----------------------------------------------------------------------
ePolyScat Version E2
----------------------------------------------------------------------

Authors: R. R. Lucchese, N. Sanna, A. P. P. Natalense, and F. A. Gianturco
http://www.chem.tamu.edu/rgroup/lucchese/ePolyScat.E2.manual/manual.html
Please cite the following two papers when reporting results obtained with  this program
F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 100, 6464 (1994).
A. P. P. Natalense and R. R. Lucchese, J. Chem. Phys. 111, 5344 (1999).

----------------------------------------------------------------------

Starting at 2009-03-13  11:35:55.607 (GMT -0500)
Using    16 processors

----------------------------------------------------------------------


+ Start of Input Records
#
# input file for test04
#
# electron scattering from SiH4 in A1 symmetry
#
  LMax   15     # maximum l to be used for wave functions
  EMax  50.0    # EMax, maximum asymptotic energy in eV
  EngForm       # Energy formulas
   0 0
  VCorr 'PZ'
  AsyPol
 0.15  # SwitchD, distance where switching function is down to 0.1
 1     # nterm, number of terms needed to define asymptotic potential
 1     # center for polarization term 1 is for C atom
 1     # ittyp type of polarization term, = 1 for spherically symmetric
       # = 2 for reading in the full tensor
 30.40 # value of the spherical polarizability
 3     # icrtyp, flag to determine where r match is, 3 for second crossing
       # or at nearest approach
 0     # ilntyp, flag to determine what matching line is used, 0 - use
       # l = 0 radial function as matching function
  FegeEng 13.29   # Energy correction (in eV) used in the fege potential
  ScatContSym 'A1'  # Scattering symmetry
  LMaxK   10     # Maximum l in the K matirx
  ScatEng 0.5 10.0 15.0      # list of scattering energies
  GrnType 1

Convert '/scratch/rrl581a/ePolyScat.E2/tests/test04.g03' 'g03'
GetBlms
ExpOrb
GetPot
Scat
TotalCrossSection
+ End of input reached
+ Data Record LMax - 15
+ Data Record EMax - 50.0
+ Data Record EngForm - 0 0
+ Data Record VCorr - 'PZ'
+ Data Record AsyPol
+ 0.15 / 1 / 1 / 1 / 30.40 / 3 / 0
+ Data Record FegeEng - 13.29
+ Data Record ScatContSym - 'A1'
+ Data Record LMaxK - 10
+ Data Record ScatEng - 0.5 10.0 15.0
+ Data Record GrnType - 1

+ Command Convert
+ '/scratch/rrl581a/ePolyScat.E2/tests/test04.g03' 'g03'

----------------------------------------------------------------------
g03cnv - read input from G03 output
----------------------------------------------------------------------

Expansion center is (in Angstroms) -
     0.0000000000   0.0000000000   0.0000000000
CardFlag =    T
Normal Mode flag =    F
Selecting orbitals
from     1  to     9  number already selected     0
Number of orbitals selected is     9
Highest orbital read in is =    9
Time Now =         0.0467  Delta time =         0.0467 End g03cnv

Atoms found    5  Coordinates in Angstroms
Z = 14 ZS = 14 r =   0.0000000000   0.0000000000   0.0000000000
Z =  1 ZS =  1 r =   0.8440860000   0.8440860000   0.8440860000
Z =  1 ZS =  1 r =  -0.8440860000  -0.8440860000   0.8440860000
Z =  1 ZS =  1 r =   0.8440860000  -0.8440860000  -0.8440860000
Z =  1 ZS =  1 r =  -0.8440860000   0.8440860000  -0.8440860000
Maximum distance from expansion center is    1.4619998380

+ Command GetBlms
+

----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------

Found point group  Td
Reduce angular grid using nthd =  1  nphid =  4
Found point group for abelian subgroup D2
Time Now =         0.0512  Delta time =         0.0045 End GetPGroup
List of unique axes
  N  Vector                      Z   R
  1  0.00000  0.00000  1.00000
  2  0.57735  0.57735  0.57735   1  2.76278
  3 -0.57735 -0.57735  0.57735   1  2.76278
  4  0.57735 -0.57735 -0.57735   1  2.76278
  5 -0.57735  0.57735 -0.57735   1  2.76278
List of corresponding x axes
  N  Vector
  1  1.00000 -0.00000 -0.00000
  2  0.81650 -0.40825 -0.40825
  3  0.81650 -0.40825  0.40825
  4  0.81650  0.40825  0.40825
  5  0.81650  0.40825 -0.40825
Computed default value of LMaxA =   12
Determineing angular grid in GetAxMax  LMax =   15  LMaxA =   12  LMaxAb =   30
MMax =    3  MMaxAbFlag =    1
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11  12  13  -1  -1
For axis     2  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3
For axis     3  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3
For axis     4  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3
For axis     5  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3
On the double L grid used for products
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19
  20  21  22  23  24  25  26  27  28  29  30
For axis     2  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
For axis     3  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
For axis     4  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
For axis     5  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is Td
LMax = =   15
 The dimension of each irreducable representation is
    A1    (  1)    A2    (  1)    E     (  2)    T1    (  3)    T2    (  3)
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     8    11    14
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A1        1         1         15       1  1  1
 A2        1         2          7       1  1  1
 E         1         3         20       1  1  1
 E         2         4         20       1  1  1
 T1        1         5         27      -1 -1  1
 T1        2         6         27      -1  1 -1
 T1        3         7         27       1 -1 -1
 T2        1         8         36      -1 -1  1
 T2        2         9         36      -1  1 -1
 T2        3        10         36       1 -1 -1
Time Now =         0.5799  Delta time =         0.5287 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
A1    1    0(   1)    1(   1)    2(   1)    3(   2)    4(   3)    5(   3)    6(   4)    7(   5)    8(   6)    9(   7)
          10(   8)   11(   9)   12(  11)
A2    1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   1)    7(   1)    8(   1)    9(   2)
          10(   3)   11(   3)   12(   4)
E     1    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   3)    6(   4)    7(   5)    8(   7)    9(   8)
          10(  10)   11(  12)   12(  14)
E     2    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   3)    6(   4)    7(   5)    8(   7)    9(   8)
          10(  10)   11(  12)   12(  14)
T1    1    0(   0)    1(   0)    2(   0)    3(   1)    4(   2)    5(   3)    6(   4)    7(   6)    8(   8)    9(  10)
          10(  12)   11(  15)   12(  18)
T1    2    0(   0)    1(   0)    2(   0)    3(   1)    4(   2)    5(   3)    6(   4)    7(   6)    8(   8)    9(  10)
          10(  12)   11(  15)   12(  18)
T1    3    0(   0)    1(   0)    2(   0)    3(   1)    4(   2)    5(   3)    6(   4)    7(   6)    8(   8)    9(  10)
          10(  12)   11(  15)   12(  18)
T2    1    0(   0)    1(   1)    2(   2)    3(   3)    4(   4)    5(   6)    6(   8)    7(  10)    8(  12)    9(  15)
          10(  18)   11(  21)   12(  24)
T2    2    0(   0)    1(   1)    2(   2)    3(   3)    4(   4)    5(   6)    6(   8)    7(  10)    8(  12)    9(  15)
          10(  18)   11(  21)   12(  24)
T2    3    0(   0)    1(   1)    2(   2)    3(   3)    4(   4)    5(   6)    6(   8)    7(  10)    8(  12)    9(  15)
          10(  18)   11(  21)   12(  24)

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is D2
LMax = =   30
 The dimension of each irreducable representation is
    A     (  1)    B1    (  1)    B2    (  1)    B3    (  1)
Abelian axes
    1       1.000000       0.000000       0.000000
    2       0.000000       1.000000       0.000000
    3       0.000000       0.000000       1.000000
Symmetry operation directions
  1       0.000000       0.000000       1.000000 ang =  0  1 type = 0 axis = 3
  2       0.000000       0.000000       1.000000 ang =  1  2 type = 2 axis = 3
  3       1.000000       0.000000       0.000000 ang =  1  2 type = 2 axis = 1
  4       0.000000       1.000000       0.000000 ang =  1  2 type = 2 axis = 2
irep =    1  sym =A     1  eigs =   1   1   1   1
irep =    2  sym =B1    1  eigs =   1   1  -1  -1
irep =    3  sym =B2    1  eigs =   1  -1  -1   1
irep =    4  sym =B3    1  eigs =   1  -1   1  -1
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     2     3     4
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A         1         1        241       1  1  1
 B1        1         2        240       1 -1 -1
 B2        1         3        240      -1 -1  1
 B3        1         4        240      -1  1 -1
Time Now =         0.6034  Delta time =         0.0235 End SymGen

+ Command ExpOrb
+
In GetRMax, RMaxEps =  0.10000000E-05  RMax =    8.2582051784 Angs

----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------

Maximum R in the grid (RMax) =     8.25821 Angs
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) =   10.0
In regions controlled by the wave length (HFacWave) =   10.0
Factor used to control the minimum exponent at each center (MinExpFac) =  300.0
Maximum asymptotic kinetic energy (EMAx) =  50.00000 eV
Maximum step size (MaxStep) =   0.01058 Angs
Factor to increase grid by (GridFac) =     1

    1  Center at =     0.00000 Angs  Alpha Max = 0.69379E+05
    2  Center at =     1.46200 Angs  Alpha Max = 0.30000E+03

Generated Grid

  irg  nin  ntot      step Angs     R end Angs
    1    8     8    0.20090E-03     0.00161
    2    8    16    0.21418E-03     0.00332
    3    8    24    0.26402E-03     0.00543
    4    8    32    0.40058E-03     0.00864
    5    8    40    0.63687E-03     0.01373
    6    8    48    0.10125E-02     0.02183
    7    8    56    0.16098E-02     0.03471
    8    8    64    0.25593E-02     0.05519
    9    8    72    0.40690E-02     0.08774
   10    8    80    0.64692E-02     0.13949
   11    8    88    0.10285E-01     0.22177
   12   64   152    0.10584E-01     0.89912
   13   32   184    0.10584E-01     1.23779
   14    8   192    0.10289E-01     1.32010
   15    8   200    0.64628E-02     1.37180
   16    8   208    0.42286E-02     1.40563
   17    8   216    0.33452E-02     1.43239
   18    8   224    0.30634E-02     1.45690
   19    8   232    0.63733E-03     1.46200
   20    8   240    0.30552E-02     1.48644
   21    8   248    0.32571E-02     1.51250
   22    8   256    0.40150E-02     1.54462
   23    8   264    0.60918E-02     1.59335
   24    8   272    0.96851E-02     1.67083
   25   64   336    0.10584E-01     2.34818
   26   64   400    0.10584E-01     3.02553
   27   64   464    0.10584E-01     3.70287
   28   64   528    0.10584E-01     4.38022
   29   64   592    0.10584E-01     5.05757
   30   64   656    0.10584E-01     5.73491
   31   64   720    0.10584E-01     6.41226
   32   64   784    0.10584E-01     7.08961
   33   64   848    0.10584E-01     7.76695
   34   40   888    0.10584E-01     8.19030
   35    8   896    0.84886E-02     8.25821
Time Now =         0.6656  Delta time =         0.0622 End GenGrid

----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------

Maximum scattering l (lmax) =   15
Maximum scattering m (mmaxs) =   15
Maximum numerical integration l (lmaxi) =   30
Maximum numerical integration m (mmaxi) =   30
Maximum l to include in the asymptotic region (lmasym) =   12
Parameter used to determine the cutoff points (PCutRd) =  0.10000000E-07 au
Maximum E used to determine grid (in eV) =       50.00000
Print flag (iprnfg) =    0
lmasymtyts =   12
 Actual value of lmasym found =     12
Number of regions of the same l expansion (NAngReg) =   10
Angular regions
    1 L =    2  from (    1)         0.00020  to (    7)         0.00141
    2 L =    5  from (    8)         0.00161  to (   23)         0.00517
    3 L =    6  from (   24)         0.00543  to (   31)         0.00824
    4 L =    7  from (   32)         0.00864  to (   47)         0.02082
    5 L =    8  from (   48)         0.02183  to (   55)         0.03310
    6 L =    9  from (   56)         0.03471  to (   63)         0.05263
    7 L =   11  from (   64)         0.05519  to (   71)         0.08367
    8 L =   12  from (   72)         0.08774  to (  151)         0.88854
    9 L =   15  from (  152)         0.89912  to (  368)         2.68685
   10 L =   12  from (  369)         2.69744  to (  896)         8.25821
Angular regions for computing spherical harmonics
    1 lval =   12
    2 lval =   15
Last grid points by processor WorkExp =     1.500
Proc id =   -1  Last grid point =       1
Proc id =    0  Last grid point =     104
Proc id =    1  Last grid point =     160
Proc id =    2  Last grid point =     200
Proc id =    3  Last grid point =     248
Proc id =    4  Last grid point =     288
Proc id =    5  Last grid point =     328
Proc id =    6  Last grid point =     376
Proc id =    7  Last grid point =     432
Proc id =    8  Last grid point =     488
Proc id =    9  Last grid point =     552
Proc id =   10  Last grid point =     608
Proc id =   11  Last grid point =     664
Proc id =   12  Last grid point =     728
Proc id =   13  Last grid point =     784
Proc id =   14  Last grid point =     840
Proc id =   15  Last grid point =     896
Time Now =         0.7155  Delta time =         0.0499 End AngGCt

----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------


 R of maximum density
     1  A1    1 at max irg =    7  r =   0.03471
     2  A1    1 at max irg =   11  r =   0.22177
     3  T2    1 at max irg =   11  r =   0.22177
     4  T2    2 at max irg =   11  r =   0.22177
     5  T2    3 at max irg =   11  r =   0.22177
     6  A1    1 at max irg =   22  r =   1.15312
     7  T2    1 at max irg =   27  r =   1.43239
     8  T2    2 at max irg =   27  r =   1.43239
     9  T2    3 at max irg =   27  r =   1.43239

Rotation coefficients for orbital     1  grp =    1 A1    1
     1  1.0000000000

Rotation coefficients for orbital     2  grp =    2 A1    1
     2  1.0000000000

Rotation coefficients for orbital     3  grp =    3 T2    1
     3  0.0000000000    4  1.0000000000    5 -0.0000000000

Rotation coefficients for orbital     4  grp =    3 T2    2
     3  1.0000000000    4 -0.0000000000    5  0.0000000000

Rotation coefficients for orbital     5  grp =    3 T2    3
     3 -0.0000000000    4  0.0000000000    5  1.0000000000

Rotation coefficients for orbital     6  grp =    4 A1    1
     6  1.0000000000

Rotation coefficients for orbital     7  grp =    5 T2    1
     7  1.0000000000    8 -0.0000000000    9 -0.0000000000

Rotation coefficients for orbital     8  grp =    5 T2    2
     7  0.0000000000    8 -0.0000000000    9  1.0000000000

Rotation coefficients for orbital     9  grp =    5 T2    3
     7  0.0000000000    8  1.0000000000    9  0.0000000000
Number of orbital groups and degeneracis are         5
  1  1  3  1  3
Number of orbital groups and number of electrons when fully occupied
         5
  2  2  6  2  6
Time Now =         0.9968  Delta time =         0.2813 End RotOrb

----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------

 First orbital group to expand (mofr) =    1
 Last orbital group to expand (moto) =    5
Orbital     1 of  A1    1 symmetry normalization integral =  0.99999997
Orbital     2 of  A1    1 symmetry normalization integral =  1.00000000
Orbital     3 of  T2    1 symmetry normalization integral =  1.00000000
Orbital     4 of  A1    1 symmetry normalization integral =  0.99993723
Orbital     5 of  T2    1 symmetry normalization integral =  0.99990632
Time Now =         2.5765  Delta time =         1.5797 End ExpOrb

+ Command GetPot
+

----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------

Total density =     18.00000000
Time Now =         2.5904  Delta time =         0.0138 End Den

----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------

 vasymp =  0.18000000E+02 facnorm =  0.10000000E+01
Time Now =         2.6749  Delta time =         0.0845 Electronic part
Time Now =         2.6781  Delta time =         0.0033 End StPot

----------------------------------------------------------------------
vcppol - VCP polarization potential program
----------------------------------------------------------------------

Time Now =         2.7534  Delta time =         0.0753 End VcpPol

----------------------------------------------------------------------
AsyPol - Program to match polarization potential to asymptotic form
----------------------------------------------------------------------

Switching distance (SwitchD) =     0.15000
Number of terms in the asymptotic polarization potential (nterm) =    1
Term =    1  At center =    1
Explicit coordinates =  0.00000000E+00  0.00000000E+00  0.00000000E+00
Type =    1
Polarizability =  0.30400000E+02 au
Last center is at (RCenterX) =   0.00000 Angs
 Radial matching parameter (icrtyp) =    3
 Matching line type (ilntyp) =    0
 Matching point is at r =   2.5561441080
Matching uses curve crossing (iMatchType = 1)
First nonzero weight at R =        2.09418 Angs
Last point of the switching region R=        3.02553 Angs
Total asymptotic potential is   0.30400000E+02 a.u.
Time Now =         2.7984  Delta time =         0.0449 End AsyPol

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13290000E+02  eV
 Do E =  0.50000000E+00 eV (  0.18374663E-01 AU)
Time Now =         2.8809  Delta time =         0.0826 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A1    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.30400000E+02  au
Number of integration regions used =    65
Number of partial waves (np) =    15
Number of asymptotic solutions on the right (NAsymR) =     8
Number of asymptotic solutions on the left (NAsymL) =     8
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     8
Maximum in the asymptotic region (lpasym) =   12
Number of partial waves in the asymptotic region (npasym) =   11
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  157
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   12
Higest l used in the asymptotic potential (lpzb) =   24
Maximum L used in the homogeneous solution (LMaxHomo) =   12
Number of partial waves in the homogeneous solution (npHomo) =   11
Time Now =         2.9049  Delta time =         0.0239 Energy independent setup

Compute solution for E =    0.5000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.30400000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.94727417E-15
 i =  2  lval =   3  stpote = -0.96693435E-18
 i =  3  lval =   3  stpote = -0.62845535E-18
 i =  4  lval =   4  stpote =  0.18264483E-03
For potential     2
 i =  1  exps = -0.62422985E+02 -0.20000000E+01  stpote = -0.21261423E-15
 i =  2  exps = -0.62422985E+02 -0.20000000E+01  stpote = -0.21257472E-15
 i =  3  exps = -0.62422985E+02 -0.20000000E+01  stpote = -0.21253783E-15
 i =  4  exps = -0.62422985E+02 -0.20000000E+01  stpote = -0.21250488E-15
For potential     3
 i =  1  lvals =   6   6  stpote =  0.00000000E+00  second term =  0.00000000E+00
 i =  2  lvals =   6   6  stpote = -0.12441216E-18  second term =  0.00000000E+00
 i =  3  lvals =   6   6  stpote = -0.46962324E-19  second term =  0.00000000E+00
 i =  4  lvals =   7   9  stpote = -0.43817040E-05  second term = -0.43817040E-05
Number of asymptotic regions =      12
Final point in integration =   0.17342652E+03 Angstroms
Time Now =         7.8956  Delta time =         4.9907 End SolveHomo
iL =   1 Iter =   1 c.s. =      6.44877664 angs^2  rmsk=     0.03243899
iL =   1 Iter =   2 c.s. =      2.21253023 angs^2  rmsk=     0.01374247
iL =   1 Iter =   3 c.s. =      1.60410877 angs^2  rmsk=     0.00286220
iL =   1 Iter =   4 c.s. =      1.60124940 angs^2  rmsk=     0.00001462
iL =   1 Iter =   5 c.s. =      1.60115476 angs^2  rmsk=     0.00000048
iL =   1 Iter =   6 c.s. =      1.60115482 angs^2  rmsk=     0.00000000
iL =   1 Iter =   7 c.s. =      1.60115479 angs^2  rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =      1.60115479 angs^2  rmsk=     0.00142666
iL =   2 Iter =   2 c.s. =      1.60132245 angs^2  rmsk=     0.00028070
iL =   2 Iter =   3 c.s. =      1.60123147 angs^2  rmsk=     0.00006595
iL =   2 Iter =   4 c.s. =      1.60123154 angs^2  rmsk=     0.00000026
iL =   2 Iter =   5 c.s. =      1.60123154 angs^2  rmsk=     0.00000000
iL =   2 Iter =   6 c.s. =      1.60123154 angs^2  rmsk=     0.00000000
iL =   3 Iter =   1 c.s. =      1.60123154 angs^2  rmsk=     0.00064762
iL =   3 Iter =   2 c.s. =      1.60123330 angs^2  rmsk=     0.00001184
iL =   3 Iter =   3 c.s. =      1.60123279 angs^2  rmsk=     0.00000217
iL =   3 Iter =   4 c.s. =      1.60123279 angs^2  rmsk=     0.00000001
iL =   3 Iter =   5 c.s. =      1.60123279 angs^2  rmsk=     0.00000000
iL =   4 Iter =   1 c.s. =      1.60123279 angs^2  rmsk=     0.00020574
iL =   4 Iter =   2 c.s. =      1.60123279 angs^2  rmsk=     0.00000005
iL =   4 Iter =   3 c.s. =      1.60123279 angs^2  rmsk=     0.00000001
iL =   5 Iter =   1 c.s. =      1.60123279 angs^2  rmsk=     0.00013401
iL =   5 Iter =   2 c.s. =      1.60123279 angs^2  rmsk=     0.00000000
iL =   5 Iter =   3 c.s. =      1.60123279 angs^2  rmsk=     0.00000000
iL =   6 Iter =   1 c.s. =      1.60123279 angs^2  rmsk=     0.00009109
iL =   6 Iter =   2 c.s. =      1.60123279 angs^2  rmsk=     0.00000000
iL =   6 Iter =   3 c.s. =      1.60123279 angs^2  rmsk=     0.00000000
iL =   7 Iter =   1 c.s. =      1.60123279 angs^2  rmsk=     0.00006494
iL =   7 Iter =   2 c.s. =      1.60123279 angs^2  rmsk=     0.00000000
iL =   7 Iter =   3 c.s. =      1.60123279 angs^2  rmsk=     0.00000000
iL =   8 Iter =   1 c.s. =      1.60123279 angs^2  rmsk=     0.00004804
iL =   8 Iter =   2 c.s. =      1.60123279 angs^2  rmsk=     0.00000000
iL =   8 Iter =   3 c.s. =      1.60123279 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  (-0.12761046E+00, 0.16559409E-01) ( 0.85723187E-03,-0.10148594E-03)
  (-0.14118640E-03, 0.18488952E-04) (-0.61200848E-06, 0.15416979E-06)
  (-0.22825536E-07, 0.86793429E-08) ( 0.26370415E-09,-0.20379127E-10)
  (-0.19051563E-10, 0.13408753E-10) ( 0.60598654E-12,-0.22974288E-12)
     ROW  2
  ( 0.85723187E-03,-0.10148595E-03) ( 0.11367955E-01, 0.13106370E-03)
  ( 0.10310469E-02, 0.16834742E-04) ( 0.87312327E-04, 0.11367576E-05)
  (-0.24071789E-06,-0.57476812E-07) ( 0.23257095E-08,-0.77078442E-10)
  (-0.21132482E-08,-0.18105037E-08) ( 0.59230029E-10,-0.55546429E-11)
     ROW  3
  (-0.14118641E-03, 0.18488925E-04) ( 0.10310469E-02, 0.16834741E-04)
  ( 0.50763446E-02, 0.26855282E-04) ( 0.15363979E-05, 0.10622504E-06)
  (-0.40837023E-04,-0.25100487E-06) (-0.95738947E-07,-0.40050286E-08)
  ( 0.75253687E-09,-0.35729317E-10) (-0.63140839E-09,-0.53148492E-09)
     ROW  4
  (-0.61225084E-06, 0.15384349E-06) ( 0.87312340E-04, 0.11367785E-05)
  ( 0.15363970E-05, 0.10622384E-06) ( 0.16373772E-02, 0.27090585E-05)
  (-0.14142515E-03,-0.38133396E-06) ( 0.15675295E-06,-0.11147477E-07)
  (-0.20452567E-04,-0.44094665E-07) (-0.27298223E-07,-0.27569741E-08)
     ROW  5
  (-0.22831023E-07, 0.86684827E-08) (-0.24071744E-06,-0.57475977E-07)
  (-0.40837023E-04,-0.25100493E-06) (-0.14142515E-03,-0.38133396E-06)
  ( 0.10584473E-02, 0.11492946E-05) ( 0.84535868E-04, 0.15061725E-06)
  ( 0.20388334E-06, 0.19553804E-08) ( 0.12930932E-04, 0.18645392E-07)
     ROW  6
  ( 0.26371645E-09,-0.20257304E-10) ( 0.23257065E-08,-0.77088114E-10)
  (-0.95738947E-07,-0.40050277E-08) ( 0.15675295E-06,-0.11147477E-07)
  ( 0.84535868E-04, 0.15061725E-06) ( 0.72349568E-03, 0.53110905E-06)
  (-0.21414745E-04,-0.26545085E-07) ( 0.10689752E-06, 0.55054951E-09)
     ROW  7
  (-0.19058850E-10, 0.13402517E-10) (-0.21132476E-08,-0.18105029E-08)
  ( 0.75253684E-09,-0.35729365E-10) (-0.20452567E-04,-0.44094665E-07)
  ( 0.20388334E-06, 0.19553804E-08) (-0.21414745E-04,-0.26545085E-07)
  ( 0.51692395E-03, 0.26997021E-06) ( 0.42689115E-04, 0.38363401E-07)
     ROW  8
  ( 0.60611949E-12,-0.22945935E-12) ( 0.59230011E-10,-0.55546707E-11)
  (-0.63140840E-09,-0.53148492E-09) (-0.27298223E-07,-0.27569741E-08)
  ( 0.12930932E-04, 0.18645392E-07) ( 0.10689752E-06, 0.55054951E-09)
  ( 0.42689115E-04, 0.38363401E-07) ( 0.38175144E-03, 0.14883526E-06)
 eigenphases
 -0.1290437E+00  0.3690649E-03  0.5265745E-03  0.7044404E-03  0.1046645E-02
  0.1670058E-02  0.4912794E-02  0.1153928E-01
 eigenphase sum-0.108275E+00  scattering length=   0.56703
 eps+pi 0.303332E+01  eps+2*pi 0.617491E+01

MaxIter =   7 c.s. =      1.60123279 angs^2  rmsk=     0.00000000
Time Now =        47.2183  Delta time =        39.3227 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13290000E+02  eV
 Do E =  0.10000000E+02 eV (  0.36749326E+00 AU)
Time Now =        47.3010  Delta time =         0.0827 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A1    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.30400000E+02  au
Number of integration regions used =    65
Number of partial waves (np) =    15
Number of asymptotic solutions on the right (NAsymR) =     8
Number of asymptotic solutions on the left (NAsymL) =     8
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     8
Maximum in the asymptotic region (lpasym) =   12
Number of partial waves in the asymptotic region (npasym) =   11
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  157
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   12
Higest l used in the asymptotic potential (lpzb) =   24
Maximum L used in the homogeneous solution (LMaxHomo) =   12
Number of partial waves in the homogeneous solution (npHomo) =   11
Time Now =        47.3247  Delta time =         0.0238 Energy independent setup

Compute solution for E =   10.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.30400000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.94727417E-15
 i =  2  lval =   3  stpote = -0.96693435E-18
 i =  3  lval =   3  stpote = -0.62845535E-18
 i =  4  lval =   4  stpote =  0.18264483E-03
For potential     2
 i =  1  exps = -0.62422985E+02 -0.20000000E+01  stpote = -0.12399210E-15
 i =  2  exps = -0.62422985E+02 -0.20000000E+01  stpote = -0.12398520E-15
 i =  3  exps = -0.62422985E+02 -0.20000000E+01  stpote = -0.12397962E-15
 i =  4  exps = -0.62422985E+02 -0.20000000E+01  stpote = -0.12397535E-15
For potential     3
 i =  1  lvals =   6   6  stpote =  0.00000000E+00  second term =  0.00000000E+00
 i =  2  lvals =   6   6  stpote = -0.12441216E-18  second term =  0.00000000E+00
 i =  3  lvals =   6   6  stpote = -0.46962324E-19  second term =  0.00000000E+00
 i =  4  lvals =   7   9  stpote = -0.43817040E-05  second term = -0.43817040E-05
Number of asymptotic regions =      24
Final point in integration =   0.82011193E+02 Angstroms
Time Now =        53.0735  Delta time =         5.7487 End SolveHomo
iL =   1 Iter =   1 c.s. =      7.40118602 angs^2  rmsk=     0.15541549
iL =   1 Iter =   2 c.s. =      7.07105289 angs^2  rmsk=     0.02647725
iL =   1 Iter =   3 c.s. =      7.08021602 angs^2  rmsk=     0.00096071
iL =   1 Iter =   4 c.s. =      7.07280205 angs^2  rmsk=     0.00032401
iL =   1 Iter =   5 c.s. =      7.07276905 angs^2  rmsk=     0.00000141
iL =   1 Iter =   6 c.s. =      7.07276932 angs^2  rmsk=     0.00000003
iL =   1 Iter =   7 c.s. =      7.07276932 angs^2  rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =      7.07276932 angs^2  rmsk=     0.09972504
iL =   2 Iter =   2 c.s. =      7.81397411 angs^2  rmsk=     0.04793913
iL =   2 Iter =   3 c.s. =      7.82338137 angs^2  rmsk=     0.00267406
iL =   2 Iter =   4 c.s. =      7.81990321 angs^2  rmsk=     0.00034491
iL =   2 Iter =   5 c.s. =      7.81995709 angs^2  rmsk=     0.00000151
iL =   2 Iter =   6 c.s. =      7.81995790 angs^2  rmsk=     0.00000002
iL =   2 Iter =   7 c.s. =      7.81995790 angs^2  rmsk=     0.00000000
iL =   3 Iter =   1 c.s. =      7.81995790 angs^2  rmsk=     0.02363532
iL =   3 Iter =   2 c.s. =      7.86713078 angs^2  rmsk=     0.01004228
iL =   3 Iter =   3 c.s. =      7.86864915 angs^2  rmsk=     0.00050577
iL =   3 Iter =   4 c.s. =      7.86829873 angs^2  rmsk=     0.00008562
iL =   3 Iter =   5 c.s. =      7.86830054 angs^2  rmsk=     0.00000029
iL =   3 Iter =   6 c.s. =      7.86830058 angs^2  rmsk=     0.00000000
iL =   3 Iter =   7 c.s. =      7.86830058 angs^2  rmsk=     0.00000000
iL =   4 Iter =   1 c.s. =      7.86830058 angs^2  rmsk=     0.00448550
iL =   4 Iter =   2 c.s. =      7.86850893 angs^2  rmsk=     0.00071554
iL =   4 Iter =   3 c.s. =      7.86851433 angs^2  rmsk=     0.00003908
iL =   4 Iter =   4 c.s. =      7.86850946 angs^2  rmsk=     0.00001089
iL =   4 Iter =   5 c.s. =      7.86850946 angs^2  rmsk=     0.00000002
iL =   4 Iter =   6 c.s. =      7.86850946 angs^2  rmsk=     0.00000000
iL =   5 Iter =   1 c.s. =      7.86850946 angs^2  rmsk=     0.00271518
iL =   5 Iter =   2 c.s. =      7.86851485 angs^2  rmsk=     0.00011194
iL =   5 Iter =   3 c.s. =      7.86851486 angs^2  rmsk=     0.00000611
iL =   5 Iter =   4 c.s. =      7.86851481 angs^2  rmsk=     0.00000130
iL =   5 Iter =   5 c.s. =      7.86851481 angs^2  rmsk=     0.00000000
iL =   5 Iter =   6 c.s. =      7.86851481 angs^2  rmsk=     0.00000000
iL =   6 Iter =   1 c.s. =      7.86851481 angs^2  rmsk=     0.00182575
iL =   6 Iter =   2 c.s. =      7.86851486 angs^2  rmsk=     0.00000562
iL =   6 Iter =   3 c.s. =      7.86851486 angs^2  rmsk=     0.00000032
iL =   6 Iter =   4 c.s. =      7.86851486 angs^2  rmsk=     0.00000005
iL =   6 Iter =   5 c.s. =      7.86851486 angs^2  rmsk=     0.00000000
iL =   7 Iter =   1 c.s. =      7.86851486 angs^2  rmsk=     0.00130481
iL =   7 Iter =   2 c.s. =      7.86851486 angs^2  rmsk=     0.00000179
iL =   7 Iter =   3 c.s. =      7.86851486 angs^2  rmsk=     0.00000010
iL =   7 Iter =   4 c.s. =      7.86851486 angs^2  rmsk=     0.00000001
iL =   8 Iter =   1 c.s. =      7.86851486 angs^2  rmsk=     0.00096466
iL =   8 Iter =   2 c.s. =      7.86851486 angs^2  rmsk=     0.00000025
iL =   8 Iter =   3 c.s. =      7.86851486 angs^2  rmsk=     0.00000002
iL =   8 Iter =   4 c.s. =      7.86851486 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.12809549E+00, 0.80288043E+00) ( 0.35376918E+00,-0.10258117E+00)
  (-0.69570475E-01, 0.36177609E-01) (-0.51586913E-02, 0.18059901E-02)
  (-0.81089680E-03, 0.24225358E-03) ( 0.41237963E-04,-0.78178688E-05)
  (-0.13152971E-04, 0.27161893E-05) ( 0.18923374E-05,-0.84271081E-07)
     ROW  2
  ( 0.35376918E+00,-0.10258117E+00) ( 0.64075239E-01, 0.79254747E+00)
  ( 0.18087520E-01,-0.15547180E+00) ( 0.47909042E-04,-0.11527611E-01)
  (-0.88064274E-04,-0.18091098E-02) (-0.69537265E-05, 0.84778138E-04)
  (-0.41898119E-05,-0.28706734E-04) ( 0.21272961E-06, 0.38326859E-05)
     ROW  3
  (-0.69570475E-01, 0.36177609E-01) ( 0.18087520E-01,-0.15547180E+00)
  ( 0.11441451E+00, 0.45849335E-01) ( 0.15004686E-02, 0.25603295E-02)
  ( 0.15714151E-03, 0.37998485E-03) (-0.85268926E-04,-0.28545243E-04)
  ( 0.11191535E-04, 0.66747859E-05) (-0.28117423E-05,-0.11010751E-05)
     ROW  4
  (-0.51586913E-02, 0.18059902E-02) ( 0.47909018E-04,-0.11527611E-01)
  ( 0.15004686E-02, 0.25603295E-02) ( 0.33950330E-01, 0.13312902E-02)
  (-0.22866937E-02,-0.10026483E-03) (-0.15252970E-04,-0.55672245E-05)
  (-0.29118292E-03,-0.12592256E-04) (-0.13723301E-04,-0.13551571E-05)
     ROW  5
  (-0.81089680E-03, 0.24225358E-03) (-0.88064277E-04,-0.18091098E-02)
  ( 0.15714151E-03, 0.37998485E-03) (-0.22866937E-02,-0.10026483E-03)
  ( 0.21468129E-01, 0.47293729E-03) ( 0.15423083E-02, 0.55348218E-04)
  ( 0.41143906E-04, 0.15907953E-05) ( 0.21108549E-03, 0.62384399E-05)
     ROW  6
  ( 0.41237951E-04,-0.78178747E-05) (-0.69537197E-05, 0.84778133E-04)
  (-0.85268926E-04,-0.28545241E-04) (-0.15252970E-04,-0.55672244E-05)
  ( 0.15423083E-02, 0.55348218E-04) ( 0.14516736E-01, 0.21336419E-03)
  (-0.40701738E-03,-0.10065307E-04) ( 0.16341602E-04, 0.44371727E-06)
     ROW  7
  (-0.13153030E-04, 0.27166992E-05) (-0.41897741E-05,-0.28707006E-04)
  ( 0.11191564E-04, 0.66748982E-05) (-0.29118292E-03,-0.12592244E-04)
  ( 0.41143907E-04, 0.15907971E-05) (-0.40701738E-03,-0.10065307E-04)
  ( 0.10393747E-01, 0.10898095E-03) ( 0.81570552E-03, 0.14743777E-04)
     ROW  8
  ( 0.18923581E-05,-0.84340187E-07) ( 0.21273153E-06, 0.38327208E-05)
  (-0.28117483E-05,-0.11010921E-05) (-0.13723302E-04,-0.13551586E-05)
  ( 0.21108549E-03, 0.62384397E-05) ( 0.16341603E-04, 0.44371728E-06)
  ( 0.81570552E-03, 0.14743777E-04) ( 0.76708905E-02, 0.59974380E-04)
 eigenphases
 -0.1287117E+01  0.7440989E-02  0.1057378E-01  0.1422414E-01  0.2140411E-01
  0.3436183E-01  0.1205880E+00  0.9969790E+00
 eigenphase sum-0.815453E-01  scattering length=   0.09533
 eps+pi 0.306005E+01  eps+2*pi 0.620164E+01

MaxIter =   7 c.s. =      7.86851486 angs^2  rmsk=     0.00000000
Time Now =       115.5612  Delta time =        62.4877 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13290000E+02  eV
 Do E =  0.15000000E+02 eV (  0.55123989E+00 AU)
Time Now =       115.6441  Delta time =         0.0829 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A1    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =   10
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.30400000E+02  au
Number of integration regions used =    65
Number of partial waves (np) =    15
Number of asymptotic solutions on the right (NAsymR) =     8
Number of asymptotic solutions on the left (NAsymL) =     8
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     8
Maximum in the asymptotic region (lpasym) =   12
Number of partial waves in the asymptotic region (npasym) =   11
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  157
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   12
Higest l used in the asymptotic potential (lpzb) =   24
Maximum L used in the homogeneous solution (LMaxHomo) =   12
Number of partial waves in the homogeneous solution (npHomo) =   11
Time Now =       115.6679  Delta time =         0.0238 Energy independent setup

Compute solution for E =   15.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.30400000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.94727417E-15
 i =  2  lval =   3  stpote = -0.96693435E-18
 i =  3  lval =   3  stpote = -0.62845535E-18
 i =  4  lval =   4  stpote =  0.18264483E-03
For potential     2
 i =  1  exps = -0.62422985E+02 -0.20000000E+01  stpote = -0.10399933E-15
 i =  2  exps = -0.62422985E+02 -0.20000000E+01  stpote = -0.10406201E-15
 i =  3  exps = -0.62422985E+02 -0.20000000E+01  stpote = -0.10412047E-15
 i =  4  exps = -0.62422985E+02 -0.20000000E+01  stpote = -0.10417259E-15
For potential     3
 i =  1  lvals =   6   6  stpote =  0.00000000E+00  second term =  0.00000000E+00
 i =  2  lvals =   6   6  stpote = -0.12441216E-18  second term =  0.00000000E+00
 i =  3  lvals =   6   6  stpote = -0.46962324E-19  second term =  0.00000000E+00
 i =  4  lvals =   7   9  stpote = -0.43817040E-05  second term = -0.43817040E-05
Number of asymptotic regions =      26
Final point in integration =   0.74105984E+02 Angstroms
Time Now =       121.3990  Delta time =         5.7312 End SolveHomo
iL =   1 Iter =   1 c.s. =      4.92728643 angs^2  rmsk=     0.15530777
iL =   1 Iter =   2 c.s. =      4.92778872 angs^2  rmsk=     0.01128620
iL =   1 Iter =   3 c.s. =      4.93448371 angs^2  rmsk=     0.00063004
iL =   1 Iter =   4 c.s. =      4.93371701 angs^2  rmsk=     0.00003593
iL =   1 Iter =   5 c.s. =      4.93371397 angs^2  rmsk=     0.00000036
iL =   1 Iter =   6 c.s. =      4.93371412 angs^2  rmsk=     0.00000001
iL =   1 Iter =   7 c.s. =      4.93371412 angs^2  rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =      4.93371412 angs^2  rmsk=     0.11420241
iL =   2 Iter =   2 c.s. =      4.79373033 angs^2  rmsk=     0.02570080
iL =   2 Iter =   3 c.s. =      4.78037520 angs^2  rmsk=     0.00156775
iL =   2 Iter =   4 c.s. =      4.77968483 angs^2  rmsk=     0.00005835
iL =   2 Iter =   5 c.s. =      4.77968751 angs^2  rmsk=     0.00000059
iL =   2 Iter =   6 c.s. =      4.77968752 angs^2  rmsk=     0.00000001
iL =   2 Iter =   7 c.s. =      4.77968752 angs^2  rmsk=     0.00000000
iL =   3 Iter =   1 c.s. =      4.77968752 angs^2  rmsk=     0.03576815
iL =   3 Iter =   2 c.s. =      4.78112038 angs^2  rmsk=     0.00672053
iL =   3 Iter =   3 c.s. =      4.78122380 angs^2  rmsk=     0.00038868
iL =   3 Iter =   4 c.s. =      4.78116035 angs^2  rmsk=     0.00001674
iL =   3 Iter =   5 c.s. =      4.78116101 angs^2  rmsk=     0.00000015
iL =   3 Iter =   6 c.s. =      4.78116101 angs^2  rmsk=     0.00000000
iL =   4 Iter =   1 c.s. =      4.78116101 angs^2  rmsk=     0.00726219
iL =   4 Iter =   2 c.s. =      4.78113372 angs^2  rmsk=     0.00067091
iL =   4 Iter =   3 c.s. =      4.78110094 angs^2  rmsk=     0.00004108
iL =   4 Iter =   4 c.s. =      4.78110039 angs^2  rmsk=     0.00000160
iL =   4 Iter =   5 c.s. =      4.78110039 angs^2  rmsk=     0.00000001
iL =   4 Iter =   6 c.s. =      4.78110039 angs^2  rmsk=     0.00000000
iL =   5 Iter =   1 c.s. =      4.78110039 angs^2  rmsk=     0.00416164
iL =   5 Iter =   2 c.s. =      4.78110668 angs^2  rmsk=     0.00013516
iL =   5 Iter =   3 c.s. =      4.78110631 angs^2  rmsk=     0.00001119
iL =   5 Iter =   4 c.s. =      4.78110630 angs^2  rmsk=     0.00000028
iL =   5 Iter =   5 c.s. =      4.78110630 angs^2  rmsk=     0.00000000
iL =   5 Iter =   6 c.s. =      4.78110630 angs^2  rmsk=     0.00000000
iL =   6 Iter =   1 c.s. =      4.78110630 angs^2  rmsk=     0.00274548
iL =   6 Iter =   2 c.s. =      4.78110701 angs^2  rmsk=     0.00001004
iL =   6 Iter =   3 c.s. =      4.78110700 angs^2  rmsk=     0.00000152
iL =   6 Iter =   4 c.s. =      4.78110700 angs^2  rmsk=     0.00000001
iL =   6 Iter =   5 c.s. =      4.78110700 angs^2  rmsk=     0.00000000
iL =   7 Iter =   1 c.s. =      4.78110700 angs^2  rmsk=     0.00196276
iL =   7 Iter =   2 c.s. =      4.78110710 angs^2  rmsk=     0.00000371
iL =   7 Iter =   3 c.s. =      4.78110710 angs^2  rmsk=     0.00000023
iL =   7 Iter =   4 c.s. =      4.78110710 angs^2  rmsk=     0.00000001
iL =   7 Iter =   5 c.s. =      4.78110710 angs^2  rmsk=     0.00000000
iL =   8 Iter =   1 c.s. =      4.78110710 angs^2  rmsk=     0.00144907
iL =   8 Iter =   2 c.s. =      4.78110710 angs^2  rmsk=     0.00000083
iL =   8 Iter =   3 c.s. =      4.78110710 angs^2  rmsk=     0.00000031
iL =   8 Iter =   4 c.s. =      4.78110710 angs^2  rmsk=     0.00000000
iL =   8 Iter =   5 c.s. =      4.78110710 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.35177210E+00, 0.62379958E+00) ( 0.29973627E+00,-0.11793438E+00)
  (-0.69191080E-01, 0.48239631E-01) (-0.73807405E-02, 0.29038351E-02)
  (-0.14533202E-02, 0.45606310E-03) ( 0.94427236E-04,-0.16586763E-04)
  (-0.35539666E-04, 0.53734946E-05) ( 0.62114889E-05, 0.29910783E-07)
     ROW  2
  ( 0.29973627E+00,-0.11793438E+00) (-0.13869808E+00, 0.78644382E+00)
  ( 0.88799963E-01,-0.19151681E+00) ( 0.59274569E-02,-0.18704136E-01)
  ( 0.11634474E-02,-0.34532408E-02) (-0.11070776E-03, 0.18459279E-03)
  ( 0.20762111E-04,-0.76923756E-04) (-0.50791477E-05, 0.11385176E-04)
     ROW  3
  (-0.69191080E-01, 0.48239631E-01) ( 0.88799963E-01,-0.19151681E+00)
  ( 0.15438962E+00, 0.82340732E-01) ( 0.28118513E-02, 0.58404220E-02)
  ( 0.15017152E-02, 0.12663688E-02) (-0.31179127E-03,-0.11391846E-03)
  ( 0.42101478E-04, 0.28492661E-04) (-0.12951665E-04,-0.54128660E-05)
     ROW  4
  (-0.73807405E-02, 0.29038351E-02) ( 0.59274569E-02,-0.18704136E-01)
  ( 0.28118513E-02, 0.58404220E-02) ( 0.53383344E-01, 0.33563244E-02)
  (-0.23047627E-02,-0.10421374E-03) (-0.40988730E-04,-0.14132197E-04)
  (-0.21560616E-03,-0.13139914E-04) (-0.51593628E-04,-0.45302924E-05)
     ROW  5
  (-0.14533202E-02, 0.45606310E-03) ( 0.11634474E-02,-0.34532408E-02)
  ( 0.15017152E-02, 0.12663688E-02) (-0.23047627E-02,-0.10421374E-03)
  ( 0.32863463E-01, 0.11102840E-02) ( 0.20436466E-02, 0.11051468E-03)
  ( 0.12890340E-03, 0.62953787E-05) ( 0.24095353E-03, 0.11002070E-04)
     ROW  6
  ( 0.94427230E-04,-0.16586769E-04) (-0.11070775E-03, 0.18459280E-03)
  (-0.31179127E-03,-0.11391846E-03) (-0.40988731E-04,-0.14132197E-04)
  ( 0.20436466E-02, 0.11051468E-03) ( 0.21856425E-01, 0.48266312E-03)
  (-0.58069221E-03,-0.21506603E-04) ( 0.42258836E-04, 0.14020869E-05)
     ROW  7
  (-0.35539663E-04, 0.53734963E-05) ( 0.20762099E-04,-0.76923763E-04)
  ( 0.42101481E-04, 0.28492659E-04) (-0.21560616E-03,-0.13139914E-04)
  ( 0.12890340E-03, 0.62953787E-05) (-0.58069221E-03,-0.21506603E-04)
  ( 0.15644391E-01, 0.24662283E-03) ( 0.11684564E-02, 0.31781769E-04)
     ROW  8
  ( 0.62114886E-05, 0.29910232E-07) (-0.50791464E-05, 0.11385177E-04)
  (-0.12951665E-04,-0.54128659E-05) (-0.51593628E-04,-0.45302924E-05)
  ( 0.24095353E-03, 0.11002070E-04) ( 0.42258836E-04, 0.14020869E-05)
  ( 0.11684564E-02, 0.31781769E-04) ( 0.11529951E-01, 0.13527347E-03)
 eigenphases
 -0.1240088E+01  0.1121758E-01  0.1589551E-01  0.2154954E-01  0.3297989E-01
  0.5372055E-01  0.1829901E+00  0.8510127E+00
 eigenphase sum-0.707223E-01  scattering length=   0.06747
 eps+pi 0.307087E+01  eps+2*pi 0.621246E+01

MaxIter =   7 c.s. =      4.78110710 angs^2  rmsk=     0.00000000
Time Now =       185.9386  Delta time =        64.5395 End ScatStab

+ Command TotalCrossSection
+
Symmetry A1 -
        E (eV)      XS(angs^2)    EPS(radians)
       0.500000       1.601233      -0.108275
      10.000000       7.868515      -0.081545
      15.000000       4.781107      -0.070722

 Total Cross Sections

 Energy      Total Cross Section
   0.50000     1.60123
  10.00000     7.86851
  15.00000     4.78111
Time Now =       185.9535  Delta time =         0.0149 Finalize