----------------------------------------------------------------------
ePolyScat Version E2
----------------------------------------------------------------------

Authors: R. R. Lucchese, N. Sanna, A. P. P. Natalense, and F. A. Gianturco
http://www.chem.tamu.edu/rgroup/lucchese/ePolyScat.E2.manual/manual.html
Please cite the following two papers when reporting results obtained with  this program
F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 100, 6464 (1994).
A. P. P. Natalense and R. R. Lucchese, J. Chem. Phys. 111, 5344 (1999).

----------------------------------------------------------------------

Starting at 2009-03-13  11:36:10.304 (GMT -0500)
Using    16 processors

----------------------------------------------------------------------


+ Start of Input Records
#
# input file for test06
#
# electron scattering from N2 molden SCF, polarization potential, low energy
#
  LMax   15     # maximum l to be used for wave functions
  EMax  50.0    # EMax, maximum asymptotic energy in eV
  EngForm      # Energy formulas
   0 0         # charge, formula type
  VCorr 'PZ'
  AsyPol
 0.15  # SwitchD, distance where switching function is down to 0.1
 1     # nterm, number of terms needed to define asymptotic potential
 0     # center for polarization term 1 is for C atom
 0.0 0.0 0.0   # use molecular center for polarization term
 2     # ittyp type of polarization term, = 1 for spherically symmetric
       # = 2 for reading in the full tensor
 8.664 8.664 17.904 0.0 0.0 0.0 # axx, ayy, azz, axy, axz, ayz
 3     # icrtyp, flag to determine where r match is, 3 for second crossing
       # or at nearest approach
 0     # ilntyp, flag to determine what matching line is used, 0 - use
       # l = 0 radial function as matching function

  FegeEng 13.0   # Energy correction (in eV) used in the fege potential
  ScatContSym 'SG'  # Scattering symmetry
  LMaxK    8     # Maximum l in the K matirx

Convert '/scratch/rrl581a/ePolyScat.E2/tests/test06.molden' 'molden'
GetBlms
ExpOrb
GetPot
Scat 0.001 0.01 0.02
TotalCrossSection
+ End of input reached
+ Data Record LMax - 15
+ Data Record EMax - 50.0
+ Data Record EngForm - 0 0
+ Data Record VCorr - 'PZ'
+ Data Record AsyPol
+ 0.15 / 1 / 0 / 0.0 0.0 0.0 / 2 / 8.664 8.664 17.904 0.0 0.0 0.0 / 3 / 0
+ Data Record FegeEng - 13.0
+ Data Record ScatContSym - 'SG'
+ Data Record LMaxK - 8

+ Command Convert
+ '/scratch/rrl581a/ePolyScat.E2/tests/test06.molden' 'molden'

----------------------------------------------------------------------
MoldenCnv - Molden (from Molpro) conversion program
----------------------------------------------------------------------

Expansion center is (in Angstroms) -
     0.0000000000   0.0000000000   0.0000000000
Convert from Angstroms to Bohr radii
Found    110 basis functions
Selecting orbitals
Number of orbitals selected is     7
Selecting    1   1 Ene =     -15.6842 Spin =Alpha Occup =   2.000000
Selecting    2   2 Ene =     -15.6806 Spin =Alpha Occup =   2.000000
Selecting    3   3 Ene =      -1.4752 Spin =Alpha Occup =   2.000000
Selecting    4   4 Ene =      -0.7786 Spin =Alpha Occup =   2.000000
Selecting    5   5 Ene =      -0.6350 Spin =Alpha Occup =   2.000000
Selecting    6   6 Ene =      -0.6161 Spin =Alpha Occup =   2.000000
Selecting    7   7 Ene =      -0.6161 Spin =Alpha Occup =   2.000000

Atoms found    2  Coordinates in Angstroms
Z =  7 ZS =  7 r =   0.0000000000   0.0000000000  -0.5470000000
Z =  7 ZS =  7 r =   0.0000000000   0.0000000000   0.5470000000
Maximum distance from expansion center is    0.5470000000

+ Command GetBlms
+

----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------

Found point group  DAh
Reduce angular grid using nthd =  2  nphid =  4
Found point group for abelian subgroup D2h
Time Now =         0.0872  Delta time =         0.0872 End GetPGroup
List of unique axes
  N  Vector                      Z   R
  1  0.00000  0.00000  1.00000   7  1.03368   7  1.03368
List of corresponding x axes
  N  Vector
  1  1.00000 -0.00000 -0.00000
Computed default value of LMaxA =    9
Determineing angular grid in GetAxMax  LMax =   15  LMaxA =    9  LMaxAb =   30
MMax =    3  MMaxAbFlag =    2
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9   3   3   3   3   3   3
On the double L grid used for products
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  12
  12  12  12  12  12   6   6   6   6   6   6

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is DAh
LMax = =   15
 The dimension of each irreducable representation is
    SG    (  1)    A2G   (  1)    B1G   (  1)    B2G   (  1)    PG    (  2)
    DG    (  2)    FG    (  2)    GG    (  2)    SU    (  1)    A2U   (  1)
    B1U   (  1)    B2U   (  1)    PU    (  2)    DU    (  2)    FU    (  2)
    GU    (  2)
 Number of symmetry operations in the abelian subgroup (excluding E) =    7
 The operations are -
    12    22    32     2     3    21    31
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 SG        1         1          8       1  1  1  1  1  1  1
 A2G       1         2          0       1 -1 -1  1  1 -1 -1
 B1G       1         3          2      -1  1 -1  1 -1  1 -1
 B2G       1         4          2      -1 -1  1  1 -1 -1  1
 PG        1         5          7      -1 -1  1  1 -1 -1  1
 PG        2         6          7      -1  1 -1  1 -1  1 -1
 DG        1         7          8       1 -1 -1  1  1 -1 -1
 DG        2         8          8       1  1  1  1  1  1  1
 FG        1         9          7      -1 -1  1  1 -1 -1  1
 FG        2        10          7      -1  1 -1  1 -1  1 -1
 GG        1        11          5       1 -1 -1  1  1 -1 -1
 GG        2        12          5       1  1  1  1  1  1  1
 SU        1        13          8       1 -1 -1 -1 -1  1  1
 A2U       1        14          0       1  1  1 -1 -1 -1 -1
 B1U       1        15          3      -1 -1  1 -1  1  1 -1
 B2U       1        16          3      -1  1 -1 -1  1 -1  1
 PU        1        17          9      -1 -1  1 -1  1  1 -1
 PU        2        18          9      -1  1 -1 -1  1 -1  1
 DU        1        19          8       1 -1 -1 -1 -1  1  1
 DU        2        20          8       1  1  1 -1 -1 -1 -1
 FU        1        21          9      -1 -1  1 -1  1  1 -1
 FU        2        22          9      -1  1 -1 -1  1 -1  1
 GU        1        23          5       1 -1 -1 -1 -1  1  1
 GU        2        24          5       1  1  1 -1 -1 -1 -1
Time Now =         0.8972  Delta time =         0.8100 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
SG    1    0(   1)    1(   1)    2(   2)    3(   2)    4(   3)    5(   3)    6(   4)    7(   4)    8(   5)    9(   5)
A2G   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   0)    7(   0)    8(   0)    9(   0)
B1G   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   1)    7(   1)    8(   2)    9(   2)
B2G   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   1)    7(   1)    8(   2)    9(   2)
PG    1    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)    6(   3)    7(   3)    8(   4)    9(   4)
PG    2    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)    6(   3)    7(   3)    8(   4)    9(   4)
DG    1    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)    6(   3)    7(   3)    8(   5)    9(   5)
DG    2    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)    6(   3)    7(   3)    8(   5)    9(   5)
FG    1    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   1)    6(   2)    7(   2)    8(   4)    9(   4)
FG    2    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   1)    6(   2)    7(   2)    8(   4)    9(   4)
GG    1    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   1)    6(   3)    7(   3)    8(   5)    9(   5)
GG    2    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   1)    6(   3)    7(   3)    8(   5)    9(   5)
SU    1    0(   0)    1(   1)    2(   1)    3(   2)    4(   2)    5(   3)    6(   3)    7(   4)    8(   4)    9(   5)
A2U   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   0)    7(   0)    8(   0)    9(   0)
B1U   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   1)    6(   1)    7(   2)    8(   2)    9(   3)
B2U   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   1)    6(   1)    7(   2)    8(   2)    9(   3)
PU    1    0(   0)    1(   1)    2(   1)    3(   2)    4(   2)    5(   3)    6(   3)    7(   4)    8(   4)    9(   6)
PU    2    0(   0)    1(   1)    2(   1)    3(   2)    4(   2)    5(   3)    6(   3)    7(   4)    8(   4)    9(   6)
DU    1    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   2)    6(   2)    7(   3)    8(   3)    9(   5)
DU    2    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   2)    6(   2)    7(   3)    8(   3)    9(   5)
FU    1    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   2)    6(   2)    7(   4)    8(   4)    9(   6)
FU    2    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   2)    6(   2)    7(   4)    8(   4)    9(   6)
GU    1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   1)    6(   1)    7(   3)    8(   3)    9(   5)
GU    2    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   1)    6(   1)    7(   3)    8(   3)    9(   5)

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is D2h
LMax = =   30
 The dimension of each irreducable representation is
    AG    (  1)    B1G   (  1)    B2G   (  1)    B3G   (  1)    AU    (  1)
    B1U   (  1)    B2U   (  1)    B3U   (  1)
Abelian axes
    1       1.000000      -0.000000       0.000000
    2       0.000000       1.000000      -0.000000
    3       0.000000       0.000000       1.000000
Symmetry operation directions
  1       0.000000       0.000000       1.000000 ang =  0  1 type = 0 axis = 3
  2       0.000000       0.000000       1.000000 ang =  1  2 type = 2 axis = 3
  3       1.000000      -0.000000       0.000000 ang =  1  2 type = 2 axis = 1
  4       0.000000       1.000000       0.000000 ang =  1  2 type = 2 axis = 2
  5       0.000000       0.000000       1.000000 ang =  1  2 type = 3 axis = 3
  6       0.000000       0.000000       1.000000 ang =  0  1 type = 1 axis = 3
  7       1.000000       0.000000       0.000000 ang =  0  1 type = 1 axis = 1
  8       0.000000       1.000000       0.000000 ang =  0  1 type = 1 axis = 2
irep =    1  sym =AG    1  eigs =   1   1   1   1   1   1   1   1
irep =    2  sym =B1G   1  eigs =   1   1  -1  -1   1   1  -1  -1
irep =    3  sym =B2G   1  eigs =   1  -1  -1   1   1  -1  -1   1
irep =    4  sym =B3G   1  eigs =   1  -1   1  -1   1  -1   1  -1
irep =    5  sym =AU    1  eigs =   1   1   1   1  -1  -1  -1  -1
irep =    6  sym =B1U   1  eigs =   1   1  -1  -1  -1  -1   1   1
irep =    7  sym =B2U   1  eigs =   1  -1  -1   1  -1   1   1  -1
irep =    8  sym =B3U   1  eigs =   1  -1   1  -1  -1   1  -1   1
 Number of symmetry operations in the abelian subgroup (excluding E) =    7
 The operations are -
     2     3     4     5     6     7     8
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 AG        1         1         88       1  1  1  1  1  1  1
 B1G       1         2         72       1 -1 -1  1  1 -1 -1
 B2G       1         3         72      -1 -1  1  1 -1 -1  1
 B3G       1         4         72      -1  1 -1  1 -1  1 -1
 AU        1         5         63       1  1  1 -1 -1 -1 -1
 B1U       1         6         78       1 -1 -1 -1 -1  1  1
 B2U       1         7         72      -1 -1  1 -1  1  1 -1
 B3U       1         8         72      -1  1 -1 -1  1 -1  1
Time Now =         0.9119  Delta time =         0.0148 End SymGen

+ Command ExpOrb
+
In GetRMax, RMaxEps =  0.10000000E-05  RMax =    9.6359862155 Angs

----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------

Maximum R in the grid (RMax) =     9.63599 Angs
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) =   10.0
In regions controlled by the wave length (HFacWave) =   10.0
Factor used to control the minimum exponent at each center (MinExpFac) =  300.0
Maximum asymptotic kinetic energy (EMAx) =  50.00000 eV
Maximum step size (MaxStep) =   0.01058 Angs
Factor to increase grid by (GridFac) =     1

    1  Center at =     0.00000 Angs  Alpha Max = 0.10000E+01
    2  Center at =     0.54700 Angs  Alpha Max = 0.14700E+05

Generated Grid

  irg  nin  ntot      step Angs     R end Angs
    1    8     8    0.18998E-02     0.01520
    2    8    16    0.26749E-02     0.03660
    3    8    24    0.43054E-02     0.07104
    4    8    32    0.57696E-02     0.11720
    5    8    40    0.67259E-02     0.17101
    6    8    48    0.68378E-02     0.22571
    7    8    56    0.62927E-02     0.27605
    8    8    64    0.61050E-02     0.32489
    9    8    72    0.67380E-02     0.37879
   10    8    80    0.77685E-02     0.44094
   11    8    88    0.48305E-02     0.47958
   12    8    96    0.30704E-02     0.50415
   13    8   104    0.19517E-02     0.51976
   14    8   112    0.12406E-02     0.52969
   15    8   120    0.78856E-03     0.53599
   16    8   128    0.54521E-03     0.54036
   17    8   136    0.45672E-03     0.54401
   18    8   144    0.37374E-03     0.54700
   19    8   152    0.43646E-03     0.55049
   20    8   160    0.46530E-03     0.55421
   21    8   168    0.57358E-03     0.55880
   22    8   176    0.87025E-03     0.56576
   23    8   184    0.13836E-02     0.57683
   24    8   192    0.21997E-02     0.59443
   25    8   200    0.34972E-02     0.62241
   26    8   208    0.55601E-02     0.66689
   27    8   216    0.88398E-02     0.73761
   28   64   280    0.10584E-01     1.41496
   29   64   344    0.10584E-01     2.09230
   30   64   408    0.10584E-01     2.76965
   31   64   472    0.10584E-01     3.44700
   32   64   536    0.10584E-01     4.12434
   33   64   600    0.10584E-01     4.80169
   34   64   664    0.10584E-01     5.47904
   35   64   728    0.10584E-01     6.15638
   36   64   792    0.10584E-01     6.83373
   37   64   856    0.10584E-01     7.51108
   38   64   920    0.10584E-01     8.18842
   39   64   984    0.10584E-01     8.86577
   40   64  1048    0.10584E-01     9.54312
   41    8  1056    0.10584E-01     9.62779
   42    8  1064    0.10251E-02     9.63599
Time Now =         1.0135  Delta time =         0.1015 End GenGrid

----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------

Maximum scattering l (lmax) =   15
Maximum scattering m (mmaxs) =   15
Maximum numerical integration l (lmaxi) =   30
Maximum numerical integration m (mmaxi) =   30
Maximum l to include in the asymptotic region (lmasym) =    9
Parameter used to determine the cutoff points (PCutRd) =  0.10000000E-07 au
Maximum E used to determine grid (in eV) =       50.00000
Print flag (iprnfg) =    0
lmasymtyts =    8
 Actual value of lmasym found =      9
Number of regions of the same l expansion (NAngReg) =    7
Angular regions
    1 L =    2  from (    1)         0.00190  to (    7)         0.01330
    2 L =    4  from (    8)         0.01520  to (   15)         0.03392
    3 L =    6  from (   16)         0.03660  to (   23)         0.06674
    4 L =    7  from (   24)         0.07104  to (   31)         0.11143
    5 L =    9  from (   32)         0.11720  to (   47)         0.21887
    6 L =   15  from (   48)         0.22571  to (  272)         1.33029
    7 L =    9  from (  273)         1.34087  to ( 1064)         9.63599
Angular regions for computing spherical harmonics
    1 lval =    9
    2 lval =   15
Last grid points by processor WorkExp =     1.500
Proc id =   -1  Last grid point =       1
Proc id =    0  Last grid point =      80
Proc id =    1  Last grid point =     112
Proc id =    2  Last grid point =     152
Proc id =    3  Last grid point =     192
Proc id =    4  Last grid point =     224
Proc id =    5  Last grid point =     264
Proc id =    6  Last grid point =     336
Proc id =    7  Last grid point =     416
Proc id =    8  Last grid point =     496
Proc id =    9  Last grid point =     576
Proc id =   10  Last grid point =     664
Proc id =   11  Last grid point =     744
Proc id =   12  Last grid point =     824
Proc id =   13  Last grid point =     904
Proc id =   14  Last grid point =     984
Proc id =   15  Last grid point =    1064
Time Now =         1.0332  Delta time =         0.0197 End AngGCt

----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------


 R of maximum density
     1  SG    1 at max irg =   19  r =   0.55049
     2  SU    1 at max irg =   19  r =   0.55049
     3  SG    1 at max irg =   18  r =   0.54700
     4  SU    1 at max irg =   29  r =   0.90695
     5  SG    1 at max irg =   30  r =   0.99161
     6  PU    1 at max irg =   26  r =   0.66689
     7  PU    2 at max irg =   26  r =   0.66689

Rotation coefficients for orbital     1  grp =    1 SG    1
     1  1.0000000000

Rotation coefficients for orbital     2  grp =    2 SU    1
     2  1.0000000000

Rotation coefficients for orbital     3  grp =    3 SG    1
     3  1.0000000000

Rotation coefficients for orbital     4  grp =    4 SU    1
     4  1.0000000000

Rotation coefficients for orbital     5  grp =    5 SG    1
     5  1.0000000000

Rotation coefficients for orbital     6  grp =    6 PU    1
     6  1.0000000000    7 -0.0000000000

Rotation coefficients for orbital     7  grp =    6 PU    2
     6  0.0000000000    7  1.0000000000
Number of orbital groups and degeneracis are         6
  1  1  1  1  1  2
Number of orbital groups and number of electrons when fully occupied
         6
  2  2  2  2  2  4
Time Now =         1.3791  Delta time =         0.3459 End RotOrb

----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------

 First orbital group to expand (mofr) =    1
 Last orbital group to expand (moto) =    6
Orbital     1 of  SG    1 symmetry normalization integral =  0.98788414
Orbital     2 of  SU    1 symmetry normalization integral =  0.99051993
Orbital     3 of  SG    1 symmetry normalization integral =  0.99928695
Orbital     4 of  SU    1 symmetry normalization integral =  0.99958573
Orbital     5 of  SG    1 symmetry normalization integral =  0.99994436
Orbital     6 of  PU    1 symmetry normalization integral =  0.99999093
Time Now =         2.7526  Delta time =         1.3735 End ExpOrb

+ Command GetPot
+

----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------

Total density =     14.00000000
Time Now =         2.7571  Delta time =         0.0046 End Den

----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------

 vasymp =  0.14000000E+02 facnorm =  0.10000000E+01
Time Now =         2.7868  Delta time =         0.0297 Electronic part
Time Now =         2.7876  Delta time =         0.0008 End StPot

----------------------------------------------------------------------
vcppol - VCP polarization potential program
----------------------------------------------------------------------

Time Now =         2.8117  Delta time =         0.0241 End VcpPol

----------------------------------------------------------------------
AsyPol - Program to match polarization potential to asymptotic form
----------------------------------------------------------------------

Switching distance (SwitchD) =     0.15000
Number of terms in the asymptotic polarization potential (nterm) =    1
Term =    1  At center =    0
Explicit coordinates =  0.00000000E+00  0.00000000E+00  0.00000000E+00
Type =    2
Polarizability tensor in atomic units
  0.86640000E+01  0.00000000E+00  0.00000000E+00
  0.00000000E+00  0.86640000E+01  0.00000000E+00
  0.00000000E+00  0.00000000E+00  0.17904000E+02
Last center is at (RCenterX) =   0.00000 Angs
 Radial matching parameter (icrtyp) =    3
 Matching line type (ilntyp) =    0
 Matching point is at r =   1.9411700156
Matching uses curve crossing (iMatchType = 1)
First nonzero weight at R =        1.49962 Angs
Last point of the switching region R=        2.43098 Angs
Total asymptotic potential is   0.11744000E+02 a.u.
Time Now =         2.8283  Delta time =         0.0166 End AsyPol

+ Command Scat
+ 0.001 0.01 0.02

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.10000000E-02 eV (  0.36749326E-04 AU)
Time Now =         2.8551  Delta time =         0.0268 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =SG    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    8
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.11744000E+02  au
Number of integration regions used =    57
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     5
Number of asymptotic solutions on the left (NAsymL) =     5
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     5
Maximum in the asymptotic region (lpasym) =    9
Number of partial waves in the asymptotic region (npasym) =    5
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   55
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =    8
Highest l used at large r (lpasym) =    9
Higest l used in the asymptotic potential (lpzb) =   18
Maximum L used in the homogeneous solution (LMaxHomo) =    9
Number of partial waves in the homogeneous solution (npHomo) =    5
Time Now =         2.8762  Delta time =         0.0211 Energy independent setup

Compute solution for E =    0.0010000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.11744000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.53143258E-16
 i =  2  lval =   3  stpote = -0.15847584E-18
 i =  3  lval =   3  stpote =  0.24254214E-03
 i =  4  lval =   5  stpote = -0.17424139E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11549549E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11549549E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11549549E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.11549550E-15
For potential     3
 i =  1  lvals =   6   6  stpote =  0.00000000E+00  second term =  0.00000000E+00
 i =  2  lvals =   4   4  stpote =  0.79521813E-20  second term =  0.00000000E+00
 i =  3  lvals =   4   6  stpote = -0.43512020E-04  second term = -0.45309967E-04
 i =  4  lvals =   6   6  stpote = -0.19214669E-20  second term =  0.00000000E+00
Number of asymptotic regions =       8
Final point in integration =   0.26414477E+04 Angstroms
Time Now =         3.9379  Delta time =         1.0617 End SolveHomo
iL =   1 Iter =   1 c.s. =      9.62091361 angs^2  rmsk=     0.00283541
iL =   1 Iter =   2 c.s. =      2.77792816 angs^2  rmsk=     0.00131683
iL =   1 Iter =   3 c.s. =      1.05480536 angs^2  rmsk=     0.00059141
iL =   1 Iter =   4 c.s. =      1.00737668 angs^2  rmsk=     0.00002176
iL =   1 Iter =   5 c.s. =      1.02406493 angs^2  rmsk=     0.00000772
iL =   1 Iter =   6 c.s. =      1.02356501 angs^2  rmsk=     0.00000023
iL =   1 Iter =   7 c.s. =      1.02356564 angs^2  rmsk=     0.00000000
iL =   1 Iter =   8 c.s. =      1.02356520 angs^2  rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =      1.02356520 angs^2  rmsk=     0.00013481
iL =   2 Iter =   2 c.s. =      1.02354203 angs^2  rmsk=     0.00000008
iL =   2 Iter =   3 c.s. =      1.02353947 angs^2  rmsk=     0.00000001
iL =   3 Iter =   1 c.s. =      1.02353947 angs^2  rmsk=     0.00002670
iL =   3 Iter =   2 c.s. =      1.02353947 angs^2  rmsk=     0.00000000
iL =   3 Iter =   3 c.s. =      1.02353947 angs^2  rmsk=     0.00000000
iL =   4 Iter =   1 c.s. =      1.02353947 angs^2  rmsk=     0.00001201
iL =   4 Iter =   2 c.s. =      1.02353947 angs^2  rmsk=     0.00000000
iL =   4 Iter =   3 c.s. =      1.02353947 angs^2  rmsk=     0.00000000
iL =   5 Iter =   1 c.s. =      1.02353947 angs^2  rmsk=     0.00000648
iL =   5 Iter =   2 c.s. =      1.02353947 angs^2  rmsk=     0.00000000
iL =   5 Iter =   3 c.s. =      1.02353947 angs^2  rmsk=     0.00000000
     REAL PART -  Final k matrix
     ROW  1
 -0.45361121E-02-0.57106600E-03-0.40081565E-08-0.54376739E-12-0.22097743E-17
     ROW  2
 -0.57104037E-03-0.34725678E-03-0.84277382E-04-0.20728610E-09-0.17602017E-13
     ROW  3
 -0.40090033E-08-0.84277382E-04-0.97864285E-04-0.33859425E-04-0.40706665E-10
     ROW  4
 -0.54376151E-12-0.20728610E-09-0.33859425E-04-0.46026243E-04-0.18454634E-04
     ROW  5
 -0.22108471E-17-0.17602017E-13-0.40706665E-10-0.18454634E-04-0.26613750E-04
 eigenphases
 -0.4612565E-02 -0.3051868E-03 -0.8948758E-04 -0.3791139E-04 -0.8689793E-05
 eigenphase sum-0.505384E-02  scattering length=   0.58950
 eps+pi 0.313654E+01  eps+2*pi 0.627813E+01

MaxIter =   8 c.s. =      1.02353947 angs^2  rmsk=     0.00000000
Time Now =         8.9302  Delta time =         4.9923 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.10000000E-01 eV (  0.36749326E-03 AU)
Time Now =         8.9572  Delta time =         0.0270 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =SG    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    8
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.11744000E+02  au
Number of integration regions used =    57
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     5
Number of asymptotic solutions on the left (NAsymL) =     5
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     5
Maximum in the asymptotic region (lpasym) =    9
Number of partial waves in the asymptotic region (npasym) =    5
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   55
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =    8
Highest l used at large r (lpasym) =    9
Higest l used in the asymptotic potential (lpzb) =   18
Maximum L used in the homogeneous solution (LMaxHomo) =    9
Number of partial waves in the homogeneous solution (npHomo) =    5
Time Now =         8.9783  Delta time =         0.0211 Energy independent setup

Compute solution for E =    0.0100000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.11744000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.53143258E-16
 i =  2  lval =   3  stpote = -0.15847584E-18
 i =  3  lval =   3  stpote =  0.24254214E-03
 i =  4  lval =   5  stpote = -0.17424139E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.12083113E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.12083113E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.12083113E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.12083113E-15
For potential     3
 i =  1  lvals =   6   6  stpote =  0.00000000E+00  second term =  0.00000000E+00
 i =  2  lvals =   4   4  stpote =  0.79521813E-20  second term =  0.00000000E+00
 i =  3  lvals =   4   6  stpote = -0.43512020E-04  second term = -0.45309967E-04
 i =  4  lvals =   6   6  stpote = -0.19214669E-20  second term =  0.00000000E+00
Number of asymptotic regions =      10
Final point in integration =   0.12269490E+04 Angstroms
Time Now =        10.0237  Delta time =         1.0454 End SolveHomo
iL =   1 Iter =   1 c.s. =     11.72079115 angs^2  rmsk=     0.00990772
iL =   1 Iter =   2 c.s. =      4.05153589 angs^2  rmsk=     0.00409708
iL =   1 Iter =   3 c.s. =      1.90933178 angs^2  rmsk=     0.00183671
iL =   1 Iter =   4 c.s. =      1.84616265 angs^2  rmsk=     0.00006727
iL =   1 Iter =   5 c.s. =      1.86852473 angs^2  rmsk=     0.00002394
iL =   1 Iter =   6 c.s. =      1.86785604 angs^2  rmsk=     0.00000071
iL =   1 Iter =   7 c.s. =      1.86785687 angs^2  rmsk=     0.00000000
iL =   1 Iter =   8 c.s. =      1.86785629 angs^2  rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =      1.86785629 angs^2  rmsk=     0.00039122
iL =   2 Iter =   2 c.s. =      1.86769205 angs^2  rmsk=     0.00000200
iL =   2 Iter =   3 c.s. =      1.86770388 angs^2  rmsk=     0.00000015
iL =   2 Iter =   4 c.s. =      1.86770791 angs^2  rmsk=     0.00000005
iL =   3 Iter =   1 c.s. =      1.86770791 angs^2  rmsk=     0.00007915
iL =   3 Iter =   2 c.s. =      1.86770791 angs^2  rmsk=     0.00000000
iL =   3 Iter =   3 c.s. =      1.86770791 angs^2  rmsk=     0.00000000
iL =   4 Iter =   1 c.s. =      1.86770791 angs^2  rmsk=     0.00003620
iL =   4 Iter =   2 c.s. =      1.86770791 angs^2  rmsk=     0.00000000
iL =   4 Iter =   3 c.s. =      1.86770791 angs^2  rmsk=     0.00000000
iL =   5 Iter =   1 c.s. =      1.86770791 angs^2  rmsk=     0.00001971
iL =   5 Iter =   2 c.s. =      1.86770791 angs^2  rmsk=     0.00000000
iL =   5 Iter =   3 c.s. =      1.86770791 angs^2  rmsk=     0.00000000
     REAL PART -  Final k matrix
     ROW  1
 -0.19579055E-01-0.17082207E-02-0.12758153E-06-0.16747010E-10-0.68447724E-15
     ROW  2
 -0.17082521E-02-0.89995913E-03-0.25937974E-03-0.67706386E-08-0.54486730E-12
     ROW  3
 -0.12759574E-06-0.25937974E-03-0.28008932E-03-0.10436615E-03-0.14040703E-08
     ROW  4
 -0.16744674E-10-0.67706385E-08-0.10436615E-03-0.13665831E-03-0.56544701E-04
     ROW  5
 -0.68446456E-15-0.54486730E-12-0.14040703E-08-0.56544701E-04-0.80736364E-04
 eigenphases
 -0.1973146E-01 -0.8626084E-03 -0.2541264E-03 -0.1060956E-03 -0.1965068E-04
 eigenphase sum-0.209739E-01  scattering length=   0.77376
 eps+pi 0.312062E+01  eps+2*pi 0.626221E+01

MaxIter =   8 c.s. =      1.86770791 angs^2  rmsk=     0.00000000
Time Now =        15.4269  Delta time =         5.4032 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.20000000E-01 eV (  0.73498652E-03 AU)
Time Now =        15.4541  Delta time =         0.0272 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =SG    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    8
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.11744000E+02  au
Number of integration regions used =    57
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     5
Number of asymptotic solutions on the left (NAsymL) =     5
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     5
Maximum in the asymptotic region (lpasym) =    9
Number of partial waves in the asymptotic region (npasym) =    5
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   55
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =    8
Highest l used at large r (lpasym) =    9
Higest l used in the asymptotic potential (lpzb) =   18
Maximum L used in the homogeneous solution (LMaxHomo) =    9
Number of partial waves in the homogeneous solution (npHomo) =    5
Time Now =        15.4750  Delta time =         0.0209 Energy independent setup

Compute solution for E =    0.0200000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.11744000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.53143258E-16
 i =  2  lval =   3  stpote = -0.15847584E-18
 i =  3  lval =   3  stpote =  0.24254214E-03
 i =  4  lval =   5  stpote = -0.17424139E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.14070403E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.14070403E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.14070404E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.14070404E-15
For potential     3
 i =  1  lvals =   6   6  stpote =  0.00000000E+00  second term =  0.00000000E+00
 i =  2  lvals =   4   4  stpote =  0.79521813E-20  second term =  0.00000000E+00
 i =  3  lvals =   4   6  stpote = -0.43512020E-04  second term = -0.45309967E-04
 i =  4  lvals =   6   6  stpote = -0.19214669E-20  second term =  0.00000000E+00
Number of asymptotic regions =      11
Final point in integration =   0.97417477E+03 Angstroms
Time Now =        16.5369  Delta time =         1.0619 End SolveHomo
iL =   1 Iter =   1 c.s. =     12.84165744 angs^2  rmsk=     0.01468779
iL =   1 Iter =   2 c.s. =      4.81031971 angs^2  rmsk=     0.00572465
iL =   1 Iter =   3 c.s. =      2.46749974 angs^2  rmsk=     0.00256163
iL =   1 Iter =   4 c.s. =      2.39685342 angs^2  rmsk=     0.00009334
iL =   1 Iter =   5 c.s. =      2.42199172 angs^2  rmsk=     0.00003337
iL =   1 Iter =   6 c.s. =      2.42124029 angs^2  rmsk=     0.00000100
iL =   1 Iter =   7 c.s. =      2.42124122 angs^2  rmsk=     0.00000000
iL =   1 Iter =   8 c.s. =      2.42124056 angs^2  rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =      2.42124056 angs^2  rmsk=     0.00053196
iL =   2 Iter =   2 c.s. =      2.42094972 angs^2  rmsk=     0.00000511
iL =   2 Iter =   3 c.s. =      2.42098644 angs^2  rmsk=     0.00000065
iL =   2 Iter =   4 c.s. =      2.42099535 angs^2  rmsk=     0.00000016
iL =   2 Iter =   5 c.s. =      2.42099386 angs^2  rmsk=     0.00000003
iL =   3 Iter =   1 c.s. =      2.42099386 angs^2  rmsk=     0.00010757
iL =   3 Iter =   2 c.s. =      2.42099386 angs^2  rmsk=     0.00000000
iL =   3 Iter =   3 c.s. =      2.42099386 angs^2  rmsk=     0.00000000
iL =   4 Iter =   1 c.s. =      2.42099386 angs^2  rmsk=     0.00004974
iL =   4 Iter =   2 c.s. =      2.42099386 angs^2  rmsk=     0.00000000
iL =   4 Iter =   3 c.s. =      2.42099386 angs^2  rmsk=     0.00000000
iL =   5 Iter =   1 c.s. =      2.42099386 angs^2  rmsk=     0.00002722
iL =   5 Iter =   2 c.s. =      2.42099386 angs^2  rmsk=     0.00000000
iL =   5 Iter =   3 c.s. =      2.42099386 angs^2  rmsk=     0.00000000
     REAL PART -  Final k matrix
     ROW  1
 -0.31613000E-01-0.23714777E-02-0.36295917E-06-0.49823386E-10-0.38387267E-14
     ROW  2
 -0.23714331E-02-0.11030843E-02-0.36155902E-03-0.19195741E-07-0.15999692E-11
     ROW  3
 -0.36296606E-06-0.36155902E-03-0.37043156E-03-0.14602712E-03-0.39966900E-08
     ROW  4
 -0.49808650E-10-0.19195741E-07-0.14602712E-03-0.18514347E-03-0.79123134E-04
     ROW  5
 -0.38378673E-14-0.15999691E-11-0.39966900E-08-0.79123134E-04-0.11073745E-03
 eigenphases
 -0.3178555E-01 -0.1103049E-02 -0.3311013E-03 -0.1351733E-03 -0.1681766E-04
 eigenphase sum-0.333717E-01  scattering length=   0.87073
 eps+pi 0.310822E+01  eps+2*pi 0.624981E+01

MaxIter =   8 c.s. =      2.42099386 angs^2  rmsk=     0.00000000
Time Now =        22.2652  Delta time =         5.7282 End ScatStab

+ Command TotalCrossSection
+
Symmetry SG -
        E (eV)      XS(angs^2)    EPS(radians)
       0.001000       1.023538      -0.005054
       0.010000       1.867707      -0.020974
       0.020000       2.420993      -0.033372

 Total Cross Sections

 Energy      Total Cross Section
   0.00100     1.02354
   0.01000     1.86771
   0.02000     2.42099
Time Now =        22.2727  Delta time =         0.0075 Finalize