----------------------------------------------------------------------
ePolyScat Version E2
----------------------------------------------------------------------

Authors: R. R. Lucchese, N. Sanna, A. P. P. Natalense, and F. A. Gianturco
http://www.chem.tamu.edu/rgroup/lucchese/ePolyScat.E2.manual/manual.html
Please cite the following two papers when reporting results obtained with  this program
F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 100, 6464 (1994).
A. P. P. Natalense and R. R. Lucchese, J. Chem. Phys. 111, 5344 (1999).

----------------------------------------------------------------------

Starting at 2009-03-13  11:33:54.552 (GMT -0500)
Using    16 processors

----------------------------------------------------------------------


+ Start of Input Records
#
# input file for test02
#
# electron scattering from CH4 in T2 symmetry, static-exchange with orthogonalization
#
  LMax   15     # maximum l to be used for wave functions
  EMax  50.0    # EMax, maximum asymptotic energy in eV

  EngForm      # Energy formulas
   0 2
   3
   2.0 -1.0 1
   2.0 -1.0 1
   2.0 -1.0 1

  FegeEng 13.0   # Energy correction (in eV) used in the fege potential
  ScatContSym 'T2'  # Scattering symmetry
  LMaxK   4     # Maximum l in the K matirx

Convert '/scratch/rrl581a/ePolyScat.E2/tests/test02.g03' 'g03'
GetBlms
ExpOrb
GetPot
Scat 0.5
TotalCrossSection
+ End of input reached
+ Data Record LMax - 15
+ Data Record EMax - 50.0
+ Data Record EngForm
+ 0 2 / 3 / 2.0 -1.0 1 / 2.0 -1.0 1 / 2.0 -1.0 1
+ Data Record FegeEng - 13.0
+ Data Record ScatContSym - 'T2'
+ Data Record LMaxK - 4

+ Command Convert
+ '/scratch/rrl581a/ePolyScat.E2/tests/test02.g03' 'g03'

----------------------------------------------------------------------
g03cnv - read input from G03 output
----------------------------------------------------------------------

Expansion center is (in Angstroms) -
     0.0000000000   0.0000000000   0.0000000000
CardFlag =    T
Normal Mode flag =    F
Selecting orbitals
from     1  to     5  number already selected     0
Number of orbitals selected is     5
Highest orbital read in is =    5
Time Now =         0.0481  Delta time =         0.0481 End g03cnv

Atoms found    5  Coordinates in Angstroms
Z =  6 ZS =  6 r =   0.0000000000   0.0000000000   0.0000000000
Z =  1 ZS =  1 r =   0.6254700000   0.6254700000   0.6254700000
Z =  1 ZS =  1 r =  -0.6254700000  -0.6254700000   0.6254700000
Z =  1 ZS =  1 r =   0.6254700000  -0.6254700000  -0.6254700000
Z =  1 ZS =  1 r =  -0.6254700000   0.6254700000  -0.6254700000
Maximum distance from expansion center is    1.0833458186

+ Command GetBlms
+

----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------

Found point group  Td
Reduce angular grid using nthd =  1  nphid =  4
Found point group for abelian subgroup D2
Time Now =         0.0525  Delta time =         0.0045 End GetPGroup
List of unique axes
  N  Vector                      Z   R
  1  0.00000  0.00000  1.00000
  2  0.57735  0.57735  0.57735   1  2.04723
  3 -0.57735 -0.57735  0.57735   1  2.04723
  4  0.57735 -0.57735 -0.57735   1  2.04723
  5 -0.57735  0.57735 -0.57735   1  2.04723
List of corresponding x axes
  N  Vector
  1  1.00000 -0.00000 -0.00000
  2  0.81650 -0.40825 -0.40825
  3  0.81650 -0.40825  0.40825
  4  0.81650  0.40825  0.40825
  5  0.81650  0.40825 -0.40825
Computed default value of LMaxA =   11
Determineing angular grid in GetAxMax  LMax =   15  LMaxA =   11  LMaxAb =   30
MMax =    3  MMaxAbFlag =    1
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11  12  13  -1  -1
For axis     2  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3
For axis     3  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3
For axis     4  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3
For axis     5  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3
On the double L grid used for products
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19
  20  21  22  23  24  25  26  27  28  29  30
For axis     2  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
For axis     3  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
For axis     4  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
For axis     5  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is Td
LMax = =   15
 The dimension of each irreducable representation is
    A1    (  1)    A2    (  1)    E     (  2)    T1    (  3)    T2    (  3)
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     8    11    14
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A1        1         1         15       1  1  1
 A2        1         2          7       1  1  1
 E         1         3         20       1  1  1
 E         2         4         20       1  1  1
 T1        1         5         27      -1 -1  1
 T1        2         6         27      -1  1 -1
 T1        3         7         27       1 -1 -1
 T2        1         8         36      -1 -1  1
 T2        2         9         36      -1  1 -1
 T2        3        10         36       1 -1 -1
Time Now =         0.5744  Delta time =         0.5218 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
A1    1    0(   1)    1(   1)    2(   1)    3(   2)    4(   3)    5(   3)    6(   4)    7(   5)    8(   6)    9(   7)
          10(   8)   11(   9)
A2    1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   1)    7(   1)    8(   1)    9(   2)
          10(   3)   11(   3)
E     1    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   3)    6(   4)    7(   5)    8(   7)    9(   8)
          10(  10)   11(  12)
E     2    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   3)    6(   4)    7(   5)    8(   7)    9(   8)
          10(  10)   11(  12)
T1    1    0(   0)    1(   0)    2(   0)    3(   1)    4(   2)    5(   3)    6(   4)    7(   6)    8(   8)    9(  10)
          10(  12)   11(  15)
T1    2    0(   0)    1(   0)    2(   0)    3(   1)    4(   2)    5(   3)    6(   4)    7(   6)    8(   8)    9(  10)
          10(  12)   11(  15)
T1    3    0(   0)    1(   0)    2(   0)    3(   1)    4(   2)    5(   3)    6(   4)    7(   6)    8(   8)    9(  10)
          10(  12)   11(  15)
T2    1    0(   0)    1(   1)    2(   2)    3(   3)    4(   4)    5(   6)    6(   8)    7(  10)    8(  12)    9(  15)
          10(  18)   11(  21)
T2    2    0(   0)    1(   1)    2(   2)    3(   3)    4(   4)    5(   6)    6(   8)    7(  10)    8(  12)    9(  15)
          10(  18)   11(  21)
T2    3    0(   0)    1(   1)    2(   2)    3(   3)    4(   4)    5(   6)    6(   8)    7(  10)    8(  12)    9(  15)
          10(  18)   11(  21)

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is D2
LMax = =   30
 The dimension of each irreducable representation is
    A     (  1)    B1    (  1)    B2    (  1)    B3    (  1)
Abelian axes
    1       1.000000       0.000000       0.000000
    2       0.000000       1.000000       0.000000
    3       0.000000       0.000000       1.000000
Symmetry operation directions
  1       0.000000       0.000000       1.000000 ang =  0  1 type = 0 axis = 3
  2       0.000000       0.000000       1.000000 ang =  1  2 type = 2 axis = 3
  3       1.000000       0.000000       0.000000 ang =  1  2 type = 2 axis = 1
  4       0.000000       1.000000       0.000000 ang =  1  2 type = 2 axis = 2
irep =    1  sym =A     1  eigs =   1   1   1   1
irep =    2  sym =B1    1  eigs =   1   1  -1  -1
irep =    3  sym =B2    1  eigs =   1  -1  -1   1
irep =    4  sym =B3    1  eigs =   1  -1   1  -1
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     2     3     4
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A         1         1        241       1  1  1
 B1        1         2        240       1 -1 -1
 B2        1         3        240      -1 -1  1
 B3        1         4        240      -1  1 -1
Time Now =         0.5982  Delta time =         0.0238 End SymGen

+ Command ExpOrb
+
In GetRMax, RMaxEps =  0.10000000E-05  RMax =    6.0697810263 Angs

----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------

Maximum R in the grid (RMax) =     6.06978 Angs
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) =   10.0
In regions controlled by the wave length (HFacWave) =   10.0
Factor used to control the minimum exponent at each center (MinExpFac) =  300.0
Maximum asymptotic kinetic energy (EMAx) =  50.00000 eV
Maximum step size (MaxStep) =   6.06978 Angs
Factor to increase grid by (GridFac) =     1

    1  Center at =     0.00000 Angs  Alpha Max = 0.10800E+05
    2  Center at =     1.08335 Angs  Alpha Max = 0.30000E+03

Generated Grid

  irg  nin  ntot      step Angs     R end Angs
    1    8     8    0.50920E-03     0.00407
    2    8    16    0.54286E-03     0.00842
    3    8    24    0.66917E-03     0.01377
    4    8    32    0.10153E-02     0.02189
    5    8    40    0.16142E-02     0.03481
    6    8    48    0.25663E-02     0.05534
    7    8    56    0.40801E-02     0.08798
    8    8    64    0.64868E-02     0.13987
    9    8    72    0.10071E-01     0.22044
   10    8    80    0.11697E-01     0.31402
   11    8    88    0.12338E-01     0.41272
   12    8    96    0.11651E-01     0.50593
   13    8   104    0.11293E-01     0.59627
   14    8   112    0.12366E-01     0.69520
   15    8   120    0.14418E-01     0.81054
   16    8   128    0.12423E-01     0.90993
   17    8   136    0.78984E-02     0.97311
   18    8   144    0.50206E-02     1.01328
   19    8   152    0.36334E-02     1.04235
   20    8   160    0.31364E-02     1.06744
   21    8   168    0.19887E-02     1.08335
   22    8   176    0.30552E-02     1.10779
   23    8   184    0.32571E-02     1.13384
   24    8   192    0.40150E-02     1.16596
   25    8   200    0.60918E-02     1.21470
   26    8   208    0.96851E-02     1.29218
   27    8   216    0.15398E-01     1.41536
   28    8   224    0.24481E-01     1.61121
   29    8   232    0.33415E-01     1.87853
   30    8   240    0.38959E-01     2.19021
   31    8   248    0.46359E-01     2.56107
   32    8   256    0.58081E-01     3.02572
   33    8   264    0.61727E-01     3.51954
   34    8   272    0.64635E-01     4.03662
   35    8   280    0.66998E-01     4.57261
   36    8   288    0.68947E-01     5.12418
   37    8   296    0.70575E-01     5.68878
   38    8   304    0.47625E-01     6.06978
Time Now =         0.6098  Delta time =         0.0116 End GenGrid

----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------

Maximum scattering l (lmax) =   15
Maximum scattering m (mmaxs) =   15
Maximum numerical integration l (lmaxi) =   30
Maximum numerical integration m (mmaxi) =   30
Maximum l to include in the asymptotic region (lmasym) =   11
Parameter used to determine the cutoff points (PCutRd) =  0.10000000E-07 au
Maximum E used to determine grid (in eV) =       50.00000
Print flag (iprnfg) =    0
lmasymtyts =   11
 Actual value of lmasym found =     11
Number of regions of the same l expansion (NAngReg) =    9
Angular regions
    1 L =    2  from (    1)         0.00051  to (    7)         0.00356
    2 L =    5  from (    8)         0.00407  to (   23)         0.01310
    3 L =    6  from (   24)         0.01377  to (   31)         0.02088
    4 L =    7  from (   32)         0.02189  to (   47)         0.05277
    5 L =    8  from (   48)         0.05534  to (   55)         0.08390
    6 L =   10  from (   56)         0.08798  to (   63)         0.13338
    7 L =   11  from (   64)         0.13987  to (  103)         0.58498
    8 L =   15  from (  104)         0.59627  to (  240)         2.19021
    9 L =   11  from (  241)         2.23656  to (  304)         6.06978
Angular regions for computing spherical harmonics
    1 lval =   11
    2 lval =   15
Last grid points by processor WorkExp =     1.500
Proc id =   -1  Last grid point =       1
Proc id =    0  Last grid point =      56
Proc id =    1  Last grid point =      80
Proc id =    2  Last grid point =     104
Proc id =    3  Last grid point =     120
Proc id =    4  Last grid point =     136
Proc id =    5  Last grid point =     144
Proc id =    6  Last grid point =     160
Proc id =    7  Last grid point =     176
Proc id =    8  Last grid point =     184
Proc id =    9  Last grid point =     200
Proc id =   10  Last grid point =     216
Proc id =   11  Last grid point =     232
Proc id =   12  Last grid point =     240
Proc id =   13  Last grid point =     264
Proc id =   14  Last grid point =     288
Proc id =   15  Last grid point =     304
Time Now =         0.6268  Delta time =         0.0169 End AngGCt

----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------


 R of maximum density
     1  A1    1 at max irg =    7  r =   0.08798
     2  A1    1 at max irg =   15  r =   0.81054
     3  T2    1 at max irg =   17  r =   0.97311
     4  T2    2 at max irg =   17  r =   0.97311
     5  T2    3 at max irg =   17  r =   0.97311

Rotation coefficients for orbital     1  grp =    1 A1    1
     1  1.0000000000

Rotation coefficients for orbital     2  grp =    2 A1    1
     2  1.0000000000

Rotation coefficients for orbital     3  grp =    3 T2    1
     3  1.0000000000    4  0.0000000000    5  0.0000000000

Rotation coefficients for orbital     4  grp =    3 T2    2
     3 -0.0000000000    4  1.0000000000    5 -0.0000000000

Rotation coefficients for orbital     5  grp =    3 T2    3
     3 -0.0000000000    4  0.0000000000    5  1.0000000000
Number of orbital groups and degeneracis are         3
  1  1  3
Number of orbital groups and number of electrons when fully occupied
         3
  2  2  6
Time Now =         0.6973  Delta time =         0.0705 End RotOrb

----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------

 First orbital group to expand (mofr) =    1
 Last orbital group to expand (moto) =    3
Orbital     1 of  A1    1 symmetry normalization integral =  0.99999999
Orbital     2 of  A1    1 symmetry normalization integral =  0.99999913
Orbital     3 of  T2    1 symmetry normalization integral =  0.99999811
Time Now =         0.8659  Delta time =         0.1685 End ExpOrb

+ Command GetPot
+

----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------

Total density =     10.00000000
Time Now =         0.8721  Delta time =         0.0063 End Den

----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------

 vasymp =  0.10000000E+02 facnorm =  0.10000000E+01
Time Now =         0.9066  Delta time =         0.0344 Electronic part
Time Now =         0.9081  Delta time =         0.0015 End StPot

+ Command Scat
+ 0.5

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+00 eV (  0.18374663E-01 AU)
Time Now =         0.9465  Delta time =         0.0384 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =T2    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    38
Number of partial waves (np) =    36
Number of asymptotic solutions on the right (NAsymR) =     4
Number of asymptotic solutions on the left (NAsymL) =     4
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     4
Maximum in the asymptotic region (lpasym) =   11
Number of partial waves in the asymptotic region (npasym) =   21
Number of orthogonality constraints (NOrthUse) =    1
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  133
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    4
Highest l used at large r (lpasym) =   11
Higest l used in the asymptotic potential (lpzb) =   22
Maximum L used in the homogeneous solution (LMaxHomo) =   11
Number of partial waves in the homogeneous solution (npHomo) =   21
Time Now =         0.9561  Delta time =         0.0096 Energy independent setup

Compute solution for E =    0.5000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.78862367E-17
 i =  2  lval =   3  stpote = -0.12174114E-17
 i =  3  lval =   3  stpote = -0.36657853E-17
 i =  4  lval =   4  stpote = -0.24286344E-03
For potential     2
 i =  1  exps = -0.45880895E+02 -0.20000000E+01  stpote = -0.56870548E-17
 i =  2  exps = -0.45880895E+02 -0.20000000E+01  stpote = -0.50934084E-17
 i =  3  exps = -0.45880895E+02 -0.20000000E+01  stpote = -0.45836156E-17
 i =  4  exps = -0.45880895E+02 -0.20000000E+01  stpote = -0.41828082E-17
For potential     3
Number of asymptotic regions =      14
Final point in integration =   0.99819451E+02 Angstroms
Time Now =         4.3952  Delta time =         3.4391 End SolveHomo
iL =   1 Iter =   1 c.s. =      0.14645689 angs^2  rmsk=     0.00978465
iL =   1 Iter =   2 c.s. =      0.12605945 angs^2  rmsk=     0.00071181
iL =   1 Iter =   3 c.s. =      0.12624640 angs^2  rmsk=     0.00000678
iL =   1 Iter =   4 c.s. =      0.12624445 angs^2  rmsk=     0.00000007
iL =   1 Iter =   5 c.s. =      0.12624446 angs^2  rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =      0.12624446 angs^2  rmsk=     0.00027845
iL =   2 Iter =   2 c.s. =      0.12631192 angs^2  rmsk=     0.00009251
iL =   2 Iter =   3 c.s. =      0.12631158 angs^2  rmsk=     0.00000053
iL =   2 Iter =   4 c.s. =      0.12631158 angs^2  rmsk=     0.00000001
iL =   2 Iter =   5 c.s. =      0.12631158 angs^2  rmsk=     0.00000000
iL =   3 Iter =   1 c.s. =      0.12631158 angs^2  rmsk=     0.00020627
iL =   3 Iter =   2 c.s. =      0.12631398 angs^2  rmsk=     0.00000544
iL =   3 Iter =   3 c.s. =      0.12631398 angs^2  rmsk=     0.00000002
iL =   3 Iter =   4 c.s. =      0.12631398 angs^2  rmsk=     0.00000000
iL =   4 Iter =   1 c.s. =      0.12631398 angs^2  rmsk=     0.00004967
iL =   4 Iter =   2 c.s. =      0.12631405 angs^2  rmsk=     0.00000051
iL =   4 Iter =   3 c.s. =      0.12631405 angs^2  rmsk=     0.00000000
iL =   4 Iter =   4 c.s. =      0.12631405 angs^2  rmsk=     0.00000000
     REAL PART -  Final k matrix
     ROW  1
 -0.36297332E-01 0.80338822E-03 0.84300427E-04-0.18368604E-03
     ROW  2
  0.80338822E-03 0.77764273E-03 0.83176737E-03-0.19880143E-04
     ROW  3
  0.84300427E-04 0.83176737E-03-0.33389570E-04-0.76326417E-04
     ROW  4
 -0.18368604E-03-0.19880142E-04-0.76326417E-04 0.16112766E-04
 eigenphases
 -0.3629982E-01 -0.5546008E-03  0.1905350E-04  0.1314357E-02
 eigenphase sum-0.355210E-01  scattering length=   0.18537
 eps+pi 0.310607E+01  eps+2*pi 0.624766E+01

MaxIter =   5 c.s. =      0.12631405 angs^2  rmsk=     0.00000000
Time Now =         7.9722  Delta time =         3.5770 End ScatStab

+ Command TotalCrossSection
+
Symmetry T2 -
        E (eV)      XS(angs^2)    EPS(radians)
       0.500000       0.126314      -0.035521

 Total Cross Sections

 Energy      Total Cross Section
   0.50000     0.37894
Time Now =         7.9808  Delta time =         0.0086 Finalize