LCAO-MO Theory

* In molecular orbital theory the MOs, $\left\{\psi_{\mu}\right\}$, are usually expanded as combinations of atomic orbitals, $\left\{\phi_{i}\right\}$. For the $\mu^{\text {th }} \mathrm{MO}$, we write this expansion as

$$
\psi_{\mu}=\sum_{i} c_{i \mu} \phi_{i}=c_{1 \mu} \phi_{1}+c_{2 \mu} \phi_{2}+c_{3 \mu} \phi_{3}+\cdots
$$

* The MOs are solutions to an effective Schrödinger equation:

$$
\mathcal{H} \psi_{\mu}=E_{\mu} \psi_{\mu}
$$

Read: Harris \& Bertolucci, Symmetry and Spectroscopy..., Chapter 4, pp. 245-99.

SALCs as basis functions

* Instead of AO basis functions, we can use "precombined" SALCs as basis functions. So, when we write the expansion

$$
\psi_{\mu}=\sum_{i} c_{i \mu} \phi_{i}=c_{1 \mu} \phi_{1}+c_{2 \mu} \phi_{2}+c_{3 \mu} \phi_{3}+\cdots
$$

the basis, $\left\{\phi_{1}, \phi_{2}, \ldots\right\}$, may be AOs or they may be SALCs. The ultimate form of the MOs won't change, but the coefficients in this expansion will depend on the basis.
Example: Express π MOs for allyl in AO and SALC bases.

Rewriting the Schrödinger Eqn.

$$
\begin{gathered}
\mathcal{H} \psi_{\mu}=E_{\mu} \psi_{\mu} \\
\mathcal{H} \psi_{\mu}-E_{\mu} \psi_{\mu}=\left(\mathcal{H}-E_{\mu}\right) \psi_{\mu}=0
\end{gathered}
$$

Now, we introduce the LCAO expansion,

$$
\psi_{\mu}=\sum_{j} c_{j \mu} \phi_{j}=c_{1 \mu} \phi_{1}+c_{2 \mu} \phi_{2}+c_{3 \mu} \phi_{3}+\cdots
$$

So we obtain a different form of the eqn.:

$$
\left(\mathcal{H}-E_{\mu}\right) \sum_{j} c_{j \mu} \phi_{j}=\sum_{j} c_{j \mu}\left(\mathcal{H}-E_{\mu}\right) \phi_{j}=0
$$

Matrix form of Schrödinger Eqn.

$$
\sum_{j} c_{j \mu}\left(\mathcal{H}-E_{\mu}\right) \phi_{j}=0
$$

Mult. on the left by ϕ_{i} and integrate:

$$
\begin{gathered}
\sum_{j} c_{j \mu}\left(\int \phi_{i} \mathcal{H} \phi_{j} d \tau-E_{\mu} \int \phi_{i} \phi_{j} d \tau\right)=0 \\
H_{i j} \equiv \int \phi_{i} \mathcal{H} \phi_{j} d \tau \quad S_{i j} \equiv \int \phi_{i} \phi_{j} d \tau \\
\sum_{j} c_{j \mu}\left(H_{i j}-E_{\mu} S_{i j}\right)=0
\end{gathered}
$$

For a proper treatment using variational method, see for example Levine's Quantum Chemistry text.

Matrix Schrödinger Eqn., cont.

$$
\sum_{j}\left(H_{i j}-E_{\mu} S_{i j}\right) c_{j \mu}=0
$$

in matrix form, this can be written as

$$
\left[\mathbf{H}-E_{\mu} \mathbf{S}\right] \mathbf{c}_{\mu}=0 \text { or } \mathbf{H} \mathbf{c}_{\mu}=E_{\mu} \mathbf{S} \mathbf{c}_{\mu}
$$

where the matrix elements are

$$
(\mathbf{H})_{i j}=H_{i j} \equiv \int \phi_{i} \mathcal{H} \phi_{j} d \tau \quad(\mathbf{S})_{i j}=S_{i j} \equiv \int \phi_{i} \phi_{j} d \tau
$$

$$
\begin{aligned}
& \text { A3 basis function example } \\
& \left(H_{11}-E_{\mu}\right) c_{1 \mu}+\left(H_{12}-E_{\mu} S_{12}\right) c_{2 \mu}+\left(H_{13}-E_{\mu} S_{13}\right) c_{3 \mu}=0 \\
& \left(H_{21}-E_{\mu} S_{21}\right) c_{1 \mu}+\left(H_{22}-E_{\mu}\right) c_{2 \mu}+\left(H_{23}-E_{\mu} S_{23}\right) c_{3 \mu}=0 \\
& \left(H_{31}-E_{\mu} S_{31}\right) c_{1 \mu}+\left(H_{32}-E_{\mu} S_{32}\right) c_{2 \mu}+\left(H_{33}-E_{\mu}\right) c_{3 \mu}=0 \\
& {\left[\begin{array}{ccc}
H_{11}-E_{\mu} & H_{12}-E_{\mu} S_{12} & H_{13}-E_{\mu} S_{13} \\
H_{21}-E_{\mu} S_{21} & H_{22}-E_{\mu} & H_{23}-E_{\mu} S_{23} \\
H_{31}-E_{\mu} S_{31} & H_{32}-E_{\mu} S_{32} & H_{33}-E_{\mu}
\end{array}\right]\left[\begin{array}{c}
c_{1 \mu} \\
c_{2 \mu} \\
c_{3 \mu}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]}
\end{aligned}
$$

* This is called the Secular Equation.

SALCs as the Expansion Basis

Previously, we introduced the LCAO expansion,

$$
\psi_{\mu}=\sum_{j} c_{j \mu} \phi_{j}=c_{1 \mu} \phi_{1}+c_{2 \mu} \phi_{2}+c_{3 \mu} \phi_{3}+\cdots
$$

If the functions $\left\{\phi_{j}\right\}$ are "precombined" SALCs, then the basis functions belong to irred. reps. We can use what we know about zero - value integrals

$$
H_{i j} \equiv \int \phi_{i} \mathcal{H} \phi_{j} d \tau \neq 0 \text { and } S_{i j} \equiv \int \phi_{i} \phi_{j} d \tau \neq 0
$$

if $\Gamma_{i} \otimes \Gamma_{j}$ contains the totally symmetric representation.
$\therefore \phi_{i}$ and ϕ_{j} must belong to the same IR.

The Matrix Equation when the "basis" is the set of MOs

If we choose the MOs as basis functions to begin with, the equation simplifies drastically:

$$
\begin{gathered}
H_{i j}=E_{i} \delta_{i j} \text { for all } i \text { and } S_{i j}=\delta_{i j} \\
{\left[\begin{array}{cccc}
E_{1}-E_{\mu} & 0 & \cdots & 0 \\
0 & E_{2}-E_{\mu} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & E_{m}-E_{\mu}
\end{array}\right]\left[\begin{array}{c}
c_{1 \mu} \\
c_{2 \mu} \\
\vdots \\
c_{m \mu}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right]}
\end{gathered}
$$

When $E_{\mu}=$ one of the E_{i}, the matrix is singular

What's the use of Group Theory?

* Using SALCs as a basis simplifies the Secular Eqn. For example, when SALCs are used as the basis functions, the secular equation for $\mathrm{H}_{2} \mathrm{O}$ becomes:
$\left[\begin{array}{cccccc}H_{11}-E_{\mu} & H_{12}-E_{\mu} S_{12} & H_{13}-E_{\mu} S_{13} & 0 & & \\ H_{21}-E_{\mu} S_{21} & H_{22}-E_{\mu} & H_{23}-E_{\mu} S_{23} & & 0 & 0 \\ H_{31}-E_{\mu} S_{31} & H_{65}-E_{\mu} S_{65} & H_{33}-E_{\mu} & & & 0 \\ 0 & 0 & & H_{44}-E_{\mu} & & \\ & & 0 & & & H_{55}-E_{\mu} \\ H_{65}-E_{\mu} S_{65} & H_{56}-E_{\mu} S_{56}-E_{\mu}\end{array}\right]\left[\begin{array}{l}c_{1 \mu} \\ c_{2 \mu} \\ c_{3 \mu} \\ c_{4 \mu} \\ c_{5 \mu} \\ c_{6 \mu}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]$

Example, Usefulness of SALCs

$\boldsymbol{\omega}$ In the pictorial construction of the MOs of water given earlier, how many $H_{i j}{ }^{\prime}$'s would have been zero if we had used AOs (on the O atom and both H atoms) for the basis functions?

* How many are nonzero with the SALCs that were used?
(Note: $H_{i j}$'s involving two AOs centered on the same atom are automatically zero)

Another Example

* In problem 6.1, we constructed SALCs for the π orbitals of naphthalene. The IRs spanned by the $p \pi$ orbitals were

$$
B_{1 u}(\times 3), B_{3 g}(\times 3), B_{2 g}(\times 2), A_{u}(\times 2)
$$

$\boldsymbol{\theta}$ If we used the $\mathrm{p} \pi$ orbitals as our AO basis in the secular eqn., we would have had one 10×10 matrix eqn. Using SALCs, we have two $3 \times 3^{\prime}$ (for $B_{1 u}$ and $B_{3 g}$) and two 2×2 's (for $\mathrm{B}_{2 \mathrm{~g}}$ and A_{u}).

Naphthalene π-Orbital SALCs

The Content and Solutions of the Secular Equation

* We need to calculate or estimate the matrix elements (the $H_{i j}{ }^{\prime}$ s and $S_{i j}{ }^{\prime}$ s)
* Once the matrix elements are known, we need to find solutions of the secular equation
- energies are found by finding the roots of the secular determinant
- eigenfunctions (the MO coefficients) are found by plugging the energies back into the secular eqn.

The Crudest Approximation:

* In the Hückel approximation (applied to π systems where all the atoms are of the same type) the following substitutions are made (in this case the basis functions are understood to be AOs, not SALCs):
a. $H_{i i}=\alpha$ (can choose $=0$, if all atoms carbon)
b. $H_{i j}=\beta$ if i and j are neighbors
c. $H_{i j}=0$ otherwise
d. $S_{i i}=1$ (normalization) and $S_{i j}=0$

Neglect of Overlap: Consequences

A general 2×2 secular determinant is

$$
\left|\begin{array}{cc}
H_{11}-E & H_{12}-E S_{12} \\
H_{21}-E S_{21} & H_{22}-E
\end{array}\right|=0
$$

expanding the determinant gives

$$
E^{2}-\left[\frac{H_{11}+H_{22}-2 H_{12} S_{12}}{1-S_{12}^{2}}\right] E+\left[\frac{H_{11} H_{22}-H_{12}^{2}}{1-S_{12}^{2}}\right]=0
$$

solutions are of the form: $\mathrm{E}_{ \pm}=\frac{\mathrm{b} \pm \sqrt{\mathrm{D}}}{2\left(1-S_{12}^{2}\right)} ;$ $\mathrm{b}=H_{11}+H_{22}-2 H_{12} S_{12} ; \mathrm{D}=\mathrm{b}^{2}-4\left(1-S_{12}^{2}\right)\left(H_{11} H_{22}-H_{12}^{2}\right)$

Neglect of Overlap: Consequences

A 2×2 secular determinant w/o overlap is

$$
\left.\begin{array}{cc}
H_{11}-E & H_{12} \\
H_{21} & H_{22}-E
\end{array} \right\rvert\,=0
$$

expanding the determinant gives

$$
E^{2}-\left[H_{11}+H_{22}\right] E+\left[H_{11} H_{22}-H_{12}^{2}\right]=0
$$

solutions are of the form: $E_{ \pm}=\frac{b \pm \sqrt{D}}{2}$;

$$
b=H_{11}+H_{22} ; D=\left(H_{11}-H_{22}\right)^{2}+4 H_{12}^{2}
$$

Neglect of Overlap: Consequences

Neglect of	destabilization Overlap	$=$	stabilization energy
Overlap Included	destabilization energy	$>$	stabilization energy

Examples

* Trivial example: ethylene π orbitals
* Cyclopropenium ion
* benzene
- Hückel π bond-order
- resonance energy
\& other C_{N} symmetry systems
- F_{N} symmetry systems

$D_{6 h}$	E	$2 C_{6}$	$2 C_{3}$	C_{2}	$3 C_{2}^{\prime}$	$3 C_{2}^{\prime \prime}$	i	$2 S_{3}$	$2 S_{6}$	σ_{h}	$3 \sigma_{d}$	$3 \sigma_{v}$		
$A_{1 g}$	1	1	1	1	1	1	1	1	1	1	1	1		$x^{2}+y^{2}, z^{2}$
$A_{2 g}$	1	1	1	1	-1	-1	1	1	1	1	-1	-1	R_{z}	
$B_{1 g}$	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1		
$B_{2 g}$	1	-1	1	-1	-1	1	1	-1	1	-1	-1	1		
$E_{1 g}$	2	1	-1	-2	0	0	2	1	-1	-2	0	0	$\left(R_{x}, R_{y}\right)$	$(x z, y z)$
$E_{2 g}$	2	-1	-1	2	0	0	2	-1	-1	2	0	0		$\left(x^{2}-y^{2}, x y\right)$
$A_{1 u}$	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1		
$A_{2 u}$	1	1	1	1	-1	-1	-1	-1	-1	-1	1	1	z	
$B_{1 u}$	1	-1	1	-1	1	-1	-1	1	-1	1	-1	1		
$B_{2 u}$	1	-1	1	-1	-1	1	-1	1	-1	1	1	-1		
$E_{1 u}$	2	1	-1	-2	0	0	-2	-1	1	2	0	0	(x, y)	
$E_{2 u}$	2	-1	-1	2	0	0	-2	1	1	-2	0	0		

Nerd Sniping

ITS... HMT. INIERESTING.
MAYBE IF YOU START WITH ... NO, WAIT. HMI...YOU Could-

"Fixing" Accidental Degeneracies

Use "Change" button, then click the atoms shown, then type in 0.0001 for the "alpha" value, then click Ok!

Spin Density for Benzyl Radical

Turn on "Verbose" option, then read coefficients!

