----------------------------------------------------------------------
ePolyScat Version E2
----------------------------------------------------------------------

Authors: R. R. Lucchese, N. Sanna, A. P. P. Natalense, and F. A. Gianturco
http://www.chem.tamu.edu/rgroup/lucchese/ePolyScat.E2.manual/manual.html
Please cite the following two papers when reporting results obtained with  this program
F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 100, 6464 (1994).
A. P. P. Natalense and R. R. Lucchese, J. Chem. Phys. 111, 5344 (1999).

----------------------------------------------------------------------

Starting at 2009-03-13  11:36:52.263 (GMT -0500)
Using    16 processors

----------------------------------------------------------------------


+ Start of Input Records
#
# input file for test09
#
# Expand HOMO and LUMO of SF6
#
  LMax   15     # maximum l to be used for wave functions
  LMaxI  40     # maximum l value used to determine numerical angular grids
  EMax  50.0    # EMax, maximum asymptotic energy in eV
CnvOrbSel  33 36
Convert '/scratch/rrl581a/ePolyScat.E2/tests/test09.g03' 'g03'
GetBlms
ExpOrb
FileName 'ViewOrb' 'test09ViewOrb.dat' 'REWIND'
FileName 'ViewOrbGeom' 'test09ViewOrbGeom.dat' 'REWIND'
ViewOrbGrid
  0.0 0.0 0.0
  0.0 0.0 1.0
  1.0 0.0 0.0
  -2.5 2.5 0.1
  -2.5 2.5 0.1
  0.0 0.0 0.1
ViewOrb 'ExpOrb' 1 3
ViewOrb 'ExpOrb' 2
+ End of input reached
+ Data Record LMax - 15
+ Data Record LMaxI - 40
+ Data Record EMax - 50.0
+ Data Record CnvOrbSel - 33 36

+ Command Convert
+ '/scratch/rrl581a/ePolyScat.E2/tests/test09.g03' 'g03'

----------------------------------------------------------------------
g03cnv - read input from G03 output
----------------------------------------------------------------------

Expansion center is (in Angstroms) -
     0.0000000000   0.0000000000   0.0000000000
Use orbitals    33  through    36
CardFlag =    T
Normal Mode flag =    F
Selecting orbitals
from    33  to    36  number already selected     0
Number of orbitals selected is     4
Highest orbital read in is =   36
Time Now =         0.0580  Delta time =         0.0580 End g03cnv

Atoms found    7  Coordinates in Angstroms
Z = 16 ZS = 16 r =   0.0000000000   0.0000000000   0.0000000000
Z =  9 ZS =  9 r =   0.0000000000   0.0000000000   1.5602260000
Z =  9 ZS =  9 r =   0.0000000000   1.5602260000   0.0000000000
Z =  9 ZS =  9 r =  -1.5602260000   0.0000000000   0.0000000000
Z =  9 ZS =  9 r =   1.5602260000   0.0000000000   0.0000000000
Z =  9 ZS =  9 r =   0.0000000000  -1.5602260000   0.0000000000
Z =  9 ZS =  9 r =   0.0000000000   0.0000000000  -1.5602260000
Maximum distance from expansion center is    1.5602260000

+ Command GetBlms
+

----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------

Found point group  Oh
Reduce angular grid using nthd =  2  nphid =  4
Found point group for abelian subgroup D2h
Time Now =         0.0780  Delta time =         0.0200 End GetPGroup
List of unique axes
  N  Vector                      Z   R
  1  0.00000  0.00000  1.00000   9  2.94840   9  2.94840
  2  0.00000  1.00000  0.00000   9  2.94840   9  2.94840
  3 -1.00000  0.00000  0.00000   9  2.94840   9  2.94840
List of corresponding x axes
  N  Vector
  1  1.00000 -0.00000 -0.00000
  2  1.00000 -0.00000 -0.00000
  3  0.00000  1.00000 -0.00000
Computed default value of LMaxA =   12
Determineing angular grid in GetAxMax  LMax =   15  LMaxA =   12  LMaxAb =   30
MMax =    3  MMaxAbFlag =    1
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11  12   3   3   3
For axis     2  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3   3
For axis     3  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3   3
On the double L grid used for products
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19
  20  21  22  23  24  25  26  27  28  29  30
For axis     2  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
For axis     3  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is Oh
LMax = =   15
 The dimension of each irreducable representation is
    A1G   (  1)    A2G   (  1)    EG    (  2)    T1G   (  3)    T2G   (  3)
    A1U   (  1)    A2U   (  1)    EU    (  2)    T1U   (  3)    T2U   (  3)
 Number of symmetry operations in the abelian subgroup (excluding E) =    7
 The operations are -
    16    19    24     2     4     3     5
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A1G       1         1          8       1  1  1  1  1  1  1
 A2G       1         2          4       1  1  1  1  1  1  1
 EG        1         3         11       1  1  1  1  1  1  1
 EG        2         4         11       1  1  1  1  1  1  1
 T1G       1         5         11      -1 -1  1  1 -1 -1  1
 T1G       2         6         11      -1  1 -1  1 -1  1 -1
 T1G       3         7         11       1 -1 -1  1  1 -1 -1
 T2G       1         8         15      -1 -1  1  1 -1 -1  1
 T2G       2         9         15      -1  1 -1  1 -1  1 -1
 T2G       3        10         15       1 -1 -1  1  1 -1 -1
 A1U       1        11          1       1  1  1 -1 -1 -1 -1
 A2U       1        12          6       1  1  1 -1 -1 -1 -1
 EU        1        13          7       1  1  1 -1 -1 -1 -1
 EU        2        14          7       1  1  1 -1 -1 -1 -1
 T1U       1        15         18      -1 -1  1 -1  1  1 -1
 T1U       2        16         18      -1  1 -1 -1  1 -1  1
 T1U       3        17         18       1 -1 -1 -1 -1  1  1
 T2U       1        18         15      -1 -1  1 -1  1  1 -1
 T2U       2        19         15      -1  1 -1 -1  1 -1  1
 T2U       3        20         15       1 -1 -1 -1 -1  1  1
Time Now =         1.2457  Delta time =         1.1677 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
A1G   1    0(   1)    1(   1)    2(   1)    3(   1)    4(   2)    5(   2)    6(   3)    7(   3)    8(   4)    9(   4)
          10(   5)   11(   5)   12(   7)
A2G   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   1)    7(   1)    8(   1)    9(   1)
          10(   2)   11(   2)   12(   3)
EG    1    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)    6(   3)    7(   3)    8(   5)    9(   5)
          10(   7)   11(   7)   12(   9)
EG    2    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)    6(   3)    7(   3)    8(   5)    9(   5)
          10(   7)   11(   7)   12(   9)
T1G   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   1)    6(   2)    7(   2)    8(   4)    9(   4)
          10(   6)   11(   6)   12(   9)
T1G   2    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   1)    6(   2)    7(   2)    8(   4)    9(   4)
          10(   6)   11(   6)   12(   9)
T1G   3    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   1)    6(   2)    7(   2)    8(   4)    9(   4)
          10(   6)   11(   6)   12(   9)
T2G   1    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)    6(   4)    7(   4)    8(   6)    9(   6)
          10(   9)   11(   9)   12(  12)
T2G   2    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)    6(   4)    7(   4)    8(   6)    9(   6)
          10(   9)   11(   9)   12(  12)
T2G   3    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)    6(   4)    7(   4)    8(   6)    9(   6)
          10(   9)   11(   9)   12(  12)
A1U   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   0)    7(   0)    8(   0)    9(   1)
          10(   1)   11(   1)   12(   1)
A2U   1    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   1)    6(   1)    7(   2)    8(   2)    9(   3)
          10(   3)   11(   4)   12(   4)
EU    1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   1)    6(   1)    7(   2)    8(   2)    9(   3)
          10(   3)   11(   5)   12(   5)
EU    2    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   1)    6(   1)    7(   2)    8(   2)    9(   3)
          10(   3)   11(   5)   12(   5)
T1U   1    0(   0)    1(   1)    2(   1)    3(   2)    4(   2)    5(   4)    6(   4)    7(   6)    8(   6)    9(   9)
          10(   9)   11(  12)   12(  12)
T1U   2    0(   0)    1(   1)    2(   1)    3(   2)    4(   2)    5(   4)    6(   4)    7(   6)    8(   6)    9(   9)
          10(   9)   11(  12)   12(  12)
T1U   3    0(   0)    1(   1)    2(   1)    3(   2)    4(   2)    5(   4)    6(   4)    7(   6)    8(   6)    9(   9)
          10(   9)   11(  12)   12(  12)
T2U   1    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   2)    6(   2)    7(   4)    8(   4)    9(   6)
          10(   6)   11(   9)   12(   9)
T2U   2    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   2)    6(   2)    7(   4)    8(   4)    9(   6)
          10(   6)   11(   9)   12(   9)
T2U   3    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   2)    6(   2)    7(   4)    8(   4)    9(   6)
          10(   6)   11(   9)   12(   9)

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is D2h
LMax = =   30
 The dimension of each irreducable representation is
    AG    (  1)    B1G   (  1)    B2G   (  1)    B3G   (  1)    AU    (  1)
    B1U   (  1)    B2U   (  1)    B3U   (  1)
Abelian axes
    1       1.000000       0.000000       0.000000
    2       0.000000       1.000000       0.000000
    3       0.000000       0.000000       1.000000
Symmetry operation directions
  1       0.000000       0.000000       1.000000 ang =  0  1 type = 0 axis = 3
  2       0.000000       1.000000       0.000000 ang =  1  2 type = 2 axis = 2
  3       1.000000       0.000000       0.000000 ang =  1  2 type = 2 axis = 1
  4       0.000000       0.000000       1.000000 ang =  1  2 type = 2 axis = 3
  5       0.000000       0.000000       1.000000 ang =  1  2 type = 3 axis = 3
  6       0.000000       1.000000       0.000000 ang =  0  1 type = 1 axis = 2
  7       1.000000       0.000000       0.000000 ang =  0  1 type = 1 axis = 1
  8       0.000000       0.000000       1.000000 ang =  0  1 type = 1 axis = 3
irep =    1  sym =AG    1  eigs =   1   1   1   1   1   1   1   1
irep =    2  sym =B1G   1  eigs =   1  -1  -1   1   1  -1  -1   1
irep =    3  sym =B2G   1  eigs =   1   1  -1  -1   1   1  -1  -1
irep =    4  sym =B3G   1  eigs =   1  -1   1  -1   1  -1   1  -1
irep =    5  sym =AU    1  eigs =   1   1   1   1  -1  -1  -1  -1
irep =    6  sym =B1U   1  eigs =   1  -1  -1   1  -1   1   1  -1
irep =    7  sym =B2U   1  eigs =   1   1  -1  -1  -1  -1   1   1
irep =    8  sym =B3U   1  eigs =   1  -1   1  -1  -1   1  -1   1
 Number of symmetry operations in the abelian subgroup (excluding E) =    7
 The operations are -
     2     3     4     5     6     7     8
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 AG        1         1        136       1  1  1  1  1  1  1
 B1G       1         2        120      -1 -1  1  1 -1 -1  1
 B2G       1         3        120       1 -1 -1  1  1 -1 -1
 B3G       1         4        120      -1  1 -1  1 -1  1 -1
 AU        1         5        105       1  1  1 -1 -1 -1 -1
 B1U       1         6        120      -1 -1  1 -1  1  1 -1
 B2U       1         7        120       1 -1 -1 -1 -1  1  1
 B3U       1         8        120      -1  1 -1 -1  1 -1  1
Time Now =         1.2706  Delta time =         0.0248 End SymGen

+ Command ExpOrb
+
In GetRMax, RMaxEps =  0.10000000E-05  RMax =    5.8721300277 Angs

----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------

Maximum R in the grid (RMax) =     5.87213 Angs
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) =   10.0
In regions controlled by the wave length (HFacWave) =   10.0
Factor used to control the minimum exponent at each center (MinExpFac) =  300.0
Maximum asymptotic kinetic energy (EMAx) =  50.00000 eV
Maximum step size (MaxStep) =   5.87213 Angs
Factor to increase grid by (GridFac) =     1

    1  Center at =     0.00000 Angs  Alpha Max = 0.93413E+05
    2  Center at =     1.56023 Angs  Alpha Max = 0.24300E+05

Generated Grid

  irg  nin  ntot      step Angs     R end Angs
    1    8     8    0.17314E-03     0.00139
    2    8    16    0.18458E-03     0.00286
    3    8    24    0.22753E-03     0.00468
    4    8    32    0.34522E-03     0.00744
    5    8    40    0.54886E-03     0.01183
    6    8    48    0.87261E-03     0.01882
    7    8    56    0.13873E-02     0.02991
    8    8    64    0.22057E-02     0.04756
    9    8    72    0.35067E-02     0.07561
   10    8    80    0.55752E-02     0.12021
   11    8    88    0.88638E-02     0.19112
   12    8    96    0.14092E-01     0.30386
   13    8   104    0.19060E-01     0.45635
   14    8   112    0.20002E-01     0.61636
   15    8   120    0.18519E-01     0.76451
   16    8   128    0.17538E-01     0.90481
   17    8   136    0.17168E-01     1.04216
   18    8   144    0.17168E-01     1.17950
   19    8   152    0.17233E-01     1.31737
   20    8   160    0.11061E-01     1.40586
   21    8   168    0.70308E-02     1.46210
   22    8   176    0.44691E-02     1.49785
   23    8   184    0.28407E-02     1.52058
   24    8   192    0.18057E-02     1.53503
   25    8   200    0.11477E-02     1.54421
   26    8   208    0.72955E-03     1.55004
   27    8   216    0.47544E-03     1.55385
   28    8   224    0.37375E-03     1.55684
   29    8   232    0.34071E-03     1.55956
   30    8   240    0.82832E-04     1.56023
   31    8   248    0.33947E-03     1.56294
   32    8   256    0.36190E-03     1.56584
   33    8   264    0.44612E-03     1.56941
   34    8   272    0.67686E-03     1.57482
   35    8   280    0.10761E-02     1.58343
   36    8   288    0.17109E-02     1.59712
   37    8   296    0.27201E-02     1.61888
   38    8   304    0.43245E-02     1.65347
   39    8   312    0.68754E-02     1.70848
   40    8   320    0.10931E-01     1.79593
   41    8   328    0.17379E-01     1.93496
   42    8   336    0.17431E-01     2.07441
   43    8   344    0.17453E-01     2.21403
   44    8   352    0.19257E-01     2.36808
   45    8   360    0.21220E-01     2.53784
   46    8   368    0.23133E-01     2.72290
   47    8   376    0.24995E-01     2.92286
   48    8   384    0.26804E-01     3.13729
   49    8   392    0.28559E-01     3.36577
   50    8   400    0.30261E-01     3.60786
   51    8   408    0.31909E-01     3.86313
   52    8   416    0.33504E-01     4.13117
   53    8   424    0.35046E-01     4.41154
   54    8   432    0.36536E-01     4.70383
   55    8   440    0.37975E-01     5.00763
   56    8   448    0.39363E-01     5.32253
   57    8   456    0.40702E-01     5.64815
   58    8   464    0.27998E-01     5.87213
Time Now =         1.4654  Delta time =         0.1948 End GenGrid

----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------

Maximum scattering l (lmax) =   15
Maximum scattering m (mmaxs) =   15
Maximum numerical integration l (lmaxi) =   40
Maximum numerical integration m (mmaxi) =   40
Maximum l to include in the asymptotic region (lmasym) =   12
Parameter used to determine the cutoff points (PCutRd) =  0.10000000E-07 au
Maximum E used to determine grid (in eV) =       50.00000
Print flag (iprnfg) =    0
lmasymtyts =   12
 Actual value of lmasym found =     12
Number of regions of the same l expansion (NAngReg) =   10
Angular regions
    1 L =    2  from (    1)         0.00017  to (    7)         0.00121
    2 L =    5  from (    8)         0.00139  to (   23)         0.00445
    3 L =    6  from (   24)         0.00468  to (   31)         0.00710
    4 L =    7  from (   32)         0.00744  to (   47)         0.01794
    5 L =    8  from (   48)         0.01882  to (   55)         0.02853
    6 L =   10  from (   56)         0.02991  to (   63)         0.04535
    7 L =   11  from (   64)         0.04756  to (   71)         0.07211
    8 L =   12  from (   72)         0.07561  to (  119)         0.74599
    9 L =   15  from (  120)         0.76451  to (  376)         2.92286
   10 L =   12  from (  377)         2.94967  to (  464)         5.87213
Angular regions for computing spherical harmonics
    1 lval =   12
    2 lval =   15
Last grid points by processor WorkExp =     1.500
Proc id =   -1  Last grid point =       1
Proc id =    0  Last grid point =      80
Proc id =    1  Last grid point =     112
Proc id =    2  Last grid point =     136
Proc id =    3  Last grid point =     160
Proc id =    4  Last grid point =     184
Proc id =    5  Last grid point =     208
Proc id =    6  Last grid point =     232
Proc id =    7  Last grid point =     256
Proc id =    8  Last grid point =     280
Proc id =    9  Last grid point =     304
Proc id =   10  Last grid point =     328
Proc id =   11  Last grid point =     352
Proc id =   12  Last grid point =     376
Proc id =   13  Last grid point =     400
Proc id =   14  Last grid point =     432
Proc id =   15  Last grid point =     464
Time Now =         1.4994  Delta time =         0.0341 End AngGCt

----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------


 R of maximum density
     1  T1G   1 at max irg =   35  r =   1.58343
     2  T1G   2 at max irg =   35  r =   1.58343
     3  T1G   3 at max irg =   35  r =   1.58343
     4  A1G   1 at max irg =   20  r =   1.40586

Rotation coefficients for orbital     1  grp =    1 T1G   1
     1  0.0000000000    2 -1.0000000000    3 -0.0000000000

Rotation coefficients for orbital     2  grp =    1 T1G   2
     1  1.0000000000    2  0.0000000000    3  0.0000000000

Rotation coefficients for orbital     3  grp =    1 T1G   3
     1 -0.0000000000    2 -0.0000000000    3  1.0000000000

Rotation coefficients for orbital     4  grp =    2 A1G   1
     4  1.0000000000
Number of orbital groups and degeneracis are         2
  3  1
Number of orbital groups and number of electrons when fully occupied
         2
  6  2
Time Now =         2.0475  Delta time =         0.5481 End RotOrb

----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------

 First orbital group to expand (mofr) =    1
 Last orbital group to expand (moto) =    2
Orbital     1 of  T1G   1 symmetry normalization integral =  0.97340206
Orbital     2 of  A1G   1 symmetry normalization integral =  0.98573136
Time Now =         4.9730  Delta time =         2.9255 End ExpOrb

+ Command FileName
+ 'ViewOrb' 'test09ViewOrb.dat' 'REWIND'
Opening file test09ViewOrb.dat at position REWIND

+ Command FileName
+ 'ViewOrbGeom' 'test09ViewOrbGeom.dat' 'REWIND'
Opening file test09ViewOrbGeom.dat at position REWIND
+ Data Record ViewOrbGrid
+ 0.0 0.0 0.0 / 0.0 0.0 1.0 / 1.0 0.0 0.0 / -2.5 2.5 0.1 / -2.5 2.5 0.1 / 0.0 0.0 0.1

+ Command ViewOrb
+ 'ExpOrb' 1 3

----------------------------------------------------------------------
vieworb - Orbital viewing program
----------------------------------------------------------------------

 Unit for output of orbitals on cartesian grid (iuvorb) =   64
 Unit for output of flux on cartesian grid (iujorb) =    0
 Unit for output of geometry information (iugeom) =   66
 Origin of coordinate system in angstroms
         0.000000    0.000000    0.000000
 Directional vectors as inputed
     1         0.000000    0.000000    1.000000
     2         1.000000    0.000000    0.000000
 Directional vectors as computed
     1         0.000000    0.000000    1.000000
     2         1.000000   -0.000000   -0.000000
     3         0.000000    1.000000   -0.000000

In direction 1
(in Angstroms) cmin =   -2.500000  cmax =    2.500000  cstep =    0.100000

In direction 2
(in Angstroms) cmin =   -2.500000  cmax =    2.500000  cstep =    0.100000

In direction 3
(in Angstroms) cmin =    0.000000  cmax =    0.000000  cstep =    0.100000
 Use     1 orbitals
Time Now =         4.9951  Delta time =         0.0221 End ViewOrb

+ Command ViewOrb
+ 'ExpOrb' 2

----------------------------------------------------------------------
vieworb - Orbital viewing program
----------------------------------------------------------------------

 Unit for output of orbitals on cartesian grid (iuvorb) =   64
 Unit for output of flux on cartesian grid (iujorb) =    0
 Unit for output of geometry information (iugeom) =   66
 Origin of coordinate system in angstroms
         0.000000    0.000000    0.000000
 Directional vectors as inputed
     1         0.000000    0.000000    1.000000
     2         1.000000    0.000000    0.000000
 Directional vectors as computed
     1         0.000000    0.000000    1.000000
     2         1.000000   -0.000000   -0.000000
     3         0.000000    1.000000   -0.000000

In direction 1
(in Angstroms) cmin =   -2.500000  cmax =    2.500000  cstep =    0.100000

In direction 2
(in Angstroms) cmin =   -2.500000  cmax =    2.500000  cstep =    0.100000

In direction 3
(in Angstroms) cmin =    0.000000  cmax =    0.000000  cstep =    0.100000
 Use     2 orbitals
Time Now =         5.0083  Delta time =         0.0132 End ViewOrb
Time Now =         5.0098  Delta time =         0.0016 Finalize