----------------------------------------------------------------------
ePolyScat Version E2
----------------------------------------------------------------------

Authors: R. R. Lucchese, N. Sanna, A. P. P. Natalense, and F. A. Gianturco
http://www.chem.tamu.edu/rgroup/lucchese/ePolyScat.E2.manual/manual.html
Please cite the following two papers when reporting results obtained with  this program
F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 100, 6464 (1994).
A. P. P. Natalense and R. R. Lucchese, J. Chem. Phys. 111, 5344 (1999).

----------------------------------------------------------------------

Starting at 2009-03-13  11:34:09.164 (GMT -0500)
Using    16 processors

----------------------------------------------------------------------


+ Start of Input Records
#
# input file for test05
#
# electron scattering from SF6
#
  LMax   15     # maximum l to be used for wave functions
  LMaxI  40     # maximum l value used to determine numerical angular grids
  EMax  50.0    # EMax, maximum asymptotic energy in eV
  EngForm      # Energy formulas
    0 0
  VCorr 'PZ'
  AsyPol
   0.15   # SwitchD, distance where switching function is down to 0.1
   7     # nterm, number of terms needed to define asymptotic potential
   1     # center for polarization term 1 is for C atom
   1     # ittyp type of polarization term, = 1 for spherically symmetric
         # = 2 for reading in the full tensor
  16.198 # value of the spherical polarizability
   2     # center for polarization term 1 is for C atom
   1     # ittyp type of polarization term, = 1 for spherically symmetric
         # = 2 for reading in the full tensor
   4.656 # value of the spherical polarizability
   3     # center for polarization term 1 is for C atom
   1     # ittyp type of polarization term, = 1 for spherically symmetric
         # = 2 for reading in the full tensor
   4.656 # value of the spherical polarizability
   4     # center for polarization term 1 is for C atom
   1     # ittyp type of polarization term, = 1 for spherically symmetric
         # = 2 for reading in the full tensor
   4.656 # value of the spherical polarizability
   5     # center for polarization term 1 is for C atom
   1     # ittyp type of polarization term, = 1 for spherically symmetric
         # = 2 for reading in the full tensor
   4.656 # value of the spherical polarizability
   6     # center for polarization term 1 is for C atom
   1     # ittyp type of polarization term, = 1 for spherically symmetric
         # = 2 for reading in the full tensor
   4.656 # value of the spherical polarizability
   7     # center for polarization term 1 is for C atom
   1     # ittyp type of polarization term, = 1 for spherically symmetric
         # = 2 for reading in the full tensor
   4.656 # value of the spherical polarizability
   3     # icrtyp, flag to determine where r match is, 3 for second crossing
         # or at nearest approach
   0     # ilntyp, flag to determine what matching line is used, 0 - use
         # l = 0 radial function as matching function
  ScatEng 1.0      # list of scattering energies
  FegeEng 13.29   # Energy correction used in the fege potential
  LMaxK   10    # Maximum l in the K matirx
#
Convert '/scratch/rrl581a/ePolyScat.E2/tests/test05.g03' 'g03'
GetBlms
ExpOrb
GetPot
  ScatContSym 'A1G'  # Scattering symmetry
Scat
  ScatContSym 'T1G'  # Scattering symmetry
Scat
  GrnType  1     # type of Green function (0 -> K matrix, 1 -> T matrix)
  ScatContSym 'A1G'  # Scattering symmetry
Scat
  ScatContSym 'T1G'  # Scattering symmetry
Scat
+ End of input reached
+ Data Record LMax - 15
+ Data Record LMaxI - 40
+ Data Record EMax - 50.0
+ Data Record EngForm - 0 0
+ Data Record VCorr - 'PZ'
+ Data Record AsyPol
+ 0.15 / 7 / 1 / 1 / 16.198 / 2 / 1 / 4.656 / 3 / 1 / 4.656 / 4 / 1 / 4.656 / 5 / 1 / 4.656 / 6 / 1 / 4.656 / 7 / 1
+ 4.656 / 3 / 0
+ Data Record ScatEng - 1.0
+ Data Record FegeEng - 13.29
+ Data Record LMaxK - 10

+ Command Convert
+ '/scratch/rrl581a/ePolyScat.E2/tests/test05.g03' 'g03'

----------------------------------------------------------------------
g03cnv - read input from G03 output
----------------------------------------------------------------------

Expansion center is (in Angstroms) -
     0.0000000000   0.0000000000   0.0000000000
CardFlag =    T
Normal Mode flag =    F
Selecting orbitals
from     1  to    35  number already selected     0
Number of orbitals selected is    35
Highest orbital read in is =   35
Time Now =         0.0758  Delta time =         0.0758 End g03cnv

Atoms found    7  Coordinates in Angstroms
Z = 16 ZS = 16 r =   0.0000000000   0.0000000000   0.0000000000
Z =  9 ZS =  9 r =   0.0000000000   0.0000000000   1.5602260000
Z =  9 ZS =  9 r =   0.0000000000   1.5602260000   0.0000000000
Z =  9 ZS =  9 r =  -1.5602260000   0.0000000000   0.0000000000
Z =  9 ZS =  9 r =   1.5602260000   0.0000000000   0.0000000000
Z =  9 ZS =  9 r =   0.0000000000  -1.5602260000   0.0000000000
Z =  9 ZS =  9 r =   0.0000000000   0.0000000000  -1.5602260000
Maximum distance from expansion center is    1.5602260000

+ Command GetBlms
+

----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------

Found point group  Oh
Reduce angular grid using nthd =  2  nphid =  4
Found point group for abelian subgroup D2h
Time Now =         0.0958  Delta time =         0.0200 End GetPGroup
List of unique axes
  N  Vector                      Z   R
  1  0.00000  0.00000  1.00000   9  2.94840   9  2.94840
  2  0.00000  1.00000  0.00000   9  2.94840   9  2.94840
  3 -1.00000  0.00000  0.00000   9  2.94840   9  2.94840
List of corresponding x axes
  N  Vector
  1  1.00000 -0.00000 -0.00000
  2  1.00000 -0.00000 -0.00000
  3  0.00000  1.00000 -0.00000
Computed default value of LMaxA =   12
Determineing angular grid in GetAxMax  LMax =   15  LMaxA =   12  LMaxAb =   30
MMax =    3  MMaxAbFlag =    1
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11  12   3   3   3
For axis     2  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3   3
For axis     3  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3   3
On the double L grid used for products
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19
  20  21  22  23  24  25  26  27  28  29  30
For axis     2  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
For axis     3  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is Oh
LMax = =   15
 The dimension of each irreducable representation is
    A1G   (  1)    A2G   (  1)    EG    (  2)    T1G   (  3)    T2G   (  3)
    A1U   (  1)    A2U   (  1)    EU    (  2)    T1U   (  3)    T2U   (  3)
 Number of symmetry operations in the abelian subgroup (excluding E) =    7
 The operations are -
    16    19    24     2     4     3     5
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A1G       1         1          8       1  1  1  1  1  1  1
 A2G       1         2          4       1  1  1  1  1  1  1
 EG        1         3         11       1  1  1  1  1  1  1
 EG        2         4         11       1  1  1  1  1  1  1
 T1G       1         5         11      -1 -1  1  1 -1 -1  1
 T1G       2         6         11      -1  1 -1  1 -1  1 -1
 T1G       3         7         11       1 -1 -1  1  1 -1 -1
 T2G       1         8         15      -1 -1  1  1 -1 -1  1
 T2G       2         9         15      -1  1 -1  1 -1  1 -1
 T2G       3        10         15       1 -1 -1  1  1 -1 -1
 A1U       1        11          1       1  1  1 -1 -1 -1 -1
 A2U       1        12          6       1  1  1 -1 -1 -1 -1
 EU        1        13          7       1  1  1 -1 -1 -1 -1
 EU        2        14          7       1  1  1 -1 -1 -1 -1
 T1U       1        15         18      -1 -1  1 -1  1  1 -1
 T1U       2        16         18      -1  1 -1 -1  1 -1  1
 T1U       3        17         18       1 -1 -1 -1 -1  1  1
 T2U       1        18         15      -1 -1  1 -1  1  1 -1
 T2U       2        19         15      -1  1 -1 -1  1 -1  1
 T2U       3        20         15       1 -1 -1 -1 -1  1  1
Time Now =         1.1240  Delta time =         1.0281 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
A1G   1    0(   1)    1(   1)    2(   1)    3(   1)    4(   2)    5(   2)    6(   3)    7(   3)    8(   4)    9(   4)
          10(   5)   11(   5)   12(   7)
A2G   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   1)    7(   1)    8(   1)    9(   1)
          10(   2)   11(   2)   12(   3)
EG    1    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)    6(   3)    7(   3)    8(   5)    9(   5)
          10(   7)   11(   7)   12(   9)
EG    2    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)    6(   3)    7(   3)    8(   5)    9(   5)
          10(   7)   11(   7)   12(   9)
T1G   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   1)    6(   2)    7(   2)    8(   4)    9(   4)
          10(   6)   11(   6)   12(   9)
T1G   2    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   1)    6(   2)    7(   2)    8(   4)    9(   4)
          10(   6)   11(   6)   12(   9)
T1G   3    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   1)    6(   2)    7(   2)    8(   4)    9(   4)
          10(   6)   11(   6)   12(   9)
T2G   1    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)    6(   4)    7(   4)    8(   6)    9(   6)
          10(   9)   11(   9)   12(  12)
T2G   2    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)    6(   4)    7(   4)    8(   6)    9(   6)
          10(   9)   11(   9)   12(  12)
T2G   3    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)    6(   4)    7(   4)    8(   6)    9(   6)
          10(   9)   11(   9)   12(  12)
A1U   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   0)    7(   0)    8(   0)    9(   1)
          10(   1)   11(   1)   12(   1)
A2U   1    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   1)    6(   1)    7(   2)    8(   2)    9(   3)
          10(   3)   11(   4)   12(   4)
EU    1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   1)    6(   1)    7(   2)    8(   2)    9(   3)
          10(   3)   11(   5)   12(   5)
EU    2    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   1)    6(   1)    7(   2)    8(   2)    9(   3)
          10(   3)   11(   5)   12(   5)
T1U   1    0(   0)    1(   1)    2(   1)    3(   2)    4(   2)    5(   4)    6(   4)    7(   6)    8(   6)    9(   9)
          10(   9)   11(  12)   12(  12)
T1U   2    0(   0)    1(   1)    2(   1)    3(   2)    4(   2)    5(   4)    6(   4)    7(   6)    8(   6)    9(   9)
          10(   9)   11(  12)   12(  12)
T1U   3    0(   0)    1(   1)    2(   1)    3(   2)    4(   2)    5(   4)    6(   4)    7(   6)    8(   6)    9(   9)
          10(   9)   11(  12)   12(  12)
T2U   1    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   2)    6(   2)    7(   4)    8(   4)    9(   6)
          10(   6)   11(   9)   12(   9)
T2U   2    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   2)    6(   2)    7(   4)    8(   4)    9(   6)
          10(   6)   11(   9)   12(   9)
T2U   3    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   2)    6(   2)    7(   4)    8(   4)    9(   6)
          10(   6)   11(   9)   12(   9)

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is D2h
LMax = =   30
 The dimension of each irreducable representation is
    AG    (  1)    B1G   (  1)    B2G   (  1)    B3G   (  1)    AU    (  1)
    B1U   (  1)    B2U   (  1)    B3U   (  1)
Abelian axes
    1       1.000000       0.000000       0.000000
    2       0.000000       1.000000       0.000000
    3       0.000000       0.000000       1.000000
Symmetry operation directions
  1       0.000000       0.000000       1.000000 ang =  0  1 type = 0 axis = 3
  2       0.000000       1.000000       0.000000 ang =  1  2 type = 2 axis = 2
  3       1.000000       0.000000       0.000000 ang =  1  2 type = 2 axis = 1
  4       0.000000       0.000000       1.000000 ang =  1  2 type = 2 axis = 3
  5       0.000000       0.000000       1.000000 ang =  1  2 type = 3 axis = 3
  6       0.000000       1.000000       0.000000 ang =  0  1 type = 1 axis = 2
  7       1.000000       0.000000       0.000000 ang =  0  1 type = 1 axis = 1
  8       0.000000       0.000000       1.000000 ang =  0  1 type = 1 axis = 3
irep =    1  sym =AG    1  eigs =   1   1   1   1   1   1   1   1
irep =    2  sym =B1G   1  eigs =   1  -1  -1   1   1  -1  -1   1
irep =    3  sym =B2G   1  eigs =   1   1  -1  -1   1   1  -1  -1
irep =    4  sym =B3G   1  eigs =   1  -1   1  -1   1  -1   1  -1
irep =    5  sym =AU    1  eigs =   1   1   1   1  -1  -1  -1  -1
irep =    6  sym =B1U   1  eigs =   1  -1  -1   1  -1   1   1  -1
irep =    7  sym =B2U   1  eigs =   1   1  -1  -1  -1  -1   1   1
irep =    8  sym =B3U   1  eigs =   1  -1   1  -1  -1   1  -1   1
 Number of symmetry operations in the abelian subgroup (excluding E) =    7
 The operations are -
     2     3     4     5     6     7     8
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 AG        1         1        136       1  1  1  1  1  1  1
 B1G       1         2        120      -1 -1  1  1 -1 -1  1
 B2G       1         3        120       1 -1 -1  1  1 -1 -1
 B3G       1         4        120      -1  1 -1  1 -1  1 -1
 AU        1         5        105       1  1  1 -1 -1 -1 -1
 B1U       1         6        120      -1 -1  1 -1  1  1 -1
 B2U       1         7        120       1 -1 -1 -1 -1  1  1
 B3U       1         8        120      -1  1 -1 -1  1 -1  1
Time Now =         1.1482  Delta time =         0.0242 End SymGen

+ Command ExpOrb
+
In GetRMax, RMaxEps =  0.10000000E-05  RMax =    7.6821016117 Angs

----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------

Maximum R in the grid (RMax) =     7.68210 Angs
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) =   10.0
In regions controlled by the wave length (HFacWave) =   10.0
Factor used to control the minimum exponent at each center (MinExpFac) =  300.0
Maximum asymptotic kinetic energy (EMAx) =  50.00000 eV
Maximum step size (MaxStep) =   0.01058 Angs
Factor to increase grid by (GridFac) =     1

    1  Center at =     0.00000 Angs  Alpha Max = 0.93413E+05
    2  Center at =     1.56023 Angs  Alpha Max = 0.24300E+05

Generated Grid

  irg  nin  ntot      step Angs     R end Angs
    1    8     8    0.17314E-03     0.00139
    2    8    16    0.18458E-03     0.00286
    3    8    24    0.22753E-03     0.00468
    4    8    32    0.34522E-03     0.00744
    5    8    40    0.54886E-03     0.01183
    6    8    48    0.87261E-03     0.01882
    7    8    56    0.13873E-02     0.02991
    8    8    64    0.22057E-02     0.04756
    9    8    72    0.35067E-02     0.07561
   10    8    80    0.55752E-02     0.12021
   11    8    88    0.88638E-02     0.19112
   12   64   152    0.10584E-01     0.86847
   13   48   200    0.10584E-01     1.37648
   14    8   208    0.83742E-02     1.44348
   15    8   216    0.53174E-02     1.48601
   16    8   224    0.33800E-02     1.51305
   17    8   232    0.21484E-02     1.53024
   18    8   240    0.13656E-02     1.54117
   19    8   248    0.86805E-03     1.54811
   20    8   256    0.55188E-03     1.55253
   21    8   264    0.40163E-03     1.55574
   22    8   272    0.34784E-03     1.55852
   23    8   280    0.21299E-03     1.56023
   24    8   288    0.33947E-03     1.56294
   25    8   296    0.36190E-03     1.56584
   26    8   304    0.44612E-03     1.56941
   27    8   312    0.67686E-03     1.57482
   28    8   320    0.10761E-02     1.58343
   29    8   328    0.17109E-02     1.59712
   30    8   336    0.27201E-02     1.61888
   31    8   344    0.43245E-02     1.65347
   32    8   352    0.68754E-02     1.70848
   33   64   416    0.10584E-01     2.38582
   34   64   480    0.10584E-01     3.06317
   35   64   544    0.10584E-01     3.74052
   36   64   608    0.10584E-01     4.41786
   37   64   672    0.10584E-01     5.09521
   38   64   736    0.10584E-01     5.77256
   39   64   800    0.10584E-01     6.44990
   40   64   864    0.10584E-01     7.12725
   41   48   912    0.10584E-01     7.63526
   42    8   920    0.58550E-02     7.68210
Time Now =         1.3589  Delta time =         0.2108 End GenGrid

----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------

Maximum scattering l (lmax) =   15
Maximum scattering m (mmaxs) =   15
Maximum numerical integration l (lmaxi) =   40
Maximum numerical integration m (mmaxi) =   40
Maximum l to include in the asymptotic region (lmasym) =   12
Parameter used to determine the cutoff points (PCutRd) =  0.10000000E-07 au
Maximum E used to determine grid (in eV) =       50.00000
Print flag (iprnfg) =    0
lmasymtyts =   12
 Actual value of lmasym found =     12
Number of regions of the same l expansion (NAngReg) =   10
Angular regions
    1 L =    2  from (    1)         0.00017  to (    7)         0.00121
    2 L =    5  from (    8)         0.00139  to (   23)         0.00445
    3 L =    6  from (   24)         0.00468  to (   31)         0.00710
    4 L =    7  from (   32)         0.00744  to (   47)         0.01794
    5 L =    8  from (   48)         0.01882  to (   55)         0.02853
    6 L =   10  from (   56)         0.02991  to (   63)         0.04535
    7 L =   11  from (   64)         0.04756  to (   71)         0.07211
    8 L =   12  from (   72)         0.07561  to (  143)         0.77322
    9 L =   15  from (  144)         0.78380  to (  472)         2.97850
   10 L =   12  from (  473)         2.98909  to (  920)         7.68210
Angular regions for computing spherical harmonics
    1 lval =   12
    2 lval =   15
Last grid points by processor WorkExp =     1.500
Proc id =   -1  Last grid point =       1
Proc id =    0  Last grid point =     104
Proc id =    1  Last grid point =     160
Proc id =    2  Last grid point =     208
Proc id =    3  Last grid point =     256
Proc id =    4  Last grid point =     304
Proc id =    5  Last grid point =     344
Proc id =    6  Last grid point =     392
Proc id =    7  Last grid point =     440
Proc id =    8  Last grid point =     488
Proc id =    9  Last grid point =     544
Proc id =   10  Last grid point =     608
Proc id =   11  Last grid point =     672
Proc id =   12  Last grid point =     736
Proc id =   13  Last grid point =     800
Proc id =   14  Last grid point =     864
Proc id =   15  Last grid point =     920
Time Now =         1.4270  Delta time =         0.0681 End AngGCt

----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------


 R of maximum density
     1  A1G   1 at max irg =    7  r =   0.02991
     2  EG    1 at max irg =   35  r =   1.56023
     3  EG    2 at max irg =   35  r =   1.56023
     4  T1U   1 at max irg =   35  r =   1.56023
     5  T1U   2 at max irg =   35  r =   1.56023
     6  T1U   3 at max irg =   35  r =   1.56023
     7  A1G   1 at max irg =   35  r =   1.56023
     8  A1G   1 at max irg =   11  r =   0.19112
     9  T1U   1 at max irg =   11  r =   0.19112
    10  T1U   2 at max irg =   11  r =   0.19112
    11  T1U   3 at max irg =   11  r =   0.19112
    12  A1G   1 at max irg =   25  r =   1.37648
    13  T1U   1 at max irg =   35  r =   1.56023
    14  T1U   2 at max irg =   35  r =   1.56023
    15  T1U   3 at max irg =   35  r =   1.56023
    16  EG    1 at max irg =   35  r =   1.56023
    17  EG    2 at max irg =   35  r =   1.56023
    18  A1G   1 at max irg =   45  r =   1.79315
    19  T1U   1 at max irg =   45  r =   1.79315
    20  T1U   2 at max irg =   45  r =   1.79315
    21  T1U   3 at max irg =   45  r =   1.79315
    22  T2G   1 at max irg =   40  r =   1.58343
    23  T2G   2 at max irg =   40  r =   1.58343
    24  T2G   3 at max irg =   40  r =   1.58343
    25  EG    1 at max irg =   46  r =   1.87781
    26  EG    2 at max irg =   46  r =   1.87781
    27  T2U   1 at max irg =   40  r =   1.58343
    28  T2U   2 at max irg =   40  r =   1.58343
    29  T2U   3 at max irg =   40  r =   1.58343
    30  T1U   1 at max irg =   42  r =   1.61888
    31  T1U   2 at max irg =   42  r =   1.61888
    32  T1U   3 at max irg =   42  r =   1.61888
    33  T1G   1 at max irg =   40  r =   1.58343
    34  T1G   2 at max irg =   40  r =   1.58343
    35  T1G   3 at max irg =   40  r =   1.58343

Rotation coefficients for orbital     1  grp =    1 A1G   1
     1  1.0000000000

Rotation coefficients for orbital     2  grp =    2 EG    1
     2 -0.1769666276    3  0.9842168525

Rotation coefficients for orbital     3  grp =    2 EG    2
     2  0.9842168525    3  0.1769666276

Rotation coefficients for orbital     4  grp =    3 T1U   1
     4 -0.0000000000    5 -0.0000000000    6  1.0000000000

Rotation coefficients for orbital     5  grp =    3 T1U   2
     4 -1.0000000000    5 -0.0000000000    6 -0.0000000000

Rotation coefficients for orbital     6  grp =    3 T1U   3
     4 -0.0000000000    5  1.0000000000    6  0.0000000000

Rotation coefficients for orbital     7  grp =    4 A1G   1
     7  1.0000000000

Rotation coefficients for orbital     8  grp =    5 A1G   1
     8  1.0000000000

Rotation coefficients for orbital     9  grp =    6 T1U   1
     9  0.0000000000   10  1.0000000000   11 -0.0000000000

Rotation coefficients for orbital    10  grp =    6 T1U   2
     9 -0.0000000000   10  0.0000000000   11  1.0000000000

Rotation coefficients for orbital    11  grp =    6 T1U   3
     9  1.0000000000   10 -0.0000000000   11  0.0000000000

Rotation coefficients for orbital    12  grp =    7 A1G   1
    12  1.0000000000

Rotation coefficients for orbital    13  grp =    8 T1U   1
    13 -0.0000000000   14  1.0000000000   15 -0.0000000000

Rotation coefficients for orbital    14  grp =    8 T1U   2
    13 -1.0000000000   14 -0.0000000000   15 -0.0000000000

Rotation coefficients for orbital    15  grp =    8 T1U   3
    13 -0.0000000000   14  0.0000000000   15  1.0000000000

Rotation coefficients for orbital    16  grp =    9 EG    1
    16 -0.5002934503   17 -0.8658559139

Rotation coefficients for orbital    17  grp =    9 EG    2
    16  0.8658559139   17 -0.5002934503

Rotation coefficients for orbital    18  grp =   10 A1G   1
    18  1.0000000000

Rotation coefficients for orbital    19  grp =   11 T1U   1
    19 -0.0000000000   20  0.0000000000   21 -1.0000000000

Rotation coefficients for orbital    20  grp =   11 T1U   2
    19  0.0000000000   20 -1.0000000000   21 -0.0000000000

Rotation coefficients for orbital    21  grp =   11 T1U   3
    19 -1.0000000000   20 -0.0000000000   21  0.0000000000

Rotation coefficients for orbital    22  grp =   12 T2G   1
    22  0.0000000000   23  1.0000000000   24 -0.0000000000

Rotation coefficients for orbital    23  grp =   12 T2G   2
    22 -0.0000000000   23  0.0000000000   24  1.0000000000

Rotation coefficients for orbital    24  grp =   12 T2G   3
    22  1.0000000000   23 -0.0000000000   24  0.0000000000

Rotation coefficients for orbital    25  grp =   13 EG    1
    25 -0.1633372268   26  0.9865702967

Rotation coefficients for orbital    26  grp =   13 EG    2
    25 -0.9865702967   26 -0.1633372268

Rotation coefficients for orbital    27  grp =   14 T2U   1
    27  0.0000000000   28 -0.0000000000   29 -1.0000000000

Rotation coefficients for orbital    28  grp =   14 T2U   2
    27  0.0000000000   28  1.0000000000   29 -0.0000000000

Rotation coefficients for orbital    29  grp =   14 T2U   3
    27  1.0000000000   28 -0.0000000000   29  0.0000000000

Rotation coefficients for orbital    30  grp =   15 T1U   1
    30 -0.0000000000   31 -0.0000000000   32  1.0000000000

Rotation coefficients for orbital    31  grp =   15 T1U   2
    30  1.0000000000   31  0.0000000000   32  0.0000000000

Rotation coefficients for orbital    32  grp =   15 T1U   3
    30 -0.0000000000   31  1.0000000000   32  0.0000000000

Rotation coefficients for orbital    33  grp =   16 T1G   1
    33  0.0000000000   34 -1.0000000000   35 -0.0000000000

Rotation coefficients for orbital    34  grp =   16 T1G   2
    33  1.0000000000   34  0.0000000000   35  0.0000000000

Rotation coefficients for orbital    35  grp =   16 T1G   3
    33 -0.0000000000   34 -0.0000000000   35  1.0000000000
Number of orbital groups and degeneracis are        16
  1  2  3  1  1  3  1  3  2  1  3  3  2  3  3  3
Number of orbital groups and number of electrons when fully occupied
        16
  2  4  6  2  2  6  2  6  4  2  6  6  4  6  6  6
Time Now =         3.8961  Delta time =         2.4691 End RotOrb

----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------

 First orbital group to expand (mofr) =    1
 Last orbital group to expand (moto) =   16
Orbital     1 of  A1G   1 symmetry normalization integral =  0.99999999
Orbital     2 of  EG    1 symmetry normalization integral =  0.55843502
Orbital     3 of  T1U   1 symmetry normalization integral =  0.58773011
Orbital     4 of  A1G   1 symmetry normalization integral =  0.53527419
Orbital     5 of  A1G   1 symmetry normalization integral =  0.99999990
Orbital     6 of  T1U   1 symmetry normalization integral =  0.99999984
Orbital     7 of  A1G   1 symmetry normalization integral =  0.96812200
Orbital     8 of  T1U   1 symmetry normalization integral =  0.96361789
Orbital     9 of  EG    1 symmetry normalization integral =  0.95603090
Orbital    10 of  A1G   1 symmetry normalization integral =  0.98514732
Orbital    11 of  T1U   1 symmetry normalization integral =  0.99135486
Orbital    12 of  T2G   1 symmetry normalization integral =  0.98380448
Orbital    13 of  EG    1 symmetry normalization integral =  0.99404941
Orbital    14 of  T2U   1 symmetry normalization integral =  0.98304623
Orbital    15 of  T1U   1 symmetry normalization integral =  0.98575825
Orbital    16 of  T1G   1 symmetry normalization integral =  0.97340206
Time Now =         8.4572  Delta time =         4.5611 End ExpOrb

+ Command GetPot
+

----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------

Total density =     70.00000000
Time Now =         8.4764  Delta time =         0.0191 End Den

----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------

 vasymp =  0.70000000E+02 facnorm =  0.10000000E+01
Time Now =         8.5341  Delta time =         0.0578 Electronic part
Time Now =         8.5369  Delta time =         0.0028 End StPot

----------------------------------------------------------------------
vcppol - VCP polarization potential program
----------------------------------------------------------------------

Time Now =         8.5979  Delta time =         0.0610 End VcpPol

----------------------------------------------------------------------
AsyPol - Program to match polarization potential to asymptotic form
----------------------------------------------------------------------

Switching distance (SwitchD) =     0.15000
Number of terms in the asymptotic polarization potential (nterm) =    7
Term =    1  At center =    1
Explicit coordinates =  0.00000000E+00  0.00000000E+00  0.00000000E+00
Type =    1
Polarizability =  0.16198000E+02 au
Term =    2  At center =    2
Explicit coordinates =  0.00000000E+00  0.00000000E+00  0.15602260E+01
Type =    1
Polarizability =  0.46560000E+01 au
Term =    3  At center =    3
Explicit coordinates =  0.00000000E+00  0.15602260E+01  0.00000000E+00
Type =    1
Polarizability =  0.46560000E+01 au
Term =    4  At center =    4
Explicit coordinates = -0.15602260E+01  0.00000000E+00  0.00000000E+00
Type =    1
Polarizability =  0.46560000E+01 au
Term =    5  At center =    5
Explicit coordinates =  0.15602260E+01  0.00000000E+00  0.00000000E+00
Type =    1
Polarizability =  0.46560000E+01 au
Term =    6  At center =    6
Explicit coordinates =  0.00000000E+00 -0.15602260E+01  0.00000000E+00
Type =    1
Polarizability =  0.46560000E+01 au
Term =    7  At center =    7
Explicit coordinates =  0.00000000E+00  0.00000000E+00 -0.15602260E+01
Type =    1
Polarizability =  0.46560000E+01 au
Last center is at (RCenterX) =   1.56023 Angs
 Radial matching parameter (icrtyp) =    3
 Matching line type (ilntyp) =    0
 Using closest approach for matching r
 Matching point is at r =   3.2642001278
Matching uses closest approach (iMatchType = 2)
First nonzero weight at R =        2.80917 Angs
Last point of the switching region R=        3.74052 Angs
Total asymptotic potential is   0.44134000E+02 a.u.
Time Now =         8.6736  Delta time =         0.0757 End AsyPol
+ Data Record ScatContSym - 'A1G'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13290000E+02  eV
 Do E =  0.10000000E+01 eV (  0.36749326E-01 AU)
Time Now =         8.7388  Delta time =         0.0652 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A1G   1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.44134000E+02  au
Number of integration regions used =    62
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     5
Number of asymptotic solutions on the left (NAsymL) =     5
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     5
Maximum in the asymptotic region (lpasym) =   12
Number of partial waves in the asymptotic region (npasym) =    7
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   91
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   12
Higest l used in the asymptotic potential (lpzb) =   24
Maximum L used in the homogeneous solution (LMaxHomo) =   12
Number of partial waves in the homogeneous solution (npHomo) =    7
Time Now =         8.7615  Delta time =         0.0227 Energy independent setup

Compute solution for E =    1.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.44134000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.71165483E-14
 i =  2  lval =   3  stpote = -0.49269017E-17
 i =  3  lval =   3  stpote =  0.92858334E-16
 i =  4  lval =   5  stpote = -0.10353942E-03
For potential     2
 i =  1  exps = -0.58068273E+02 -0.20000000E+01  stpote = -0.27546004E-15
 i =  2  exps = -0.58068273E+02 -0.20000000E+01  stpote = -0.27546029E-15
 i =  3  exps = -0.58068273E+02 -0.20000000E+01  stpote = -0.27546076E-15
 i =  4  exps = -0.58068273E+02 -0.20000000E+01  stpote = -0.27546138E-15
For potential     3
 i =  1  lvals =   6   8  stpote =  0.38312891E-04  second term =  0.51169752E-04
 i =  2  lvals =   6   6  stpote = -0.12478758E-18  second term =  0.00000000E+00
 i =  3  lvals =   6   6  stpote =  0.14382397E-18  second term =  0.00000000E+00
 i =  4  lvals =   8  10  stpote = -0.93488028E-05  second term = -0.84786210E-05
Number of asymptotic regions =      15
Final point in integration =   0.14769367E+03 Angstroms
Time Now =        10.4835  Delta time =         1.7220 End SolveHomo
iL =   1 Iter =   1 c.s. =     32.16285257 angs^2  rmsk=     0.28597113
iL =   1 Iter =   2 c.s. =     27.26686192 angs^2  rmsk=     0.05603807
iL =   1 Iter =   3 c.s. =     26.05667104 angs^2  rmsk=     0.01148016
iL =   1 Iter =   4 c.s. =     26.08100111 angs^2  rmsk=     0.00022661
iL =   1 Iter =   5 c.s. =     26.04646215 angs^2  rmsk=     0.00031848
iL =   1 Iter =   6 c.s. =     26.06685128 angs^2  rmsk=     0.00018753
iL =   1 Iter =   7 c.s. =     26.06368894 angs^2  rmsk=     0.00002909
iL =   1 Iter =   8 c.s. =     26.06366647 angs^2  rmsk=     0.00000021
iL =   1 Iter =   9 c.s. =     26.06366641 angs^2  rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =     26.06366641 angs^2  rmsk=     0.00314465
iL =   2 Iter =   2 c.s. =     26.06359413 angs^2  rmsk=     0.00024941
iL =   2 Iter =   3 c.s. =     26.06359898 angs^2  rmsk=     0.00000077
iL =   2 Iter =   4 c.s. =     26.06360736 angs^2  rmsk=     0.00003534
iL =   2 Iter =   5 c.s. =     26.06360195 angs^2  rmsk=     0.00002221
iL =   2 Iter =   6 c.s. =     26.06360281 angs^2  rmsk=     0.00000350
iL =   2 Iter =   7 c.s. =     26.06360281 angs^2  rmsk=     0.00000002
iL =   2 Iter =   8 c.s. =     26.06360281 angs^2  rmsk=     0.00000000
iL =   3 Iter =   1 c.s. =     26.06360281 angs^2  rmsk=     0.00092133
iL =   3 Iter =   2 c.s. =     26.06360281 angs^2  rmsk=     0.00000101
iL =   3 Iter =   3 c.s. =     26.06360281 angs^2  rmsk=     0.00000033
iL =   3 Iter =   4 c.s. =     26.06360281 angs^2  rmsk=     0.00000016
iL =   3 Iter =   5 c.s. =     26.06360281 angs^2  rmsk=     0.00000000
iL =   4 Iter =   1 c.s. =     26.06360281 angs^2  rmsk=     0.00042703
iL =   4 Iter =   2 c.s. =     26.06360281 angs^2  rmsk=     0.00000001
iL =   4 Iter =   3 c.s. =     26.06360281 angs^2  rmsk=     0.00000000
iL =   5 Iter =   1 c.s. =     26.06360281 angs^2  rmsk=     0.00022012
iL =   5 Iter =   2 c.s. =     26.06360281 angs^2  rmsk=     0.00000000
iL =   5 Iter =   3 c.s. =     26.06360281 angs^2  rmsk=     0.00000000
     REAL PART -  Final k matrix
     ROW  1
 -0.10924889E+01-0.22466823E-02 0.99795449E-05-0.12285893E-06 0.16808193E-09
     ROW  2
 -0.22466823E-02 0.15361400E-01-0.20430573E-03 0.14688718E-04-0.20863344E-07
     ROW  3
  0.10038490E-04-0.20430562E-03 0.46020307E-02-0.27048197E-04 0.33051549E-05
     ROW  4
 -0.12690113E-06 0.14688721E-04-0.27048199E-04 0.21348787E-02-0.14858458E-04
     ROW  5
  0.17033338E-09-0.20863352E-07 0.33051549E-05-0.14858458E-04 0.11005195E-02
 eigenphases
 -0.8295719E+00  0.1100303E-02  0.2134780E-02  0.4598415E-02  0.1536864E-01
 eigenphase sum-0.806370E+00  scattering length=   3.84664
 eps+pi 0.233522E+01  eps+2*pi 0.547682E+01

MaxIter =   9 c.s. =     26.06360281 angs^2  rmsk=     0.00000000
Time Now =        32.1479  Delta time =        21.6644 End ScatStab
+ Data Record ScatContSym - 'T1G'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13290000E+02  eV
 Do E =  0.10000000E+01 eV (  0.36749326E-01 AU)
Time Now =        32.2142  Delta time =         0.0664 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =T1G   1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.44134000E+02  au
Number of integration regions used =    62
Number of partial waves (np) =    11
Number of asymptotic solutions on the right (NAsymR) =     6
Number of asymptotic solutions on the left (NAsymL) =     6
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     6
Maximum in the asymptotic region (lpasym) =   12
Number of partial waves in the asymptotic region (npasym) =    9
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   91
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   12
Higest l used in the asymptotic potential (lpzb) =   24
Maximum L used in the homogeneous solution (LMaxHomo) =   12
Number of partial waves in the homogeneous solution (npHomo) =    9
Time Now =        32.2367  Delta time =         0.0225 Energy independent setup

Compute solution for E =    1.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.44134000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.71165483E-14
 i =  2  lval =   3  stpote = -0.49269017E-17
 i =  3  lval =   3  stpote =  0.92858334E-16
 i =  4  lval =   5  stpote = -0.10353942E-03
For potential     2
 i =  1  exps = -0.58068273E+02 -0.20000000E+01  stpote = -0.27546004E-15
 i =  2  exps = -0.58068273E+02 -0.20000000E+01  stpote = -0.27546029E-15
 i =  3  exps = -0.58068273E+02 -0.20000000E+01  stpote = -0.27546076E-15
 i =  4  exps = -0.58068273E+02 -0.20000000E+01  stpote = -0.27546138E-15
For potential     3
 i =  1  lvals =   6   8  stpote =  0.38312891E-04  second term =  0.51169752E-04
 i =  2  lvals =   6   6  stpote = -0.12478758E-18  second term =  0.00000000E+00
 i =  3  lvals =   6   6  stpote =  0.14382397E-18  second term =  0.00000000E+00
 i =  4  lvals =   8  10  stpote = -0.93488028E-05  second term = -0.84786210E-05
Number of asymptotic regions =      15
Final point in integration =   0.14769367E+03 Angstroms
Time Now =        34.4321  Delta time =         2.1953 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.01256079 angs^2  rmsk=     0.00269982
iL =   1 Iter =   2 c.s. =      0.01224452 angs^2  rmsk=     0.00003661
iL =   1 Iter =   3 c.s. =      0.01224936 angs^2  rmsk=     0.00000056
iL =   1 Iter =   4 c.s. =      0.01224884 angs^2  rmsk=     0.00000006
iL =   1 Iter =   5 c.s. =      0.01224884 angs^2  rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =      0.01224884 angs^2  rmsk=     0.00077225
iL =   2 Iter =   2 c.s. =      0.01224882 angs^2  rmsk=     0.00000014
iL =   2 Iter =   3 c.s. =      0.01224882 angs^2  rmsk=     0.00000000
iL =   3 Iter =   1 c.s. =      0.01224882 angs^2  rmsk=     0.00035533
iL =   3 Iter =   2 c.s. =      0.01224882 angs^2  rmsk=     0.00000000
iL =   3 Iter =   3 c.s. =      0.01224882 angs^2  rmsk=     0.00000000
iL =   4 Iter =   1 c.s. =      0.01224882 angs^2  rmsk=     0.00034621
iL =   4 Iter =   2 c.s. =      0.01224882 angs^2  rmsk=     0.00000000
iL =   4 Iter =   3 c.s. =      0.01224882 angs^2  rmsk=     0.00000000
iL =   5 Iter =   1 c.s. =      0.01224882 angs^2  rmsk=     0.00018288
iL =   5 Iter =   2 c.s. =      0.01224882 angs^2  rmsk=     0.00000000
iL =   5 Iter =   3 c.s. =      0.01224882 angs^2  rmsk=     0.00000000
iL =   6 Iter =   1 c.s. =      0.01224882 angs^2  rmsk=     0.00018401
iL =   6 Iter =   2 c.s. =      0.01224882 angs^2  rmsk=     0.00000000
iL =   6 Iter =   3 c.s. =      0.01224882 angs^2  rmsk=     0.00000000
     REAL PART -  Final k matrix
     ROW  1
  0.14936913E-01-0.14937609E-03 0.13200745E-04 0.40526348E-05-0.20605392E-07
  0.70714529E-09
     ROW  2
 -0.14937751E-03 0.46309626E-02-0.16828446E-04-0.22329188E-04 0.24668456E-05
  0.24531890E-05
     ROW  3
  0.13200692E-04-0.16828446E-04 0.21318545E-02 0.46042914E-05-0.12124684E-04
 -0.31432174E-06
     ROW  4
  0.40526548E-05-0.22329188E-04 0.46042914E-05 0.20771191E-02-0.86747243E-05
 -0.24622675E-05
     ROW  5
 -0.20605378E-07 0.24668456E-05-0.12124684E-04-0.86747243E-05 0.10971899E-02
  0.39634297E-05
     ROW  6
  0.70714215E-09 0.24531890E-05-0.31432174E-06-0.24622675E-05 0.39634297E-05
  0.11040468E-02
 eigenphases
  0.1095214E-02  0.1105794E-02  0.2076626E-02  0.2132243E-02  0.4629074E-02
  0.1493798E-01
 eigenphase sum 0.259769E-01  scattering length=  -0.09584
 eps+pi 0.316757E+01  eps+2*pi 0.630916E+01

MaxIter =   5 c.s. =      0.01224882 angs^2  rmsk=     0.00000000
Time Now =        46.1310  Delta time =        11.6989 End ScatStab
+ Data Record GrnType - 1
+ Data Record ScatContSym - 'A1G'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13290000E+02  eV
 Do E =  0.10000000E+01 eV (  0.36749326E-01 AU)
Time Now =        46.1972  Delta time =         0.0662 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A1G   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.44134000E+02  au
Number of integration regions used =    62
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     5
Number of asymptotic solutions on the left (NAsymL) =     5
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     5
Maximum in the asymptotic region (lpasym) =   12
Number of partial waves in the asymptotic region (npasym) =    7
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   91
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   12
Higest l used in the asymptotic potential (lpzb) =   24
Maximum L used in the homogeneous solution (LMaxHomo) =   12
Number of partial waves in the homogeneous solution (npHomo) =    7
Time Now =        46.2197  Delta time =         0.0225 Energy independent setup

Compute solution for E =    1.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.44134000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.71165483E-14
 i =  2  lval =   3  stpote = -0.49269017E-17
 i =  3  lval =   3  stpote =  0.92858334E-16
 i =  4  lval =   5  stpote = -0.10353942E-03
For potential     2
 i =  1  exps = -0.58068273E+02 -0.20000000E+01  stpote = -0.27546004E-15
 i =  2  exps = -0.58068273E+02 -0.20000000E+01  stpote = -0.27546029E-15
 i =  3  exps = -0.58068273E+02 -0.20000000E+01  stpote = -0.27546076E-15
 i =  4  exps = -0.58068273E+02 -0.20000000E+01  stpote = -0.27546138E-15
For potential     3
 i =  1  lvals =   6   8  stpote =  0.38312891E-04  second term =  0.51169752E-04
 i =  2  lvals =   6   6  stpote = -0.12478758E-18  second term =  0.00000000E+00
 i =  3  lvals =   6   6  stpote =  0.14382397E-18  second term =  0.00000000E+00
 i =  4  lvals =   8  10  stpote = -0.93488028E-05  second term = -0.84786210E-05
Number of asymptotic regions =      15
Final point in integration =   0.14769367E+03 Angstroms
Time Now =        47.9666  Delta time =         1.7470 End SolveHomo
iL =   1 Iter =   1 c.s. =     32.16285257 angs^2  rmsk=     0.16392338
iL =   1 Iter =   2 c.s. =     27.26685697 angs^2  rmsk=     0.02107952
iL =   1 Iter =   3 c.s. =     26.05666774 angs^2  rmsk=     0.00508816
iL =   1 Iter =   4 c.s. =     26.08099353 angs^2  rmsk=     0.00010214
iL =   1 Iter =   5 c.s. =     26.04645783 angs^2  rmsk=     0.00014484
iL =   1 Iter =   6 c.s. =     26.06684439 angs^2  rmsk=     0.00008551
iL =   1 Iter =   7 c.s. =     26.06368167 angs^2  rmsk=     0.00001326
iL =   1 Iter =   8 c.s. =     26.06365920 angs^2  rmsk=     0.00000009
iL =   1 Iter =   9 c.s. =     26.06365915 angs^2  rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =     26.06365915 angs^2  rmsk=     0.00309524
iL =   2 Iter =   2 c.s. =     26.06358599 angs^2  rmsk=     0.00011113
iL =   2 Iter =   3 c.s. =     26.06360136 angs^2  rmsk=     0.00001546
iL =   2 Iter =   4 c.s. =     26.06360376 angs^2  rmsk=     0.00000486
iL =   2 Iter =   5 c.s. =     26.06360306 angs^2  rmsk=     0.00000141
iL =   2 Iter =   6 c.s. =     26.06360280 angs^2  rmsk=     0.00000136
iL =   2 Iter =   7 c.s. =     26.06360281 angs^2  rmsk=     0.00000001
iL =   2 Iter =   8 c.s. =     26.06360281 angs^2  rmsk=     0.00000000
iL =   3 Iter =   1 c.s. =     26.06360281 angs^2  rmsk=     0.00092132
iL =   3 Iter =   2 c.s. =     26.06360281 angs^2  rmsk=     0.00000044
iL =   3 Iter =   3 c.s. =     26.06360281 angs^2  rmsk=     0.00000014
iL =   3 Iter =   4 c.s. =     26.06360281 angs^2  rmsk=     0.00000002
iL =   4 Iter =   1 c.s. =     26.06360281 angs^2  rmsk=     0.00042703
iL =   4 Iter =   2 c.s. =     26.06360281 angs^2  rmsk=     0.00000000
iL =   4 Iter =   3 c.s. =     26.06360281 angs^2  rmsk=     0.00000000
iL =   5 Iter =   1 c.s. =     26.06360281 angs^2  rmsk=     0.00022012
iL =   5 Iter =   2 c.s. =     26.06360281 angs^2  rmsk=     0.00000000
iL =   5 Iter =   3 c.s. =     26.06360281 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  (-0.49804784E+00, 0.54411409E+00) (-0.10411748E-02, 0.11029604E-02)
  ( 0.47966692E-05,-0.47354964E-05) (-0.72436190E-07, 0.45611715E-07)
  ( 0.11601634E-09,-0.44932751E-10)
     ROW  2
  (-0.10411748E-02, 0.11029604E-02) ( 0.15360216E-01, 0.23833554E-03)
  (-0.20424922E-03,-0.40889290E-05) ( 0.14684681E-04, 0.26262468E-06)
  (-0.20839779E-07,-0.12368424E-08)
     ROW  3
  ( 0.47955460E-05,-0.47547605E-05) (-0.20424904E-03,-0.40887983E-05)
  ( 0.46019323E-02, 0.21220754E-04) (-0.27047168E-04,-0.18526626E-06)
  ( 0.33050607E-05, 0.19253564E-07)
     ROW  4
  (-0.72355890E-07, 0.46117877E-07) ( 0.14684683E-04, 0.26262180E-06)
  (-0.27047168E-04,-0.18526601E-06) ( 0.21348690E-02, 0.45588580E-05)
  (-0.14858336E-04,-0.48169836E-07)
     ROW  5
  ( 0.11617377E-09,-0.45390152E-10) (-0.20839784E-07,-0.12368370E-08)
  ( 0.33050607E-05, 0.19253564E-07) (-0.14858336E-04,-0.48169836E-07)
  ( 0.11005181E-02, 0.12114363E-05)
 eigenphases
 -0.8295719E+00  0.1100303E-02  0.2134780E-02  0.4598415E-02  0.1536864E-01
 eigenphase sum-0.806370E+00  scattering length=   3.84664
 eps+pi 0.233522E+01  eps+2*pi 0.547682E+01

MaxIter =   9 c.s. =     26.06360281 angs^2  rmsk=     0.00000000
Time Now =        88.3216  Delta time =        40.3549 End ScatStab
+ Data Record ScatContSym - 'T1G'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13290000E+02  eV
 Do E =  0.10000000E+01 eV (  0.36749326E-01 AU)
Time Now =        88.3880  Delta time =         0.0664 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =T1G   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.44134000E+02  au
Number of integration regions used =    62
Number of partial waves (np) =    11
Number of asymptotic solutions on the right (NAsymR) =     6
Number of asymptotic solutions on the left (NAsymL) =     6
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     6
Maximum in the asymptotic region (lpasym) =   12
Number of partial waves in the asymptotic region (npasym) =    9
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   91
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   12
Higest l used in the asymptotic potential (lpzb) =   24
Maximum L used in the homogeneous solution (LMaxHomo) =   12
Number of partial waves in the homogeneous solution (npHomo) =    9
Time Now =        88.4106  Delta time =         0.0226 Energy independent setup

Compute solution for E =    1.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.44134000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.71165483E-14
 i =  2  lval =   3  stpote = -0.49269017E-17
 i =  3  lval =   3  stpote =  0.92858334E-16
 i =  4  lval =   5  stpote = -0.10353942E-03
For potential     2
 i =  1  exps = -0.58068273E+02 -0.20000000E+01  stpote = -0.27546004E-15
 i =  2  exps = -0.58068273E+02 -0.20000000E+01  stpote = -0.27546029E-15
 i =  3  exps = -0.58068273E+02 -0.20000000E+01  stpote = -0.27546076E-15
 i =  4  exps = -0.58068273E+02 -0.20000000E+01  stpote = -0.27546138E-15
For potential     3
 i =  1  lvals =   6   8  stpote =  0.38312891E-04  second term =  0.51169752E-04
 i =  2  lvals =   6   6  stpote = -0.12478758E-18  second term =  0.00000000E+00
 i =  3  lvals =   6   6  stpote =  0.14382397E-18  second term =  0.00000000E+00
 i =  4  lvals =   8  10  stpote = -0.93488028E-05  second term = -0.84786210E-05
Number of asymptotic regions =      15
Final point in integration =   0.14769367E+03 Angstroms
Time Now =        90.5948  Delta time =         2.1843 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.01256079 angs^2  rmsk=     0.00269955
iL =   1 Iter =   2 c.s. =      0.01224452 angs^2  rmsk=     0.00003660
iL =   1 Iter =   3 c.s. =      0.01224936 angs^2  rmsk=     0.00000056
iL =   1 Iter =   4 c.s. =      0.01224884 angs^2  rmsk=     0.00000006
iL =   1 Iter =   5 c.s. =      0.01224884 angs^2  rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =      0.01224884 angs^2  rmsk=     0.00077224
iL =   2 Iter =   2 c.s. =      0.01224882 angs^2  rmsk=     0.00000014
iL =   2 Iter =   3 c.s. =      0.01224882 angs^2  rmsk=     0.00000000
iL =   3 Iter =   1 c.s. =      0.01224882 angs^2  rmsk=     0.00035533
iL =   3 Iter =   2 c.s. =      0.01224882 angs^2  rmsk=     0.00000000
iL =   3 Iter =   3 c.s. =      0.01224882 angs^2  rmsk=     0.00000000
iL =   4 Iter =   1 c.s. =      0.01224882 angs^2  rmsk=     0.00034621
iL =   4 Iter =   2 c.s. =      0.01224882 angs^2  rmsk=     0.00000000
iL =   4 Iter =   3 c.s. =      0.01224882 angs^2  rmsk=     0.00000000
iL =   5 Iter =   1 c.s. =      0.01224882 angs^2  rmsk=     0.00018288
iL =   5 Iter =   2 c.s. =      0.01224882 angs^2  rmsk=     0.00000000
iL =   5 Iter =   3 c.s. =      0.01224882 angs^2  rmsk=     0.00000000
iL =   6 Iter =   1 c.s. =      0.01224882 angs^2  rmsk=     0.00018401
iL =   6 Iter =   2 c.s. =      0.01224882 angs^2  rmsk=     0.00000000
iL =   6 Iter =   3 c.s. =      0.01224882 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.14933580E-01, 0.22308409E-03) (-0.14932922E-03,-0.29225704E-05)
  ( 0.13197265E-04, 0.22780091E-06) ( 0.40515141E-05, 0.72331166E-07)
  (-0.20589214E-07,-0.89383058E-09) ( 0.71481803E-09,-0.36918918E-09)
     ROW  2
  (-0.14933065E-03,-0.29226530E-05) ( 0.46308628E-02, 0.21468452E-04)
  (-0.16827798E-04,-0.11590937E-06) (-0.22328383E-04,-0.15049221E-06)
  ( 0.24667739E-05, 0.14540697E-07) ( 0.24531202E-05, 0.14138701E-07)
     ROW  3
  ( 0.13197276E-04, 0.22777974E-06) (-0.16827798E-04,-0.11590937E-06)
  ( 0.21318448E-02, 0.45454120E-05) ( 0.46042252E-05, 0.19914533E-07)
  (-0.12124586E-04,-0.39239202E-07) (-0.31431858E-06,-0.11187862E-08)
     ROW  4
  ( 0.40515205E-05, 0.72328970E-07) (-0.22328383E-04,-0.15049221E-06)
  ( 0.46042252E-05, 0.19914533E-07) ( 0.20771102E-02, 0.43150250E-05)
  (-0.86746558E-05,-0.27661984E-07) (-0.24622476E-05,-0.79258045E-08)
     ROW  5
  (-0.20589226E-07,-0.89382045E-09) ( 0.24667739E-05, 0.14540697E-07)
  (-0.12124586E-04,-0.39239202E-07) (-0.86746558E-05,-0.27661984E-07)
  ( 0.10971885E-02, 0.12041108E-05) ( 0.39634151E-05, 0.87811533E-08)
     ROW  6
  ( 0.71481521E-09,-0.36919221E-09) ( 0.24531202E-05, 0.14138701E-07)
  (-0.31431858E-06,-0.11187862E-08) (-0.24622476E-05,-0.79258045E-08)
  ( 0.39634151E-05, 0.87811533E-08) ( 0.11040455E-02, 0.12189634E-05)
 eigenphases
  0.1095214E-02  0.1105794E-02  0.2076626E-02  0.2132243E-02  0.4629074E-02
  0.1493798E-01
 eigenphase sum 0.259769E-01  scattering length=  -0.09584
 eps+pi 0.316757E+01  eps+2*pi 0.630916E+01

MaxIter =   5 c.s. =      0.01224882 angs^2  rmsk=     0.00000000
Time Now =       113.8494  Delta time =        23.2546 End ScatStab
Time Now =       113.8511  Delta time =         0.0017 Finalize