----------------------------------------------------------------------
ePolyScat Version E2
----------------------------------------------------------------------

Authors: R. R. Lucchese, N. Sanna, A. P. P. Natalense, and F. A. Gianturco
http://www.chem.tamu.edu/rgroup/lucchese/ePolyScat.E2.manual/manual.html
Please cite the following two papers when reporting results obtained with  this program
F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 100, 6464 (1994).
A. P. P. Natalense and R. R. Lucchese, J. Chem. Phys. 111, 5344 (1999).

----------------------------------------------------------------------

Starting at 2009-03-13  11:37:04.044 (GMT -0500)
Using    16 processors

----------------------------------------------------------------------


+ Start of Input Records
#
# input file for test10
#
# electron scattering from N2 molden SCF, search for the pi-g shape resonance
#
  LMax   15     # maximum l to be used for wave functions
  EMax  50.0    # EMax, maximum asymptotic energy in eV
  EngForm      # Energy formulas
   0 0         # charge, formula type

  VCorr 'PZ'
  FegeEng 15.6   # Energy correction (in eV) used in the fege potential
  ScatContSym 'PG'  # Scattering symmetry
  DPotEng  2.3  # Energy (in eV) for the local exchange potential
  ResSearchEng
  1                   # nengrb - number of energy step regions
  0.25 0.25     # first energy and step (in eV)
   6.0          # final ending point, engrb(nengrb+1)
   5.44                 # eendzi, largest imaginary part
   1.088                # estpzi, imaginary energy step
Convert '/scratch/rrl581a/ePolyScat.E2/tests/test10.molden' 'molden'
GetBlms
ExpOrb
GetPot
GetDPot
FileName 'PlotData' 'test10.dat' 'REWIND'
Label 'N2 pi-g'
ResSearch
FileName 'AWaveFun' 'test10AWaveFun.dat' 'REWIND'
FileName 'SWaveFun' 'test10SWaveFun.dat' 'REWIND'
ResWvFun 1
FileName 'ViewOrb' 'test10ViewOrb.dat' 'REWIND'
FileName 'ViewOrbGeom' 'test10ViewOrbGeom.dat' 'REWIND'
ViewOrbGrid
  0.0 0.0 0.0
  0.0 0.0 1.0
  1.0 0.0 0.0
  -2.5 2.5 0.1
  -2.0 2.0 0.1
  0.0 0.0 0.1
ViewOrb 'ResWvFun'
FileName 'ViewOrb' 'test10ViewDPot.dat' 'REWIND'
ViewOrb 'DPot'
+ End of input reached
+ Data Record LMax - 15
+ Data Record EMax - 50.0
+ Data Record EngForm - 0 0
+ Data Record VCorr - 'PZ'
+ Data Record FegeEng - 15.6
+ Data Record ScatContSym - 'PG'
+ Data Record DPotEng - 2.3
+ Data Record ResSearchEng
+ 1 / 0.25 0.25 / 6.0 / 5.44 / 1.088

+ Command Convert
+ '/scratch/rrl581a/ePolyScat.E2/tests/test10.molden' 'molden'

----------------------------------------------------------------------
MoldenCnv - Molden (from Molpro) conversion program
----------------------------------------------------------------------

Expansion center is (in Angstroms) -
     0.0000000000   0.0000000000   0.0000000000
Convert from Angstroms to Bohr radii
Found    110 basis functions
Selecting orbitals
Number of orbitals selected is     7
Selecting    1   1 Ene =     -15.6842 Spin =Alpha Occup =   2.000000
Selecting    2   2 Ene =     -15.6806 Spin =Alpha Occup =   2.000000
Selecting    3   3 Ene =      -1.4752 Spin =Alpha Occup =   2.000000
Selecting    4   4 Ene =      -0.7786 Spin =Alpha Occup =   2.000000
Selecting    5   5 Ene =      -0.6350 Spin =Alpha Occup =   2.000000
Selecting    6   6 Ene =      -0.6161 Spin =Alpha Occup =   2.000000
Selecting    7   7 Ene =      -0.6161 Spin =Alpha Occup =   2.000000

Atoms found    2  Coordinates in Angstroms
Z =  7 ZS =  7 r =   0.0000000000   0.0000000000  -0.5470000000
Z =  7 ZS =  7 r =   0.0000000000   0.0000000000   0.5470000000
Maximum distance from expansion center is    0.5470000000

+ Command GetBlms
+

----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------

Found point group  DAh
Reduce angular grid using nthd =  2  nphid =  4
Found point group for abelian subgroup D2h
Time Now =         0.0802  Delta time =         0.0802 End GetPGroup
List of unique axes
  N  Vector                      Z   R
  1  0.00000  0.00000  1.00000   7  1.03368   7  1.03368
List of corresponding x axes
  N  Vector
  1  1.00000 -0.00000 -0.00000
Computed default value of LMaxA =    9
Determineing angular grid in GetAxMax  LMax =   15  LMaxA =    9  LMaxAb =   30
MMax =    3  MMaxAbFlag =    2
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9   3   3   3   3   3   3
On the double L grid used for products
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  12
  12  12  12  12  12   6   6   6   6   6   6

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is DAh
LMax = =   15
 The dimension of each irreducable representation is
    SG    (  1)    A2G   (  1)    B1G   (  1)    B2G   (  1)    PG    (  2)
    DG    (  2)    FG    (  2)    GG    (  2)    SU    (  1)    A2U   (  1)
    B1U   (  1)    B2U   (  1)    PU    (  2)    DU    (  2)    FU    (  2)
    GU    (  2)
 Number of symmetry operations in the abelian subgroup (excluding E) =    7
 The operations are -
    12    22    32     2     3    21    31
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 SG        1         1          8       1  1  1  1  1  1  1
 A2G       1         2          0       1 -1 -1  1  1 -1 -1
 B1G       1         3          2      -1  1 -1  1 -1  1 -1
 B2G       1         4          2      -1 -1  1  1 -1 -1  1
 PG        1         5          7      -1 -1  1  1 -1 -1  1
 PG        2         6          7      -1  1 -1  1 -1  1 -1
 DG        1         7          8       1 -1 -1  1  1 -1 -1
 DG        2         8          8       1  1  1  1  1  1  1
 FG        1         9          7      -1 -1  1  1 -1 -1  1
 FG        2        10          7      -1  1 -1  1 -1  1 -1
 GG        1        11          5       1 -1 -1  1  1 -1 -1
 GG        2        12          5       1  1  1  1  1  1  1
 SU        1        13          8       1 -1 -1 -1 -1  1  1
 A2U       1        14          0       1  1  1 -1 -1 -1 -1
 B1U       1        15          3      -1 -1  1 -1  1  1 -1
 B2U       1        16          3      -1  1 -1 -1  1 -1  1
 PU        1        17          9      -1 -1  1 -1  1  1 -1
 PU        2        18          9      -1  1 -1 -1  1 -1  1
 DU        1        19          8       1 -1 -1 -1 -1  1  1
 DU        2        20          8       1  1  1 -1 -1 -1 -1
 FU        1        21          9      -1 -1  1 -1  1  1 -1
 FU        2        22          9      -1  1 -1 -1  1 -1  1
 GU        1        23          5       1 -1 -1 -1 -1  1  1
 GU        2        24          5       1  1  1 -1 -1 -1 -1
Time Now =         0.8881  Delta time =         0.8078 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
SG    1    0(   1)    1(   1)    2(   2)    3(   2)    4(   3)    5(   3)    6(   4)    7(   4)    8(   5)    9(   5)
A2G   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   0)    7(   0)    8(   0)    9(   0)
B1G   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   1)    7(   1)    8(   2)    9(   2)
B2G   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   1)    7(   1)    8(   2)    9(   2)
PG    1    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)    6(   3)    7(   3)    8(   4)    9(   4)
PG    2    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)    6(   3)    7(   3)    8(   4)    9(   4)
DG    1    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)    6(   3)    7(   3)    8(   5)    9(   5)
DG    2    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)    6(   3)    7(   3)    8(   5)    9(   5)
FG    1    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   1)    6(   2)    7(   2)    8(   4)    9(   4)
FG    2    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   1)    6(   2)    7(   2)    8(   4)    9(   4)
GG    1    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   1)    6(   3)    7(   3)    8(   5)    9(   5)
GG    2    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   1)    6(   3)    7(   3)    8(   5)    9(   5)
SU    1    0(   0)    1(   1)    2(   1)    3(   2)    4(   2)    5(   3)    6(   3)    7(   4)    8(   4)    9(   5)
A2U   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   0)    7(   0)    8(   0)    9(   0)
B1U   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   1)    6(   1)    7(   2)    8(   2)    9(   3)
B2U   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   1)    6(   1)    7(   2)    8(   2)    9(   3)
PU    1    0(   0)    1(   1)    2(   1)    3(   2)    4(   2)    5(   3)    6(   3)    7(   4)    8(   4)    9(   6)
PU    2    0(   0)    1(   1)    2(   1)    3(   2)    4(   2)    5(   3)    6(   3)    7(   4)    8(   4)    9(   6)
DU    1    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   2)    6(   2)    7(   3)    8(   3)    9(   5)
DU    2    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   2)    6(   2)    7(   3)    8(   3)    9(   5)
FU    1    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   2)    6(   2)    7(   4)    8(   4)    9(   6)
FU    2    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   2)    6(   2)    7(   4)    8(   4)    9(   6)
GU    1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   1)    6(   1)    7(   3)    8(   3)    9(   5)
GU    2    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   1)    6(   1)    7(   3)    8(   3)    9(   5)

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is D2h
LMax = =   30
 The dimension of each irreducable representation is
    AG    (  1)    B1G   (  1)    B2G   (  1)    B3G   (  1)    AU    (  1)
    B1U   (  1)    B2U   (  1)    B3U   (  1)
Abelian axes
    1       1.000000      -0.000000       0.000000
    2       0.000000       1.000000      -0.000000
    3       0.000000       0.000000       1.000000
Symmetry operation directions
  1       0.000000       0.000000       1.000000 ang =  0  1 type = 0 axis = 3
  2       0.000000       0.000000       1.000000 ang =  1  2 type = 2 axis = 3
  3       1.000000      -0.000000       0.000000 ang =  1  2 type = 2 axis = 1
  4       0.000000       1.000000       0.000000 ang =  1  2 type = 2 axis = 2
  5       0.000000       0.000000       1.000000 ang =  1  2 type = 3 axis = 3
  6       0.000000       0.000000       1.000000 ang =  0  1 type = 1 axis = 3
  7       1.000000       0.000000       0.000000 ang =  0  1 type = 1 axis = 1
  8       0.000000       1.000000       0.000000 ang =  0  1 type = 1 axis = 2
irep =    1  sym =AG    1  eigs =   1   1   1   1   1   1   1   1
irep =    2  sym =B1G   1  eigs =   1   1  -1  -1   1   1  -1  -1
irep =    3  sym =B2G   1  eigs =   1  -1  -1   1   1  -1  -1   1
irep =    4  sym =B3G   1  eigs =   1  -1   1  -1   1  -1   1  -1
irep =    5  sym =AU    1  eigs =   1   1   1   1  -1  -1  -1  -1
irep =    6  sym =B1U   1  eigs =   1   1  -1  -1  -1  -1   1   1
irep =    7  sym =B2U   1  eigs =   1  -1  -1   1  -1   1   1  -1
irep =    8  sym =B3U   1  eigs =   1  -1   1  -1  -1   1  -1   1
 Number of symmetry operations in the abelian subgroup (excluding E) =    7
 The operations are -
     2     3     4     5     6     7     8
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 AG        1         1         88       1  1  1  1  1  1  1
 B1G       1         2         72       1 -1 -1  1  1 -1 -1
 B2G       1         3         72      -1 -1  1  1 -1 -1  1
 B3G       1         4         72      -1  1 -1  1 -1  1 -1
 AU        1         5         63       1  1  1 -1 -1 -1 -1
 B1U       1         6         78       1 -1 -1 -1 -1  1  1
 B2U       1         7         72      -1 -1  1 -1  1  1 -1
 B3U       1         8         72      -1  1 -1 -1  1 -1  1
Time Now =         0.9030  Delta time =         0.0149 End SymGen

+ Command ExpOrb
+
In GetRMax, RMaxEps =  0.10000000E-05  RMax =    9.6359862155 Angs

----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------

Maximum R in the grid (RMax) =     9.63599 Angs
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) =   10.0
In regions controlled by the wave length (HFacWave) =   10.0
Factor used to control the minimum exponent at each center (MinExpFac) =  300.0
Maximum asymptotic kinetic energy (EMAx) =  50.00000 eV
Maximum step size (MaxStep) =   9.63599 Angs
Factor to increase grid by (GridFac) =     1

    1  Center at =     0.00000 Angs  Alpha Max = 0.10000E+01
    2  Center at =     0.54700 Angs  Alpha Max = 0.14700E+05

Generated Grid

  irg  nin  ntot      step Angs     R end Angs
    1    8     8    0.18998E-02     0.01520
    2    8    16    0.26749E-02     0.03660
    3    8    24    0.43054E-02     0.07104
    4    8    32    0.57696E-02     0.11720
    5    8    40    0.67259E-02     0.17101
    6    8    48    0.68378E-02     0.22571
    7    8    56    0.62927E-02     0.27605
    8    8    64    0.61050E-02     0.32489
    9    8    72    0.67380E-02     0.37879
   10    8    80    0.77685E-02     0.44094
   11    8    88    0.48305E-02     0.47958
   12    8    96    0.30704E-02     0.50415
   13    8   104    0.19517E-02     0.51976
   14    8   112    0.12406E-02     0.52969
   15    8   120    0.78856E-03     0.53599
   16    8   128    0.54521E-03     0.54036
   17    8   136    0.45672E-03     0.54401
   18    8   144    0.37374E-03     0.54700
   19    8   152    0.43646E-03     0.55049
   20    8   160    0.46530E-03     0.55421
   21    8   168    0.57358E-03     0.55880
   22    8   176    0.87025E-03     0.56576
   23    8   184    0.13836E-02     0.57683
   24    8   192    0.21997E-02     0.59443
   25    8   200    0.34972E-02     0.62241
   26    8   208    0.55601E-02     0.66689
   27    8   216    0.88398E-02     0.73761
   28    8   224    0.14054E-01     0.85004
   29    8   232    0.17629E-01     0.99108
   30    8   240    0.20554E-01     1.15551
   31    8   248    0.29077E-01     1.38812
   32    8   256    0.41231E-01     1.71797
   33    8   264    0.46626E-01     2.09097
   34    8   272    0.51232E-01     2.50083
   35    8   280    0.55135E-01     2.94191
   36    8   288    0.58434E-01     3.40939
   37    8   296    0.61228E-01     3.89921
   38    8   304    0.63602E-01     4.40802
   39    8   312    0.65632E-01     4.93308
   40    8   320    0.67378E-01     5.47210
   41    8   328    0.68888E-01     6.02321
   42    8   336    0.70204E-01     6.58485
   43    8   344    0.71357E-01     7.15571
   44    8   352    0.72374E-01     7.73470
   45    8   360    0.73275E-01     8.32090
   46    8   368    0.74079E-01     8.91353
   47    8   376    0.74798E-01     9.51191
   48    8   384    0.15509E-01     9.63599
Time Now =         1.0035  Delta time =         0.1005 End GenGrid

----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------

Maximum scattering l (lmax) =   15
Maximum scattering m (mmaxs) =   15
Maximum numerical integration l (lmaxi) =   30
Maximum numerical integration m (mmaxi) =   30
Maximum l to include in the asymptotic region (lmasym) =    9
Parameter used to determine the cutoff points (PCutRd) =  0.10000000E-07 au
Maximum E used to determine grid (in eV) =       50.00000
Print flag (iprnfg) =    0
lmasymtyts =    8
 Actual value of lmasym found =      9
Number of regions of the same l expansion (NAngReg) =    7
Angular regions
    1 L =    2  from (    1)         0.00190  to (    7)         0.01330
    2 L =    4  from (    8)         0.01520  to (   15)         0.03392
    3 L =    6  from (   16)         0.03660  to (   23)         0.06674
    4 L =    7  from (   24)         0.07104  to (   31)         0.11143
    5 L =    9  from (   32)         0.11720  to (   47)         0.21887
    6 L =   15  from (   48)         0.22571  to (  248)         1.38812
    7 L =    9  from (  249)         1.42935  to (  384)         9.63599
Angular regions for computing spherical harmonics
    1 lval =    9
    2 lval =   15
Last grid points by processor WorkExp =     1.500
Proc id =   -1  Last grid point =       1
Proc id =    0  Last grid point =      56
Proc id =    1  Last grid point =      72
Proc id =    2  Last grid point =      88
Proc id =    3  Last grid point =     104
Proc id =    4  Last grid point =     128
Proc id =    5  Last grid point =     144
Proc id =    6  Last grid point =     160
Proc id =    7  Last grid point =     176
Proc id =    8  Last grid point =     192
Proc id =    9  Last grid point =     208
Proc id =   10  Last grid point =     232
Proc id =   11  Last grid point =     248
Proc id =   12  Last grid point =     280
Proc id =   13  Last grid point =     312
Proc id =   14  Last grid point =     352
Proc id =   15  Last grid point =     384
Time Now =         1.0105  Delta time =         0.0070 End AngGCt

----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------


 R of maximum density
     1  SG    1 at max irg =   19  r =   0.55049
     2  SU    1 at max irg =   19  r =   0.55049
     3  SG    1 at max irg =   18  r =   0.54700
     4  SU    1 at max irg =   29  r =   0.99108
     5  SG    1 at max irg =   29  r =   0.99108
     6  PU    1 at max irg =   26  r =   0.66689
     7  PU    2 at max irg =   26  r =   0.66689

Rotation coefficients for orbital     1  grp =    1 SG    1
     1  1.0000000000

Rotation coefficients for orbital     2  grp =    2 SU    1
     2  1.0000000000

Rotation coefficients for orbital     3  grp =    3 SG    1
     3  1.0000000000

Rotation coefficients for orbital     4  grp =    4 SU    1
     4  1.0000000000

Rotation coefficients for orbital     5  grp =    5 SG    1
     5  1.0000000000

Rotation coefficients for orbital     6  grp =    6 PU    1
     6  1.0000000000    7 -0.0000000000

Rotation coefficients for orbital     7  grp =    6 PU    2
     6  0.0000000000    7  1.0000000000
Number of orbital groups and degeneracis are         6
  1  1  1  1  1  2
Number of orbital groups and number of electrons when fully occupied
         6
  2  2  2  2  2  4
Time Now =         1.2502  Delta time =         0.2396 End RotOrb

----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------

 First orbital group to expand (mofr) =    1
 Last orbital group to expand (moto) =    6
Orbital     1 of  SG    1 symmetry normalization integral =  0.98788415
Orbital     2 of  SU    1 symmetry normalization integral =  0.99051993
Orbital     3 of  SG    1 symmetry normalization integral =  0.99928696
Orbital     4 of  SU    1 symmetry normalization integral =  0.99958573
Orbital     5 of  SG    1 symmetry normalization integral =  0.99994436
Orbital     6 of  PU    1 symmetry normalization integral =  0.99999093
Time Now =         1.9912  Delta time =         0.7410 End ExpOrb

+ Command GetPot
+

----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------

Total density =     14.00000000
Time Now =         1.9952  Delta time =         0.0040 End Den

----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------

 vasymp =  0.14000000E+02 facnorm =  0.10000000E+01
Time Now =         2.0096  Delta time =         0.0144 Electronic part
Time Now =         2.0102  Delta time =         0.0006 End StPot

----------------------------------------------------------------------
vcppol - VCP polarization potential program
----------------------------------------------------------------------

Time Now =         2.0245  Delta time =         0.0143 End VcpPol

+ Command GetDPot
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.15600000E+02  eV
 Do E =  0.23000000E+01 eV (  0.84523450E-01 AU)
Time Now =         2.0376  Delta time =         0.0131 End Fege

----------------------------------------------------------------------
DPot - compute diabatic local potential
----------------------------------------------------------------------

Symmetry type of adibatic potential (symtps) =PG
For a linear molueule, use partial waves with m =    1
Positron flag =    F
Maximum L to include in the diagonal representation (LMaxA) =     9
Maximum np to to write out (nppx) =    4
Unit for plot data (iuvpot) =    0
General print flag (iprnfg) =    0
Charge at the origin is =    0
Charge =  0
Number of radial regions (nrlast) =   48
Found polarization potential
Found fege potential
Maximum l used in usual function (LMax) =   15
Time Now =         2.0481  Delta time =         0.0105 End DPot

+ Command FileName
+ 'PlotData' 'test10.dat' 'REWIND'
Opening file test10.dat at position REWIND
+ Data Record Label - 'N2 pi-g'

+ Command ResSearch
+

----------------------------------------------------------------------
Resonance - program to find resonances
----------------------------------------------------------------------

iuwavf, unit for adiabatic wave function =    0
iuwavo, unit for spherical wave function =    0
iureng, unit to save energies on =   61
idstop, flag to indicate what calculations to do = 0000
Print flag =    0
Runge Kutta Factor =    4
Resonance search type (ResSearchType) =    0
Symmetry type of adibatic potential (symtps) =PG
Label for pole list on PlotData N2 pi-g
Number of energy regions =    1
Region     1 starts at E =  0.25000000E+00 eV with step size =  0.25000000E+00  eV
End point of last region E =  0.60000000E+01 eV
Largest imaginary part =  0.54400000E+01 eV
Imaginary step size =  0.10880000E+01 eV
Charge on the molecule is     0
vmin = -0.69965712E+02 eV
Time Now =         2.0597  Delta time =         0.0116 Starting docalc
 Number of energies (neng) =    24
     E (eV)       Phase Sum        T sum
    0.2500000000   0.21154806E-02   0.98281971E-03
    0.5000000000   0.10586454E-01   0.12398151E-01
    0.7500000000   0.25664611E-01   0.48542252E-01
    1.0000000000   0.46697163E-01   0.11964986E+00
    1.2500000000   0.73602842E-01   0.23510645E+00
    1.5000000000   0.10753468E+00   0.41267560E+00
    1.7500000000   0.15141534E+00   0.69164855E+00
    2.0000000000   0.21097496E+00   0.11582011E+01
    2.2500000000   0.29731911E+00   0.20088157E+01
    2.5000000000   0.43342801E+00   0.37226073E+01
    2.7500000000   0.66972313E+00   0.74446135E+01
    3.0000000000   0.10982916E+01   0.14206925E+02
    3.2500000000   0.17019978E+01   0.16523348E+02
    3.5000000000   0.21755310E+01   0.10781032E+02
    3.7500000000   0.24399807E+01   0.63440322E+01
    4.0000000000   0.25887773E+01   0.40440939E+01
    4.2500000000   0.26803671E+01   0.28170161E+01
    4.5000000000   0.27414302E+01   0.21052302E+01
    4.7500000000   0.27846863E+01   0.16599089E+01
    5.0000000000   0.28167510E+01   0.13638867E+01
    5.2500000000   0.28413502E+01   0.11574920E+01
    5.5000000000   0.28607252E+01   0.10080544E+01
    5.7500000000   0.28762992E+01   0.89654909E+00
    6.0000000000   0.28890169E+01   0.81130892E+00
 Special Points
 eng =    0.25000 (eV)  phase =  0.21154806E-02  tsum =  0.98281971E-03 first
 eng =    3.25000 (eV)  phase =  0.17019978E+01  tsum =  0.16523348E+02 max T
 eng =    6.00000 (eV)  phase =  0.28890169E+01  tsum =  0.81130892E+00 last
 Min - Max jumps
Time Now =         3.8451  Delta time =         1.7854 Begin resonance Search
The number of initial guesses of roots is       29

 Sorted roots on unphysical sheet of open channels
    1   0.1715578369561567E+00  -0.1873512858058982E+01  m2 =  0.171E-08  0.273E-08
    2   0.2825940119723278E+00  -0.3229893586895440E+01  m2 = -0.294E-03 -0.116E-02
    3   0.2826172556158079E+00  -0.3229893861535356E+01  m2 =  0.113E-02  0.195E-02
    4   0.7559204840869130E+00  -0.2982076223894208E+01  m2 =  0.549E-06  0.476E-05
    5   0.2030694372071735E+01  -0.3280295510429498E+01  m2 = -0.183E-07 -0.545E-09
    6   0.2789127916167476E+01  -0.4415747552805564E+01  m2 = -0.663E-06 -0.386E-05
    7   0.3149207932545024E+01  -0.4011219220044602E+00  m2 =  0.567E-14  0.129E-13
    8   0.3589311546479070E+01  -0.4698352384603885E+01  m2 =  0.407E-06 -0.101E-05
    9   0.4763235876055401E+01  -0.4889091658930235E+01  m2 = -0.454E-07 -0.132E-06

 Selected roots on unphysical sheet of open channels
    1   0.3149207932545024E+01  -0.4011219220044602E+00  m2 =  0.567E-14  0.129E-13

Selected roots for comparison
SelcRoots    1  3.149208 -0.401122 eV

Time Now =         8.8049  Delta time =         4.9597 End Resonance

+ Command FileName
+ 'AWaveFun' 'test10AWaveFun.dat' 'REWIND'
Opening file test10AWaveFun.dat at position REWIND

+ Command FileName
+ 'SWaveFun' 'test10SWaveFun.dat' 'REWIND'
Opening file test10SWaveFun.dat at position REWIND

+ Command ResWvFun
+ 1

----------------------------------------------------------------------
Resonance - program to find resonances
----------------------------------------------------------------------

iuwavf, unit for adiabatic wave function =   63
iuwavo, unit for spherical wave function =   62
iureng, unit to save energies on =    0
idstop, flag to indicate what calculations to do = 1000
Print flag =    0
Runge Kutta Factor =    4
Resonance search type (ResSearchType) =    0
Symmetry type of adibatic potential (symtps) =PG
Charge on the molecule is     0
vmin = -0.69965712E+02 eV
Time Now =         8.8179  Delta time =         0.0131 Starting docalc

Writing out wave function to iuwavf =   63 iuwavo =   62
Wave Function Energy =      3.14920793     -0.40112192  eV
T matrix eigenvalue (    1) =  0.32561209E+14  0.13258573E+14
det =    0.5669184128694989E-14   0.1291002664309331E-13
b,e,d     1   0.3149207932545024E+01  -0.4011219220044602E+00  0.567E-14  0.129E-13
b,e,drp   1   0.3149207932545024E+01  -0.4011219220044602E+00  0.141E-13  0.116E+01
b,k,lnd   1   0.4820762969515067E+00  -0.3057806487978429E-01 -0.319E+02  0.116E+01
b,e,lnd   1   0.3149207932545024E+01  -0.4011219220044602E+00 -0.319E+02  0.116E+01
b,e2,lnd  1   0.9756611806091954E+01  -0.2526432677388305E+01 -0.319E+02  0.116E+01
b,e3,lnd  1   0.2971219176313834E+02  -0.1186985270858323E+02 -0.319E+02  0.116E+01
Time Now =         8.9833  Delta time =         0.1654 End Resonance

+ Command FileName
+ 'ViewOrb' 'test10ViewOrb.dat' 'REWIND'
Opening file test10ViewOrb.dat at position REWIND

+ Command FileName
+ 'ViewOrbGeom' 'test10ViewOrbGeom.dat' 'REWIND'
Opening file test10ViewOrbGeom.dat at position REWIND
+ Data Record ViewOrbGrid
+ 0.0 0.0 0.0 / 0.0 0.0 1.0 / 1.0 0.0 0.0 / -2.5 2.5 0.1 / -2.0 2.0 0.1 / 0.0 0.0 0.1

+ Command ViewOrb
+ 'ResWvFun'

----------------------------------------------------------------------
vieworb - Orbital viewing program
----------------------------------------------------------------------

 Unit for output of orbitals on cartesian grid (iuvorb) =   64
 Unit for output of flux on cartesian grid (iujorb) =    0
 Unit for output of geometry information (iugeom) =   66
Using label -N2 pi-g
 Origin of coordinate system in angstroms
         0.000000    0.000000    0.000000
 Directional vectors as inputed
     1         0.000000    0.000000    1.000000
     2         1.000000    0.000000    0.000000
 Directional vectors as computed
     1         0.000000    0.000000    1.000000
     2         1.000000   -0.000000   -0.000000
     3         0.000000    1.000000   -0.000000

In direction 1
(in Angstroms) cmin =   -2.500000  cmax =    2.500000  cstep =    0.100000

In direction 2
(in Angstroms) cmin =   -2.000000  cmax =    2.000000  cstep =    0.100000

In direction 3
(in Angstroms) cmin =    0.000000  cmax =    0.000000  cstep =    0.100000
 Use    -1 orbitals
Time Now =         9.0005  Delta time =         0.0171 End ViewOrb

+ Command FileName
+ 'ViewOrb' 'test10ViewDPot.dat' 'REWIND'
Opening file test10ViewDPot.dat at position REWIND

+ Command ViewOrb
+ 'DPot'

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.15600000E+02  eV
 Do E =  0.23000000E+01 eV (  0.84523450E-01 AU)
Time Now =         9.0170  Delta time =         0.0165 End Fege

----------------------------------------------------------------------
vieworb - Orbital viewing program
----------------------------------------------------------------------

 Unit for output of orbitals on cartesian grid (iuvorb) =   64
 Unit for output of flux on cartesian grid (iujorb) =    0
 Unit for output of geometry information (iugeom) =   66
Using label -N2 pi-g
 Origin of coordinate system in angstroms
         0.000000    0.000000    0.000000
 Directional vectors as inputed
     1         0.000000    0.000000    1.000000
     2         1.000000    0.000000    0.000000
 Directional vectors as computed
     1         0.000000    0.000000    1.000000
     2         1.000000   -0.000000   -0.000000
     3         0.000000    1.000000   -0.000000

In direction 1
(in Angstroms) cmin =   -2.500000  cmax =    2.500000  cstep =    0.100000

In direction 2
(in Angstroms) cmin =   -2.000000  cmax =    2.000000  cstep =    0.100000

In direction 3
(in Angstroms) cmin =    0.000000  cmax =    0.000000  cstep =    0.100000
 Use    -2 orbitals
Found polarization potential
Found fege potential
Time Now =         9.0449  Delta time =         0.0279 End ViewOrb
Time Now =         9.0460  Delta time =         0.0011 Finalize