----------------------------------------------------------------------
ePolyScat Version E2
----------------------------------------------------------------------

Authors: R. R. Lucchese, N. Sanna, A. P. P. Natalense, and F. A. Gianturco
http://www.chem.tamu.edu/rgroup/lucchese/ePolyScat.E2.manual/manual.html
Please cite the following two papers when reporting results obtained with  this program
F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 100, 6464 (1994).
A. P. P. Natalense and R. R. Lucchese, J. Chem. Phys. 111, 5344 (1999).

----------------------------------------------------------------------

Starting at 2009-03-13  11:33:28.030 (GMT -0500)
Using    16 processors

----------------------------------------------------------------------


+ Start of Input Records
#
# input file for test03
#
# electron scattering from N2 molden SCF, DCS calculation
#
  LMax   15     # maximum l to be used for wave functions
  EMax  50.0    # EMax, maximum asymptotic energy in eV
  EngForm      # Energy formulas
   0 0         # charge, formula type
  FegeEng 13.0   # Energy correction (in eV) used in the fege potential
  ScatContSym 'SG'  # Scattering symmetry
  LMaxK    4     # Maximum l in the K matirx
  ScatEng 3.0 4.0 5.0 6.0
Convert '/scratch/rrl581a/ePolyScat.E2/tests/test03.molden' 'molden'
GetBlms
ExpOrb
GetPot
GrnType 1
  ScatContSym 'SG'  # Scattering symmetry
Scat
  ScatContSym 'SU'  # Scattering symmetry
Scat
  ScatContSym 'PG'  # Scattering symmetry
Scat
  ScatContSym 'PU'  # Scattering symmetry
Scat
  ScatContSym 'DG'  # Scattering symmetry
Scat
  ScatContSym 'DU'  # Scattering symmetry
Scat
  ScatContSym 'FG'  # Scattering symmetry
Scat
  ScatContSym 'FU'  # Scattering symmetry
Scat
  ScatContSym 'GG'  # Scattering symmetry
Scat
  ScatContSym 'GU'  # Scattering symmetry
Scat
  ScatContSym 'A2G' # Scattering symmetry
Scat
  ScatContSym 'A2U' # Scattering symmetry
Scat
  ScatContSym 'B1G' # Scattering symmetry
Scat
  ScatContSym 'B1U' # Scattering symmetry
Scat
  ScatContSym 'B2G' # Scattering symmetry
Scat
  ScatContSym 'B2U' # Scattering symmetry
Scat
TotalCrossSection
EDCS
+ End of input reached
+ Data Record LMax - 15
+ Data Record EMax - 50.0
+ Data Record EngForm - 0 0
+ Data Record FegeEng - 13.0
+ Data Record ScatContSym - 'SG'
+ Data Record LMaxK - 4
+ Data Record ScatEng - 3.0 4.0 5.0 6.0

+ Command Convert
+ '/scratch/rrl581a/ePolyScat.E2/tests/test03.molden' 'molden'

----------------------------------------------------------------------
MoldenCnv - Molden (from Molpro) conversion program
----------------------------------------------------------------------

Expansion center is (in Angstroms) -
     0.0000000000   0.0000000000   0.0000000000
Convert from Angstroms to Bohr radii
Found    110 basis functions
Selecting orbitals
Number of orbitals selected is     7
Selecting    1   1 Ene =     -15.6842 Spin =Alpha Occup =   2.000000
Selecting    2   2 Ene =     -15.6806 Spin =Alpha Occup =   2.000000
Selecting    3   3 Ene =      -1.4752 Spin =Alpha Occup =   2.000000
Selecting    4   4 Ene =      -0.7786 Spin =Alpha Occup =   2.000000
Selecting    5   5 Ene =      -0.6350 Spin =Alpha Occup =   2.000000
Selecting    6   6 Ene =      -0.6161 Spin =Alpha Occup =   2.000000
Selecting    7   7 Ene =      -0.6161 Spin =Alpha Occup =   2.000000

Atoms found    2  Coordinates in Angstroms
Z =  7 ZS =  7 r =   0.0000000000   0.0000000000  -0.5470000000
Z =  7 ZS =  7 r =   0.0000000000   0.0000000000   0.5470000000
Maximum distance from expansion center is    0.5470000000

+ Command GetBlms
+

----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------

Found point group  DAh
Reduce angular grid using nthd =  2  nphid =  4
Found point group for abelian subgroup D2h
Time Now =         0.1504  Delta time =         0.1504 End GetPGroup
List of unique axes
  N  Vector                      Z   R
  1  0.00000  0.00000  1.00000   7  1.03368   7  1.03368
List of corresponding x axes
  N  Vector
  1  1.00000 -0.00000 -0.00000
Computed default value of LMaxA =    9
Determineing angular grid in GetAxMax  LMax =   15  LMaxA =    9  LMaxAb =   30
MMax =    3  MMaxAbFlag =    2
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9   3   3   3   3   3   3
On the double L grid used for products
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  12
  12  12  12  12  12   6   6   6   6   6   6

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is DAh
LMax = =   15
 The dimension of each irreducable representation is
    SG    (  1)    A2G   (  1)    B1G   (  1)    B2G   (  1)    PG    (  2)
    DG    (  2)    FG    (  2)    GG    (  2)    SU    (  1)    A2U   (  1)
    B1U   (  1)    B2U   (  1)    PU    (  2)    DU    (  2)    FU    (  2)
    GU    (  2)
 Number of symmetry operations in the abelian subgroup (excluding E) =    7
 The operations are -
    12    22    32     2     3    21    31
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 SG        1         1          8       1  1  1  1  1  1  1
 A2G       1         2          0       1 -1 -1  1  1 -1 -1
 B1G       1         3          2      -1  1 -1  1 -1  1 -1
 B2G       1         4          2      -1 -1  1  1 -1 -1  1
 PG        1         5          7      -1 -1  1  1 -1 -1  1
 PG        2         6          7      -1  1 -1  1 -1  1 -1
 DG        1         7          8       1 -1 -1  1  1 -1 -1
 DG        2         8          8       1  1  1  1  1  1  1
 FG        1         9          7      -1 -1  1  1 -1 -1  1
 FG        2        10          7      -1  1 -1  1 -1  1 -1
 GG        1        11          5       1 -1 -1  1  1 -1 -1
 GG        2        12          5       1  1  1  1  1  1  1
 SU        1        13          8       1 -1 -1 -1 -1  1  1
 A2U       1        14          0       1  1  1 -1 -1 -1 -1
 B1U       1        15          3      -1 -1  1 -1  1  1 -1
 B2U       1        16          3      -1  1 -1 -1  1 -1  1
 PU        1        17          9      -1 -1  1 -1  1  1 -1
 PU        2        18          9      -1  1 -1 -1  1 -1  1
 DU        1        19          8       1 -1 -1 -1 -1  1  1
 DU        2        20          8       1  1  1 -1 -1 -1 -1
 FU        1        21          9      -1 -1  1 -1  1  1 -1
 FU        2        22          9      -1  1 -1 -1  1 -1  1
 GU        1        23          5       1 -1 -1 -1 -1  1  1
 GU        2        24          5       1  1  1 -1 -1 -1 -1
Time Now =         0.9579  Delta time =         0.8075 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
SG    1    0(   1)    1(   1)    2(   2)    3(   2)    4(   3)    5(   3)    6(   4)    7(   4)    8(   5)    9(   5)
A2G   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   0)    7(   0)    8(   0)    9(   0)
B1G   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   1)    7(   1)    8(   2)    9(   2)
B2G   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   1)    7(   1)    8(   2)    9(   2)
PG    1    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)    6(   3)    7(   3)    8(   4)    9(   4)
PG    2    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)    6(   3)    7(   3)    8(   4)    9(   4)
DG    1    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)    6(   3)    7(   3)    8(   5)    9(   5)
DG    2    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)    6(   3)    7(   3)    8(   5)    9(   5)
FG    1    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   1)    6(   2)    7(   2)    8(   4)    9(   4)
FG    2    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   1)    6(   2)    7(   2)    8(   4)    9(   4)
GG    1    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   1)    6(   3)    7(   3)    8(   5)    9(   5)
GG    2    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   1)    6(   3)    7(   3)    8(   5)    9(   5)
SU    1    0(   0)    1(   1)    2(   1)    3(   2)    4(   2)    5(   3)    6(   3)    7(   4)    8(   4)    9(   5)
A2U   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   0)    7(   0)    8(   0)    9(   0)
B1U   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   1)    6(   1)    7(   2)    8(   2)    9(   3)
B2U   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   1)    6(   1)    7(   2)    8(   2)    9(   3)
PU    1    0(   0)    1(   1)    2(   1)    3(   2)    4(   2)    5(   3)    6(   3)    7(   4)    8(   4)    9(   6)
PU    2    0(   0)    1(   1)    2(   1)    3(   2)    4(   2)    5(   3)    6(   3)    7(   4)    8(   4)    9(   6)
DU    1    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   2)    6(   2)    7(   3)    8(   3)    9(   5)
DU    2    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   2)    6(   2)    7(   3)    8(   3)    9(   5)
FU    1    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   2)    6(   2)    7(   4)    8(   4)    9(   6)
FU    2    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   2)    6(   2)    7(   4)    8(   4)    9(   6)
GU    1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   1)    6(   1)    7(   3)    8(   3)    9(   5)
GU    2    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   1)    6(   1)    7(   3)    8(   3)    9(   5)

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is D2h
LMax = =   30
 The dimension of each irreducable representation is
    AG    (  1)    B1G   (  1)    B2G   (  1)    B3G   (  1)    AU    (  1)
    B1U   (  1)    B2U   (  1)    B3U   (  1)
Abelian axes
    1       1.000000      -0.000000       0.000000
    2       0.000000       1.000000      -0.000000
    3       0.000000       0.000000       1.000000
Symmetry operation directions
  1       0.000000       0.000000       1.000000 ang =  0  1 type = 0 axis = 3
  2       0.000000       0.000000       1.000000 ang =  1  2 type = 2 axis = 3
  3       1.000000      -0.000000       0.000000 ang =  1  2 type = 2 axis = 1
  4       0.000000       1.000000       0.000000 ang =  1  2 type = 2 axis = 2
  5       0.000000       0.000000       1.000000 ang =  1  2 type = 3 axis = 3
  6       0.000000       0.000000       1.000000 ang =  0  1 type = 1 axis = 3
  7       1.000000       0.000000       0.000000 ang =  0  1 type = 1 axis = 1
  8       0.000000       1.000000       0.000000 ang =  0  1 type = 1 axis = 2
irep =    1  sym =AG    1  eigs =   1   1   1   1   1   1   1   1
irep =    2  sym =B1G   1  eigs =   1   1  -1  -1   1   1  -1  -1
irep =    3  sym =B2G   1  eigs =   1  -1  -1   1   1  -1  -1   1
irep =    4  sym =B3G   1  eigs =   1  -1   1  -1   1  -1   1  -1
irep =    5  sym =AU    1  eigs =   1   1   1   1  -1  -1  -1  -1
irep =    6  sym =B1U   1  eigs =   1   1  -1  -1  -1  -1   1   1
irep =    7  sym =B2U   1  eigs =   1  -1  -1   1  -1   1   1  -1
irep =    8  sym =B3U   1  eigs =   1  -1   1  -1  -1   1  -1   1
 Number of symmetry operations in the abelian subgroup (excluding E) =    7
 The operations are -
     2     3     4     5     6     7     8
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 AG        1         1         88       1  1  1  1  1  1  1
 B1G       1         2         72       1 -1 -1  1  1 -1 -1
 B2G       1         3         72      -1 -1  1  1 -1 -1  1
 B3G       1         4         72      -1  1 -1  1 -1  1 -1
 AU        1         5         63       1  1  1 -1 -1 -1 -1
 B1U       1         6         78       1 -1 -1 -1 -1  1  1
 B2U       1         7         72      -1 -1  1 -1  1  1 -1
 B3U       1         8         72      -1  1 -1 -1  1 -1  1
Time Now =         0.9732  Delta time =         0.0153 End SymGen

+ Command ExpOrb
+
In GetRMax, RMaxEps =  0.10000000E-05  RMax =    9.6359862155 Angs

----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------

Maximum R in the grid (RMax) =     9.63599 Angs
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) =   10.0
In regions controlled by the wave length (HFacWave) =   10.0
Factor used to control the minimum exponent at each center (MinExpFac) =  300.0
Maximum asymptotic kinetic energy (EMAx) =  50.00000 eV
Maximum step size (MaxStep) =   9.63599 Angs
Factor to increase grid by (GridFac) =     1

    1  Center at =     0.00000 Angs  Alpha Max = 0.10000E+01
    2  Center at =     0.54700 Angs  Alpha Max = 0.14700E+05

Generated Grid

  irg  nin  ntot      step Angs     R end Angs
    1    8     8    0.18998E-02     0.01520
    2    8    16    0.26749E-02     0.03660
    3    8    24    0.43054E-02     0.07104
    4    8    32    0.57696E-02     0.11720
    5    8    40    0.67259E-02     0.17101
    6    8    48    0.68378E-02     0.22571
    7    8    56    0.62927E-02     0.27605
    8    8    64    0.61050E-02     0.32489
    9    8    72    0.67380E-02     0.37879
   10    8    80    0.77685E-02     0.44094
   11    8    88    0.48305E-02     0.47958
   12    8    96    0.30704E-02     0.50415
   13    8   104    0.19517E-02     0.51976
   14    8   112    0.12406E-02     0.52969
   15    8   120    0.78856E-03     0.53599
   16    8   128    0.54521E-03     0.54036
   17    8   136    0.45672E-03     0.54401
   18    8   144    0.37374E-03     0.54700
   19    8   152    0.43646E-03     0.55049
   20    8   160    0.46530E-03     0.55421
   21    8   168    0.57358E-03     0.55880
   22    8   176    0.87025E-03     0.56576
   23    8   184    0.13836E-02     0.57683
   24    8   192    0.21997E-02     0.59443
   25    8   200    0.34972E-02     0.62241
   26    8   208    0.55601E-02     0.66689
   27    8   216    0.88398E-02     0.73761
   28    8   224    0.14054E-01     0.85004
   29    8   232    0.17629E-01     0.99108
   30    8   240    0.20554E-01     1.15551
   31    8   248    0.29077E-01     1.38812
   32    8   256    0.41231E-01     1.71797
   33    8   264    0.46626E-01     2.09097
   34    8   272    0.51232E-01     2.50083
   35    8   280    0.55135E-01     2.94191
   36    8   288    0.58434E-01     3.40939
   37    8   296    0.61228E-01     3.89921
   38    8   304    0.63602E-01     4.40802
   39    8   312    0.65632E-01     4.93308
   40    8   320    0.67378E-01     5.47210
   41    8   328    0.68888E-01     6.02321
   42    8   336    0.70204E-01     6.58485
   43    8   344    0.71357E-01     7.15571
   44    8   352    0.72374E-01     7.73470
   45    8   360    0.73275E-01     8.32090
   46    8   368    0.74079E-01     8.91353
   47    8   376    0.74798E-01     9.51191
   48    8   384    0.15509E-01     9.63599
Time Now =         1.0748  Delta time =         0.1015 End GenGrid

----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------

Maximum scattering l (lmax) =   15
Maximum scattering m (mmaxs) =   15
Maximum numerical integration l (lmaxi) =   30
Maximum numerical integration m (mmaxi) =   30
Maximum l to include in the asymptotic region (lmasym) =    9
Parameter used to determine the cutoff points (PCutRd) =  0.10000000E-07 au
Maximum E used to determine grid (in eV) =       50.00000
Print flag (iprnfg) =    0
lmasymtyts =    8
 Actual value of lmasym found =      9
Number of regions of the same l expansion (NAngReg) =    7
Angular regions
    1 L =    2  from (    1)         0.00190  to (    7)         0.01330
    2 L =    4  from (    8)         0.01520  to (   15)         0.03392
    3 L =    6  from (   16)         0.03660  to (   23)         0.06674
    4 L =    7  from (   24)         0.07104  to (   31)         0.11143
    5 L =    9  from (   32)         0.11720  to (   47)         0.21887
    6 L =   15  from (   48)         0.22571  to (  248)         1.38812
    7 L =    9  from (  249)         1.42935  to (  384)         9.63599
Angular regions for computing spherical harmonics
    1 lval =    9
    2 lval =   15
Last grid points by processor WorkExp =     1.500
Proc id =   -1  Last grid point =       1
Proc id =    0  Last grid point =      56
Proc id =    1  Last grid point =      72
Proc id =    2  Last grid point =      88
Proc id =    3  Last grid point =     104
Proc id =    4  Last grid point =     128
Proc id =    5  Last grid point =     144
Proc id =    6  Last grid point =     160
Proc id =    7  Last grid point =     176
Proc id =    8  Last grid point =     192
Proc id =    9  Last grid point =     208
Proc id =   10  Last grid point =     232
Proc id =   11  Last grid point =     248
Proc id =   12  Last grid point =     280
Proc id =   13  Last grid point =     312
Proc id =   14  Last grid point =     352
Proc id =   15  Last grid point =     384
Time Now =         1.0827  Delta time =         0.0079 End AngGCt

----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------


 R of maximum density
     1  SG    1 at max irg =   19  r =   0.55049
     2  SU    1 at max irg =   19  r =   0.55049
     3  SG    1 at max irg =   18  r =   0.54700
     4  SU    1 at max irg =   29  r =   0.99108
     5  SG    1 at max irg =   29  r =   0.99108
     6  PU    1 at max irg =   26  r =   0.66689
     7  PU    2 at max irg =   26  r =   0.66689

Rotation coefficients for orbital     1  grp =    1 SG    1
     1  1.0000000000

Rotation coefficients for orbital     2  grp =    2 SU    1
     2  1.0000000000

Rotation coefficients for orbital     3  grp =    3 SG    1
     3  1.0000000000

Rotation coefficients for orbital     4  grp =    4 SU    1
     4  1.0000000000

Rotation coefficients for orbital     5  grp =    5 SG    1
     5  1.0000000000

Rotation coefficients for orbital     6  grp =    6 PU    1
     6  1.0000000000    7 -0.0000000000

Rotation coefficients for orbital     7  grp =    6 PU    2
     6  0.0000000000    7  1.0000000000
Number of orbital groups and degeneracis are         6
  1  1  1  1  1  2
Number of orbital groups and number of electrons when fully occupied
         6
  2  2  2  2  2  4
Time Now =         1.3241  Delta time =         0.2414 End RotOrb

----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------

 First orbital group to expand (mofr) =    1
 Last orbital group to expand (moto) =    6
Orbital     1 of  SG    1 symmetry normalization integral =  0.98788415
Orbital     2 of  SU    1 symmetry normalization integral =  0.99051993
Orbital     3 of  SG    1 symmetry normalization integral =  0.99928696
Orbital     4 of  SU    1 symmetry normalization integral =  0.99958573
Orbital     5 of  SG    1 symmetry normalization integral =  0.99994436
Orbital     6 of  PU    1 symmetry normalization integral =  0.99999093
Time Now =         2.0646  Delta time =         0.7406 End ExpOrb

+ Command GetPot
+

----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------

Total density =     14.00000000
Time Now =         2.0825  Delta time =         0.0179 End Den

----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------

 vasymp =  0.14000000E+02 facnorm =  0.10000000E+01
Time Now =         2.1034  Delta time =         0.0210 Electronic part
Time Now =         2.1040  Delta time =         0.0006 End StPot
+ Data Record GrnType - 1
+ Data Record ScatContSym - 'SG'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =         2.1274  Delta time =         0.0234 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =SG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     3
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     3
Maximum in the asymptotic region (lpasym) =    9
Number of partial waves in the asymptotic region (npasym) =    5
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   55
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =    4
Highest l used at large r (lpasym) =    9
Higest l used in the asymptotic potential (lpzb) =   18
Maximum L used in the homogeneous solution (LMaxHomo) =    9
Number of partial waves in the homogeneous solution (npHomo) =    5
Time Now =         2.1393  Delta time =         0.0118 Energy independent setup

Compute solution for E =    3.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.16237177E-18
 i =  3  lval =   3  stpote =  0.24254232E-03
 i =  4  lval =   5  stpote = -0.16437416E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.88130262E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.88130258E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.88130251E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.88130240E-16
For potential     3
Number of asymptotic regions =      62
Final point in integration =   0.18302830E+03 Angstroms
Time Now =         2.8713  Delta time =         0.7320 End SolveHomo
iL =   1 Iter =   1 c.s. =     15.21092695 angs^2  rmsk=     0.32542494
iL =   1 Iter =   2 c.s. =     13.30166459 angs^2  rmsk=     0.06706281
iL =   1 Iter =   3 c.s. =     12.20332347 angs^2  rmsk=     0.02819773
iL =   1 Iter =   4 c.s. =     12.14865398 angs^2  rmsk=     0.00140521
iL =   1 Iter =   5 c.s. =     12.16160843 angs^2  rmsk=     0.00031729
iL =   1 Iter =   6 c.s. =     12.16111962 angs^2  rmsk=     0.00001201
iL =   1 Iter =   7 c.s. =     12.16111645 angs^2  rmsk=     0.00000014
iL =   1 Iter =   8 c.s. =     12.16111600 angs^2  rmsk=     0.00000001
iL =   2 Iter =   1 c.s. =     12.16111600 angs^2  rmsk=     0.04635745
iL =   2 Iter =   2 c.s. =     12.11303691 angs^2  rmsk=     0.01002583
iL =   2 Iter =   3 c.s. =     12.14305834 angs^2  rmsk=     0.00502622
iL =   2 Iter =   4 c.s. =     12.14752414 angs^2  rmsk=     0.00036140
iL =   2 Iter =   5 c.s. =     12.14721802 angs^2  rmsk=     0.00004381
iL =   2 Iter =   6 c.s. =     12.14721477 angs^2  rmsk=     0.00000083
iL =   2 Iter =   7 c.s. =     12.14721501 angs^2  rmsk=     0.00000013
iL =   2 Iter =   8 c.s. =     12.14721501 angs^2  rmsk=     0.00000000
iL =   3 Iter =   1 c.s. =     12.14721501 angs^2  rmsk=     0.00259684
iL =   3 Iter =   2 c.s. =     12.14719677 angs^2  rmsk=     0.00014226
iL =   3 Iter =   3 c.s. =     12.14718314 angs^2  rmsk=     0.00009330
iL =   3 Iter =   4 c.s. =     12.14718380 angs^2  rmsk=     0.00000412
iL =   3 Iter =   5 c.s. =     12.14718372 angs^2  rmsk=     0.00000047
iL =   3 Iter =   6 c.s. =     12.14718372 angs^2  rmsk=     0.00000006
iL =   3 Iter =   7 c.s. =     12.14718372 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  (-0.41623322E+00, 0.74261046E+00) (-0.64825332E-01, 0.11697942E+00)
  (-0.32366990E-03, 0.18430492E-02)
     ROW  2
  (-0.64825334E-01, 0.11697942E+00) (-0.14871960E-01, 0.18470090E-01)
  (-0.45987237E-02, 0.33809960E-03)
     ROW  3
  (-0.32366991E-03, 0.18430491E-02) (-0.45987237E-02, 0.33809961E-03)
  (-0.58278025E-02, 0.62303847E-04)
 eigenphases
 -0.1060046E+01 -0.9773928E-02 -0.7135220E-03
 eigenphase sum-0.107053E+01  scattering length=   3.89579
 eps+pi 0.207106E+01  eps+2*pi 0.521265E+01

MaxIter =   8 c.s. =     12.14718372 angs^2  rmsk=     0.00000000
Time Now =        10.6040  Delta time =         7.7327 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =        10.6198  Delta time =         0.0158 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =SG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     3
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     3
Maximum in the asymptotic region (lpasym) =    9
Number of partial waves in the asymptotic region (npasym) =    5
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   55
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =    4
Highest l used at large r (lpasym) =    9
Higest l used in the asymptotic potential (lpzb) =   18
Maximum L used in the homogeneous solution (LMaxHomo) =    9
Number of partial waves in the homogeneous solution (npHomo) =    5
Time Now =        10.6305  Delta time =         0.0107 Energy independent setup

Compute solution for E =    4.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.16237177E-18
 i =  3  lval =   3  stpote =  0.24254232E-03
 i =  4  lval =   5  stpote = -0.16437416E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10744698E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10744698E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10744697E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10744696E-15
For potential     3
Number of asymptotic regions =      64
Final point in integration =   0.16629167E+03 Angstroms
Time Now =        11.3219  Delta time =         0.6914 End SolveHomo
iL =   1 Iter =   1 c.s. =     11.92571467 angs^2  rmsk=     0.33272434
iL =   1 Iter =   2 c.s. =     11.09283278 angs^2  rmsk=     0.06938303
iL =   1 Iter =   3 c.s. =     10.35675647 angs^2  rmsk=     0.03199637
iL =   1 Iter =   4 c.s. =     10.33301342 angs^2  rmsk=     0.00106427
iL =   1 Iter =   5 c.s. =     10.34181083 angs^2  rmsk=     0.00035543
iL =   1 Iter =   6 c.s. =     10.34147483 angs^2  rmsk=     0.00001354
iL =   1 Iter =   7 c.s. =     10.34147258 angs^2  rmsk=     0.00000017
iL =   1 Iter =   8 c.s. =     10.34147271 angs^2  rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =     10.34147271 angs^2  rmsk=     0.06112153
iL =   2 Iter =   2 c.s. =     10.30128252 angs^2  rmsk=     0.01365470
iL =   2 Iter =   3 c.s. =     10.34529697 angs^2  rmsk=     0.00782259
iL =   2 Iter =   4 c.s. =     10.35043587 angs^2  rmsk=     0.00040598
iL =   2 Iter =   5 c.s. =     10.35006967 angs^2  rmsk=     0.00006402
iL =   2 Iter =   6 c.s. =     10.35006370 angs^2  rmsk=     0.00000142
iL =   2 Iter =   7 c.s. =     10.35006333 angs^2  rmsk=     0.00000017
iL =   2 Iter =   8 c.s. =     10.35006332 angs^2  rmsk=     0.00000000
iL =   3 Iter =   1 c.s. =     10.35006332 angs^2  rmsk=     0.00305557
iL =   3 Iter =   2 c.s. =     10.35003893 angs^2  rmsk=     0.00027041
iL =   3 Iter =   3 c.s. =     10.35001319 angs^2  rmsk=     0.00020557
iL =   3 Iter =   4 c.s. =     10.35001490 angs^2  rmsk=     0.00000703
iL =   3 Iter =   5 c.s. =     10.35001475 angs^2  rmsk=     0.00000093
iL =   3 Iter =   6 c.s. =     10.35001475 angs^2  rmsk=     0.00000014
iL =   3 Iter =   7 c.s. =     10.35001476 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  (-0.32852692E+00, 0.83028522E+00) (-0.66917990E-01, 0.16879790E+00)
  (-0.34606837E-03, 0.32972983E-02)
     ROW  2
  (-0.66917987E-01, 0.16879790E+00) (-0.12890162E-01, 0.34340285E-01)
  (-0.48614265E-02, 0.69911970E-03)
     ROW  3
  (-0.34606836E-03, 0.32972983E-02) (-0.48614265E-02, 0.69911967E-03)
  (-0.66970323E-02, 0.84832572E-04)
 eigenphases
 -0.1193998E+01 -0.8969683E-02  0.2988216E-02
 eigenphase sum-0.119998E+01  scattering length=   4.74351
 eps+pi 0.194161E+01  eps+2*pi 0.508321E+01

MaxIter =   8 c.s. =     10.35001476 angs^2  rmsk=     0.00000000
Time Now =        18.9230  Delta time =         7.6011 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =        18.9388  Delta time =         0.0158 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =SG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     3
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     3
Maximum in the asymptotic region (lpasym) =    9
Number of partial waves in the asymptotic region (npasym) =    5
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   55
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =    4
Highest l used at large r (lpasym) =    9
Higest l used in the asymptotic potential (lpzb) =   18
Maximum L used in the homogeneous solution (LMaxHomo) =    9
Number of partial waves in the homogeneous solution (npHomo) =    5
Time Now =        18.9498  Delta time =         0.0111 Energy independent setup

Compute solution for E =    5.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.16237177E-18
 i =  3  lval =   3  stpote =  0.24254232E-03
 i =  4  lval =   5  stpote = -0.16437416E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10111366E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10111366E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10111365E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10111364E-15
For potential     3
Number of asymptotic regions =      66
Final point in integration =   0.15437101E+03 Angstroms
Time Now =        19.7010  Delta time =         0.7512 End SolveHomo
iL =   1 Iter =   1 c.s. =      9.55788484 angs^2  rmsk=     0.33302610
iL =   1 Iter =   2 c.s. =      9.34453839 angs^2  rmsk=     0.07035345
iL =   1 Iter =   3 c.s. =      8.86918735 angs^2  rmsk=     0.03479567
iL =   1 Iter =   4 c.s. =      8.86099432 angs^2  rmsk=     0.00070503
iL =   1 Iter =   5 c.s. =      8.86680106 angs^2  rmsk=     0.00039489
iL =   1 Iter =   6 c.s. =      8.86657610 angs^2  rmsk=     0.00001464
iL =   1 Iter =   7 c.s. =      8.86657363 angs^2  rmsk=     0.00000018
iL =   1 Iter =   8 c.s. =      8.86657371 angs^2  rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =      8.86657371 angs^2  rmsk=     0.07495840
iL =   2 Iter =   2 c.s. =      8.84573121 angs^2  rmsk=     0.01740342
iL =   2 Iter =   3 c.s. =      8.90087271 angs^2  rmsk=     0.01070981
iL =   2 Iter =   4 c.s. =      8.90616018 angs^2  rmsk=     0.00044039
iL =   2 Iter =   5 c.s. =      8.90577186 angs^2  rmsk=     0.00008353
iL =   2 Iter =   6 c.s. =      8.90576277 angs^2  rmsk=     0.00000221
iL =   2 Iter =   7 c.s. =      8.90576189 angs^2  rmsk=     0.00000018
iL =   2 Iter =   8 c.s. =      8.90576188 angs^2  rmsk=     0.00000000
iL =   3 Iter =   1 c.s. =      8.90576188 angs^2  rmsk=     0.00348787
iL =   3 Iter =   2 c.s. =      8.90575108 angs^2  rmsk=     0.00047686
iL =   3 Iter =   3 c.s. =      8.90570852 angs^2  rmsk=     0.00038333
iL =   3 Iter =   4 c.s. =      8.90571194 angs^2  rmsk=     0.00001105
iL =   3 Iter =   5 c.s. =      8.90571172 angs^2  rmsk=     0.00000164
iL =   3 Iter =   6 c.s. =      8.90571174 angs^2  rmsk=     0.00000026
iL =   3 Iter =   7 c.s. =      8.90571174 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  (-0.23998867E+00, 0.87528348E+00) (-0.61140814E-01, 0.21863947E+00)
  (-0.27262237E-03, 0.51245660E-02)
     ROW  2
  (-0.61140812E-01, 0.21863947E+00) (-0.10399047E-01, 0.54661396E-01)
  (-0.47223352E-02, 0.12917648E-02)
     ROW  3
  (-0.27262237E-03, 0.51245660E-02) (-0.47223353E-02, 0.12917647E-02)
  (-0.73440122E-02, 0.11043349E-03)
 eigenphases
 -0.1302897E+01 -0.8825663E-02  0.6357126E-02
 eigenphase sum-0.130537E+01  scattering length=   6.06813
 eps+pi 0.183623E+01  eps+2*pi 0.497782E+01

MaxIter =   8 c.s. =      8.90571174 angs^2  rmsk=     0.00000000
Time Now =        27.3049  Delta time =         7.6039 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =        27.3206  Delta time =         0.0157 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =SG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     3
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     3
Maximum in the asymptotic region (lpasym) =    9
Number of partial waves in the asymptotic region (npasym) =    5
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   55
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =    4
Highest l used at large r (lpasym) =    9
Higest l used in the asymptotic potential (lpzb) =   18
Maximum L used in the homogeneous solution (LMaxHomo) =    9
Number of partial waves in the homogeneous solution (npHomo) =    5
Time Now =        27.3313  Delta time =         0.0107 Energy independent setup

Compute solution for E =    6.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.16237177E-18
 i =  3  lval =   3  stpote =  0.24254232E-03
 i =  4  lval =   5  stpote = -0.16437416E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.73154061E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.73154057E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.73154049E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.73154038E-16
For potential     3
Number of asymptotic regions =      68
Final point in integration =   0.14526825E+03 Angstroms
Time Now =        28.0841  Delta time =         0.7528 End SolveHomo
iL =   1 Iter =   1 c.s. =      7.80416700 angs^2  rmsk=     0.32964863
iL =   1 Iter =   2 c.s. =      7.94735515 angs^2  rmsk=     0.07063045
iL =   1 Iter =   3 c.s. =      7.65909610 angs^2  rmsk=     0.03666311
iL =   1 Iter =   4 c.s. =      7.65777820 angs^2  rmsk=     0.00040509
iL =   1 Iter =   5 c.s. =      7.66125042 angs^2  rmsk=     0.00044987
iL =   1 Iter =   6 c.s. =      7.66110542 angs^2  rmsk=     0.00001539
iL =   1 Iter =   7 c.s. =      7.66110317 angs^2  rmsk=     0.00000016
iL =   1 Iter =   8 c.s. =      7.66110320 angs^2  rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =      7.66110320 angs^2  rmsk=     0.08776780
iL =   2 Iter =   2 c.s. =      7.66687893 angs^2  rmsk=     0.02134260
iL =   2 Iter =   3 c.s. =      7.72883916 angs^2  rmsk=     0.01345865
iL =   2 Iter =   4 c.s. =      7.73398080 angs^2  rmsk=     0.00050837
iL =   2 Iter =   5 c.s. =      7.73359454 angs^2  rmsk=     0.00009997
iL =   2 Iter =   6 c.s. =      7.73358227 angs^2  rmsk=     0.00000309
iL =   2 Iter =   7 c.s. =      7.73358137 angs^2  rmsk=     0.00000018
iL =   2 Iter =   8 c.s. =      7.73358136 angs^2  rmsk=     0.00000000
iL =   3 Iter =   1 c.s. =      7.73358136 angs^2  rmsk=     0.00391759
iL =   3 Iter =   2 c.s. =      7.73362188 angs^2  rmsk=     0.00083713
iL =   3 Iter =   3 c.s. =      7.73355307 angs^2  rmsk=     0.00064611
iL =   3 Iter =   4 c.s. =      7.73355876 angs^2  rmsk=     0.00001691
iL =   3 Iter =   5 c.s. =      7.73355842 angs^2  rmsk=     0.00000254
iL =   3 Iter =   6 c.s. =      7.73355850 angs^2  rmsk=     0.00000036
iL =   3 Iter =   7 c.s. =      7.73355850 angs^2  rmsk=     0.00000001
iL =   3 Iter =   8 c.s. =      7.73355850 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  (-0.15871979E+00, 0.89061847E+00) (-0.48901423E-01, 0.26416142E+00)
  (-0.92374594E-04, 0.72539730E-02)
     ROW  2
  (-0.48901422E-01, 0.26416142E+00) (-0.82489798E-02, 0.78411615E-01)
  (-0.42331465E-02, 0.21581181E-02)
     ROW  3
  (-0.92374583E-04, 0.72539730E-02) (-0.42331465E-02, 0.21581180E-02)
  (-0.77483498E-02, 0.14277743E-03)
 eigenphases
 -0.1393903E+01 -0.8818121E-02  0.7326511E-02
 eigenphase sum-0.139540E+01  scattering length=   8.49700
 eps+pi 0.174620E+01  eps+2*pi 0.488779E+01

MaxIter =   8 c.s. =      7.73355850 angs^2  rmsk=     0.00000000
Time Now =        36.0970  Delta time =         8.0129 End ScatStab
+ Data Record ScatContSym - 'SU'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =        36.1129  Delta time =         0.0159 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =SU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     2
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =    9
Number of partial waves in the asymptotic region (npasym) =    5
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   55
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    3
Highest l used at large r (lpasym) =    9
Higest l used in the asymptotic potential (lpzb) =   18
Maximum L used in the homogeneous solution (LMaxHomo) =    9
Number of partial waves in the homogeneous solution (npHomo) =    5
Time Now =        36.1236  Delta time =         0.0107 Energy independent setup

Compute solution for E =    3.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.16237177E-18
 i =  3  lval =   3  stpote =  0.24254232E-03
 i =  4  lval =   5  stpote = -0.16437416E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.88130262E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.88130258E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.88130251E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.88130240E-16
For potential     3
Number of asymptotic regions =      62
Final point in integration =   0.18302830E+03 Angstroms
Time Now =        36.8143  Delta time =         0.6907 End SolveHomo
iL =   1 Iter =   1 c.s. =      4.38331490 angs^2  rmsk=     0.26203879
iL =   1 Iter =   2 c.s. =      2.54270074 angs^2  rmsk=     0.07035366
iL =   1 Iter =   3 c.s. =      2.02182893 angs^2  rmsk=     0.02337281
iL =   1 Iter =   4 c.s. =      2.04941985 angs^2  rmsk=     0.00129772
iL =   1 Iter =   5 c.s. =      2.04826802 angs^2  rmsk=     0.00005407
iL =   1 Iter =   6 c.s. =      2.04827307 angs^2  rmsk=     0.00000024
iL =   1 Iter =   7 c.s. =      2.04827214 angs^2  rmsk=     0.00000004
iL =   2 Iter =   1 c.s. =      2.04827214 angs^2  rmsk=     0.01078498
iL =   2 Iter =   2 c.s. =      2.04659921 angs^2  rmsk=     0.00183103
iL =   2 Iter =   3 c.s. =      2.04537375 angs^2  rmsk=     0.00126694
iL =   2 Iter =   4 c.s. =      2.04538024 angs^2  rmsk=     0.00002660
iL =   2 Iter =   5 c.s. =      2.04537656 angs^2  rmsk=     0.00000405
iL =   2 Iter =   6 c.s. =      2.04537659 angs^2  rmsk=     0.00000002
iL =   2 Iter =   7 c.s. =      2.04537658 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  (-0.33364442E+00, 0.12787893E+00) (-0.13401103E-01, 0.52632679E-02)
     ROW  2
  (-0.13401102E-01, 0.52632680E-02) (-0.87436523E-02, 0.29213687E-03)
 eigenphases
 -0.3660228E+00 -0.8192340E-02
 eigenphase sum-0.374215E+00  scattering length=   0.83634
 eps+pi 0.276738E+01  eps+2*pi 0.590897E+01

MaxIter =   7 c.s. =      2.04537658 angs^2  rmsk=     0.00000000
Time Now =        41.4241  Delta time =         4.6098 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =        41.4399  Delta time =         0.0157 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =SU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     2
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =    9
Number of partial waves in the asymptotic region (npasym) =    5
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   55
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    3
Highest l used at large r (lpasym) =    9
Higest l used in the asymptotic potential (lpzb) =   18
Maximum L used in the homogeneous solution (LMaxHomo) =    9
Number of partial waves in the homogeneous solution (npHomo) =    5
Time Now =        41.4509  Delta time =         0.0111 Energy independent setup

Compute solution for E =    4.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.16237177E-18
 i =  3  lval =   3  stpote =  0.24254232E-03
 i =  4  lval =   5  stpote = -0.16437416E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10744698E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10744698E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10744697E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10744696E-15
For potential     3
Number of asymptotic regions =      64
Final point in integration =   0.16629167E+03 Angstroms
Time Now =        42.1415  Delta time =         0.6906 End SolveHomo
iL =   1 Iter =   1 c.s. =      4.79269544 angs^2  rmsk=     0.31639058
iL =   1 Iter =   2 c.s. =      3.03323766 angs^2  rmsk=     0.07855255
iL =   1 Iter =   3 c.s. =      2.46963813 angs^2  rmsk=     0.02806216
iL =   1 Iter =   4 c.s. =      2.49891198 angs^2  rmsk=     0.00150887
iL =   1 Iter =   5 c.s. =      2.49757523 angs^2  rmsk=     0.00006896
iL =   1 Iter =   6 c.s. =      2.49757977 angs^2  rmsk=     0.00000024
iL =   1 Iter =   7 c.s. =      2.49757849 angs^2  rmsk=     0.00000007
iL =   2 Iter =   1 c.s. =      2.49757849 angs^2  rmsk=     0.01413637
iL =   2 Iter =   2 c.s. =      2.49493038 angs^2  rmsk=     0.00279593
iL =   2 Iter =   3 c.s. =      2.49298579 angs^2  rmsk=     0.00212863
iL =   2 Iter =   4 c.s. =      2.49299993 angs^2  rmsk=     0.00004790
iL =   2 Iter =   5 c.s. =      2.49299415 angs^2  rmsk=     0.00000661
iL =   2 Iter =   6 c.s. =      2.49299419 angs^2  rmsk=     0.00000004
iL =   2 Iter =   7 c.s. =      2.49299419 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  (-0.40534734E+00, 0.20786414E+00) (-0.16585902E-01, 0.86626777E-02)
     ROW  2
  (-0.16585902E-01, 0.86626779E-02) (-0.81258625E-02, 0.42745316E-03)
 eigenphases
 -0.4738517E+00 -0.7434963E-02
 eigenphase sum-0.481287E+00  scattering length=   0.96318
 eps+pi 0.266031E+01  eps+2*pi 0.580190E+01

MaxIter =   7 c.s. =      2.49299419 angs^2  rmsk=     0.00000000
Time Now =        46.6241  Delta time =         4.4825 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =        46.6399  Delta time =         0.0158 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =SU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     2
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =    9
Number of partial waves in the asymptotic region (npasym) =    5
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   55
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    3
Highest l used at large r (lpasym) =    9
Higest l used in the asymptotic potential (lpzb) =   18
Maximum L used in the homogeneous solution (LMaxHomo) =    9
Number of partial waves in the homogeneous solution (npHomo) =    5
Time Now =        46.6506  Delta time =         0.0108 Energy independent setup

Compute solution for E =    5.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.16237177E-18
 i =  3  lval =   3  stpote =  0.24254232E-03
 i =  4  lval =   5  stpote = -0.16437416E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10111366E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10111366E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10111365E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10111364E-15
For potential     3
Number of asymptotic regions =      66
Final point in integration =   0.15437101E+03 Angstroms
Time Now =        47.3927  Delta time =         0.7421 End SolveHomo
iL =   1 Iter =   1 c.s. =      4.94466560 angs^2  rmsk=     0.35929990
iL =   1 Iter =   2 c.s. =      3.36319990 angs^2  rmsk=     0.08342554
iL =   1 Iter =   3 c.s. =      2.80073531 angs^2  rmsk=     0.03155969
iL =   1 Iter =   4 c.s. =      2.82930687 angs^2  rmsk=     0.00163706
iL =   1 Iter =   5 c.s. =      2.82787693 angs^2  rmsk=     0.00008224
iL =   1 Iter =   6 c.s. =      2.82788053 angs^2  rmsk=     0.00000022
iL =   1 Iter =   7 c.s. =      2.82787885 angs^2  rmsk=     0.00000009
iL =   2 Iter =   1 c.s. =      2.82787885 angs^2  rmsk=     0.01764596
iL =   2 Iter =   2 c.s. =      2.82417701 angs^2  rmsk=     0.00402699
iL =   2 Iter =   3 c.s. =      2.82144708 angs^2  rmsk=     0.00313365
iL =   2 Iter =   4 c.s. =      2.82147748 angs^2  rmsk=     0.00007663
iL =   2 Iter =   5 c.s. =      2.82146954 angs^2  rmsk=     0.00000937
iL =   2 Iter =   6 c.s. =      2.82146960 angs^2  rmsk=     0.00000007
iL =   2 Iter =   7 c.s. =      2.82146960 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  (-0.45503152E+00, 0.29407810E+00) (-0.19496740E-01, 0.12738783E-01)
     ROW  2
  (-0.19496740E-01, 0.12738783E-01) (-0.57823437E-02, 0.58972368E-03)
 eigenphases
 -0.5737653E+00 -0.4938015E-02
 eigenphase sum-0.578703E+00  scattering length=   1.07770
 eps+pi 0.256289E+01  eps+2*pi 0.570448E+01

MaxIter =   7 c.s. =      2.82146960 angs^2  rmsk=     0.00000000
Time Now =        51.8638  Delta time =         4.4711 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =        51.8795  Delta time =         0.0157 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =SU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     2
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =    9
Number of partial waves in the asymptotic region (npasym) =    5
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   55
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    3
Highest l used at large r (lpasym) =    9
Higest l used in the asymptotic potential (lpzb) =   18
Maximum L used in the homogeneous solution (LMaxHomo) =    9
Number of partial waves in the homogeneous solution (npHomo) =    5
Time Now =        51.8903  Delta time =         0.0107 Energy independent setup

Compute solution for E =    6.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.16237177E-18
 i =  3  lval =   3  stpote =  0.24254232E-03
 i =  4  lval =   5  stpote = -0.16437416E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.73154061E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.73154057E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.73154049E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.73154038E-16
For potential     3
Number of asymptotic regions =      68
Final point in integration =   0.14526825E+03 Angstroms
Time Now =        52.6410  Delta time =         0.7508 End SolveHomo
iL =   1 Iter =   1 c.s. =      4.93886233 angs^2  rmsk=     0.39336228
iL =   1 Iter =   2 c.s. =      3.56775360 angs^2  rmsk=     0.08623645
iL =   1 Iter =   3 c.s. =      3.03375645 angs^2  rmsk=     0.03417625
iL =   1 Iter =   4 c.s. =      3.06020744 angs^2  rmsk=     0.00170385
iL =   1 Iter =   5 c.s. =      3.05875042 angs^2  rmsk=     0.00009444
iL =   1 Iter =   6 c.s. =      3.05875294 angs^2  rmsk=     0.00000019
iL =   1 Iter =   7 c.s. =      3.05875099 angs^2  rmsk=     0.00000012
iL =   2 Iter =   1 c.s. =      3.05875099 angs^2  rmsk=     0.02135088
iL =   2 Iter =   2 c.s. =      3.05425976 angs^2  rmsk=     0.00552504
iL =   2 Iter =   3 c.s. =      3.05048109 angs^2  rmsk=     0.00418679
iL =   2 Iter =   4 c.s. =      3.05054177 angs^2  rmsk=     0.00011397
iL =   2 Iter =   5 c.s. =      3.05053183 angs^2  rmsk=     0.00001236
iL =   2 Iter =   6 c.s. =      3.05053191 angs^2  rmsk=     0.00000009
iL =   2 Iter =   7 c.s. =      3.05053191 angs^2  rmsk=     0.00000001
      Final k matrix
     ROW  1
  (-0.48493966E+00, 0.38149773E+00) (-0.22089405E-01, 0.17396476E-01)
     ROW  2
  (-0.22089405E-01, 0.17396475E-01) (-0.14823537E-02, 0.80871339E-03)
 eigenphases
 -0.6665738E+00 -0.4751905E-03
 eigenphase sum-0.667049E+00  scattering length=   1.18581
 eps+pi 0.247454E+01  eps+2*pi 0.561614E+01

MaxIter =   7 c.s. =      3.05053191 angs^2  rmsk=     0.00000001
Time Now =        57.1621  Delta time =         4.5211 End ScatStab
+ Data Record ScatContSym - 'PG'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =        57.1780  Delta time =         0.0158 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =PG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     7
Number of asymptotic solutions on the right (NAsymR) =     2
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =    9
Number of partial waves in the asymptotic region (npasym) =    4
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   55
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =    4
Highest l used at large r (lpasym) =    9
Higest l used in the asymptotic potential (lpzb) =   18
Maximum L used in the homogeneous solution (LMaxHomo) =    9
Number of partial waves in the homogeneous solution (npHomo) =    4
Time Now =        57.1886  Delta time =         0.0107 Energy independent setup

Compute solution for E =    3.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.16237177E-18
 i =  3  lval =   3  stpote =  0.24254232E-03
 i =  4  lval =   5  stpote = -0.16437416E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.88130262E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.88130258E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.88130251E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.88130240E-16
For potential     3
Number of asymptotic regions =      62
Final point in integration =   0.18302830E+03 Angstroms
Time Now =        57.7333  Delta time =         0.5447 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.20214086 angs^2  rmsk=     0.05627187
iL =   1 Iter =   2 c.s. =      1.71759675 angs^2  rmsk=     0.10989955
iL =   1 Iter =   3 c.s. =      1.71029610 angs^2  rmsk=     0.00040122
iL =   1 Iter =   4 c.s. =      1.81315224 angs^2  rmsk=     0.00514377
iL =   1 Iter =   5 c.s. =      1.81306035 angs^2  rmsk=     0.00000455
iL =   1 Iter =   6 c.s. =      1.81306199 angs^2  rmsk=     0.00000008
iL =   1 Iter =   7 c.s. =      1.81306199 angs^2  rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =      1.81306199 angs^2  rmsk=     0.00278571
iL =   2 Iter =   2 c.s. =      1.81293724 angs^2  rmsk=     0.00149802
iL =   2 Iter =   3 c.s. =      1.81293990 angs^2  rmsk=     0.00015582
iL =   2 Iter =   4 c.s. =      1.81293950 angs^2  rmsk=     0.00011453
iL =   2 Iter =   5 c.s. =      1.81293950 angs^2  rmsk=     0.00000026
iL =   2 Iter =   6 c.s. =      1.81293950 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.31729383E+00, 0.11357493E+00) ( 0.51047152E-03, 0.17997207E-03)
     ROW  2
  ( 0.51047150E-03, 0.17997205E-03) (-0.48033308E-02, 0.26638903E-04)
 eigenphases
 -0.4804245E-02  0.3437385E+00
 eigenphase sum 0.338934E+00  scattering length=  -0.75077
 eps+pi 0.348053E+01  eps+2*pi 0.662212E+01

MaxIter =   7 c.s. =      1.81293950 angs^2  rmsk=     0.00000000
Time Now =        61.8784  Delta time =         4.1451 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =        61.8942  Delta time =         0.0158 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =PG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     7
Number of asymptotic solutions on the right (NAsymR) =     2
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =    9
Number of partial waves in the asymptotic region (npasym) =    4
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   55
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =    4
Highest l used at large r (lpasym) =    9
Higest l used in the asymptotic potential (lpzb) =   18
Maximum L used in the homogeneous solution (LMaxHomo) =    9
Number of partial waves in the homogeneous solution (npHomo) =    4
Time Now =        61.9048  Delta time =         0.0106 Energy independent setup

Compute solution for E =    4.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.16237177E-18
 i =  3  lval =   3  stpote =  0.24254232E-03
 i =  4  lval =   5  stpote = -0.16437416E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10744698E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10744698E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10744697E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10744696E-15
For potential     3
Number of asymptotic regions =      64
Final point in integration =   0.16629167E+03 Angstroms
Time Now =        62.4464  Delta time =         0.5416 End SolveHomo
iL =   1 Iter =   1 c.s. =      1.35517900 angs^2  rmsk=     0.16824104
iL =   1 Iter =   2 c.s. =     11.85058888 angs^2  rmsk=     0.45198642
iL =   1 Iter =   3 c.s. =     11.79290161 angs^2  rmsk=     0.01121051
iL =   1 Iter =   4 c.s. =     11.89651221 angs^2  rmsk=     0.02214576
iL =   1 Iter =   5 c.s. =     11.89646408 angs^2  rmsk=     0.00001387
iL =   1 Iter =   6 c.s. =     11.89646601 angs^2  rmsk=     0.00000052
iL =   1 Iter =   7 c.s. =     11.89646602 angs^2  rmsk=     0.00000000
iL =   1 Iter =   8 c.s. =     11.89646602 angs^2  rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =     11.89646602 angs^2  rmsk=     0.00278561
iL =   2 Iter =   2 c.s. =     11.89963736 angs^2  rmsk=     0.00795551
iL =   2 Iter =   3 c.s. =     11.89993351 angs^2  rmsk=     0.00036022
iL =   2 Iter =   4 c.s. =     11.89976420 angs^2  rmsk=     0.00088281
iL =   2 Iter =   5 c.s. =     11.89976407 angs^2  rmsk=     0.00000215
iL =   2 Iter =   6 c.s. =     11.89976406 angs^2  rmsk=     0.00000000
iL =   2 Iter =   7 c.s. =     11.89976406 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.76224459E-01, 0.99387474E+00) ( 0.13639385E-02, 0.16604382E-01)
     ROW  2
  ( 0.13639385E-02, 0.16604382E-01) (-0.53773240E-02, 0.31099933E-03)
 eigenphases
 -0.5400268E-02  0.1494250E+01
 eigenphase sum 0.148885E+01  scattering length= -22.45577
 eps+pi 0.463044E+01  eps+2*pi 0.777204E+01

MaxIter =   8 c.s. =     11.89976406 angs^2  rmsk=     0.00000000
Time Now =        67.2564  Delta time =         4.8100 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =        67.2721  Delta time =         0.0158 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =PG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     7
Number of asymptotic solutions on the right (NAsymR) =     2
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =    9
Number of partial waves in the asymptotic region (npasym) =    4
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   55
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =    4
Highest l used at large r (lpasym) =    9
Higest l used in the asymptotic potential (lpzb) =   18
Maximum L used in the homogeneous solution (LMaxHomo) =    9
Number of partial waves in the homogeneous solution (npHomo) =    4
Time Now =        67.2828  Delta time =         0.0106 Energy independent setup

Compute solution for E =    5.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.16237177E-18
 i =  3  lval =   3  stpote =  0.24254232E-03
 i =  4  lval =   5  stpote = -0.16437416E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10111366E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10111366E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10111365E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10111364E-15
For potential     3
Number of asymptotic regions =      66
Final point in integration =   0.15437101E+03 Angstroms
Time Now =        67.8693  Delta time =         0.5865 End SolveHomo
iL =   1 Iter =   1 c.s. =      6.88172521 angs^2  rmsk=     0.42387450
iL =   1 Iter =   2 c.s. =      5.50609150 angs^2  rmsk=     0.47731243
iL =   1 Iter =   3 c.s. =      5.74581631 angs^2  rmsk=     0.01271661
iL =   1 Iter =   4 c.s. =      5.59859487 angs^2  rmsk=     0.00782477
iL =   1 Iter =   5 c.s. =      5.59864117 angs^2  rmsk=     0.00000275
iL =   1 Iter =   6 c.s. =      5.59863550 angs^2  rmsk=     0.00000030
iL =   1 Iter =   7 c.s. =      5.59863548 angs^2  rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =      5.59863548 angs^2  rmsk=     0.00751284
iL =   2 Iter =   2 c.s. =      5.60048927 angs^2  rmsk=     0.00995799
iL =   2 Iter =   3 c.s. =      5.60047734 angs^2  rmsk=     0.00004401
iL =   2 Iter =   4 c.s. =      5.60035338 angs^2  rmsk=     0.00028353
iL =   2 Iter =   5 c.s. =      5.60035265 angs^2  rmsk=     0.00000125
iL =   2 Iter =   6 c.s. =      5.60035265 angs^2  rmsk=     0.00000000
iL =   2 Iter =   7 c.s. =      5.60035265 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  (-0.49244279E+00, 0.58445588E+00) (-0.12262481E-01, 0.14727752E-01)
     ROW  2
  (-0.12262481E-01, 0.14727752E-01) (-0.61364734E-02, 0.41069929E-03)
 eigenphases
 -0.8706375E+00 -0.5827662E-02
 eigenphase sum-0.876465E+00  scattering length=   1.98114
 eps+pi 0.226513E+01  eps+2*pi 0.540672E+01

MaxIter =   7 c.s. =      5.60035265 angs^2  rmsk=     0.00000000
Time Now =        72.2736  Delta time =         4.4043 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =        72.2893  Delta time =         0.0157 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =PG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     7
Number of asymptotic solutions on the right (NAsymR) =     2
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =    9
Number of partial waves in the asymptotic region (npasym) =    4
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   55
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =    4
Highest l used at large r (lpasym) =    9
Higest l used in the asymptotic potential (lpzb) =   18
Maximum L used in the homogeneous solution (LMaxHomo) =    9
Number of partial waves in the homogeneous solution (npHomo) =    4
Time Now =        72.3002  Delta time =         0.0109 Energy independent setup

Compute solution for E =    6.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.16237177E-18
 i =  3  lval =   3  stpote =  0.24254232E-03
 i =  4  lval =   5  stpote = -0.16437416E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.73154061E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.73154057E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.73154049E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.73154038E-16
For potential     3
Number of asymptotic regions =      68
Final point in integration =   0.14526825E+03 Angstroms
Time Now =        72.8907  Delta time =         0.5905 End SolveHomo
iL =   1 Iter =   1 c.s. =      7.20070179 angs^2  rmsk=     0.47497053
iL =   1 Iter =   2 c.s. =      3.08015785 angs^2  rmsk=     0.27513093
iL =   1 Iter =   3 c.s. =      3.32297234 angs^2  rmsk=     0.01552988
iL =   1 Iter =   4 c.s. =      3.26583203 angs^2  rmsk=     0.00363806
iL =   1 Iter =   5 c.s. =      3.26583341 angs^2  rmsk=     0.00000087
iL =   1 Iter =   6 c.s. =      3.26582787 angs^2  rmsk=     0.00000036
iL =   1 Iter =   7 c.s. =      3.26582786 angs^2  rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =      3.26582786 angs^2  rmsk=     0.01217572
iL =   2 Iter =   2 c.s. =      3.26448566 angs^2  rmsk=     0.00624291
iL =   2 Iter =   3 c.s. =      3.26457544 angs^2  rmsk=     0.00018479
iL =   2 Iter =   4 c.s. =      3.26452524 angs^2  rmsk=     0.00012907
iL =   2 Iter =   5 c.s. =      3.26452473 angs^2  rmsk=     0.00000088
iL =   2 Iter =   6 c.s. =      3.26452473 angs^2  rmsk=     0.00000000
iL =   2 Iter =   7 c.s. =      3.26452473 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  (-0.49119602E+00, 0.40867882E+00) (-0.15043171E-01, 0.12671950E-01)
     ROW  2
  (-0.15043171E-01, 0.12671950E-01) (-0.65283780E-02, 0.43645996E-03)
 eigenphases
 -0.6939611E+00 -0.6062146E-02
 eigenphase sum-0.700023E+00  scattering length=   1.26843
 eps+pi 0.244157E+01  eps+2*pi 0.558316E+01

MaxIter =   7 c.s. =      3.26452473 angs^2  rmsk=     0.00000000
Time Now =        77.2964  Delta time =         4.4057 End ScatStab
+ Data Record ScatContSym - 'PU'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =        77.3123  Delta time =         0.0158 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =PU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     2
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =    9
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   55
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    3
Highest l used at large r (lpasym) =    9
Higest l used in the asymptotic potential (lpzb) =   18
Maximum L used in the homogeneous solution (LMaxHomo) =    9
Number of partial waves in the homogeneous solution (npHomo) =    6
Time Now =        77.3229  Delta time =         0.0107 Energy independent setup

Compute solution for E =    3.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.16237177E-18
 i =  3  lval =   3  stpote =  0.24254232E-03
 i =  4  lval =   5  stpote = -0.16437416E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.88130262E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.88130258E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.88130251E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.88130240E-16
For potential     3
Number of asymptotic regions =      62
Final point in integration =   0.18302830E+03 Angstroms
Time Now =        78.1635  Delta time =         0.8406 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.86656785 angs^2  rmsk=     0.11651063
iL =   1 Iter =   2 c.s. =      0.61018315 angs^2  rmsk=     0.01921799
iL =   1 Iter =   3 c.s. =      0.56062601 angs^2  rmsk=     0.00414001
iL =   1 Iter =   4 c.s. =      0.56192254 angs^2  rmsk=     0.00011060
iL =   1 Iter =   5 c.s. =      0.56170217 angs^2  rmsk=     0.00001878
iL =   1 Iter =   6 c.s. =      0.56170223 angs^2  rmsk=     0.00000001
iL =   1 Iter =   7 c.s. =      0.56170223 angs^2  rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =      0.56170223 angs^2  rmsk=     0.00621778
iL =   2 Iter =   2 c.s. =      0.56102308 angs^2  rmsk=     0.00100381
iL =   2 Iter =   3 c.s. =      0.56087620 angs^2  rmsk=     0.00025997
iL =   2 Iter =   4 c.s. =      0.56087529 angs^2  rmsk=     0.00000174
iL =   2 Iter =   5 c.s. =      0.56087506 angs^2  rmsk=     0.00000049
iL =   2 Iter =   6 c.s. =      0.56087506 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  (-0.18369903E+00, 0.35041471E-01) (-0.81050592E-02, 0.15927122E-02)
     ROW  2
  (-0.81050593E-02, 0.15927122E-02) (-0.58797953E-02, 0.10995304E-03)
 eigenphases
 -0.1885014E+00 -0.5511318E-02
 eigenphase sum-0.194013E+00  scattering length=   0.41843
 eps+pi 0.294758E+01  eps+2*pi 0.608917E+01

MaxIter =   7 c.s. =      0.56087506 angs^2  rmsk=     0.00000000
Time Now =        82.3724  Delta time =         4.2089 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =        82.3882  Delta time =         0.0158 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =PU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     2
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =    9
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   55
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    3
Highest l used at large r (lpasym) =    9
Higest l used in the asymptotic potential (lpzb) =   18
Maximum L used in the homogeneous solution (LMaxHomo) =    9
Number of partial waves in the homogeneous solution (npHomo) =    6
Time Now =        82.3991  Delta time =         0.0109 Energy independent setup

Compute solution for E =    4.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.16237177E-18
 i =  3  lval =   3  stpote =  0.24254232E-03
 i =  4  lval =   5  stpote = -0.16437416E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10744698E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10744698E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10744697E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10744696E-15
For potential     3
Number of asymptotic regions =      64
Final point in integration =   0.16629167E+03 Angstroms
Time Now =        83.2737  Delta time =         0.8746 End SolveHomo
iL =   1 Iter =   1 c.s. =      1.13124855 angs^2  rmsk=     0.15371372
iL =   1 Iter =   2 c.s. =      0.84730857 angs^2  rmsk=     0.02162860
iL =   1 Iter =   3 c.s. =      0.78956882 angs^2  rmsk=     0.00479153
iL =   1 Iter =   4 c.s. =      0.79109316 angs^2  rmsk=     0.00012842
iL =   1 Iter =   5 c.s. =      0.79082443 angs^2  rmsk=     0.00002266
iL =   1 Iter =   6 c.s. =      0.79082450 angs^2  rmsk=     0.00000001
iL =   1 Iter =   7 c.s. =      0.79082450 angs^2  rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =      0.79082450 angs^2  rmsk=     0.00791911
iL =   2 Iter =   2 c.s. =      0.78970157 angs^2  rmsk=     0.00168356
iL =   2 Iter =   3 c.s. =      0.78948802 angs^2  rmsk=     0.00039473
iL =   2 Iter =   4 c.s. =      0.78948665 angs^2  rmsk=     0.00000287
iL =   2 Iter =   5 c.s. =      0.78948632 angs^2  rmsk=     0.00000069
iL =   2 Iter =   6 c.s. =      0.78948632 angs^2  rmsk=     0.00000000
iL =   2 Iter =   7 c.s. =      0.78948632 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  (-0.24773636E+00, 0.65819628E-01) (-0.10310391E-01, 0.27901111E-02)
     ROW  2
  (-0.10310391E-01, 0.27901111E-02) (-0.49938482E-02, 0.14847016E-03)
 eigenphases
 -0.2596929E+00 -0.4556854E-02
 eigenphase sum-0.264250E+00  scattering length=   0.49902
 eps+pi 0.287734E+01  eps+2*pi 0.601894E+01

MaxIter =   7 c.s. =      0.78948632 angs^2  rmsk=     0.00000000
Time Now =        87.9005  Delta time =         4.6267 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =        87.9164  Delta time =         0.0159 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =PU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     2
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =    9
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   55
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    3
Highest l used at large r (lpasym) =    9
Higest l used in the asymptotic potential (lpzb) =   18
Maximum L used in the homogeneous solution (LMaxHomo) =    9
Number of partial waves in the homogeneous solution (npHomo) =    6
Time Now =        87.9271  Delta time =         0.0107 Energy independent setup

Compute solution for E =    5.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.16237177E-18
 i =  3  lval =   3  stpote =  0.24254232E-03
 i =  4  lval =   5  stpote = -0.16437416E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10111366E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10111366E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10111365E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10111364E-15
For potential     3
Number of asymptotic regions =      66
Final point in integration =   0.15437101E+03 Angstroms
Time Now =        88.8365  Delta time =         0.9095 End SolveHomo
iL =   1 Iter =   1 c.s. =      1.33136678 angs^2  rmsk=     0.18643931
iL =   1 Iter =   2 c.s. =      1.04367215 angs^2  rmsk=     0.02289746
iL =   1 Iter =   3 c.s. =      0.98288233 angs^2  rmsk=     0.00517817
iL =   1 Iter =   4 c.s. =      0.98450649 angs^2  rmsk=     0.00013957
iL =   1 Iter =   5 c.s. =      0.98421099 angs^2  rmsk=     0.00002550
iL =   1 Iter =   6 c.s. =      0.98421106 angs^2  rmsk=     0.00000001
iL =   1 Iter =   7 c.s. =      0.98421106 angs^2  rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =      0.98421106 angs^2  rmsk=     0.00985305
iL =   2 Iter =   2 c.s. =      0.98259688 angs^2  rmsk=     0.00249972
iL =   2 Iter =   3 c.s. =      0.98232030 angs^2  rmsk=     0.00051939
iL =   2 Iter =   4 c.s. =      0.98231849 angs^2  rmsk=     0.00000397
iL =   2 Iter =   5 c.s. =      0.98231807 angs^2  rmsk=     0.00000086
iL =   2 Iter =   6 c.s. =      0.98231807 angs^2  rmsk=     0.00000000
iL =   2 Iter =   7 c.s. =      0.98231807 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  (-0.30286612E+00, 0.10239569E+00) (-0.12801813E-01, 0.43606071E-02)
     ROW  2
  (-0.12801813E-01, 0.43606071E-02) (-0.27745350E-02, 0.20200518E-03)
 eigenphases
 -0.3260285E+00 -0.2229462E-02
 eigenphase sum-0.328258E+00  scattering length=   0.56182
 eps+pi 0.281333E+01  eps+2*pi 0.595493E+01

MaxIter =   7 c.s. =      0.98231807 angs^2  rmsk=     0.00000000
Time Now =        93.4037  Delta time =         4.5671 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =        93.4194  Delta time =         0.0157 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =PU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     2
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =    9
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   55
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    3
Highest l used at large r (lpasym) =    9
Higest l used in the asymptotic potential (lpzb) =   18
Maximum L used in the homogeneous solution (LMaxHomo) =    9
Number of partial waves in the homogeneous solution (npHomo) =    6
Time Now =        93.4303  Delta time =         0.0109 Energy independent setup

Compute solution for E =    6.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.16237177E-18
 i =  3  lval =   3  stpote =  0.24254232E-03
 i =  4  lval =   5  stpote = -0.16437416E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.73154061E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.73154057E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.73154049E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.73154038E-16
For potential     3
Number of asymptotic regions =      68
Final point in integration =   0.14526825E+03 Angstroms
Time Now =        94.3458  Delta time =         0.9155 End SolveHomo
iL =   1 Iter =   1 c.s. =      1.47900686 angs^2  rmsk=     0.21526050
iL =   1 Iter =   2 c.s. =      1.20133685 angs^2  rmsk=     0.02342916
iL =   1 Iter =   3 c.s. =      1.14092280 angs^2  rmsk=     0.00537353
iL =   1 Iter =   4 c.s. =      1.14256455 angs^2  rmsk=     0.00014622
iL =   1 Iter =   5 c.s. =      1.14225835 angs^2  rmsk=     0.00002755
iL =   1 Iter =   6 c.s. =      1.14225841 angs^2  rmsk=     0.00000001
iL =   1 Iter =   7 c.s. =      1.14225841 angs^2  rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =      1.14225841 angs^2  rmsk=     0.01211684
iL =   2 Iter =   2 c.s. =      1.14017438 angs^2  rmsk=     0.00345475
iL =   2 Iter =   3 c.s. =      1.13984247 angs^2  rmsk=     0.00062526
iL =   2 Iter =   4 c.s. =      1.13984031 angs^2  rmsk=     0.00000495
iL =   2 Iter =   5 c.s. =      1.13983980 angs^2  rmsk=     0.00000098
iL =   2 Iter =   6 c.s. =      1.13983981 angs^2  rmsk=     0.00000000
iL =   2 Iter =   7 c.s. =      1.13983981 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  (-0.34921809E+00, 0.14255998E+00) (-0.15592998E-01, 0.63376396E-02)
     ROW  2
  (-0.15592998E-01, 0.63376396E-02) ( 0.88166773E-03, 0.29691599E-03)
 eigenphases
 -0.3875746E+00  0.1574830E-02
 eigenphase sum-0.386000E+00  scattering length=   0.61196
 eps+pi 0.275559E+01  eps+2*pi 0.589719E+01

MaxIter =   7 c.s. =      1.13983981 angs^2  rmsk=     0.00000000
Time Now =        98.9775  Delta time =         4.6317 End ScatStab
+ Data Record ScatContSym - 'DG'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =        98.9934  Delta time =         0.0158 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =DG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     2
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =    9
Number of partial waves in the asymptotic region (npasym) =    5
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   55
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =    4
Highest l used at large r (lpasym) =    9
Higest l used in the asymptotic potential (lpzb) =   18
Maximum L used in the homogeneous solution (LMaxHomo) =    9
Number of partial waves in the homogeneous solution (npHomo) =    5
Time Now =        99.0040  Delta time =         0.0107 Energy independent setup

Compute solution for E =    3.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.16237177E-18
 i =  3  lval =   3  stpote =  0.24254232E-03
 i =  4  lval =   5  stpote = -0.16437416E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.88130262E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.88130258E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.88130251E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.88130240E-16
For potential     3
Number of asymptotic regions =      62
Final point in integration =   0.18302830E+03 Angstroms
Time Now =        99.7006  Delta time =         0.6966 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.01781777 angs^2  rmsk=     0.01670671
iL =   1 Iter =   2 c.s. =      0.02804305 angs^2  rmsk=     0.00427952
iL =   1 Iter =   3 c.s. =      0.02803890 angs^2  rmsk=     0.00000156
iL =   1 Iter =   4 c.s. =      0.02803893 angs^2  rmsk=     0.00000001
iL =   1 Iter =   5 c.s. =      0.02803893 angs^2  rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =      0.02803893 angs^2  rmsk=     0.00148035
iL =   2 Iter =   2 c.s. =      0.02803006 angs^2  rmsk=     0.00006511
iL =   2 Iter =   3 c.s. =      0.02803006 angs^2  rmsk=     0.00000001
iL =   2 Iter =   4 c.s. =      0.02803006 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.41726562E-01, 0.17481462E-02) (-0.19944263E-02,-0.79237136E-04)
     ROW  2
  (-0.19944263E-02,-0.79237136E-04) (-0.20556675E-02, 0.10689281E-04)
 eigenphases
 -0.2146350E-02  0.4186613E-01
 eigenphase sum 0.397198E-01  scattering length=  -0.08463
 eps+pi 0.318131E+01  eps+2*pi 0.632291E+01

MaxIter =   5 c.s. =      0.02803006 angs^2  rmsk=     0.00000000
Time Now =       102.2227  Delta time =         2.5221 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =       102.2385  Delta time =         0.0157 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =DG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     2
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =    9
Number of partial waves in the asymptotic region (npasym) =    5
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   55
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =    4
Highest l used at large r (lpasym) =    9
Higest l used in the asymptotic potential (lpzb) =   18
Maximum L used in the homogeneous solution (LMaxHomo) =    9
Number of partial waves in the homogeneous solution (npHomo) =    5
Time Now =       102.2495  Delta time =         0.0110 Energy independent setup

Compute solution for E =    4.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.16237177E-18
 i =  3  lval =   3  stpote =  0.24254232E-03
 i =  4  lval =   5  stpote = -0.16437416E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10744698E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10744698E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10744697E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10744696E-15
For potential     3
Number of asymptotic regions =      64
Final point in integration =   0.16629167E+03 Angstroms
Time Now =       102.9475  Delta time =         0.6980 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.02667026 angs^2  rmsk=     0.02360192
iL =   1 Iter =   2 c.s. =      0.04728583 angs^2  rmsk=     0.00785902
iL =   1 Iter =   3 c.s. =      0.04727740 angs^2  rmsk=     0.00000281
iL =   1 Iter =   4 c.s. =      0.04727746 angs^2  rmsk=     0.00000002
iL =   1 Iter =   5 c.s. =      0.04727746 angs^2  rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =      0.04727746 angs^2  rmsk=     0.00148142
iL =   2 Iter =   2 c.s. =      0.04726303 angs^2  rmsk=     0.00015785
iL =   2 Iter =   3 c.s. =      0.04726303 angs^2  rmsk=     0.00000002
iL =   2 Iter =   4 c.s. =      0.04726303 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.62633026E-01, 0.39410790E-02) (-0.16250652E-02,-0.98534452E-04)
     ROW  2
  (-0.16250652E-02,-0.98534455E-04) (-0.22186028E-02, 0.10866447E-04)
 eigenphases
 -0.2259321E-02  0.6283902E-01
 eigenphase sum 0.605797E-01  scattering length=  -0.11186
 eps+pi 0.320217E+01  eps+2*pi 0.634377E+01

MaxIter =   5 c.s. =      0.04726303 angs^2  rmsk=     0.00000000
Time Now =       105.4564  Delta time =         2.5089 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =       105.4721  Delta time =         0.0158 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =DG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     2
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =    9
Number of partial waves in the asymptotic region (npasym) =    5
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   55
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =    4
Highest l used at large r (lpasym) =    9
Higest l used in the asymptotic potential (lpzb) =   18
Maximum L used in the homogeneous solution (LMaxHomo) =    9
Number of partial waves in the homogeneous solution (npHomo) =    5
Time Now =       105.4828  Delta time =         0.0106 Energy independent setup

Compute solution for E =    5.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.16237177E-18
 i =  3  lval =   3  stpote =  0.24254232E-03
 i =  4  lval =   5  stpote = -0.16437416E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10111366E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10111366E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10111365E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10111364E-15
For potential     3
Number of asymptotic regions =      66
Final point in integration =   0.15437101E+03 Angstroms
Time Now =       106.2370  Delta time =         0.7543 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.03846928 angs^2  rmsk=     0.03169171
iL =   1 Iter =   2 c.s. =      0.07399987 angs^2  rmsk=     0.01231546
iL =   1 Iter =   3 c.s. =      0.07398553 angs^2  rmsk=     0.00000428
iL =   1 Iter =   4 c.s. =      0.07398566 angs^2  rmsk=     0.00000004
iL =   1 Iter =   5 c.s. =      0.07398566 angs^2  rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =      0.07398566 angs^2  rmsk=     0.00135651
iL =   2 Iter =   2 c.s. =      0.07396998 angs^2  rmsk=     0.00030613
iL =   2 Iter =   3 c.s. =      0.07396998 angs^2  rmsk=     0.00000005
iL =   2 Iter =   4 c.s. =      0.07396998 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.87514771E-01, 0.77191751E-02) (-0.86515648E-03,-0.74325943E-04)
     ROW  2
  (-0.86515649E-03,-0.74325951E-04) (-0.22291111E-02, 0.98132948E-05)
 eigenphases
 -0.2237476E-02  0.8797636E-01
 eigenphase sum 0.857389E-01  scattering length=  -0.14178
 eps+pi 0.322733E+01  eps+2*pi 0.636892E+01

MaxIter =   5 c.s. =      0.07396998 angs^2  rmsk=     0.00000000
Time Now =       108.7592  Delta time =         2.5221 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =       108.7749  Delta time =         0.0157 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =DG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     2
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =    9
Number of partial waves in the asymptotic region (npasym) =    5
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   55
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =    4
Highest l used at large r (lpasym) =    9
Higest l used in the asymptotic potential (lpzb) =   18
Maximum L used in the homogeneous solution (LMaxHomo) =    9
Number of partial waves in the homogeneous solution (npHomo) =    5
Time Now =       108.7855  Delta time =         0.0106 Energy independent setup

Compute solution for E =    6.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.16237177E-18
 i =  3  lval =   3  stpote =  0.24254232E-03
 i =  4  lval =   5  stpote = -0.16437416E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.73154061E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.73154057E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.73154049E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.73154038E-16
For potential     3
Number of asymptotic regions =      68
Final point in integration =   0.14526825E+03 Angstroms
Time Now =       109.5436  Delta time =         0.7581 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.05315231 angs^2  rmsk=     0.04080753
iL =   1 Iter =   2 c.s. =      0.10792416 angs^2  rmsk=     0.01743760
iL =   1 Iter =   3 c.s. =      0.10790282 angs^2  rmsk=     0.00000579
iL =   1 Iter =   4 c.s. =      0.10790305 angs^2  rmsk=     0.00000006
iL =   1 Iter =   5 c.s. =      0.10790305 angs^2  rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =      0.10790305 angs^2  rmsk=     0.00113944
iL =   2 Iter =   2 c.s. =      0.10789631 angs^2  rmsk=     0.00051481
iL =   2 Iter =   3 c.s. =      0.10789631 angs^2  rmsk=     0.00000012
iL =   2 Iter =   4 c.s. =      0.10789631 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.11547450E+00, 0.13517158E-01) ( 0.28843322E-03, 0.33180663E-04)
     ROW  2
  ( 0.28843321E-03, 0.33180643E-04) (-0.20651149E-02, 0.92052823E-05)
 eigenphases
 -0.2065849E-02  0.1165272E+00
 eigenphase sum 0.114461E+00  scattering length=  -0.17312
 eps+pi 0.325605E+01  eps+2*pi 0.639765E+01

MaxIter =   5 c.s. =      0.10789631 angs^2  rmsk=     0.00000000
Time Now =       112.0585  Delta time =         2.5149 End ScatStab
+ Data Record ScatContSym - 'DU'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =       112.0744  Delta time =         0.0159 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =DU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     1
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     1
Maximum in the asymptotic region (lpasym) =    9
Number of partial waves in the asymptotic region (npasym) =    5
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   55
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    3
Highest l used at large r (lpasym) =    9
Higest l used in the asymptotic potential (lpzb) =   18
Maximum L used in the homogeneous solution (LMaxHomo) =    9
Number of partial waves in the homogeneous solution (npHomo) =    5
Time Now =       112.0850  Delta time =         0.0106 Energy independent setup

Compute solution for E =    3.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.16237177E-18
 i =  3  lval =   3  stpote =  0.24254232E-03
 i =  4  lval =   5  stpote = -0.16437416E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.88130262E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.88130258E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.88130251E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.88130240E-16
For potential     3
Number of asymptotic regions =      62
Final point in integration =   0.18302830E+03 Angstroms
Time Now =       112.7686  Delta time =         0.6836 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00004912 angs^2  rmsk=     0.00175446
iL =   1 Iter =   2 c.s. =      0.00006095 angs^2  rmsk=     0.00019978
iL =   1 Iter =   3 c.s. =      0.00006095 angs^2  rmsk=     0.00000000
iL =   1 Iter =   4 c.s. =      0.00006095 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.19542162E-02, 0.81653730E-05)
 eigenphases
  0.1954238E-02
 eigenphase sum 0.195424E-02  scattering length=  -0.00416
 eps+pi 0.314355E+01  eps+2*pi 0.628514E+01

MaxIter =   4 c.s. =      0.00006095 angs^2  rmsk=     0.00000000
Time Now =       113.7745  Delta time =         1.0059 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =       113.7903  Delta time =         0.0158 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =DU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     1
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     1
Maximum in the asymptotic region (lpasym) =    9
Number of partial waves in the asymptotic region (npasym) =    5
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   55
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    3
Highest l used at large r (lpasym) =    9
Higest l used in the asymptotic potential (lpzb) =   18
Maximum L used in the homogeneous solution (LMaxHomo) =    9
Number of partial waves in the homogeneous solution (npHomo) =    5
Time Now =       113.8012  Delta time =         0.0109 Energy independent setup

Compute solution for E =    4.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.16237177E-18
 i =  3  lval =   3  stpote =  0.24254232E-03
 i =  4  lval =   5  stpote = -0.16437416E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10744698E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10744698E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10744697E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10744696E-15
For potential     3
Number of asymptotic regions =      64
Final point in integration =   0.16629167E+03 Angstroms
Time Now =       114.4849  Delta time =         0.6837 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00013540 angs^2  rmsk=     0.00336331
iL =   1 Iter =   2 c.s. =      0.00017660 angs^2  rmsk=     0.00047786
iL =   1 Iter =   3 c.s. =      0.00017660 angs^2  rmsk=     0.00000000
iL =   1 Iter =   4 c.s. =      0.00017660 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.38411147E-02, 0.20242640E-04)
 eigenphases
  0.3841195E-02
 eigenphase sum 0.384119E-02  scattering length=  -0.00708
 eps+pi 0.314543E+01  eps+2*pi 0.628703E+01

MaxIter =   4 c.s. =      0.00017660 angs^2  rmsk=     0.00000000
Time Now =       115.4784  Delta time =         0.9935 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =       115.4942  Delta time =         0.0158 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =DU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     1
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     1
Maximum in the asymptotic region (lpasym) =    9
Number of partial waves in the asymptotic region (npasym) =    5
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   55
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    3
Highest l used at large r (lpasym) =    9
Higest l used in the asymptotic potential (lpzb) =   18
Maximum L used in the homogeneous solution (LMaxHomo) =    9
Number of partial waves in the homogeneous solution (npHomo) =    5
Time Now =       115.5048  Delta time =         0.0106 Energy independent setup

Compute solution for E =    5.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.16237177E-18
 i =  3  lval =   3  stpote =  0.24254232E-03
 i =  4  lval =   5  stpote = -0.16437416E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10111366E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10111366E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10111365E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10111364E-15
For potential     3
Number of asymptotic regions =      66
Final point in integration =   0.15437101E+03 Angstroms
Time Now =       116.2469  Delta time =         0.7421 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00030741 angs^2  rmsk=     0.00566604
iL =   1 Iter =   2 c.s. =      0.00041513 angs^2  rmsk=     0.00091828
iL =   1 Iter =   3 c.s. =      0.00041513 angs^2  rmsk=     0.00000001
iL =   1 Iter =   4 c.s. =      0.00041513 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.65841235E-02, 0.49698919E-04)
 eigenphases
  0.6584397E-02
 eigenphase sum 0.658440E-02  scattering length=  -0.01086
 eps+pi 0.314818E+01  eps+2*pi 0.628977E+01

MaxIter =   4 c.s. =      0.00041513 angs^2  rmsk=     0.00000000
Time Now =       117.2432  Delta time =         0.9962 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =       117.2590  Delta time =         0.0159 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =DU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     1
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     1
Maximum in the asymptotic region (lpasym) =    9
Number of partial waves in the asymptotic region (npasym) =    5
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   55
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    3
Highest l used at large r (lpasym) =    9
Higest l used in the asymptotic potential (lpzb) =   18
Maximum L used in the homogeneous solution (LMaxHomo) =    9
Number of partial waves in the homogeneous solution (npHomo) =    5
Time Now =       117.2705  Delta time =         0.0114 Energy independent setup

Compute solution for E =    6.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.16237177E-18
 i =  3  lval =   3  stpote =  0.24254232E-03
 i =  4  lval =   5  stpote = -0.16437416E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.73154061E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.73154057E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.73154049E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.73154038E-16
For potential     3
Number of asymptotic regions =      68
Final point in integration =   0.14526825E+03 Angstroms
Time Now =       118.0134  Delta time =         0.7430 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00060609 angs^2  rmsk=     0.00871520
iL =   1 Iter =   2 c.s. =      0.00083886 angs^2  rmsk=     0.00153796
iL =   1 Iter =   3 c.s. =      0.00083887 angs^2  rmsk=     0.00000001
iL =   1 Iter =   4 c.s. =      0.00083887 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.10252498E-01, 0.11195491E-03)
 eigenphases
  0.1025336E-01
 eigenphase sum 0.102534E-01  scattering length=  -0.01544
 eps+pi 0.315185E+01  eps+2*pi 0.629344E+01

MaxIter =   4 c.s. =      0.00083887 angs^2  rmsk=     0.00000000
Time Now =       119.0085  Delta time =         0.9951 End ScatStab
+ Data Record ScatContSym - 'FG'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =       119.0243  Delta time =         0.0158 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =FG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     7
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     1
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     1
Maximum in the asymptotic region (lpasym) =    9
Number of partial waves in the asymptotic region (npasym) =    4
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   55
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =    4
Highest l used at large r (lpasym) =    9
Higest l used in the asymptotic potential (lpzb) =   18
Maximum L used in the homogeneous solution (LMaxHomo) =    9
Number of partial waves in the homogeneous solution (npHomo) =    4
Time Now =       119.0350  Delta time =         0.0106 Energy independent setup

Compute solution for E =    3.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.16237177E-18
 i =  3  lval =   3  stpote =  0.24254232E-03
 i =  4  lval =   5  stpote = -0.16437416E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.88130262E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.88130258E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.88130251E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.88130240E-16
For potential     3
Number of asymptotic regions =      62
Final point in integration =   0.18302830E+03 Angstroms
Time Now =       119.5787  Delta time =         0.5437 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00008290 angs^2  rmsk=     0.00227921
iL =   1 Iter =   2 c.s. =      0.00008311 angs^2  rmsk=     0.00000281
iL =   1 Iter =   3 c.s. =      0.00008311 angs^2  rmsk=     0.00000000
iL =   1 Iter =   4 c.s. =      0.00008311 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.22820096E-02, 0.66613393E-05)
 eigenphases
  0.2282024E-02
 eigenphase sum 0.228202E-02  scattering length=  -0.00486
 eps+pi 0.314387E+01  eps+2*pi 0.628547E+01

MaxIter =   4 c.s. =      0.00008311 angs^2  rmsk=     0.00000000
Time Now =       120.5567  Delta time =         0.9781 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =       120.5726  Delta time =         0.0158 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =FG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     7
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     1
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     1
Maximum in the asymptotic region (lpasym) =    9
Number of partial waves in the asymptotic region (npasym) =    4
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   55
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =    4
Highest l used at large r (lpasym) =    9
Higest l used in the asymptotic potential (lpzb) =   18
Maximum L used in the homogeneous solution (LMaxHomo) =    9
Number of partial waves in the homogeneous solution (npHomo) =    4
Time Now =       120.5832  Delta time =         0.0106 Energy independent setup

Compute solution for E =    4.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.16237177E-18
 i =  3  lval =   3  stpote =  0.24254232E-03
 i =  4  lval =   5  stpote = -0.16437416E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10744698E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10744698E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10744697E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10744696E-15
For potential     3
Number of asymptotic regions =      64
Final point in integration =   0.16629167E+03 Angstroms
Time Now =       121.1282  Delta time =         0.5451 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00009311 angs^2  rmsk=     0.00278906
iL =   1 Iter =   2 c.s. =      0.00009368 angs^2  rmsk=     0.00000859
iL =   1 Iter =   3 c.s. =      0.00009368 angs^2  rmsk=     0.00000000
iL =   1 Iter =   4 c.s. =      0.00009368 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.27976404E-02, 0.96997440E-05)
 eigenphases
  0.2797666E-02
 eigenphase sum 0.279767E-02  scattering length=  -0.00516
 eps+pi 0.314439E+01  eps+2*pi 0.628598E+01

MaxIter =   4 c.s. =      0.00009368 angs^2  rmsk=     0.00000000
Time Now =       122.1112  Delta time =         0.9829 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =       122.1270  Delta time =         0.0158 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =FG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     7
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     1
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     1
Maximum in the asymptotic region (lpasym) =    9
Number of partial waves in the asymptotic region (npasym) =    4
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   55
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =    4
Highest l used at large r (lpasym) =    9
Higest l used in the asymptotic potential (lpzb) =   18
Maximum L used in the homogeneous solution (LMaxHomo) =    9
Number of partial waves in the homogeneous solution (npHomo) =    4
Time Now =       122.1376  Delta time =         0.0106 Energy independent setup

Compute solution for E =    5.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.16237177E-18
 i =  3  lval =   3  stpote =  0.24254232E-03
 i =  4  lval =   5  stpote = -0.16437416E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10111366E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10111366E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10111365E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10111364E-15
For potential     3
Number of asymptotic regions =      66
Final point in integration =   0.15437101E+03 Angstroms
Time Now =       122.7271  Delta time =         0.5894 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00010656 angs^2  rmsk=     0.00333588
iL =   1 Iter =   2 c.s. =      0.00010784 angs^2  rmsk=     0.00002006
iL =   1 Iter =   3 c.s. =      0.00010784 angs^2  rmsk=     0.00000000
iL =   1 Iter =   4 c.s. =      0.00010784 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.33559099E-02, 0.13517881E-04)
 eigenphases
  0.3355950E-02
 eigenphase sum 0.335595E-02  scattering length=  -0.00554
 eps+pi 0.314495E+01  eps+2*pi 0.628654E+01

MaxIter =   4 c.s. =      0.00010784 angs^2  rmsk=     0.00000000
Time Now =       123.7102  Delta time =         0.9831 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =       123.7260  Delta time =         0.0158 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =FG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     7
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     1
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     1
Maximum in the asymptotic region (lpasym) =    9
Number of partial waves in the asymptotic region (npasym) =    4
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   55
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =    4
Highest l used at large r (lpasym) =    9
Higest l used in the asymptotic potential (lpzb) =   18
Maximum L used in the homogeneous solution (LMaxHomo) =    9
Number of partial waves in the homogeneous solution (npHomo) =    4
Time Now =       123.7366  Delta time =         0.0106 Energy independent setup

Compute solution for E =    6.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.16237177E-18
 i =  3  lval =   3  stpote =  0.24254232E-03
 i =  4  lval =   5  stpote = -0.16437416E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.73154061E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.73154057E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.73154049E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.73154038E-16
For potential     3
Number of asymptotic regions =      68
Final point in integration =   0.14526825E+03 Angstroms
Time Now =       124.3336  Delta time =         0.5970 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00012430 angs^2  rmsk=     0.00394679
iL =   1 Iter =   2 c.s. =      0.00012680 angs^2  rmsk=     0.00003955
iL =   1 Iter =   3 c.s. =      0.00012680 angs^2  rmsk=     0.00000000
iL =   1 Iter =   4 c.s. =      0.00012680 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.39862936E-02, 0.18488000E-04)
 eigenphases
  0.3986357E-02
 eigenphase sum 0.398636E-02  scattering length=  -0.00600
 eps+pi 0.314558E+01  eps+2*pi 0.628717E+01

MaxIter =   4 c.s. =      0.00012680 angs^2  rmsk=     0.00000000
Time Now =       125.3161  Delta time =         0.9826 End ScatStab
+ Data Record ScatContSym - 'FU'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =       125.3328  Delta time =         0.0166 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =FU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     1
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     1
Maximum in the asymptotic region (lpasym) =    9
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   55
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    3
Highest l used at large r (lpasym) =    9
Higest l used in the asymptotic potential (lpzb) =   18
Maximum L used in the homogeneous solution (LMaxHomo) =    9
Number of partial waves in the homogeneous solution (npHomo) =    6
Time Now =       125.3434  Delta time =         0.0106 Energy independent setup

Compute solution for E =    3.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.16237177E-18
 i =  3  lval =   3  stpote =  0.24254232E-03
 i =  4  lval =   5  stpote = -0.16437416E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.88130262E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.88130258E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.88130251E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.88130240E-16
For potential     3
Number of asymptotic regions =      62
Final point in integration =   0.18302830E+03 Angstroms
Time Now =       126.1659  Delta time =         0.8225 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00237461 angs^2  rmsk=     0.01219805
iL =   1 Iter =   2 c.s. =      0.00242057 angs^2  rmsk=     0.00011749
iL =   1 Iter =   3 c.s. =      0.00242057 angs^2  rmsk=     0.00000000
iL =   1 Iter =   4 c.s. =      0.00242057 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.12314575E-01, 0.15320038E-03)
 eigenphases
  0.1231586E-01
 eigenphase sum 0.123159E-01  scattering length=  -0.02623
 eps+pi 0.315391E+01  eps+2*pi 0.629550E+01

MaxIter =   4 c.s. =      0.00242057 angs^2  rmsk=     0.00000000
Time Now =       127.1786  Delta time =         1.0128 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =       127.1945  Delta time =         0.0158 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =FU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     1
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     1
Maximum in the asymptotic region (lpasym) =    9
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   55
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    3
Highest l used at large r (lpasym) =    9
Higest l used in the asymptotic potential (lpzb) =   18
Maximum L used in the homogeneous solution (LMaxHomo) =    9
Number of partial waves in the homogeneous solution (npHomo) =    6
Time Now =       127.2051  Delta time =         0.0106 Energy independent setup

Compute solution for E =    4.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.16237177E-18
 i =  3  lval =   3  stpote =  0.24254232E-03
 i =  4  lval =   5  stpote = -0.16437416E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10744698E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10744698E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10744697E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10744696E-15
For potential     3
Number of asymptotic regions =      64
Final point in integration =   0.16629167E+03 Angstroms
Time Now =       128.0270  Delta time =         0.8219 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00252226 angs^2  rmsk=     0.01451639
iL =   1 Iter =   2 c.s. =      0.00261848 angs^2  rmsk=     0.00027433
iL =   1 Iter =   3 c.s. =      0.00261848 angs^2  rmsk=     0.00000000
iL =   1 Iter =   4 c.s. =      0.00261848 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.14789040E-01, 0.22055080E-03)
 eigenphases
  0.1479125E-01
 eigenphase sum 0.147913E-01  scattering length=  -0.02728
 eps+pi 0.315638E+01  eps+2*pi 0.629798E+01

MaxIter =   4 c.s. =      0.00261848 angs^2  rmsk=     0.00000000
Time Now =       129.0303  Delta time =         1.0033 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =       129.0461  Delta time =         0.0159 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =FU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     1
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     1
Maximum in the asymptotic region (lpasym) =    9
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   55
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    3
Highest l used at large r (lpasym) =    9
Higest l used in the asymptotic potential (lpzb) =   18
Maximum L used in the homogeneous solution (LMaxHomo) =    9
Number of partial waves in the homogeneous solution (npHomo) =    6
Time Now =       129.0568  Delta time =         0.0106 Energy independent setup

Compute solution for E =    5.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.16237177E-18
 i =  3  lval =   3  stpote =  0.24254232E-03
 i =  4  lval =   5  stpote = -0.16437416E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10111366E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10111366E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10111365E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10111364E-15
For potential     3
Number of asymptotic regions =      66
Final point in integration =   0.15437101E+03 Angstroms
Time Now =       129.9436  Delta time =         0.8868 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00274673 angs^2  rmsk=     0.01693660
iL =   1 Iter =   2 c.s. =      0.00291681 angs^2  rmsk=     0.00051657
iL =   1 Iter =   3 c.s. =      0.00291681 angs^2  rmsk=     0.00000000
iL =   1 Iter =   4 c.s. =      0.00291681 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.17450399E-01, 0.30652170E-03)
 eigenphases
  0.1745401E-01
 eigenphase sum 0.174540E-01  scattering length=  -0.02879
 eps+pi 0.315905E+01  eps+2*pi 0.630064E+01

MaxIter =   4 c.s. =      0.00291681 angs^2  rmsk=     0.00000000
Time Now =       130.9461  Delta time =         1.0025 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =       130.9619  Delta time =         0.0158 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =FU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     9
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     1
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     1
Maximum in the asymptotic region (lpasym) =    9
Number of partial waves in the asymptotic region (npasym) =    6
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   55
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    3
Highest l used at large r (lpasym) =    9
Higest l used in the asymptotic potential (lpzb) =   18
Maximum L used in the homogeneous solution (LMaxHomo) =    9
Number of partial waves in the homogeneous solution (npHomo) =    6
Time Now =       130.9725  Delta time =         0.0106 Energy independent setup

Compute solution for E =    6.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.16237177E-18
 i =  3  lval =   3  stpote =  0.24254232E-03
 i =  4  lval =   5  stpote = -0.16437416E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.73154061E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.73154057E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.73154049E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.73154038E-16
For potential     3
Number of asymptotic regions =      68
Final point in integration =   0.14526825E+03 Angstroms
Time Now =       131.8691  Delta time =         0.8966 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00304972 angs^2  rmsk=     0.01954966
iL =   1 Iter =   2 c.s. =      0.00332067 angs^2  rmsk=     0.00085013
iL =   1 Iter =   3 c.s. =      0.00332067 angs^2  rmsk=     0.00000000
iL =   1 Iter =   4 c.s. =      0.00332067 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.20395340E-01, 0.41804384E-03)
 eigenphases
  0.2040108E-01
 eigenphase sum 0.204011E-01  scattering length=  -0.03073
 eps+pi 0.316199E+01  eps+2*pi 0.630359E+01

MaxIter =   4 c.s. =      0.00332067 angs^2  rmsk=     0.00000000
Time Now =       132.8744  Delta time =         1.0053 End ScatStab
+ Data Record ScatContSym - 'GG'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =       132.8903  Delta time =         0.0158 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =GG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     5
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     1
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     1
Maximum in the asymptotic region (lpasym) =    9
Number of partial waves in the asymptotic region (npasym) =    5
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   55
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =    8
Higest l included in the K matrix (lna) =    4
Highest l used at large r (lpasym) =    9
Higest l used in the asymptotic potential (lpzb) =   18
Maximum L used in the homogeneous solution (LMaxHomo) =    9
Number of partial waves in the homogeneous solution (npHomo) =    5
Time Now =       132.9012  Delta time =         0.0109 Energy independent setup

Compute solution for E =    3.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.16237177E-18
 i =  3  lval =   3  stpote =  0.24254232E-03
 i =  4  lval =   5  stpote = -0.16437416E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.88130262E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.88130258E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.88130251E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.88130240E-16
For potential     3
Number of asymptotic regions =      62
Final point in integration =   0.18302830E+03 Angstroms
Time Now =       133.6553  Delta time =         0.7541 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00095683 angs^2  rmsk=     0.00774303
iL =   1 Iter =   2 c.s. =      0.00095739 angs^2  rmsk=     0.00000227
iL =   1 Iter =   3 c.s. =      0.00095739 angs^2  rmsk=     0.00000000
iL =   1 Iter =   4 c.s. =      0.00095739 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.77450686E-02, 0.60521372E-04)
 eigenphases
  0.7745387E-02
 eigenphase sum 0.774539E-02  scattering length=  -0.01649
 eps+pi 0.314934E+01  eps+2*pi 0.629093E+01

MaxIter =   4 c.s. =      0.00095739 angs^2  rmsk=     0.00000000
Time Now =       134.6367  Delta time =         0.9814 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =       134.6526  Delta time =         0.0160 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =GG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     5
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     1
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     1
Maximum in the asymptotic region (lpasym) =    9
Number of partial waves in the asymptotic region (npasym) =    5
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   55
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =    8
Higest l included in the K matrix (lna) =    4
Highest l used at large r (lpasym) =    9
Higest l used in the asymptotic potential (lpzb) =   18
Maximum L used in the homogeneous solution (LMaxHomo) =    9
Number of partial waves in the homogeneous solution (npHomo) =    5
Time Now =       134.6636  Delta time =         0.0110 Energy independent setup

Compute solution for E =    4.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.16237177E-18
 i =  3  lval =   3  stpote =  0.24254232E-03
 i =  4  lval =   5  stpote = -0.16437416E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10744698E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10744698E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10744697E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10744696E-15
For potential     3
Number of asymptotic regions =      64
Final point in integration =   0.16629167E+03 Angstroms
Time Now =       135.3487  Delta time =         0.6851 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00095058 angs^2  rmsk=     0.00891166
iL =   1 Iter =   2 c.s. =      0.00095199 angs^2  rmsk=     0.00000658
iL =   1 Iter =   3 c.s. =      0.00095199 angs^2  rmsk=     0.00000000
iL =   1 Iter =   4 c.s. =      0.00095199 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.89178718E-02, 0.80189895E-04)
 eigenphases
  0.8918356E-02
 eigenphase sum 0.891836E-02  scattering length=  -0.01645
 eps+pi 0.315051E+01  eps+2*pi 0.629210E+01

MaxIter =   4 c.s. =      0.00095199 angs^2  rmsk=     0.00000000
Time Now =       136.3375  Delta time =         0.9888 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =       136.3534  Delta time =         0.0160 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =GG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     5
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     1
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     1
Maximum in the asymptotic region (lpasym) =    9
Number of partial waves in the asymptotic region (npasym) =    5
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   55
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =    8
Higest l included in the K matrix (lna) =    4
Highest l used at large r (lpasym) =    9
Higest l used in the asymptotic potential (lpzb) =   18
Maximum L used in the homogeneous solution (LMaxHomo) =    9
Number of partial waves in the homogeneous solution (npHomo) =    5
Time Now =       136.3644  Delta time =         0.0110 Energy independent setup

Compute solution for E =    5.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.16237177E-18
 i =  3  lval =   3  stpote =  0.24254232E-03
 i =  4  lval =   5  stpote = -0.16437416E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10111366E-15
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10111366E-15
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10111365E-15
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.10111364E-15
For potential     3
Number of asymptotic regions =      66
Final point in integration =   0.15437101E+03 Angstroms
Time Now =       137.0986  Delta time =         0.7342 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00094967 angs^2  rmsk=     0.00995877
iL =   1 Iter =   2 c.s. =      0.00095247 angs^2  rmsk=     0.00001466
iL =   1 Iter =   3 c.s. =      0.00095247 angs^2  rmsk=     0.00000000
iL =   1 Iter =   4 c.s. =      0.00095247 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.99729215E-02, 0.10022294E-03)
 eigenphases
  0.9973598E-02
 eigenphase sum 0.997360E-02  scattering length=  -0.01645
 eps+pi 0.315157E+01  eps+2*pi 0.629316E+01

MaxIter =   4 c.s. =      0.00095247 angs^2  rmsk=     0.00000000
Time Now =       138.1956  Delta time =         1.0970 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =       138.2116  Delta time =         0.0160 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =GG    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
Number of partial waves (np) =     5
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     1
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     1
Maximum in the asymptotic region (lpasym) =    9
Number of partial waves in the asymptotic region (npasym) =    5
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =   55
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =    8
Higest l included in the K matrix (lna) =    4
Highest l used at large r (lpasym) =    9
Higest l used in the asymptotic potential (lpzb) =   18
Maximum L used in the homogeneous solution (LMaxHomo) =    9
Number of partial waves in the homogeneous solution (npHomo) =    5
Time Now =       138.2226  Delta time =         0.0110 Energy independent setup

Compute solution for E =    6.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote =  0.17307935E-16
 i =  2  lval =   3  stpote = -0.16237177E-18
 i =  3  lval =   3  stpote =  0.24254232E-03
 i =  4  lval =   5  stpote = -0.16437416E-20
For potential     2
 i =  1  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.73154061E-16
 i =  2  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.73154057E-16
 i =  3  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.73154049E-16
 i =  4  exps = -0.72837500E+02 -0.20000000E+01  stpote = -0.73154038E-16
For potential     3
Number of asymptotic regions =      68
Final point in integration =   0.14526825E+03 Angstroms
Time Now =       138.9606  Delta time =         0.7380 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.00095500 angs^2  rmsk=     0.01093983
iL =   1 Iter =   2 c.s. =      0.00095987 angs^2  rmsk=     0.00002786
iL =   1 Iter =   3 c.s. =      0.00095987 angs^2  rmsk=     0.00000000
iL =   1 Iter =   4 c.s. =      0.00095987 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.10967013E-01, 0.12111834E-03)
 eigenphases
  0.1096791E-01
 eigenphase sum 0.109679E-01  scattering length=  -0.01652
 eps+pi 0.315256E+01  eps+2*pi 0.629415E+01

MaxIter =   4 c.s. =      0.00095987 angs^2  rmsk=     0.00000000
Time Now =       139.9484  Delta time =         0.9878 End ScatStab
+ Data Record ScatContSym - 'GU'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =       139.9645  Delta time =         0.0161 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =GU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =       139.9823  Delta time =         0.0178 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =GU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =       140.0001  Delta time =         0.0178 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =GU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =       140.0181  Delta time =         0.0180 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =GU    1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK
+ Data Record ScatContSym - 'A2G'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =       140.0358  Delta time =         0.0177 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A2G   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =       140.0536  Delta time =         0.0178 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A2G   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =       140.0714  Delta time =         0.0178 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A2G   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =       140.0892  Delta time =         0.0178 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A2G   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK
+ Data Record ScatContSym - 'A2U'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =       140.1075  Delta time =         0.0183 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A2U   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =       140.1252  Delta time =         0.0177 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A2U   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =       140.1429  Delta time =         0.0178 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A2U   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =       140.1607  Delta time =         0.0177 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A2U   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK
+ Data Record ScatContSym - 'B1G'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =       140.1787  Delta time =         0.0180 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =B1G   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =       140.1968  Delta time =         0.0182 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =B1G   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =       140.2146  Delta time =         0.0177 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =B1G   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =       140.2323  Delta time =         0.0177 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =B1G   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK
+ Data Record ScatContSym - 'B1U'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =       140.2501  Delta time =         0.0178 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =B1U   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =       140.2679  Delta time =         0.0178 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =B1U   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =       140.2857  Delta time =         0.0178 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =B1U   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =       140.3035  Delta time =         0.0178 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =B1U   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK
+ Data Record ScatContSym - 'B2G'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =       140.3213  Delta time =         0.0178 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =B2G   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =       140.3391  Delta time =         0.0178 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =B2G   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =       140.3572  Delta time =         0.0181 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =B2G   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =       140.3748  Delta time =         0.0177 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =B2G   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK
+ Data Record ScatContSym - 'B2U'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.30000000E+01 eV (  0.11024798E+00 AU)
Time Now =       140.3927  Delta time =         0.0178 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =B2U   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.40000000E+01 eV (  0.14699730E+00 AU)
Time Now =       140.4104  Delta time =         0.0177 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =B2U   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =       140.4285  Delta time =         0.0181 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =B2U   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.60000000E+01 eV (  0.22049596E+00 AU)
Time Now =       140.4465  Delta time =         0.0180 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =B2U   1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    48
No asymptotic partial waves with this value of LMaxK

+ Command TotalCrossSection
+
Symmetry SG -
        E (eV)      XS(angs^2)    EPS(radians)
       3.000000      12.147184      -1.070533
       4.000000      10.350015      -1.199979
       5.000000       8.905712      -1.305366
       6.000000       7.733558      -1.395395
Symmetry A2G -
        E (eV)      XS(angs^2)    EPS(radians)
       3.000000       0.000000       0.000000
       4.000000       0.000000       0.000000
       5.000000       0.000000       0.000000
       6.000000       0.000000       0.000000
Symmetry B1G -
        E (eV)      XS(angs^2)    EPS(radians)
       3.000000       0.000000       0.000000
       4.000000       0.000000       0.000000
       5.000000       0.000000       0.000000
       6.000000       0.000000       0.000000
Symmetry B2G -
        E (eV)      XS(angs^2)    EPS(radians)
       3.000000       0.000000       0.000000
       4.000000       0.000000       0.000000
       5.000000       0.000000       0.000000
       6.000000       0.000000       0.000000
Symmetry PG -
        E (eV)      XS(angs^2)    EPS(radians)
       3.000000       1.812940       0.338934
       4.000000      11.899764       1.488850
       5.000000       5.600353       2.265128
       6.000000       3.264525       2.441569
Symmetry DG -
        E (eV)      XS(angs^2)    EPS(radians)
       3.000000       0.028030       0.039720
       4.000000       0.047263       0.060580
       5.000000       0.073970       0.085739
       6.000000       0.107896       0.114461
Symmetry FG -
        E (eV)      XS(angs^2)    EPS(radians)
       3.000000       0.000083       0.002282
       4.000000       0.000094       0.002798
       5.000000       0.000108       0.003356
       6.000000       0.000127       0.003986
Symmetry GG -
        E (eV)      XS(angs^2)    EPS(radians)
       3.000000       0.000957       0.007745
       4.000000       0.000952       0.008918
       5.000000       0.000952       0.009974
       6.000000       0.000960       0.010968
Symmetry SU -
        E (eV)      XS(angs^2)    EPS(radians)
       3.000000       2.045377      -0.374215
       4.000000       2.492994      -0.481287
       5.000000       2.821470      -0.578703
       6.000000       3.050532      -0.667049
Symmetry A2U -
        E (eV)      XS(angs^2)    EPS(radians)
       3.000000       0.000000       0.000000
       4.000000       0.000000       0.000000
       5.000000       0.000000       0.000000
       6.000000       0.000000       0.000000
Symmetry B1U -
        E (eV)      XS(angs^2)    EPS(radians)
       3.000000       0.000000       0.000000
       4.000000       0.000000       0.000000
       5.000000       0.000000       0.000000
       6.000000       0.000000       0.000000
Symmetry B2U -
        E (eV)      XS(angs^2)    EPS(radians)
       3.000000       0.000000       0.000000
       4.000000       0.000000       0.000000
       5.000000       0.000000       0.000000
       6.000000       0.000000       0.000000
Symmetry PU -
        E (eV)      XS(angs^2)    EPS(radians)
       3.000000       0.560875      -0.194013
       4.000000       0.789486      -0.264250
       5.000000       0.982318      -0.328258
       6.000000       1.139840      -0.386000
Symmetry DU -
        E (eV)      XS(angs^2)    EPS(radians)
       3.000000       0.000061       0.001954
       4.000000       0.000177       0.003841
       5.000000       0.000415       0.006584
       6.000000       0.000839       0.010253
Symmetry FU -
        E (eV)      XS(angs^2)    EPS(radians)
       3.000000       0.002421       0.012316
       4.000000       0.002618       0.014791
       5.000000       0.002917       0.017454
       6.000000       0.003321       0.020401
Symmetry GU -
        E (eV)      XS(angs^2)    EPS(radians)
       3.000000       0.000000       0.000000
       4.000000       0.000000       0.000000
       5.000000       0.000000       0.000000
       6.000000       0.000000       0.000000

 Total Cross Sections

 Energy      Total Cross Section
   3.00000    19.00329
   4.00000    38.32372
   5.00000    25.04925
   6.00000    19.81910

+ Command EDCS
+
All symmetries found for E =       3.000000

----------------------------------------------------------------------
EDCS - differential cross section program
----------------------------------------------------------------------

 Title -
 Maximum l to use from k matrices (lmax) =    4
Minimum l to compute in the expansion of the DCS (lbigl) =    0
Maximum l to use in the expansion of the DCS (lbig) =    8
Unit to write DCS in plot format (iuplt) =    0
Number of angles at which to compute the DCS (nang) =  181
Print flag (iprint) =    0
Energy to compute the EDCS at (eV) =      3.00000000


  Energy (eV)= 3.0000      Energy (ryd)=0.2204960  xk=0.4695700


 AL coefficients
        -1     0.30000000000000E+01
         0     0.54002858900518E+01
         1     0.19931447400718E+01
         2     0.16075978174680E+01
         3    -0.23965904601017E+01
         4     0.13515781347088E+01
         5     0.44260311699873E-02
         6    -0.15565723287955E-01
         7     0.42375254740390E-02
         8     0.17304919760205E-02

For comparison
        -1        3.00000     alcoef
         0        5.40029     alcoef
         1        1.99314     alcoef
         2        1.60760     alcoef
         3       -2.39659     alcoef
         4        1.35158     alcoef
         5        0.00443     alcoef
         6       -0.01557     alcoef
         7        0.00424     alcoef
         8        0.00173     alcoef
 Total Cross Section (Angstrom^2) =  0.1900329357E+02
 Momentum Transfer Cross Section (Angstrom^2) =  0.1666537323E+02
 Differential Cross Section
   Ang   Cross Section (Angstrom^2)
     0.0    0.2226463186E+01
     1.0    0.2226212816E+01
     2.0    0.2225462933E+01
     3.0    0.2224217214E+01
     4.0    0.2222481755E+01
     5.0    0.2220265033E+01
     6.0    0.2217577845E+01
     7.0    0.2214433236E+01
     8.0    0.2210846405E+01
     9.0    0.2206834604E+01
    10.0    0.2202417013E+01
    11.0    0.2197614616E+01
    12.0    0.2192450045E+01
    13.0    0.2186947435E+01
    14.0    0.2181132248E+01
    15.0    0.2175031102E+01
    16.0    0.2168671588E+01
    17.0    0.2162082074E+01
    18.0    0.2155291515E+01
    19.0    0.2148329249E+01
    20.0    0.2141224794E+01
    21.0    0.2134007645E+01
    22.0    0.2126707067E+01
    23.0    0.2119351889E+01
    24.0    0.2111970309E+01
    25.0    0.2104589685E+01
    26.0    0.2097236352E+01
    27.0    0.2089935423E+01
    28.0    0.2082710618E+01
    29.0    0.2075584083E+01
    30.0    0.2068576228E+01
    31.0    0.2061705576E+01
    32.0    0.2054988611E+01
    33.0    0.2048439656E+01
    34.0    0.2042070743E+01
    35.0    0.2035891512E+01
    36.0    0.2029909115E+01
    37.0    0.2024128137E+01
    38.0    0.2018550530E+01
    39.0    0.2013175562E+01
    40.0    0.2007999783E+01
    41.0    0.2003017003E+01
    42.0    0.1998218292E+01
    43.0    0.1993591983E+01
    44.0    0.1989123709E+01
    45.0    0.1984796437E+01
    46.0    0.1980590534E+01
    47.0    0.1976483833E+01
    48.0    0.1972451731E+01
    49.0    0.1968467286E+01
    50.0    0.1964501345E+01
    51.0    0.1960522667E+01
    52.0    0.1956498083E+01
    53.0    0.1952392651E+01
    54.0    0.1948169832E+01
    55.0    0.1943791679E+01
    56.0    0.1939219037E+01
    57.0    0.1934411755E+01
    58.0    0.1929328906E+01
    59.0    0.1923929017E+01
    60.0    0.1918170314E+01
    61.0    0.1912010966E+01
    62.0    0.1905409341E+01
    63.0    0.1898324270E+01
    64.0    0.1890715307E+01
    65.0    0.1882543002E+01
    66.0    0.1873769175E+01
    67.0    0.1864357179E+01
    68.0    0.1854272183E+01
    69.0    0.1843481435E+01
    70.0    0.1831954530E+01
    71.0    0.1819663674E+01
    72.0    0.1806583939E+01
    73.0    0.1792693512E+01
    74.0    0.1777973932E+01
    75.0    0.1762410319E+01
    76.0    0.1745991590E+01
    77.0    0.1728710661E+01
    78.0    0.1710564632E+01
    79.0    0.1691554960E+01
    80.0    0.1671687605E+01
    81.0    0.1650973165E+01
    82.0    0.1629426990E+01
    83.0    0.1607069263E+01
    84.0    0.1583925074E+01
    85.0    0.1560024455E+01
    86.0    0.1535402404E+01
    87.0    0.1510098870E+01
    88.0    0.1484158720E+01
    89.0    0.1457631678E+01
    90.0    0.1430572238E+01
    91.0    0.1403039545E+01
    92.0    0.1375097254E+01
    93.0    0.1346813359E+01
    94.0    0.1318260000E+01
    95.0    0.1289513238E+01
    96.0    0.1260652809E+01
    97.0    0.1231761853E+01
    98.0    0.1202926616E+01
    99.0    0.1174236138E+01
   100.0    0.1145781910E+01
   101.0    0.1117657521E+01
   102.0    0.1089958281E+01
   103.0    0.1062780830E+01
   104.0    0.1036222736E+01
   105.0    0.1010382074E+01
   106.0    0.9853570050E+00
   107.0    0.9612453368E+00
   108.0    0.9381440861E+00
   109.0    0.9161490346E+00
   110.0    0.8953542849E+00
   111.0    0.8758518168E+00
   112.0    0.8577310477E+00
   113.0    0.8410783990E+00
   114.0    0.8259768701E+00
   115.0    0.8125056230E+00
   116.0    0.8007395794E+00
   117.0    0.7907490323E+00
   118.0    0.7825992743E+00
   119.0    0.7763502444E+00
   120.0    0.7720561953E+00
   121.0    0.7697653825E+00
   122.0    0.7695197773E+00
   123.0    0.7713548047E+00
   124.0    0.7752991082E+00
   125.0    0.7813743418E+00
   126.0    0.7895949906E+00
   127.0    0.7999682213E+00
   128.0    0.8124937626E+00
   129.0    0.8271638170E+00
   130.0    0.8439630032E+00
   131.0    0.8628683304E+00
   132.0    0.8838492043E+00
   133.0    0.9068674646E+00
   134.0    0.9318774544E+00
   135.0    0.9588261197E+00
   136.0    0.9876531410E+00
   137.0    0.1018291094E+01
   138.0    0.1050665640E+01
   139.0    0.1084695746E+01
   140.0    0.1120293928E+01
   141.0    0.1157366530E+01
   142.0    0.1195814016E+01
   143.0    0.1235531299E+01
   144.0    0.1276408081E+01
   145.0    0.1318329227E+01
   146.0    0.1361175144E+01
   147.0    0.1404822193E+01
   148.0    0.1449143108E+01
   149.0    0.1494007435E+01
   150.0    0.1539281980E+01
   151.0    0.1584831273E+01
   152.0    0.1630518043E+01
   153.0    0.1676203690E+01
   154.0    0.1721748782E+01
   155.0    0.1767013534E+01
   156.0    0.1811858312E+01
   157.0    0.1856144117E+01
   158.0    0.1899733085E+01
   159.0    0.1942488968E+01
   160.0    0.1984277629E+01
   161.0    0.2024967507E+01
   162.0    0.2064430096E+01
   163.0    0.2102540396E+01
   164.0    0.2139177367E+01
   165.0    0.2174224354E+01
   166.0    0.2207569509E+01
   167.0    0.2239106191E+01
   168.0    0.2268733350E+01
   169.0    0.2296355884E+01
   170.0    0.2321884987E+01
   171.0    0.2345238463E+01
   172.0    0.2366341026E+01
   173.0    0.2385124567E+01
   174.0    0.2401528400E+01
   175.0    0.2415499481E+01
   176.0    0.2426992601E+01
   177.0    0.2435970544E+01
   178.0    0.2442404225E+01
   179.0    0.2446272795E+01
   180.0    0.2447563714E+01
Time Now =       140.4789  Delta time =         0.0324 End EDCS
All symmetries found for E =       4.000000

----------------------------------------------------------------------
EDCS - differential cross section program
----------------------------------------------------------------------

 Title -
 Maximum l to use from k matrices (lmax) =    4
Minimum l to compute in the expansion of the DCS (lbigl) =    0
Maximum l to use in the expansion of the DCS (lbig) =    8
Unit to write DCS in plot format (iuplt) =    0
Number of angles at which to compute the DCS (nang) =  181
Print flag (iprint) =    0
Energy to compute the EDCS at (eV) =      4.00000000


  Energy (eV)= 4.0000      Energy (ryd)=0.2939946  xk=0.5422127


 AL coefficients
        -1     0.40000000000000E+01
         0     0.10890692651188E+02
         1     0.52726400994127E+01
         2     0.16569591814148E+02
         3     0.18875541854069E+01
         4     0.79712518588216E+01
         5     0.30151955041359E-01
         6     0.17447090827592E-01
         7     0.40270155687018E-02
         8     0.17037778454790E-02

For comparison
        -1        4.00000     alcoef
         0       10.89069     alcoef
         1        5.27264     alcoef
         2       16.56959     alcoef
         3        1.88755     alcoef
         4        7.97125     alcoef
         5        0.03015     alcoef
         6        0.01745     alcoef
         7        0.00403     alcoef
         8        0.00170     alcoef
 Total Cross Section (Angstrom^2) =  0.3832371727E+02
 Momentum Transfer Cross Section (Angstrom^2) =  0.3213901213E+02
 Differential Cross Section
   Ang   Cross Section (Angstrom^2)
     0.0    0.1194183307E+02
     1.0    0.1193556450E+02
     2.0    0.1191677808E+02
     3.0    0.1188553158E+02
     4.0    0.1184192102E+02
     5.0    0.1178608026E+02
     6.0    0.1171818044E+02
     7.0    0.1163842921E+02
     8.0    0.1154706994E+02
     9.0    0.1144438059E+02
    10.0    0.1133067263E+02
    11.0    0.1120628965E+02
    12.0    0.1107160600E+02
    13.0    0.1092702514E+02
    14.0    0.1077297803E+02
    15.0    0.1060992128E+02
    16.0    0.1043833529E+02
    17.0    0.1025872226E+02
    18.0    0.1007160410E+02
    19.0    0.9877520344E+01
    20.0    0.9677025897E+01
    21.0    0.9470688816E+01
    22.0    0.9259088014E+01
    23.0    0.9042810937E+01
    24.0    0.8822451231E+01
    25.0    0.8598606393E+01
    26.0    0.8371875430E+01
    27.0    0.8142856530E+01
    28.0    0.7912144759E+01
    29.0    0.7680329790E+01
    30.0    0.7447993681E+01
    31.0    0.7215708701E+01
    32.0    0.6984035232E+01
    33.0    0.6753519732E+01
    34.0    0.6524692790E+01
    35.0    0.6298067263E+01
    36.0    0.6074136522E+01
    37.0    0.5853372792E+01
    38.0    0.5636225614E+01
    39.0    0.5423120421E+01
    40.0    0.5214457237E+01
    41.0    0.5010609507E+01
    42.0    0.4811923062E+01
    43.0    0.4618715216E+01
    44.0    0.4431274009E+01
    45.0    0.4249857585E+01
    46.0    0.4074693719E+01
    47.0    0.3905979489E+01
    48.0    0.3743881089E+01
    49.0    0.3588533789E+01
    50.0    0.3440042040E+01
    51.0    0.3298479719E+01
    52.0    0.3163890513E+01
    53.0    0.3036288439E+01
    54.0    0.2915658503E+01
    55.0    0.2801957478E+01
    56.0    0.2695114815E+01
    57.0    0.2595033666E+01
    58.0    0.2501592028E+01
    59.0    0.2414643980E+01
    60.0    0.2334021040E+01
    61.0    0.2259533591E+01
    62.0    0.2190972417E+01
    63.0    0.2128110291E+01
    64.0    0.2070703655E+01
    65.0    0.2018494345E+01
    66.0    0.1971211372E+01
    67.0    0.1928572747E+01
    68.0    0.1890287336E+01
    69.0    0.1856056744E+01
    70.0    0.1825577209E+01
    71.0    0.1798541499E+01
    72.0    0.1774640814E+01
    73.0    0.1753566660E+01
    74.0    0.1735012715E+01
    75.0    0.1718676649E+01
    76.0    0.1704261911E+01
    77.0    0.1691479464E+01
    78.0    0.1680049457E+01
    79.0    0.1669702835E+01
    80.0    0.1660182872E+01
    81.0    0.1651246617E+01
    82.0    0.1642666260E+01
    83.0    0.1634230392E+01
    84.0    0.1625745167E+01
    85.0    0.1617035353E+01
    86.0    0.1607945275E+01
    87.0    0.1598339634E+01
    88.0    0.1588104204E+01
    89.0    0.1577146411E+01
    90.0    0.1565395777E+01
    91.0    0.1552804233E+01
    92.0    0.1539346311E+01
    93.0    0.1525019187E+01
    94.0    0.1509842612E+01
    95.0    0.1493858692E+01
    96.0    0.1477131552E+01
    97.0    0.1459746864E+01
    98.0    0.1441811255E+01
    99.0    0.1423451586E+01
   100.0    0.1404814118E+01
   101.0    0.1386063561E+01
   102.0    0.1367382016E+01
   103.0    0.1348967813E+01
   104.0    0.1331034253E+01
   105.0    0.1313808253E+01
   106.0    0.1297528922E+01
   107.0    0.1282446042E+01
   108.0    0.1268818500E+01
   109.0    0.1256912646E+01
   110.0    0.1247000608E+01
   111.0    0.1239358563E+01
   112.0    0.1234264972E+01
   113.0    0.1231998795E+01
   114.0    0.1232837689E+01
   115.0    0.1237056201E+01
   116.0    0.1244923966E+01
   117.0    0.1256703919E+01
   118.0    0.1272650527E+01
   119.0    0.1293008056E+01
   120.0    0.1318008878E+01
   121.0    0.1347871831E+01
   122.0    0.1382800632E+01
   123.0    0.1422982360E+01
   124.0    0.1468586019E+01
   125.0    0.1519761172E+01
   126.0    0.1576636677E+01
   127.0    0.1639319511E+01
   128.0    0.1707893703E+01
   129.0    0.1782419372E+01
   130.0    0.1862931877E+01
   131.0    0.1949441096E+01
   132.0    0.2041930813E+01
   133.0    0.2140358247E+01
   134.0    0.2244653695E+01
   135.0    0.2354720320E+01
   136.0    0.2470434066E+01
   137.0    0.2591643708E+01
   138.0    0.2718171035E+01
   139.0    0.2849811176E+01
   140.0    0.2986333044E+01
   141.0    0.3127479933E+01
   142.0    0.3272970224E+01
   143.0    0.3422498231E+01
   144.0    0.3575735169E+01
   145.0    0.3732330235E+01
   146.0    0.3891911812E+01
   147.0    0.4054088775E+01
   148.0    0.4218451909E+01
   149.0    0.4384575413E+01
   150.0    0.4552018508E+01
   151.0    0.4720327119E+01
   152.0    0.4889035634E+01
   153.0    0.5057668733E+01
   154.0    0.5225743276E+01
   155.0    0.5392770239E+01
   156.0    0.5558256696E+01
   157.0    0.5721707825E+01
   158.0    0.5882628946E+01
   159.0    0.6040527566E+01
   160.0    0.6194915434E+01
   161.0    0.6345310577E+01
   162.0    0.6491239335E+01
   163.0    0.6632238364E+01
   164.0    0.6767856600E+01
   165.0    0.6897657184E+01
   166.0    0.7021219332E+01
   167.0    0.7138140141E+01
   168.0    0.7248036324E+01
   169.0    0.7350545864E+01
   170.0    0.7445329584E+01
   171.0    0.7532072615E+01
   172.0    0.7610485770E+01
   173.0    0.7680306798E+01
   174.0    0.7741301532E+01
   175.0    0.7793264910E+01
   176.0    0.7836021876E+01
   177.0    0.7869428141E+01
   178.0    0.7893370818E+01
   179.0    0.7907768920E+01
   180.0    0.7912573710E+01
Time Now =       140.4801  Delta time =         0.0013 End EDCS
All symmetries found for E =       5.000000

----------------------------------------------------------------------
EDCS - differential cross section program
----------------------------------------------------------------------

 Title -
 Maximum l to use from k matrices (lmax) =    4
Minimum l to compute in the expansion of the DCS (lbigl) =    0
Maximum l to use in the expansion of the DCS (lbig) =    8
Unit to write DCS in plot format (iuplt) =    0
Number of angles at which to compute the DCS (nang) =  181
Print flag (iprint) =    0
Energy to compute the EDCS at (eV) =      5.00000000


  Energy (eV)= 5.0000      Energy (ryd)=0.3674933  xk=0.6062122


 AL coefficients
        -1     0.50000000000000E+01
         0     0.71184027094980E+01
         1     0.70887730784727E+01
         2     0.10535127148372E+02
         3     0.47375037580898E+01
         4     0.33727940817933E+01
         5    -0.27881928815289E-01
         6     0.45966453636168E-01
         7     0.38103634628749E-02
         8     0.17109779700221E-02

For comparison
        -1        5.00000     alcoef
         0        7.11840     alcoef
         1        7.08877     alcoef
         2       10.53513     alcoef
         3        4.73750     alcoef
         4        3.37279     alcoef
         5       -0.02788     alcoef
         6        0.04597     alcoef
         7        0.00381     alcoef
         8        0.00171     alcoef
 Total Cross Section (Angstrom^2) =  0.2504924724E+02
 Momentum Transfer Cross Section (Angstrom^2) =  0.1673425315E+02
 Differential Cross Section
   Ang   Cross Section (Angstrom^2)
     0.0    0.9206275416E+01
     1.0    0.9201944664E+01
     2.0    0.9188963996E+01
     3.0    0.9167368136E+01
     4.0    0.9137214805E+01
     5.0    0.9098584495E+01
     6.0    0.9051580158E+01
     7.0    0.8996326799E+01
     8.0    0.8932970993E+01
     9.0    0.8861680315E+01
    10.0    0.8782642692E+01
    11.0    0.8696065675E+01
    12.0    0.8602175643E+01
    13.0    0.8501216938E+01
    14.0    0.8393450928E+01
    15.0    0.8279155024E+01
    16.0    0.8158621627E+01
    17.0    0.8032157034E+01
    18.0    0.7900080303E+01
    19.0    0.7762722064E+01
    20.0    0.7620423313E+01
    21.0    0.7473534169E+01
    22.0    0.7322412607E+01
    23.0    0.7167423184E+01
    24.0    0.7008935745E+01
    25.0    0.6847324128E+01
    26.0    0.6682964870E+01
    27.0    0.6516235916E+01
    28.0    0.6347515345E+01
    29.0    0.6177180108E+01
    30.0    0.6005604793E+01
    31.0    0.5833160407E+01
    32.0    0.5660213206E+01
    33.0    0.5487123542E+01
    34.0    0.5314244769E+01
    35.0    0.5141922177E+01
    36.0    0.4970491984E+01
    37.0    0.4800280378E+01
    38.0    0.4631602608E+01
    39.0    0.4464762139E+01
    40.0    0.4300049862E+01
    41.0    0.4137743368E+01
    42.0    0.3978106285E+01
    43.0    0.3821387679E+01
    44.0    0.3667821525E+01
    45.0    0.3517626240E+01
    46.0    0.3371004292E+01
    47.0    0.3228141867E+01
    48.0    0.3089208613E+01
    49.0    0.2954357452E+01
    50.0    0.2823724453E+01
    51.0    0.2697428779E+01
    52.0    0.2575572698E+01
    53.0    0.2458241658E+01
    54.0    0.2345504428E+01
    55.0    0.2237413296E+01
    56.0    0.2134004336E+01
    57.0    0.2035297722E+01
    58.0    0.1941298109E+01
    59.0    0.1851995055E+01
    60.0    0.1767363508E+01
    61.0    0.1687364329E+01
    62.0    0.1611944868E+01
    63.0    0.1541039576E+01
    64.0    0.1474570666E+01
    65.0    0.1412448796E+01
    66.0    0.1354573796E+01
    67.0    0.1300835423E+01
    68.0    0.1251114135E+01
    69.0    0.1205281894E+01
    70.0    0.1163202984E+01
    71.0    0.1124734847E+01
    72.0    0.1089728927E+01
    73.0    0.1058031525E+01
    74.0    0.1029484653E+01
    75.0    0.1003926897E+01
    76.0    0.9811942663E+00
    77.0    0.9611210452E+00
    78.0    0.9435406274E+00
    79.0    0.9282863405E+00
    80.0    0.9151922516E+00
    81.0    0.9040939525E+00
    82.0    0.8948293213E+00
    83.0    0.8872392561E+00
    84.0    0.8811683800E+00
    85.0    0.8764657118E+00
    86.0    0.8729853026E+00
    87.0    0.8705868331E+00
    88.0    0.8691361713E+00
    89.0    0.8685058873E+00
    90.0    0.8685757233E+00
    91.0    0.8692330180E+00
    92.0    0.8703730824E+00
    93.0    0.8718995270E+00
    94.0    0.8737245379E+00
    95.0    0.8757691031E+00
    96.0    0.8779631858E+00
    97.0    0.8802458458E+00
    98.0    0.8825653094E+00
    99.0    0.8848789865E+00
   100.0    0.8871534355E+00
   101.0    0.8893642784E+00
   102.0    0.8914960640E+00
   103.0    0.8935420828E+00
   104.0    0.8955041339E+00
   105.0    0.8973922451E+00
   106.0    0.8992243489E+00
   107.0    0.9010259157E+00
   108.0    0.9028295464E+00
   109.0    0.9046745270E+00
   110.0    0.9066063483E+00
   111.0    0.9086761920E+00
   112.0    0.9109403877E+00
   113.0    0.9134598427E+00
   114.0    0.9162994482E+00
   115.0    0.9195274658E+00
   116.0    0.9232148958E+00
   117.0    0.9274348334E+00
   118.0    0.9322618142E+00
   119.0    0.9377711535E+00
   120.0    0.9440382828E+00
   121.0    0.9511380877E+00
   122.0    0.9591442499E+00
   123.0    0.9681285973E+00
   124.0    0.9781604665E+00
   125.0    0.9893060798E+00
   126.0    0.1001627942E+01
   127.0    0.1015184258E+01
   128.0    0.1030028376E+01
   129.0    0.1046208264E+01
   130.0    0.1063766006E+01
   131.0    0.1082737349E+01
   132.0    0.1103151271E+01
   133.0    0.1125029600E+01
   134.0    0.1148386672E+01
   135.0    0.1173229028E+01
   136.0    0.1199555163E+01
   137.0    0.1227355323E+01
   138.0    0.1256611343E+01
   139.0    0.1287296543E+01
   140.0    0.1319375674E+01
   141.0    0.1352804910E+01
   142.0    0.1387531898E+01
   143.0    0.1423495854E+01
   144.0    0.1460627719E+01
   145.0    0.1498850356E+01
   146.0    0.1538078804E+01
   147.0    0.1578220577E+01
   148.0    0.1619176015E+01
   149.0    0.1660838678E+01
   150.0    0.1703095780E+01
   151.0    0.1745828674E+01
   152.0    0.1788913371E+01
   153.0    0.1832221089E+01
   154.0    0.1875618850E+01
   155.0    0.1918970094E+01
   156.0    0.1962135325E+01
   157.0    0.2004972783E+01
   158.0    0.2047339130E+01
   159.0    0.2089090154E+01
   160.0    0.2130081486E+01
   161.0    0.2170169321E+01
   162.0    0.2209211149E+01
   163.0    0.2247066472E+01
   164.0    0.2283597533E+01
   165.0    0.2318670020E+01
   166.0    0.2352153766E+01
   167.0    0.2383923426E+01
   168.0    0.2413859136E+01
   169.0    0.2441847142E+01
   170.0    0.2467780401E+01
   171.0    0.2491559153E+01
   172.0    0.2513091444E+01
   173.0    0.2532293626E+01
   174.0    0.2549090796E+01
   175.0    0.2563417205E+01
   176.0    0.2575216605E+01
   177.0    0.2584442558E+01
   178.0    0.2591058681E+01
   179.0    0.2595038846E+01
   180.0    0.2596367319E+01
Time Now =       140.4814  Delta time =         0.0013 End EDCS
All symmetries found for E =       6.000000

----------------------------------------------------------------------
EDCS - differential cross section program
----------------------------------------------------------------------

 Title -
 Maximum l to use from k matrices (lmax) =    4
Minimum l to compute in the expansion of the DCS (lbigl) =    0
Maximum l to use in the expansion of the DCS (lbig) =    8
Unit to write DCS in plot format (iuplt) =    0
Number of angles at which to compute the DCS (nang) =  181
Print flag (iprint) =    0
Energy to compute the EDCS at (eV) =      6.00000000


  Energy (eV)= 6.0000      Energy (ryd)=0.4409919  xk=0.6640722


 AL coefficients
        -1     0.60000000000000E+01
         0     0.56321200416171E+01
         1     0.61792790776464E+01
         2     0.74743116625269E+01
         3     0.39704205570664E+01
         4     0.17677230140119E+01
         5    -0.63870583556339E-01
         6     0.41850194704749E-01
         7     0.36728280696510E-02
         8     0.16892991721317E-02

For comparison
        -1        6.00000     alcoef
         0        5.63212     alcoef
         1        6.17928     alcoef
         2        7.47431     alcoef
         3        3.97042     alcoef
         4        1.76772     alcoef
         5       -0.06387     alcoef
         6        0.04185     alcoef
         7        0.00367     alcoef
         8        0.00169     alcoef
 Total Cross Section (Angstrom^2) =  0.1981910454E+02
 Momentum Transfer Cross Section (Angstrom^2) =  0.1257092936E+02
 Differential Cross Section
   Ang   Cross Section (Angstrom^2)
     0.0    0.7002728055E+01
     1.0    0.6999735165E+01
     2.0    0.6990763874E+01
     3.0    0.6975836294E+01
     4.0    0.6954989186E+01
     5.0    0.6928273823E+01
     6.0    0.6895755801E+01
     7.0    0.6857514791E+01
     8.0    0.6813644247E+01
     9.0    0.6764251062E+01
    10.0    0.6709455171E+01
    11.0    0.6649389110E+01
    12.0    0.6584197541E+01
    13.0    0.6514036716E+01
    14.0    0.6439073924E+01
    15.0    0.6359486883E+01
    16.0    0.6275463112E+01
    17.0    0.6187199268E+01
    18.0    0.6094900459E+01
    19.0    0.5998779527E+01
    20.0    0.5899056321E+01
    21.0    0.5795956947E+01
    22.0    0.5689713003E+01
    23.0    0.5580560813E+01
    24.0    0.5468740643E+01
    25.0    0.5354495925E+01
    26.0    0.5238072473E+01
    27.0    0.5119717706E+01
    28.0    0.4999679878E+01
    29.0    0.4878207315E+01
    30.0    0.4755547664E+01
    31.0    0.4631947164E+01
    32.0    0.4507649923E+01
    33.0    0.4382897222E+01
    34.0    0.4257926843E+01
    35.0    0.4132972418E+01
    36.0    0.4008262800E+01
    37.0    0.3884021472E+01
    38.0    0.3760465978E+01
    39.0    0.3637807387E+01
    40.0    0.3516249789E+01
    41.0    0.3395989824E+01
    42.0    0.3277216249E+01
    43.0    0.3160109533E+01
    44.0    0.3044841491E+01
    45.0    0.2931574958E+01
    46.0    0.2820463493E+01
    47.0    0.2711651121E+01
    48.0    0.2605272115E+01
    49.0    0.2501450813E+01
    50.0    0.2400301467E+01
    51.0    0.2301928136E+01
    52.0    0.2206424605E+01
    53.0    0.2113874353E+01
    54.0    0.2024350539E+01
    55.0    0.1937916035E+01
    56.0    0.1854623489E+01
    57.0    0.1774515415E+01
    58.0    0.1697624322E+01
    59.0    0.1623972872E+01
    60.0    0.1553574063E+01
    61.0    0.1486431446E+01
    62.0    0.1422539368E+01
    63.0    0.1361883243E+01
    64.0    0.1304439839E+01
    65.0    0.1250177606E+01
    66.0    0.1199057008E+01
    67.0    0.1151030888E+01
    68.0    0.1106044849E+01
    69.0    0.1064037653E+01
    70.0    0.1024941637E+01
    71.0    0.9886831399E+00
    72.0    0.9551829522E+00
    73.0    0.9243567664E+00
    74.0    0.8961156446E+00
    75.0    0.8703664908E+00
    76.0    0.8470125307E+00
    77.0    0.8259537960E+00
    78.0    0.8070876102E+00
    79.0    0.7903090766E+00
    80.0    0.7755115648E+00
    81.0    0.7625871931E+00
    82.0    0.7514273082E+00
    83.0    0.7419229559E+00
    84.0    0.7339653454E+00
    85.0    0.7274463019E+00
    86.0    0.7222587072E+00
    87.0    0.7182969276E+00
    88.0    0.7154572249E+00
    89.0    0.7136381513E+00
    90.0    0.7127409250E+00
    91.0    0.7126697864E+00
    92.0    0.7133323319E+00
    93.0    0.7146398254E+00
    94.0    0.7165074859E+00
    95.0    0.7188547500E+00
    96.0    0.7216055077E+00
    97.0    0.7246883119E+00
    98.0    0.7280365602E+00
    99.0    0.7315886485E+00
   100.0    0.7352880948E+00
   101.0    0.7390836359E+00
   102.0    0.7429292927E+00
   103.0    0.7467844078E+00
   104.0    0.7506136531E+00
   105.0    0.7543870080E+00
   106.0    0.7580797101E+00
   107.0    0.7616721767E+00
   108.0    0.7651498993E+00
   109.0    0.7685033110E+00
   110.0    0.7717276290E+00
   111.0    0.7748226710E+00
   112.0    0.7777926494E+00
   113.0    0.7806459422E+00
   114.0    0.7833948433E+00
   115.0    0.7860552941E+00
   116.0    0.7886465960E+00
   117.0    0.7911911084E+00
   118.0    0.7937139310E+00
   119.0    0.7962425746E+00
   120.0    0.7988066214E+00
   121.0    0.8014373762E+00
   122.0    0.8041675119E+00
   123.0    0.8070307099E+00
   124.0    0.8100612991E+00
   125.0    0.8132938936E+00
   126.0    0.8167630337E+00
   127.0    0.8205028300E+00
   128.0    0.8245466139E+00
   129.0    0.8289265971E+00
   130.0    0.8336735402E+00
   131.0    0.8388164347E+00
   132.0    0.8443821987E+00
   133.0    0.8503953891E+00
   134.0    0.8568779311E+00
   135.0    0.8638488680E+00
   136.0    0.8713241314E+00
   137.0    0.8793163350E+00
   138.0    0.8878345911E+00
   139.0    0.8968843533E+00
   140.0    0.9064672850E+00
   141.0    0.9165811550E+00
   142.0    0.9272197610E+00
   143.0    0.9383728812E+00
   144.0    0.9500262556E+00
   145.0    0.9621615954E+00
   146.0    0.9747566220E+00
   147.0    0.9877851348E+00
   148.0    0.1001217107E+01
   149.0    0.1015018813E+01
   150.0    0.1029152974E+01
   151.0    0.1043578944E+01
   152.0    0.1058252908E+01
   153.0    0.1073128112E+01
   154.0    0.1088155114E+01
   155.0    0.1103282052E+01
   156.0    0.1118454941E+01
   157.0    0.1133617976E+01
   158.0    0.1148713858E+01
   159.0    0.1163684132E+01
   160.0    0.1178469533E+01
   161.0    0.1193010341E+01
   162.0    0.1207246749E+01
   163.0    0.1221119226E+01
   164.0    0.1234568882E+01
   165.0    0.1247537839E+01
   166.0    0.1259969591E+01
   167.0    0.1271809358E+01
   168.0    0.1283004436E+01
   169.0    0.1293504526E+01
   170.0    0.1303262063E+01
   171.0    0.1312232511E+01
   172.0    0.1320374660E+01
   173.0    0.1327650881E+01
   174.0    0.1334027378E+01
   175.0    0.1339474400E+01
   176.0    0.1343966439E+01
   177.0    0.1347482396E+01
   178.0    0.1350005713E+01
   179.0    0.1351524486E+01
   180.0    0.1352031543E+01
Time Now =       140.4836  Delta time =         0.0022 End EDCS
Time Now =       140.4847  Delta time =         0.0011 Finalize