----------------------------------------------------------------------
ePolyScat Version E2
----------------------------------------------------------------------

Authors: R. R. Lucchese, N. Sanna, A. P. P. Natalense, and F. A. Gianturco
http://www.chem.tamu.edu/rgroup/lucchese/ePolyScat.E2.manual/manual.html
Please cite the following two papers when reporting results obtained with  this program
F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 100, 6464 (1994).
A. P. P. Natalense and R. R. Lucchese, J. Chem. Phys. 111, 5344 (1999).

----------------------------------------------------------------------

Starting at 2009-03-13  11:33:27.705 (GMT -0500)
Using    16 processors

----------------------------------------------------------------------


+ Start of Input Records
#
# input file for test01
#
# electron scattering from CH4 in A1 symmetry
#
  LMax   15     # maximum l to be used for wave functions
  EMax  50.0    # EMax, maximum asymptotic energy in eV
  EngForm      # Energy formulas
   0 1         # charge, formula type
   3           # number of terms in the formulas
   2.0 -1.0    # orbital occupation and coefficient for the K operators
   2.0 -1.0
   2.0 -1.0
  VCorr 'PZ'
  AsyPol
   0.15  # SwitchD, distance where switching function is down to 0.1
   1     # nterm, number of terms needed to define asymptotic potential
   1     # center for polarization term 1 is for C atom
   1     # ittyp type of polarization term, = 1 for spherically symmetric
         # = 2 for reading in the full tensor
   17.50 # value of the spherical polarizability
   3     # icrtyp, flag to determine where r match is, 3 for second crossing
         # or at nearest approach
   0     # ilntyp, flag to determine what matching line is used, 0 - use
         # l = 0 radial function as matching function
  FegeEng 13.0   # Energy correction (in eV) used in the fege potential
  ScatContSym 'A1'  # Scattering symmetry
  LMaxK   3     # Maximum l in the K matirx

Convert '/scratch/rrl581a/ePolyScat.E2/tests/test01.g03' 'g03'
GetBlms
ExpOrb
GetPot
Scat 0.0001 0.01 0.5
  ScatContSym 'A2'  # Scattering symmetry
Scat 0.0001 0.01 0.5
TotalCrossSection
+ End of input reached
+ Data Record LMax - 15
+ Data Record EMax - 50.0
+ Data Record EngForm
+ 0 1 / 3 / 2.0 -1.0 / 2.0 -1.0 / 2.0 -1.0
+ Data Record VCorr - 'PZ'
+ Data Record AsyPol
+ 0.15 / 1 / 1 / 1 / 17.50 / 3 / 0
+ Data Record FegeEng - 13.0
+ Data Record ScatContSym - 'A1'
+ Data Record LMaxK - 3

+ Command Convert
+ '/scratch/rrl581a/ePolyScat.E2/tests/test01.g03' 'g03'

----------------------------------------------------------------------
g03cnv - read input from G03 output
----------------------------------------------------------------------

Expansion center is (in Angstroms) -
     0.0000000000   0.0000000000   0.0000000000
CardFlag =    T
Normal Mode flag =    F
Selecting orbitals
from     1  to     5  number already selected     0
Number of orbitals selected is     5
Highest orbital read in is =    5
Time Now =         0.0758  Delta time =         0.0758 End g03cnv

Atoms found    5  Coordinates in Angstroms
Z =  6 ZS =  6 r =   0.0000000000   0.0000000000   0.0000000000
Z =  1 ZS =  1 r =   0.6254700000   0.6254700000   0.6254700000
Z =  1 ZS =  1 r =  -0.6254700000  -0.6254700000   0.6254700000
Z =  1 ZS =  1 r =   0.6254700000  -0.6254700000  -0.6254700000
Z =  1 ZS =  1 r =  -0.6254700000   0.6254700000  -0.6254700000
Maximum distance from expansion center is    1.0833458186

+ Command GetBlms
+

----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------

Found point group  Td
Reduce angular grid using nthd =  1  nphid =  4
Found point group for abelian subgroup D2
Time Now =         0.1089  Delta time =         0.0332 End GetPGroup
List of unique axes
  N  Vector                      Z   R
  1  0.00000  0.00000  1.00000
  2  0.57735  0.57735  0.57735   1  2.04723
  3 -0.57735 -0.57735  0.57735   1  2.04723
  4  0.57735 -0.57735 -0.57735   1  2.04723
  5 -0.57735  0.57735 -0.57735   1  2.04723
List of corresponding x axes
  N  Vector
  1  1.00000 -0.00000 -0.00000
  2  0.81650 -0.40825 -0.40825
  3  0.81650 -0.40825  0.40825
  4  0.81650  0.40825  0.40825
  5  0.81650  0.40825 -0.40825
Computed default value of LMaxA =   11
Determineing angular grid in GetAxMax  LMax =   15  LMaxA =   11  LMaxAb =   30
MMax =    3  MMaxAbFlag =    1
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11  12  13  -1  -1
For axis     2  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3
For axis     3  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3
For axis     4  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3
For axis     5  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3
On the double L grid used for products
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19
  20  21  22  23  24  25  26  27  28  29  30
For axis     2  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
For axis     3  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
For axis     4  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
For axis     5  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is Td
LMax = =   15
 The dimension of each irreducable representation is
    A1    (  1)    A2    (  1)    E     (  2)    T1    (  3)    T2    (  3)
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     8    11    14
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A1        1         1         15       1  1  1
 A2        1         2          7       1  1  1
 E         1         3         20       1  1  1
 E         2         4         20       1  1  1
 T1        1         5         27      -1 -1  1
 T1        2         6         27      -1  1 -1
 T1        3         7         27       1 -1 -1
 T2        1         8         36      -1 -1  1
 T2        2         9         36      -1  1 -1
 T2        3        10         36       1 -1 -1
Time Now =         0.6180  Delta time =         0.5091 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
A1    1    0(   1)    1(   1)    2(   1)    3(   2)    4(   3)    5(   3)    6(   4)    7(   5)    8(   6)    9(   7)
          10(   8)   11(   9)
A2    1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   1)    7(   1)    8(   1)    9(   2)
          10(   3)   11(   3)
E     1    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   3)    6(   4)    7(   5)    8(   7)    9(   8)
          10(  10)   11(  12)
E     2    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   3)    6(   4)    7(   5)    8(   7)    9(   8)
          10(  10)   11(  12)
T1    1    0(   0)    1(   0)    2(   0)    3(   1)    4(   2)    5(   3)    6(   4)    7(   6)    8(   8)    9(  10)
          10(  12)   11(  15)
T1    2    0(   0)    1(   0)    2(   0)    3(   1)    4(   2)    5(   3)    6(   4)    7(   6)    8(   8)    9(  10)
          10(  12)   11(  15)
T1    3    0(   0)    1(   0)    2(   0)    3(   1)    4(   2)    5(   3)    6(   4)    7(   6)    8(   8)    9(  10)
          10(  12)   11(  15)
T2    1    0(   0)    1(   1)    2(   2)    3(   3)    4(   4)    5(   6)    6(   8)    7(  10)    8(  12)    9(  15)
          10(  18)   11(  21)
T2    2    0(   0)    1(   1)    2(   2)    3(   3)    4(   4)    5(   6)    6(   8)    7(  10)    8(  12)    9(  15)
          10(  18)   11(  21)
T2    3    0(   0)    1(   1)    2(   2)    3(   3)    4(   4)    5(   6)    6(   8)    7(  10)    8(  12)    9(  15)
          10(  18)   11(  21)

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is D2
LMax = =   30
 The dimension of each irreducable representation is
    A     (  1)    B1    (  1)    B2    (  1)    B3    (  1)
Abelian axes
    1       1.000000       0.000000       0.000000
    2       0.000000       1.000000       0.000000
    3       0.000000       0.000000       1.000000
Symmetry operation directions
  1       0.000000       0.000000       1.000000 ang =  0  1 type = 0 axis = 3
  2       0.000000       0.000000       1.000000 ang =  1  2 type = 2 axis = 3
  3       1.000000       0.000000       0.000000 ang =  1  2 type = 2 axis = 1
  4       0.000000       1.000000       0.000000 ang =  1  2 type = 2 axis = 2
irep =    1  sym =A     1  eigs =   1   1   1   1
irep =    2  sym =B1    1  eigs =   1   1  -1  -1
irep =    3  sym =B2    1  eigs =   1  -1  -1   1
irep =    4  sym =B3    1  eigs =   1  -1   1  -1
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     2     3     4
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A         1         1        241       1  1  1
 B1        1         2        240       1 -1 -1
 B2        1         3        240      -1 -1  1
 B3        1         4        240      -1  1 -1
Time Now =         0.6475  Delta time =         0.0295 End SymGen

+ Command ExpOrb
+
In GetRMax, RMaxEps =  0.10000000E-05  RMax =    6.0697810263 Angs

----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------

Maximum R in the grid (RMax) =     6.06978 Angs
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) =   10.0
In regions controlled by the wave length (HFacWave) =   10.0
Factor used to control the minimum exponent at each center (MinExpFac) =  300.0
Maximum asymptotic kinetic energy (EMAx) =  50.00000 eV
Maximum step size (MaxStep) =   0.01058 Angs
Factor to increase grid by (GridFac) =     1

    1  Center at =     0.00000 Angs  Alpha Max = 0.10800E+05
    2  Center at =     1.08335 Angs  Alpha Max = 0.30000E+03

Generated Grid

  irg  nin  ntot      step Angs     R end Angs
    1    8     8    0.50920E-03     0.00407
    2    8    16    0.54286E-03     0.00842
    3    8    24    0.66917E-03     0.01377
    4    8    32    0.10153E-02     0.02189
    5    8    40    0.16142E-02     0.03481
    6    8    48    0.25663E-02     0.05534
    7    8    56    0.40801E-02     0.08798
    8    8    64    0.64868E-02     0.13987
    9    8    72    0.10071E-01     0.22044
   10   64   136    0.10584E-01     0.89779
   11    8   144    0.84583E-02     0.96545
   12    8   152    0.53694E-02     1.00841
   13    8   160    0.37587E-02     1.03848
   14    8   168    0.31773E-02     1.06390
   15    8   176    0.24310E-02     1.08335
   16    8   184    0.30552E-02     1.10779
   17    8   192    0.32571E-02     1.13384
   18    8   200    0.40150E-02     1.16596
   19    8   208    0.60918E-02     1.21470
   20    8   216    0.96851E-02     1.29218
   21   64   280    0.10584E-01     1.96953
   22   64   344    0.10584E-01     2.64687
   23   64   408    0.10584E-01     3.32422
   24   64   472    0.10584E-01     4.00157
   25   64   536    0.10584E-01     4.67891
   26   64   600    0.10584E-01     5.35626
   27   64   664    0.10584E-01     6.03361
   28    8   672    0.45217E-02     6.06978
Time Now =         0.6604  Delta time =         0.0129 End GenGrid

----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------

Maximum scattering l (lmax) =   15
Maximum scattering m (mmaxs) =   15
Maximum numerical integration l (lmaxi) =   30
Maximum numerical integration m (mmaxi) =   30
Maximum l to include in the asymptotic region (lmasym) =   11
Parameter used to determine the cutoff points (PCutRd) =  0.10000000E-07 au
Maximum E used to determine grid (in eV) =       50.00000
Print flag (iprnfg) =    0
lmasymtyts =   11
 Actual value of lmasym found =     11
Number of regions of the same l expansion (NAngReg) =    9
Angular regions
    1 L =    2  from (    1)         0.00051  to (    7)         0.00356
    2 L =    5  from (    8)         0.00407  to (   23)         0.01310
    3 L =    6  from (   24)         0.01377  to (   31)         0.02088
    4 L =    7  from (   32)         0.02189  to (   47)         0.05277
    5 L =    8  from (   48)         0.05534  to (   55)         0.08390
    6 L =   10  from (   56)         0.08798  to (   63)         0.13338
    7 L =   11  from (   64)         0.13987  to (  111)         0.63320
    8 L =   15  from (  112)         0.64378  to (  288)         2.05419
    9 L =   11  from (  289)         2.06478  to (  672)         6.06978
Angular regions for computing spherical harmonics
    1 lval =   11
    2 lval =   15
Last grid points by processor WorkExp =     1.500
Proc id =   -1  Last grid point =       1
Proc id =    0  Last grid point =      88
Proc id =    1  Last grid point =     128
Proc id =    2  Last grid point =     152
Proc id =    3  Last grid point =     184
Proc id =    4  Last grid point =     216
Proc id =    5  Last grid point =     240
Proc id =    6  Last grid point =     272
Proc id =    7  Last grid point =     304
Proc id =    8  Last grid point =     352
Proc id =    9  Last grid point =     400
Proc id =   10  Last grid point =     440
Proc id =   11  Last grid point =     488
Proc id =   12  Last grid point =     536
Proc id =   13  Last grid point =     584
Proc id =   14  Last grid point =     632
Proc id =   15  Last grid point =     672
Time Now =         0.6991  Delta time =         0.0387 End AngGCt

----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------


 R of maximum density
     1  A1    1 at max irg =    7  r =   0.08798
     2  A1    1 at max irg =   15  r =   0.72845
     3  T2    1 at max irg =   19  r =   1.00841
     4  T2    2 at max irg =   19  r =   1.00841
     5  T2    3 at max irg =   19  r =   1.00841

Rotation coefficients for orbital     1  grp =    1 A1    1
     1  1.0000000000

Rotation coefficients for orbital     2  grp =    2 A1    1
     2  1.0000000000

Rotation coefficients for orbital     3  grp =    3 T2    1
     3  1.0000000000    4  0.0000000000    5 -0.0000000000

Rotation coefficients for orbital     4  grp =    3 T2    2
     3 -0.0000000000    4  1.0000000000    5  0.0000000000

Rotation coefficients for orbital     5  grp =    3 T2    3
     3  0.0000000000    4 -0.0000000000    5  1.0000000000
Number of orbital groups and degeneracis are         3
  1  1  3
Number of orbital groups and number of electrons when fully occupied
         3
  2  2  6
Time Now =         0.7999  Delta time =         0.1008 End RotOrb

----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------

 First orbital group to expand (mofr) =    1
 Last orbital group to expand (moto) =    3
Orbital     1 of  A1    1 symmetry normalization integral =  0.99999999
Orbital     2 of  A1    1 symmetry normalization integral =  0.99999913
Orbital     3 of  T2    1 symmetry normalization integral =  0.99999811
Time Now =         1.1329  Delta time =         0.3330 End ExpOrb

+ Command GetPot
+

----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------

Total density =     10.00000000
Time Now =         1.1627  Delta time =         0.0298 End Den

----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------

 vasymp =  0.10000000E+02 facnorm =  0.10000000E+01
Time Now =         1.2213  Delta time =         0.0585 Electronic part
Time Now =         1.2237  Delta time =         0.0024 End StPot

----------------------------------------------------------------------
vcppol - VCP polarization potential program
----------------------------------------------------------------------

Time Now =         1.2732  Delta time =         0.0495 End VcpPol

----------------------------------------------------------------------
AsyPol - Program to match polarization potential to asymptotic form
----------------------------------------------------------------------

Switching distance (SwitchD) =     0.15000
Number of terms in the asymptotic polarization potential (nterm) =    1
Term =    1  At center =    1
Explicit coordinates =  0.00000000E+00  0.00000000E+00  0.00000000E+00
Type =    1
Polarizability =  0.17500000E+02 au
Last center is at (RCenterX) =   0.00000 Angs
 Radial matching parameter (icrtyp) =    3
 Matching line type (ilntyp) =    0
 Matching point is at r =   2.3036333988
Matching uses curve crossing (iMatchType = 1)
First nonzero weight at R =        1.80019 Angs
Last point of the switching region R=        2.81621 Angs
Total asymptotic potential is   0.17500000E+02 a.u.
Time Now =         1.3045  Delta time =         0.0313 End AsyPol

+ Command Scat
+ 0.0001 0.01 0.5

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.10000000E-03 eV (  0.36749326E-05 AU)
Time Now =         1.3544  Delta time =         0.0499 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A1    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    3
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.17500000E+02  au
Number of integration regions used =    47
Number of partial waves (np) =    15
Number of asymptotic solutions on the right (NAsymR) =     2
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   11
Number of partial waves in the asymptotic region (npasym) =    9
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  133
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    3
Highest l used at large r (lpasym) =   11
Higest l used in the asymptotic potential (lpzb) =   22
Maximum L used in the homogeneous solution (LMaxHomo) =   11
Number of partial waves in the homogeneous solution (npHomo) =    9
Time Now =         1.3726  Delta time =         0.0182 Energy independent setup

Compute solution for E =    0.0001000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.17500000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.32266821E-15
 i =  2  lval =   3  stpote = -0.10967662E-17
 i =  3  lval =   3  stpote = -0.37572338E-17
 i =  4  lval =   4  stpote = -0.24286351E-03
For potential     2
 i =  1  exps = -0.45880895E+02 -0.20000000E+01  stpote = -0.54577616E-17
 i =  2  exps = -0.45880895E+02 -0.20000000E+01  stpote = -0.49467448E-17
 i =  3  exps = -0.45880895E+02 -0.20000000E+01  stpote = -0.45103320E-17
 i =  4  exps = -0.45880895E+02 -0.20000000E+01  stpote = -0.41689650E-17
For potential     3
 i =  1  lvals =   6   6  stpote =  0.21684043E-18  second term =  0.00000000E+00
 i =  2  lvals =   6   6  stpote = -0.25999711E-18  second term =  0.00000000E+00
 i =  3  lvals =   6   6  stpote =  0.74933857E-19  second term =  0.00000000E+00
 i =  4  lvals =   7   9  stpote = -0.14022411E-04  second term = -0.14022411E-04
Number of asymptotic regions =       6
Final point in integration =   0.12394354E+04 Angstroms
Time Now =         4.0214  Delta time =         2.6488 End SolveHomo
iL =   1 Iter =   1 c.s. =      4.59597677 angs^2  rmsk=     0.00154915
iL =   1 Iter =   2 c.s. =      9.01553580 angs^2  rmsk=     0.00062056
iL =   1 Iter =   3 c.s. =     10.22333381 angs^2  rmsk=     0.00014077
iL =   1 Iter =   4 c.s. =     10.22455563 angs^2  rmsk=     0.00000014
iL =   1 Iter =   5 c.s. =     10.22454324 angs^2  rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =     10.22454324 angs^2  rmsk=     0.00000062
iL =   2 Iter =   2 c.s. =     10.22454324 angs^2  rmsk=     0.00000000
iL =   2 Iter =   3 c.s. =     10.22454324 angs^2  rmsk=     0.00000000
     REAL PART -  Final k matrix
     ROW  1
  0.46212579E-02 0.19928383E-06
     ROW  2
  0.19928384E-06 0.12151294E-05
 eigenphases
  0.1215121E-05  0.4621225E-02
 eigenphase sum 0.462244E-02  scattering length=  -1.70504
 eps+pi 0.314622E+01  eps+2*pi 0.628781E+01

MaxIter =   5 c.s. =     10.22454324 angs^2  rmsk=     0.00000000
Time Now =         6.7691  Delta time =         2.7477 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.10000000E-01 eV (  0.36749326E-03 AU)
Time Now =         6.8231  Delta time =         0.0540 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A1    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    3
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.17500000E+02  au
Number of integration regions used =    47
Number of partial waves (np) =    15
Number of asymptotic solutions on the right (NAsymR) =     2
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   11
Number of partial waves in the asymptotic region (npasym) =    9
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  133
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    3
Highest l used at large r (lpasym) =   11
Higest l used in the asymptotic potential (lpzb) =   22
Maximum L used in the homogeneous solution (LMaxHomo) =   11
Number of partial waves in the homogeneous solution (npHomo) =    9
Time Now =         6.8402  Delta time =         0.0171 Energy independent setup

Compute solution for E =    0.0100000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.17500000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.32266821E-15
 i =  2  lval =   3  stpote = -0.10967662E-17
 i =  3  lval =   3  stpote = -0.37572338E-17
 i =  4  lval =   4  stpote = -0.24286351E-03
For potential     2
 i =  1  exps = -0.45880895E+02 -0.20000000E+01  stpote = -0.67873426E-17
 i =  2  exps = -0.45880895E+02 -0.20000000E+01  stpote = -0.59951784E-17
 i =  3  exps = -0.45880895E+02 -0.20000000E+01  stpote = -0.53044286E-17
 i =  4  exps = -0.45880895E+02 -0.20000000E+01  stpote = -0.47537752E-17
For potential     3
 i =  1  lvals =   6   6  stpote =  0.21684043E-18  second term =  0.00000000E+00
 i =  2  lvals =   6   6  stpote = -0.25999711E-18  second term =  0.00000000E+00
 i =  3  lvals =   6   6  stpote =  0.74933857E-19  second term =  0.00000000E+00
 i =  4  lvals =   7   9  stpote = -0.14022411E-04  second term = -0.14022411E-04
Number of asymptotic regions =       6
Final point in integration =   0.39197195E+03 Angstroms
Time Now =         9.4596  Delta time =         2.6193 End SolveHomo
iL =   1 Iter =   1 c.s. =      1.75829215 angs^2  rmsk=     0.00958360
iL =   1 Iter =   2 c.s. =      4.61988213 angs^2  rmsk=     0.00595568
iL =   1 Iter =   3 c.s. =      5.45497361 angs^2  rmsk=     0.00134761
iL =   1 Iter =   4 c.s. =      5.45582691 angs^2  rmsk=     0.00000132
iL =   1 Iter =   5 c.s. =      5.45581828 angs^2  rmsk=     0.00000001
iL =   1 Iter =   6 c.s. =      5.45581827 angs^2  rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =      5.45581827 angs^2  rmsk=     0.00006486
iL =   2 Iter =   2 c.s. =      5.45581830 angs^2  rmsk=     0.00000009
iL =   2 Iter =   3 c.s. =      5.45581829 angs^2  rmsk=     0.00000001
     REAL PART -  Final k matrix
     ROW  1
  0.33775974E-01 0.19715335E-04
     ROW  2
  0.19715318E-04 0.12824215E-03
 eigenphases
  0.1282306E-03  0.3376315E-01
 eigenphase sum 0.338914E-01  scattering length=  -1.25059
 eps+pi 0.317548E+01  eps+2*pi 0.631708E+01

MaxIter =   6 c.s. =      5.45581829 angs^2  rmsk=     0.00000001
Time Now =        12.8234  Delta time =         3.3639 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+00 eV (  0.18374663E-01 AU)
Time Now =        12.8773  Delta time =         0.0539 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A1    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    3
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.17500000E+02  au
Number of integration regions used =    47
Number of partial waves (np) =    15
Number of asymptotic solutions on the right (NAsymR) =     2
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   11
Number of partial waves in the asymptotic region (npasym) =    9
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =    3
Maximum number of asymptotic partial waves =  133
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    3
Highest l used at large r (lpasym) =   11
Higest l used in the asymptotic potential (lpzb) =   22
Maximum L used in the homogeneous solution (LMaxHomo) =   11
Number of partial waves in the homogeneous solution (npHomo) =    9
Time Now =        12.8945  Delta time =         0.0171 Energy independent setup

Compute solution for E =    0.5000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.17500000E+02 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   4  stpote = -0.32266821E-15
 i =  2  lval =   3  stpote = -0.10967662E-17
 i =  3  lval =   3  stpote = -0.37572338E-17
 i =  4  lval =   4  stpote = -0.24286351E-03
For potential     2
 i =  1  exps = -0.45880895E+02 -0.20000000E+01  stpote = -0.97767294E-17
 i =  2  exps = -0.45880895E+02 -0.20000000E+01  stpote = -0.91468922E-17
 i =  3  exps = -0.45880895E+02 -0.20000000E+01  stpote = -0.86020048E-17
 i =  4  exps = -0.45880895E+02 -0.20000000E+01  stpote = -0.81704565E-17
For potential     3
 i =  1  lvals =   6   6  stpote =  0.21684043E-18  second term =  0.00000000E+00
 i =  2  lvals =   6   6  stpote = -0.25999711E-18  second term =  0.00000000E+00
 i =  3  lvals =   6   6  stpote =  0.74933857E-19  second term =  0.00000000E+00
 i =  4  lvals =   7   9  stpote = -0.14022411E-04  second term = -0.14022411E-04
Number of asymptotic regions =      11
Final point in integration =   0.14743071E+03 Angstroms
Time Now =        15.5224  Delta time =         2.6280 End SolveHomo
iL =   1 Iter =   1 c.s. =      2.95588938 angs^2  rmsk=     0.08923242
iL =   1 Iter =   2 c.s. =      1.46614816 angs^2  rmsk=     0.02691727
iL =   1 Iter =   3 c.s. =      1.21896623 angs^2  rmsk=     0.00558142
iL =   1 Iter =   4 c.s. =      1.21872652 angs^2  rmsk=     0.00000567
iL =   1 Iter =   5 c.s. =      1.21872857 angs^2  rmsk=     0.00000005
iL =   1 Iter =   6 c.s. =      1.21872856 angs^2  rmsk=     0.00000000
iL =   2 Iter =   1 c.s. =      1.21872856 angs^2  rmsk=     0.00334635
iL =   2 Iter =   2 c.s. =      1.21882827 angs^2  rmsk=     0.00016134
iL =   2 Iter =   3 c.s. =      1.21880937 angs^2  rmsk=     0.00002901
iL =   2 Iter =   4 c.s. =      1.21880938 angs^2  rmsk=     0.00000001
iL =   2 Iter =   5 c.s. =      1.21880938 angs^2  rmsk=     0.00000000
     REAL PART -  Final k matrix
     ROW  1
 -0.11332588E+00 0.17183564E-02
     ROW  2
  0.17183564E-02 0.65348396E-02
 eigenphases
 -0.1128688E+00  0.6559375E-02
 eigenphase sum-0.106309E+00  scattering length=   0.55666
 eps+pi 0.303528E+01  eps+2*pi 0.617688E+01

MaxIter =   6 c.s. =      1.21880938 angs^2  rmsk=     0.00000000
Time Now =        19.8301  Delta time =         4.3077 End ScatStab
+ Data Record ScatContSym - 'A2'

+ Command Scat
+ 0.0001 0.01 0.5

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.10000000E-03 eV (  0.36749326E-05 AU)
Time Now =        19.8840  Delta time =         0.0539 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A2    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    3
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.17500000E+02  au
Number of integration regions used =    47
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.10000000E-01 eV (  0.36749326E-03 AU)
Time Now =        19.9415  Delta time =         0.0575 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A2    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    3
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.17500000E+02  au
Number of integration regions used =    47
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.50000000E+00 eV (  0.18374663E-01 AU)
Time Now =        19.9991  Delta time =         0.0575 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A2    1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (LMaxK) =    3
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.17500000E+02  au
Number of integration regions used =    47
No asymptotic partial waves with this value of LMaxK

+ Command TotalCrossSection
+
Symmetry A1 -
        E (eV)      XS(angs^2)    EPS(radians)
       0.000100      10.224543       0.004622
       0.010000       5.455818       0.033891
       0.500000       1.218809      -0.106309
Symmetry A2 -
        E (eV)      XS(angs^2)    EPS(radians)
       0.000100       0.000000       0.000000
       0.010000       0.000000       0.000000
       0.500000       0.000000       0.000000

 Total Cross Sections

 Energy      Total Cross Section
   0.00010    10.22454
   0.01000     5.45582
   0.50000     1.21881
Time Now =        20.0220  Delta time =         0.0229 Finalize