----------------------------------------------------------------------
ePolyScat Version E2
----------------------------------------------------------------------

Authors: R. R. Lucchese, N. Sanna, A. P. P. Natalense, and F. A. Gianturco
http://www.chem.tamu.edu/rgroup/lucchese/ePolyScat.E2.manual/manual.html
Please cite the following two papers when reporting results obtained with  this program
F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 100, 6464 (1994).
A. P. P. Natalense and R. R. Lucchese, J. Chem. Phys. 111, 5344 (1999).

----------------------------------------------------------------------

Starting at 2009-03-13  11:39:08.507 (GMT -0500)
Using    16 processors

----------------------------------------------------------------------


+ Start of Input Records
#
# input file for test12
#
# electron scattering from N2 molden SCF, scattering from N2+ ground state
#
  LMax   22     # maximum l to be used for wave functions
  EMax  50.0    # EMax, maximum asymptotic energy in eV
  EngForm      # Energy formulas
   1 2
    6
   2.0 -1.0 1
   2.0 -1.0 1
   2.0 -1.0 1
   2.0 -1.0 1
   1.0  1.0 1
   2.0 -1.0 1

  FegeEng 13.0   # Energy correction (in eV) used in the fege potential
  ScatContSym 'SU'  # Scattering symmetry
  LMaxK    10     # Maximum l in the K matirx
  ScatEng  10.0   # list of scattering energies

Convert '/scratch/rrl581a/ePolyScat.E2/tests/test12.molden' 'molden'
GetBlms
ExpOrb
GetPot
GrnType 1
Scat
+ End of input reached
+ Data Record LMax - 22
+ Data Record EMax - 50.0
+ Data Record EngForm
+ 1 2 / 6 / 2.0 -1.0 1 / 2.0 -1.0 1 / 2.0 -1.0 1 / 2.0 -1.0 1 / 1.0  1.0 1 / 2.0 -1.0 1
+ Data Record FegeEng - 13.0
+ Data Record ScatContSym - 'SU'
+ Data Record LMaxK - 10
+ Data Record ScatEng - 10.0

+ Command Convert
+ '/scratch/rrl581a/ePolyScat.E2/tests/test12.molden' 'molden'

----------------------------------------------------------------------
MoldenCnv - Molden (from Molpro) conversion program
----------------------------------------------------------------------

Expansion center is (in Angstroms) -
     0.0000000000   0.0000000000   0.0000000000
Convert from Angstroms to Bohr radii
Found    110 basis functions
Selecting orbitals
Number of orbitals selected is     7
Selecting    1   1 Ene =     -15.6842 Spin =Alpha Occup =   2.000000
Selecting    2   2 Ene =     -15.6806 Spin =Alpha Occup =   2.000000
Selecting    3   3 Ene =      -1.4752 Spin =Alpha Occup =   2.000000
Selecting    4   4 Ene =      -0.7786 Spin =Alpha Occup =   2.000000
Selecting    5   5 Ene =      -0.6350 Spin =Alpha Occup =   2.000000
Selecting    6   6 Ene =      -0.6161 Spin =Alpha Occup =   2.000000
Selecting    7   7 Ene =      -0.6161 Spin =Alpha Occup =   2.000000

Atoms found    2  Coordinates in Angstroms
Z =  7 ZS =  7 r =   0.0000000000   0.0000000000  -0.5470000000
Z =  7 ZS =  7 r =   0.0000000000   0.0000000000   0.5470000000
Maximum distance from expansion center is    0.5470000000

+ Command GetBlms
+

----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------

Found point group  DAh
Reduce angular grid using nthd =  2  nphid =  4
Found point group for abelian subgroup D2h
Time Now =         0.0678  Delta time =         0.0678 End GetPGroup
List of unique axes
  N  Vector                      Z   R
  1  0.00000  0.00000  1.00000   7  1.03368   7  1.03368
List of corresponding x axes
  N  Vector
  1  1.00000 -0.00000 -0.00000
Computed default value of LMaxA =   10
Determineing angular grid in GetAxMax  LMax =   22  LMaxA =   10  LMaxAb =   44
MMax =    3  MMaxAbFlag =    2
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10   3   3   3   3   3   3   3   3   3
   3   3   3
On the double L grid used for products
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19
  20  13  13  13  13  13  13  13  13  13  13  13  13   6   6   6   6   6   6   6
   6   6   6   6   6

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is DAh
LMax = =   22
 The dimension of each irreducable representation is
    SG    (  1)    A2G   (  1)    B1G   (  1)    B2G   (  1)    PG    (  2)
    DG    (  2)    FG    (  2)    GG    (  2)    SU    (  1)    A2U   (  1)
    B1U   (  1)    B2U   (  1)    PU    (  2)    DU    (  2)    FU    (  2)
    GU    (  2)
 Number of symmetry operations in the abelian subgroup (excluding E) =    7
 The operations are -
    12    22    32     2     3    21    31
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 SG        1         1         13       1  1  1  1  1  1  1
 A2G       1         2          1       1 -1 -1  1  1 -1 -1
 B1G       1         3          3      -1  1 -1  1 -1  1 -1
 B2G       1         4          3      -1 -1  1  1 -1 -1  1
 PG        1         5         12      -1 -1  1  1 -1 -1  1
 PG        2         6         12      -1  1 -1  1 -1  1 -1
 DG        1         7         13       1 -1 -1  1  1 -1 -1
 DG        2         8         13       1  1  1  1  1  1  1
 FG        1         9         12      -1 -1  1  1 -1 -1  1
 FG        2        10         12      -1  1 -1  1 -1  1 -1
 GG        1        11          7       1 -1 -1  1  1 -1 -1
 GG        2        12          7       1  1  1  1  1  1  1
 SU        1        13         11       1 -1 -1 -1 -1  1  1
 A2U       1        14          0       1  1  1 -1 -1 -1 -1
 B1U       1        15          3      -1 -1  1 -1  1  1 -1
 B2U       1        16          3      -1  1 -1 -1  1 -1  1
 PU        1        17         12      -1 -1  1 -1  1  1 -1
 PU        2        18         12      -1  1 -1 -1  1 -1  1
 DU        1        19         11       1 -1 -1 -1 -1  1  1
 DU        2        20         11       1  1  1 -1 -1 -1 -1
 FU        1        21         12      -1 -1  1 -1  1  1 -1
 FU        2        22         12      -1  1 -1 -1  1 -1  1
 GU        1        23          5       1 -1 -1 -1 -1  1  1
 GU        2        24          5       1  1  1 -1 -1 -1 -1
Time Now =         3.0272  Delta time =         2.9594 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
SG    1    0(   1)    1(   1)    2(   2)    3(   2)    4(   3)    5(   3)    6(   4)    7(   4)    8(   5)    9(   5)
          10(   7)
A2G   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   0)    7(   0)    8(   0)    9(   0)
          10(   1)
B1G   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   1)    7(   1)    8(   2)    9(   2)
          10(   3)
B2G   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   1)    7(   1)    8(   2)    9(   2)
          10(   3)
PG    1    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)    6(   3)    7(   3)    8(   4)    9(   4)
          10(   6)
PG    2    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)    6(   3)    7(   3)    8(   4)    9(   4)
          10(   6)
DG    1    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)    6(   3)    7(   3)    8(   5)    9(   5)
          10(   7)
DG    2    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)    6(   3)    7(   3)    8(   5)    9(   5)
          10(   7)
FG    1    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   1)    6(   2)    7(   2)    8(   4)    9(   4)
          10(   6)
FG    2    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   1)    6(   2)    7(   2)    8(   4)    9(   4)
          10(   6)
GG    1    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   1)    6(   3)    7(   3)    8(   5)    9(   5)
          10(   7)
GG    2    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   1)    6(   3)    7(   3)    8(   5)    9(   5)
          10(   7)
SU    1    0(   0)    1(   1)    2(   1)    3(   2)    4(   2)    5(   3)    6(   3)    7(   4)    8(   4)    9(   5)
          10(   5)
A2U   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   0)    7(   0)    8(   0)    9(   0)
          10(   0)
B1U   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   1)    6(   1)    7(   2)    8(   2)    9(   3)
          10(   3)
B2U   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   1)    6(   1)    7(   2)    8(   2)    9(   3)
          10(   3)
PU    1    0(   0)    1(   1)    2(   1)    3(   2)    4(   2)    5(   3)    6(   3)    7(   4)    8(   4)    9(   6)
          10(   6)
PU    2    0(   0)    1(   1)    2(   1)    3(   2)    4(   2)    5(   3)    6(   3)    7(   4)    8(   4)    9(   6)
          10(   6)
DU    1    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   2)    6(   2)    7(   3)    8(   3)    9(   5)
          10(   5)
DU    2    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   2)    6(   2)    7(   3)    8(   3)    9(   5)
          10(   5)
FU    1    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   2)    6(   2)    7(   4)    8(   4)    9(   6)
          10(   6)
FU    2    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   2)    6(   2)    7(   4)    8(   4)    9(   6)
          10(   6)
GU    1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   1)    6(   1)    7(   3)    8(   3)    9(   5)
          10(   5)
GU    2    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   1)    6(   1)    7(   3)    8(   3)    9(   5)
          10(   5)

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is D2h
LMax = =   44
 The dimension of each irreducable representation is
    AG    (  1)    B1G   (  1)    B2G   (  1)    B3G   (  1)    AU    (  1)
    B1U   (  1)    B2U   (  1)    B3U   (  1)
Abelian axes
    1       1.000000      -0.000000       0.000000
    2       0.000000       1.000000      -0.000000
    3       0.000000       0.000000       1.000000
Symmetry operation directions
  1       0.000000       0.000000       1.000000 ang =  0  1 type = 0 axis = 3
  2       0.000000       0.000000       1.000000 ang =  1  2 type = 2 axis = 3
  3       1.000000      -0.000000       0.000000 ang =  1  2 type = 2 axis = 1
  4       0.000000       1.000000       0.000000 ang =  1  2 type = 2 axis = 2
  5       0.000000       0.000000       1.000000 ang =  1  2 type = 3 axis = 3
  6       0.000000       0.000000       1.000000 ang =  0  1 type = 1 axis = 3
  7       1.000000       0.000000       0.000000 ang =  0  1 type = 1 axis = 1
  8       0.000000       1.000000       0.000000 ang =  0  1 type = 1 axis = 2
irep =    1  sym =AG    1  eigs =   1   1   1   1   1   1   1   1
irep =    2  sym =B1G   1  eigs =   1   1  -1  -1   1   1  -1  -1
irep =    3  sym =B2G   1  eigs =   1  -1  -1   1   1  -1  -1   1
irep =    4  sym =B3G   1  eigs =   1  -1   1  -1   1  -1   1  -1
irep =    5  sym =AU    1  eigs =   1   1   1   1  -1  -1  -1  -1
irep =    6  sym =B1U   1  eigs =   1   1  -1  -1  -1  -1   1   1
irep =    7  sym =B2U   1  eigs =   1  -1  -1   1  -1   1   1  -1
irep =    8  sym =B3U   1  eigs =   1  -1   1  -1  -1   1  -1   1
 Number of symmetry operations in the abelian subgroup (excluding E) =    7
 The operations are -
     2     3     4     5     6     7     8
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 AG        1         1        132       1  1  1  1  1  1  1
 B1G       1         2        109       1 -1 -1  1  1 -1 -1
 B2G       1         3        115      -1 -1  1  1 -1 -1  1
 B3G       1         4        115      -1  1 -1  1 -1  1 -1
 AU        1         5         99       1  1  1 -1 -1 -1 -1
 B1U       1         6        121       1 -1 -1 -1 -1  1  1
 B2U       1         7        115      -1 -1  1 -1  1  1 -1
 B3U       1         8        115      -1  1 -1 -1  1 -1  1
Time Now =         3.0492  Delta time =         0.0220 End SymGen

+ Command ExpOrb
+
In GetRMax, RMaxEps =  0.10000000E-05  RMax =    9.6359862155 Angs

----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------

Maximum R in the grid (RMax) =     9.63599 Angs
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) =   10.0
In regions controlled by the wave length (HFacWave) =   10.0
Factor used to control the minimum exponent at each center (MinExpFac) =  300.0
Maximum asymptotic kinetic energy (EMAx) =  50.00000 eV
Maximum step size (MaxStep) =   9.63599 Angs
Factor to increase grid by (GridFac) =     1

    1  Center at =     0.00000 Angs  Alpha Max = 0.10000E+01
    2  Center at =     0.54700 Angs  Alpha Max = 0.14700E+05

Generated Grid

  irg  nin  ntot      step Angs     R end Angs
    1    8     8    0.18998E-02     0.01520
    2    8    16    0.26749E-02     0.03660
    3    8    24    0.43054E-02     0.07104
    4    8    32    0.57696E-02     0.11720
    5    8    40    0.67259E-02     0.17101
    6    8    48    0.68378E-02     0.22571
    7    8    56    0.62927E-02     0.27605
    8    8    64    0.55946E-02     0.32081
    9    8    72    0.49428E-02     0.36035
   10    8    80    0.49699E-02     0.40011
   11    8    88    0.55183E-02     0.44425
   12    8    96    0.46796E-02     0.48169
   13    8   104    0.29745E-02     0.50549
   14    8   112    0.18907E-02     0.52061
   15    8   120    0.12018E-02     0.53023
   16    8   128    0.76392E-03     0.53634
   17    8   136    0.53578E-03     0.54062
   18    8   144    0.45350E-03     0.54425
   19    8   152    0.34340E-03     0.54700
   20    8   160    0.43646E-03     0.55049
   21    8   168    0.46530E-03     0.55421
   22    8   176    0.57358E-03     0.55880
   23    8   184    0.87025E-03     0.56576
   24    8   192    0.13836E-02     0.57683
   25    8   200    0.21997E-02     0.59443
   26    8   208    0.34972E-02     0.62241
   27    8   216    0.55601E-02     0.66689
   28    8   224    0.88398E-02     0.73761
   29    8   232    0.10173E-01     0.81899
   30    8   240    0.11296E-01     0.90936
   31    8   248    0.15091E-01     1.03009
   32    8   256    0.21623E-01     1.20307
   33    8   264    0.32069E-01     1.45962
   34    8   272    0.42541E-01     1.79995
   35    8   280    0.47749E-01     2.18194
   36    8   288    0.52186E-01     2.59943
   37    8   296    0.55941E-01     3.04696
   38    8   304    0.59116E-01     3.51989
   39    8   312    0.61806E-01     4.01434
   40    8   320    0.64096E-01     4.52711
   41    8   328    0.66056E-01     5.05556
   42    8   336    0.67743E-01     5.59750
   43    8   344    0.69206E-01     6.15115
   44    8   352    0.70482E-01     6.71501
   45    8   360    0.71602E-01     7.28782
   46    8   368    0.72590E-01     7.86855
   47    8   376    0.73468E-01     8.45629
   48    8   384    0.74251E-01     9.05029
   49    8   392    0.73212E-01     9.63599
Time Now =         3.1492  Delta time =         0.1000 End GenGrid

----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------

Maximum scattering l (lmax) =   22
Maximum scattering m (mmaxs) =   22
Maximum numerical integration l (lmaxi) =   44
Maximum numerical integration m (mmaxi) =   44
Maximum l to include in the asymptotic region (lmasym) =   10
Parameter used to determine the cutoff points (PCutRd) =  0.10000000E-07 au
Maximum E used to determine grid (in eV) =       50.00000
Print flag (iprnfg) =    0
lmasymtyts =   10
 Actual value of lmasym found =     10
Number of regions of the same l expansion (NAngReg) =   10
Angular regions
    1 L =    2  from (    1)         0.00190  to (    7)         0.01330
    2 L =    4  from (    8)         0.01520  to (   15)         0.03392
    3 L =    6  from (   16)         0.03660  to (   23)         0.06674
    4 L =    7  from (   24)         0.07104  to (   31)         0.11143
    5 L =    9  from (   32)         0.11720  to (   39)         0.16428
    6 L =   10  from (   40)         0.17101  to (   47)         0.21887
    7 L =   18  from (   48)         0.22571  to (   63)         0.31521
    8 L =   22  from (   64)         0.32081  to (  240)         0.90936
    9 L =   18  from (  241)         0.92445  to (  256)         1.20307
   10 L =   10  from (  257)         1.23514  to (  392)         9.63599
Angular regions for computing spherical harmonics
    1 lval =   10
    2 lval =   22
Last grid points by processor WorkExp =     1.500
Proc id =   -1  Last grid point =       1
Proc id =    0  Last grid point =      64
Proc id =    1  Last grid point =      80
Proc id =    2  Last grid point =      96
Proc id =    3  Last grid point =     112
Proc id =    4  Last grid point =     128
Proc id =    5  Last grid point =     144
Proc id =    6  Last grid point =     160
Proc id =    7  Last grid point =     176
Proc id =    8  Last grid point =     192
Proc id =    9  Last grid point =     208
Proc id =   10  Last grid point =     216
Proc id =   11  Last grid point =     232
Proc id =   12  Last grid point =     256
Proc id =   13  Last grid point =     296
Proc id =   14  Last grid point =     344
Proc id =   15  Last grid point =     392
Time Now =         3.1595  Delta time =         0.0103 End AngGCt

----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------


 R of maximum density
     1  SG    1 at max irg =   20  r =   0.55049
     2  SU    1 at max irg =   20  r =   0.55049
     3  SG    1 at max irg =   19  r =   0.54700
     4  SU    1 at max irg =   30  r =   0.90936
     5  SG    1 at max irg =   30  r =   0.90936
     6  PU    1 at max irg =   27  r =   0.66689
     7  PU    2 at max irg =   27  r =   0.66689

Rotation coefficients for orbital     1  grp =    1 SG    1
     1  1.0000000000

Rotation coefficients for orbital     2  grp =    2 SU    1
     2  1.0000000000

Rotation coefficients for orbital     3  grp =    3 SG    1
     3  1.0000000000

Rotation coefficients for orbital     4  grp =    4 SU    1
     4  1.0000000000

Rotation coefficients for orbital     5  grp =    5 SG    1
     5  1.0000000000

Rotation coefficients for orbital     6  grp =    6 PU    1
     6  1.0000000000    7 -0.0000000000

Rotation coefficients for orbital     7  grp =    6 PU    2
     6  0.0000000000    7  1.0000000000
Number of orbital groups and degeneracis are         6
  1  1  1  1  1  2
Number of orbital groups and number of electrons when fully occupied
         6
  2  2  2  2  2  4
Time Now =         3.7437  Delta time =         0.5842 End RotOrb

----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------

 First orbital group to expand (mofr) =    1
 Last orbital group to expand (moto) =    6
Orbital     1 of  SG    1 symmetry normalization integral =  0.99799208
Orbital     2 of  SU    1 symmetry normalization integral =  0.99757114
Orbital     3 of  SG    1 symmetry normalization integral =  0.99989263
Orbital     4 of  SU    1 symmetry normalization integral =  0.99989735
Orbital     5 of  SG    1 symmetry normalization integral =  0.99999038
Orbital     6 of  PU    1 symmetry normalization integral =  0.99999965
Time Now =         5.4649  Delta time =         1.7212 End ExpOrb

+ Command GetPot
+

----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------

Total density =     13.00000000
Time Now =         5.4735  Delta time =         0.0086 End Den

----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------

 vasymp =  0.13000000E+02 facnorm =  0.10000000E+01
Time Now =         5.4982  Delta time =         0.0247 Electronic part
Time Now =         5.4992  Delta time =         0.0011 End StPot
+ Data Record GrnType - 1

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.10000000E+02 eV (  0.36749326E+00 AU)
Time Now =         5.5430  Delta time =         0.0438 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =SU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    49
Number of partial waves (np) =    11
Number of asymptotic solutions on the right (NAsymR) =     5
Number of asymptotic solutions on the left (NAsymL) =     5
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     5
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =    5
Number of orthogonality constraints (NOrthUse) =    2
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   66
Maximum l used in usual function (lmax) =   22
Maximum m used in usual function (LMax) =   22
Maxamum l used in expanding static potential (lpotct) =   44
Maximum l used in exapnding the exchange potential (lmaxab) =   44
Higest l included in the expansion of the wave function (lnp) =   21
Higest l included in the K matrix (lna) =    9
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Maximum L used in the homogeneous solution (LMaxHomo) =   11
Number of partial waves in the homogeneous solution (npHomo) =    6
Time Now =         5.5647  Delta time =         0.0217 Energy independent setup

Compute solution for E =   10.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.49960036E-15
 i =  2  lval =   3  stpote = -0.32963085E-19
 i =  3  lval =   3  stpote = -0.50362562E-03
 i =  4  lval =   5  stpote = -0.23371505E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.59378405E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.59378396E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.59378380E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.59378357E-16
For potential     3
Number of asymptotic regions =     121
Final point in integration =   0.19680757E+03 Angstroms
Time Now =         7.0015  Delta time =         1.4367 End SolveHomo
iL =   1 Iter =   1 c.s. =      7.59878843 angs^2  rmsk=     0.25196243
iL =   1 Iter =   2 c.s. =      7.42050621 angs^2  rmsk=     0.01732302
iL =   1 Iter =   3 c.s. =      7.56495888 angs^2  rmsk=     0.00777622
iL =   1 Iter =   4 c.s. =      7.80789147 angs^2  rmsk=     0.01731920
iL =   1 Iter =   5 c.s. =      7.81194327 angs^2  rmsk=     0.00053591
iL =   1 Iter =   6 c.s. =      7.81195007 angs^2  rmsk=     0.00000109
iL =   1 Iter =   7 c.s. =      7.81195024 angs^2  rmsk=     0.00000002
iL =   1 Iter =   8 c.s. =      7.81195001 angs^2  rmsk=     0.00000002
iL =   2 Iter =   1 c.s. =      7.81195001 angs^2  rmsk=     0.17440191
iL =   2 Iter =   2 c.s. =      4.92626600 angs^2  rmsk=     0.12224326
iL =   2 Iter =   3 c.s. =      4.86021775 angs^2  rmsk=     0.00720289
iL =   2 Iter =   4 c.s. =      4.88097317 angs^2  rmsk=     0.00289969
iL =   2 Iter =   5 c.s. =      4.87907663 angs^2  rmsk=     0.00042505
iL =   2 Iter =   6 c.s. =      4.87907406 angs^2  rmsk=     0.00000170
iL =   2 Iter =   7 c.s. =      4.87907392 angs^2  rmsk=     0.00000001
iL =   2 Iter =   8 c.s. =      4.87907442 angs^2  rmsk=     0.00000003
iL =   3 Iter =   1 c.s. =      4.87907442 angs^2  rmsk=     0.00646215
iL =   3 Iter =   2 c.s. =      4.87768804 angs^2  rmsk=     0.00283811
iL =   3 Iter =   3 c.s. =      4.87712291 angs^2  rmsk=     0.00054110
iL =   3 Iter =   4 c.s. =      4.87712767 angs^2  rmsk=     0.00003022
iL =   3 Iter =   5 c.s. =      4.87712554 angs^2  rmsk=     0.00005630
iL =   3 Iter =   6 c.s. =      4.87712556 angs^2  rmsk=     0.00000015
iL =   3 Iter =   7 c.s. =      4.87712556 angs^2  rmsk=     0.00000000
iL =   4 Iter =   1 c.s. =      4.87712556 angs^2  rmsk=     0.00218888
iL =   4 Iter =   2 c.s. =      4.87711992 angs^2  rmsk=     0.00003162
iL =   4 Iter =   3 c.s. =      4.87711988 angs^2  rmsk=     0.00001169
iL =   4 Iter =   4 c.s. =      4.87711988 angs^2  rmsk=     0.00000022
iL =   4 Iter =   5 c.s. =      4.87711988 angs^2  rmsk=     0.00000016
iL =   4 Iter =   6 c.s. =      4.87711988 angs^2  rmsk=     0.00000000
iL =   5 Iter =   1 c.s. =      4.87711988 angs^2  rmsk=     0.00123812
iL =   5 Iter =   2 c.s. =      4.87711984 angs^2  rmsk=     0.00000039
iL =   5 Iter =   3 c.s. =      4.87711984 angs^2  rmsk=     0.00000007
iL =   5 Iter =   4 c.s. =      4.87711984 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.32608078E+00, 0.87004619E+00) ( 0.21736143E-02,-0.82041243E-01)
  ( 0.94321660E-03,-0.86153402E-03) ( 0.31966124E-05,-0.53164080E-05)
  ( 0.55261864E-08,-0.57650082E-07)
     ROW  2
  ( 0.21734803E-02,-0.82041207E-01) ( 0.34501201E+00, 0.14782343E+00)
  ( 0.13056100E-01, 0.56856056E-02) ( 0.10887888E-05, 0.74477984E-04)
  (-0.29995731E-07, 0.55155774E-07)
     ROW  3
  ( 0.94320775E-03,-0.86152382E-03) ( 0.13056107E-01, 0.56856067E-02)
  ( 0.20240156E-01, 0.63693592E-03) ( 0.47356352E-02, 0.14088806E-03)
  (-0.21926310E-05, 0.13232448E-04)
     ROW  4
  ( 0.31962960E-05,-0.53162925E-05) ( 0.10887239E-05, 0.74477196E-04)
  ( 0.47356352E-02, 0.14088807E-03) ( 0.93951409E-02, 0.11859314E-03)
  ( 0.28030298E-02, 0.41801801E-04)
     ROW  5
  ( 0.64795529E-08,-0.53153213E-07) (-0.31522302E-07, 0.53320604E-07)
  (-0.21926299E-05, 0.13232432E-04) ( 0.28030298E-02, 0.41801801E-04)
  ( 0.55186345E-02, 0.38315698E-04)
 eigenphases
  0.3692690E-02  0.9314403E-02  0.2162764E-01  0.3818288E+00  0.1215904E+01
 eigenphase sum 0.163237E+01  scattering length=  18.92058
 eps+pi 0.477396E+01  eps+2*pi 0.791555E+01

MaxIter =   8 c.s. =      4.87711984 angs^2  rmsk=     0.00000000
Time Now =        21.6998  Delta time =        14.6983 End ScatStab
Time Now =        21.7012  Delta time =         0.0014 Finalize