0.95170178 rmsk=     0.02763731
iL =   1 Iter =   3 c.s. =      0.94987716 rmsk=     0.00050982
iL =   1 Iter =   4 c.s. =      0.94979756 rmsk=     0.00004045
iL =   1 Iter =   5 c.s. =      0.94979818 rmsk=     0.00000057
iL =   1 Iter =   6 c.s. =      0.94979819 rmsk=     0.00000000
iL =   1 Iter =   7 c.s. =      0.94979819 rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =      1.75789511 rmsk=     0.25950224
iL =   2 Iter =   2 c.s. =      1.64807910 rmsk=     0.02990065
iL =   2 Iter =   3 c.s. =      1.64747764 rmsk=     0.00018026
iL =   2 Iter =   4 c.s. =      1.64731589 rmsk=     0.00006269
iL =   2 Iter =   5 c.s. =      1.64731560 rmsk=     0.00000037
iL =   2 Iter =   6 c.s. =      1.64731560 rmsk=     0.00000000
iL =   2 Iter =   7 c.s. =      1.64731560 rmsk=     0.00000000
      Final k matrix
     ROW  1
  (-0.10023814E-02, 0.52692721E+00) ( 0.81311142E+00,-0.10224492E+00)
  ( 0.21467094E-01,-0.89342746E-02) ( 0.18002497E-03,-0.98684661E-04)
  (-0.72900047E-17,-0.89326010E-16) ( 0.83969641E-06,-0.47644021E-06)
     ROW  2
  ( 0.66642394E-02, 0.48752895E+00) ( 0.67315159E+00,-0.79707949E-01)
  ( 0.15794033E-01,-0.72544822E-02) ( 0.11670870E-03,-0.71474614E-04)
  (-0.99275491E-17,-0.79239568E-16) ( 0.49645548E-06,-0.30373939E-06)
MaxIter =   7 c.s. =      1.64731560 rmsk=     0.00000000
Time Now =        32.8979  Delta time =         7.0391 End ScatStab

+ Command GetCro
+

----------------------------------------------------------------------
CnvIdy - read in and convert dynamical matrix elements and convert to raw form
----------------------------------------------------------------------

Time Now =        32.8998  Delta time =         0.0019 End CnvIdy
Found     1 energies :
    10.00000
List of matrix element types found   Number =    1
    1  Cont Sym PU     Targ Sym SG     Total Sym PU
Keeping     1 energies :
    10.00000
Time Now =        32.8998  Delta time =         0.0000 End SelIdy

----------------------------------------------------------------------
CrossSection - compute photoionization cross section
----------------------------------------------------------------------

Ionization potential (IPot) =     15.5810 eV
Label -
Cross section by partial wave      F
Cross Sections for

     Sigma LENGTH   at all energies
      Eng
    25.5810  0.30571336E+01

     Sigma MIXED    at all energies
      Eng
    25.5810  0.27828683E+01

     Sigma VELOCITY at all energies
      Eng
    25.5810  0.25404131E+01

     Beta LENGTH   at all energies
      Eng
    25.5810  0.12686831E+01

     Beta MIXED    at all energies
      Eng
    25.5810  0.13002321E+01

     Beta VELOCITY at all energies
      Eng
    25.5810  0.13302595E+01

          COMPOSITE CROSS SECTIONS AT ALL ENERGIES
         Energy  SIGMA LEN  SIGMA MIX  SIGMA VEL   BETA LEN   BETA MIX   BETA VEL
EPhi     25.5810     3.0571     2.7829     2.5404     1.2687     1.3002     1.3303
Time Now =        32.9065  Delta time =         0.0067 End CrossSection

+ Command GetCro
+ 'test13PU.idy' 'test13SU.idy'
Taking dipole matrix from file test13PU.idy

----------------------------------------------------------------------
CnvIdy - read in and convert dynamical matrix elements and convert to raw form
----------------------------------------------------------------------

Time Now =        32.9072  Delta time =         0.0007 End CnvIdy
Taking dipole matrix from file test13SU.idy

----------------------------------------------------------------------
CnvIdy - read in and convert dynamical matrix elements and convert to raw form
----------------------------------------------------------------------

Time Now =        32.9076  Delta time =         0.0004 End CnvIdy
Found     1 energies :
    10.00000
List of matrix element types found   Number =    2
    1  Cont Sym PU     Targ Sym SG     Total Sym PU
    2  Cont Sym SU     Targ Sym SG     Total Sym SU
Keeping     1 energies :
    10.00000
Time Now =        32.9077  Delta time =         0.0000 End SelIdy

----------------------------------------------------------------------
CrossSection - compute photoionization cross section
----------------------------------------------------------------------

Ionization potential (IPot) =     15.5810 eV
Label -
Cross section by partial wave      F
Cross Sections for

     Sigma LENGTH   at all energies
      Eng
    25.5810  0.87978350E+01

     Sigma MIXED    at all energies
      Eng
    25.5810  0.81051418E+01

     Sigma VELOCITY at all energies
      Eng
    25.5810  0.74748155E+01

     Beta LENGTH   at all energies
      Eng
    25.5810  0.10200847E+01

     Beta MIXED    at all energies
      Eng
    25.5810  0.10432056E+01

     Beta VELOCITY at all energies
      Eng
    25.5810  0.10660644E+01

          COMPOSITE CROSS SECTIONS AT ALL ENERGIES
         Energy  SIGMA LEN  SIGMA MIX  SIGMA VEL   BETA LEN   BETA MIX   BETA VEL
EPhi     25.5810     8.7978     8.1051     7.4748     1.0201     1.0432     1.0661
Time Now =        32.9144  Delta time =         0.0067 End CrossSection
Time Now =        32.9159  Delta time =         0.0015 Finalize