
Corrections to Cotton, p. 124

MH6 example on pp. 123-4 is in error:

  

P̂T1 (σ1) = 3σ1 + (2σ1 + 2σ 2 + 2σ 2 ) − (σ1 + 2σ 2 )
             − (σ3 +σ 4 +σ5 +σ6 + 2σ 2 )
             = 4σ1 − σ3 − σ 4 − σ5 − σ6

P̂T1 (σ 2 ) = 4σ 2 − σ3 − σ 4 − σ5 − σ6

This should read:

?

  

P̂T1 (σ1) = 3σ1 + (−1)(σ1 + 2σ 2 )
             + (1)(2σ1 +σ3 +σ 4 +σ5 +σ6 )
             + (−1)(2σ 2 +σ3 +σ 4 +σ5 +σ6 )
            = 4(σ1 − σ 2 )
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Symmetry-Adapted Linear 
Combinations

✿We have examined many cases where 
sets of functions serve as bases for IRs. 

✿We need a prescription for how to 
construct such basis functions. 

✿We turn to the use of projection operators 
to construct Symmetry-Adapted Linear 
Combinations (SALCs)

Projection Operators  
- Why and How to Use Them

✿ For beginners, Projection Operators 
can seem formalistic and complicated - 
so we shall first try to understand how 
they come about. 

✿ After becoming familiar with “how 
projection operators operate” we shall 
look at explicit formulas - then try to 
demystify them.

How do we get a “Recipe” for 
Symmetry Adapted Functions?

Consider the functions 
f(x),  
f(-x) = σ f1(x)

σ



Finding the “Recipe” …

f1(x) = f2(-x)  or f2(x) = σ f1(x) 

g(x) = (f1(x) + f2(x))/2 - an even function 

h(x) = (f1(x) - f2(x))/2 - an odd function 

g(x) and h(x) can be obtained using the 
symmetry operators of the Cs group: 

g(x) = (1/2)[(1)E + (1)σ] f1(x) 

h(x) = (1/2)[(1)E + (-1)σ] f1(x)

“Symmetry Adapted” Results

g(x) and h(x) are respectively even and odd.
σ

Intuitive Approach

✿ Let’s consider some examples that give us 
an idea of how to “build-in” symmetry into 
our basis-functions: 
• the O-H stretching vibrations of H2O 

• the O-H σ bonding orbitals of H2O 

• the π orbitals of the formate (HCO2
-) ion 

• the Pt-Cl stretching vibrations of PtCl4
2- 

• the π orbitals of the cyclopentadienyl ion, C5H5
-

Rigorous Approach: 
Projection Operators

✿ The method used to handle previous 
examples point to a more general 
prescription of building SALCs 

✿ For nondegenerate IRs, the formula for 
a projection operator for the jth IR can 
be guessed (try it out on earlier 
examples): 

✿ For degenerate IRs, more care is needed
  
P j =

l j

h
χ*(R) j R̂

R
∑



  

D2h E C2(z) C2( y) C2(x) i σ (xy) σ (xz) σ ( yz)
Ag 1 1 1 1 1 1 1 1 x2 , y2 ,  z2

B1g 1 1 −1 −1 1 1 −1 −1 Rz xy
B2g 1 −1 1 −1 1 −1 1 −1 Ry xz
B3g 1 −1 −1 1 1 −1 −1 1 Rx yz
Au 1 1 1 1 −1 −1 −1 −1
B1u 1 1 −1 −1 −1 −1 1 1 z
B2u 1 −1 1 −1 −1 1 −1 1 y
B3u 1 −1 −1 1 −1 1 1 −1 x

Full Projection Operators
✿ For degenerate representations, to get SALCs 

directly, we use the so-called full projection 
operators: 

“diagonal” operators (s = t) are most important: 

✿ To construct full projection operators, we need 
the complete matrices for the representation, 
not just the characters.

  
Pst

j =
l j

h
[Γ(R)st

j ]* R
R
∑

  
Ptt

j =
l j

h
[Γ(R)tt

j ]* R
R
∑

Incomplete Projection 
Operators from Full Operators

Even for degenerate representations, 
“incomplete” projection operators are useful.  
These are obtained by summing the “complete” 
projection operators over the diagonal:

  

 P j = Ptt
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P j =
l j

h
χ*(R) j R̂

R
∑

Two Examples revisited

✿ Projection operators for two cases that 
were not obvious with the “intuition”: 
• the Pt-Cl stretching vibrations of 

PtCl4
2- 

• the π orbitals of the cyclopentadienyl 
ion, C5H5

- 

✿ Another example: 
• SALCs for hydrogen 1s orbs of NH3



  

D4h E 2C4 C2(C 4
2 ) 2C2

′ 2C2
′′ i 2S4 σ h 2σ v 2σ d

A1g 1 1 1 1 1 1 1 1 1 1 x2 + y2 ,  z2

A2g 1 1 1 −1 −1 1 1 1 −1 −1 Rz

B1g 1 −1 1 1 −1 1 −1 1 1 −1 x2 − y2

B2g 1 −1 1 −1 1 1 −1 1 −1 1 xy
Eg 2 0 −2 0 0 2 0 −2 0 0 (Rx , Ry ) (xz, yz)
A1u 1 1 1 1 1 −1 −1 −1 −1 −1
A2u 1 1 1 −1 −1 −1 −1 −1 1 1 z
B1u 1 −1 1 1 −1 −1 1 −1 −1 1
B2u 1 −1 1 −1 1 −1 1 −1 1 −1
Eu 2 0 −2 0 0 −2 0 2 0 0 (x,  y)

  

D5h E 2C5 2C 5
2 5C2 σ h 2S5 2S 5

3 5σ v

A 1
′ 1 1 1 1 1 1 1 1 x2 + y2 ,  z2

A 2
′ 1 1 1 −1 1 1 1 −1 Rz

E  1
′ 2 2cos2π 5 2cos4π 5 0 2 2cos2π 5 2cos4π 5 0 (x,  y) xy

E  2
′ 2 2cos4π 5 2cos2π 5 0 2 2cos4π 5 2cos2π 5 0 (x2 + y2 ,  z2 )

A 1
′′ 1 1 1 1 −1 −1 −1 −1

A 2
′′ 1 1 1 −1 −1 −1 −1 1 z

E  1
′′ 2 2cos2π 5 2cos4π 5 0 −2 −2cos2π 5 −2cos4π 5 0 (Rx , Ry ) (xz, yz)

E  2
′′ 2 2cos4π 5 2cos2π 5 0 −2 −2cos4π 5 −2cos2π 5 0

Example,  
NH3

   

Basis Functions: x̂ =
1
0
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⎤
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0
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 E :
1 0
0 1
⎡
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⎢
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