LCAO-MO Theory

In molecular orbital theory the MOs, {ψ_μ}, are usually expanded as combinations of atomic orbitals, {φ_i}.
For the μth MO, we write this expansion as

$$\Psi_{\mu} = \sum_{i} c_{i\mu} \phi_{i} = c_{1\mu} \phi_{1} + c_{2\mu} \phi_{2} + c_{3\mu} \phi_{3} + \cdots$$

• The MOs are solutions to an effective Schrödinger equation: $\mathcal{H}\psi_{\mu} = E_{\mu}\psi_{\mu}$

Read: Harris & Bertolucci, *Symmetry and Spectroscopy...*, Chapter 4, pp. 245-99.

SALCs as basis functions

 Instead of AO basis functions, we can use "precombined" SALCs as basis functions. So, when we write the expansion

$$\Psi_{\mu} = \sum_{i} c_{i\mu} \phi_{i} = c_{1\mu} \phi_{1} + c_{2\mu} \phi_{2} + c_{3\mu} \phi_{3} + \cdots$$

the basis, $\{\phi_1, \phi_2, ...\}$, may be AOs or they may be SALCs. The ultimate form of the MOs won't change, but the coefficients in this expansion will depend on the basis.

Example: Express π MOs for allyl in AO and SALC bases.

Rewriting the Schrödinger Eqn.

$$\mathcal{H}\psi_{\mu} = E_{\mu}\psi_{\mu}$$
$$\mathcal{H}\psi_{\mu} - E_{\mu}\psi_{\mu} = (\mathcal{H} - E_{\mu})\psi_{\mu} = 0$$
Now, we introduce the LCAO expansion
$$\psi_{\mu} = \sum_{j} c_{j\mu}\phi_{j} = c_{1\mu}\phi_{1} + c_{2\mu}\phi_{2} + c_{3\mu}\phi_{3} + \cdots$$
So we obtain a different form of the eqn.

$$(\mathcal{H} - E_{\mu})\sum_{j} c_{j\mu}\phi_{j} = \sum_{j} c_{j\mu}(\mathcal{H} - E_{\mu})\phi_{j} = 0$$

$$\sum_{j} c_{j\mu} (\mathcal{H} - E_{\mu}) \phi_{j} = 0$$

Mult. on the left by ϕ_i and integrate:

$$\sum_{j} c_{j\mu} \left(\int \phi_{i} \mathcal{H} \phi_{j} d\tau - E_{\mu} \int \phi_{i} \phi_{j} d\tau \right) = 0$$
$$H_{ij} \equiv \int \phi_{i} \mathcal{H} \phi_{j} d\tau \qquad S_{ij} \equiv \int \phi_{i} \phi_{j} d\tau$$
$$\sum_{j} c_{j\mu} \left(H_{ij} - E_{\mu} S_{ij} \right) = 0$$

For a proper treatment using variational method, see for example Levine's *Quantum Chemistry* text.

Matrix Schrödinger Eqn., cont.

 $\sum_{j} (H_{ij} - E_{\mu}S_{ij})c_{j\mu} = 0$ in matrix form, this can be written as

 $[\mathbf{H} - E_{\mu}\mathbf{S}]\mathbf{c}_{\mu} = 0 \text{ or } \mathbf{H}\mathbf{c}_{\mu} = E_{\mu}\mathbf{S}\mathbf{c}_{\mu}$

where the matrix elements are

$$(\mathbf{H})_{ij} = H_{ij} \equiv \int \phi_i \mathcal{H} \phi_j \, d\tau \qquad (\mathbf{S})_{ij} = S_{ij} \equiv \int \phi_i \phi_j \, d\tau$$

SALCs as the Expansion Basis Previously, we introduced the LCAO expansion, $\psi_{\mu} = \sum_{j} c_{j\mu}\phi_{j} = c_{1\mu}\phi_{1} + c_{2\mu}\phi_{2} + c_{3\mu}\phi_{3} + \cdots$ If the functions $\{\phi_{j}\}$ are "precombined" SALCs, then the basis functions belong to irred. reps. We can use what we know about zero - value integrals

$$H_{ij} \equiv \int \phi_i \mathcal{H} \phi_j d\tau \neq 0 \text{ and } S_{ij} \equiv \int \phi_i \phi_j d\tau \neq 0$$

if $\Gamma_i \otimes \Gamma_j$ contains the totally symmetric representation.

 $\therefore \phi_i$ and ϕ_i must belong to the same IR.

The Matrix Equation when the "basis" is the set of MOs

If we choose the MOs as basis functions to begin with, the equation simplifies drastically:

 $H_{ij} = E_i \delta_{ij}$ for all *i* and $S_{ij} = \delta_{ij}$

$$\begin{bmatrix} E_1 - E_{\mu} & 0 & \cdots & 0 \\ 0 & E_2 - E_{\mu} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & E_m - E_{\mu} \end{bmatrix} \begin{bmatrix} c_{1\mu} \\ c_{2\mu} \\ \vdots \\ c_{m\mu} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

When E_{μ} = one of the E_i , the matrix is singular

What's the use of Group Theory?

 Using SALCs as a basis simplifies the Secular Eqn. For example, when SALCs are used as the basis functions, the secular equation for H₂O becomes:

Example, Usefulness of SALCs

- In the pictorial construction of the MOs of water given earlier, how many H_{ij}'s would have been zero if we had used AOs (on the O atom and both H atoms) for the basis functions?
- How many are nonzero with the SALCs that were used?
- (Note: H_{ij} 's involving two AOs centered on the same atom are automatically zero)

Another Example

In problem 6.1, we constructed SALCs for the π orbitals of naphthalene. The IRs spanned by the pπ orbitals were

 B_{1u} (×3), B_{3g} (×3), B_{2g} (×2), A_{u} (×2)

If we used the pπ orbitals as our AO basis in the secular eqn., we would have had one 10 × 10 matrix eqn. Using SALCs, we have two 3 × 3's (for B_{1u} and B_{3g}) and two 2 × 2's (for B_{2g} and A_u).

The Content and Solutions of the Secular Equation

- We need to calculate or estimate the matrix elements (the H_{ij} 's and S_{ij} 's)
- Once the matrix elements are known, we need to find solutions of the secular equation
 - energies are found by finding the roots of the secular determinant
 - eigenfunctions (the MO coefficients) are found by plugging the energies back into the secular eqn.

The Crudest Approximation:

- In the *Hückel approximation* (applied to π systems where all the atoms are of the same type) the following substitutions are made (in this case the <u>basis functions are understood to be AOs, not SALCs</u>):
- a. $H_{ii} = \alpha$ (can choose = 0, if all atoms carbon)
- b. $H_{ij} = \beta$ if *i* and *j* are neighbors
- c. $H_{ij} = 0$ otherwise
- d. $S_{ii} = 1$ (normalization) and $S_{ii} = 0$

Neglect of Overlap: Consequences

A general 2×2 secular determinant is

$$\begin{vmatrix} H_{11} - E & H_{12} - ES_{12} \\ H_{21} - ES_{21} & H_{22} - E \end{vmatrix} = 0$$

expanding the determinant gives

$$E^{2} - \left[\frac{H_{11} + H_{22} - 2H_{12}S_{12}}{1 - S_{12}^{2}}\right]E + \left[\frac{H_{11}H_{22} - H_{12}^{2}}{1 - S_{12}^{2}}\right] = 0$$

solutions are of the form: $E_{\pm} = \frac{b \pm \sqrt{D}}{2(1 - S_{12}^2)};$ $b = H_{11} + H_{22} - 2H_{12}S_{12}; D = b^2 - 4(1 - S_{12}^2)(H_{11}H_{22} - H_{12}^2)$

Examples

- Trivial example: ethylene π orbitals
- Cyclopropenium ion
- benzene
 - Hückel π bond-order
 - resonance energy
- \clubsuit other C_N symmetry systems
- T_N -symmetry systems

D_{6h}	Ε	$2C_6$	$2C_3$	C_2	$3C'_2$	$3C_{2}''$	i	$2S_3$	$2S_6$	$\sigma_{_h}$	$3\sigma_d$	$3\sigma_v$		
Alg	1	1	1	1	1	1	1	1	1	1	1	1		$x^2 + y^2, z^2$
A_{2g}	1	1	1	1	-1	-1	1	1	1	1	-1	-1	R _z	
B_{1g}	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1		
B_{2g}	1	-1	1	-1	-1	1	1	-1	1	-1	-1	1		
E_{1g}	2	1	-1	-2	0	0	2	1	-1	-2	0	0	(R_x, R_y)	(xz, yz)
E_{2g}	2	-1	-1	2	0	0	2	-1	-1	2	0	0		$(x^2 - y^2, xy)$
A_{1u}	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1		
A_{2u}	1	1	1	1	-1	-1	-1	-1	-1	-1	1	1	z	
B_{1u}	1	-1	1	-1	1	-1	-1	1	-1	1	-1	1		
B_{2u}	1	-1	1	-1	-1	1	-1	1	-1	1	1	-1		
E_{1u}	2	1	-1	-2	0	0	-2	-1	1	2	0	0	(x, y)	
E_{2u}	2	-1	-1	2	0	0	-2	1	1	-2	0	0		

Spin Density for Benzyl Radical

