
Quantum Mechanical  
Operators and Wavefunctions

"well behaved" functions (φ), have the 
following properties 
• must be continuous (no "breaks") 
• must have continuous derivatives (no "kinks") 
• must be normalizable.  Mathematically, this 

means (“dτ”  implies integration over all space): 
ϕ∗ϕ d∫ τ = C, (C  is a finite constant).

if we multiply ϕ  by 1 C ,
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 is said to be "normalized"

Orthogonality of Wavefunctions

✿ Two functions,  𝜑 and χ, are orthogonal if 

✿ Eigenfunctions of QM operators are orthogonal 
(proof - handout).  If 2 or more eigenfunctions 
(eg., 𝜑1 & 𝜑2) have the same eigenvalue, then 

orthogonal eigenfunctions can be “made”:

 
ϕ∗χ d∫ τ = 0

  

χ1 = ϕ1 and χ2 = ϕ2 + cϕ1

where  c = − ϕ1
∗ϕ2 d∫ τ ϕ1

∗ϕ1 d∫ τ .



Commuting Operators have 
Common Eigenfunctions

✿ This is shown on your handout 
✿ Symmetry operators can’t change the 

energy of wavefunctions after they 
“operate”. Symmetry operators therefore 
commute with the Hamiltonian (H ). 

✿ A set of commuting operators including 
H and the symmetry operators A, B, . . . 
have common eigenfunctions.

Example: The H-Atom (Digression)
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where L2  is the (squared) angular momentum operator:
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L2  operates only on θ  and ϕ  ⇒  commutes with H
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 operates only on ϕ  ⇒  commutes with H  and L2

Since H  does not operate on spin variables ⇒  

S 2  and S z  also commute with H , L2 , and Lz



Commuting Operators have 
Common Eigenfunctions

✿ For the hydrogen atom, operators that commute 
with H are L2, Lz, S 

2, and Sz. 
✿ Therefore, the eigenfunctions of H  are also 

eigenfunctions of L2, Lz, S 
2, and Sz. 

L2: l = 0, 1, ..., n-1 

Lz: ml = –l, –l+1, ..., l–1, l (2l+1 values) 
S 

2: (s = 1/2 for one electron) 
Sz: (ms = – 1/2, + 1/2 for one electron, 2S+1 values 
in general)

✿ Symmetry Operators commute with the 
molecular electronic or vibrational 
Hamiltonian:  

are sets of energies and wavefunctions for 
that Hamiltonian

Group Theory &  
Quantum Mechanics

  

R,H[ ] = RH − H R = 0     or      RH = H R

Hψ i = εiψ i     where  εi{ }  and  ψ i{ }



Group Theory & QM, cont.

✿ Nondegenerate case: only one wavefunction 
has energy εi.  Then, 

Rψi is a wavefunction with the same energy.  
Therefore, Rψi = Cψi, where C is a constant 
with a magnitude of 1 (usually C = ±1, but it 
could be complex, C = eiα, where α is const.)

  
H Rψ i = RHψ i

H (Rψ i ) = Rεiψ i = εi(Rψ i )

Example: Valence  MOs of Water

✿ H2O has C2v symmetry. 

✿ The symmetry operators of the C2v 
group all commute with each other 
(each is in its own class). 

✿ The eigenfunctions of H must also be 
eigenfunctions of the symmetry 
operators E, C2, σv1, and σv2.



Building a MO diagram for H2O
O

H H
O

H H

a1

a1
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b1 b1

b2

b2

b2

b2

a1

a1 orbital of H2O

Eφ(1a1) (+1)φ(1a1)
C2φ(1a1) (+1)φ(1a1)
σv1φ(1a1) (+1)φ(1a1)
σv2φ(1a1) (+1)φ(1a1)

C2

σv1

σv2



b1 orbital of H2O

σv2

σv2φ(1b1) (+1)φ(1b1)
Eφ(1b1) (+1)φ(1b1)

b1 orbital of H2O, cont.

C2

σv1

C2φ(1b1) (-1)φ(1b1)
σv1φ(1b1) (-1)φ(1b1)



b2 orbital of H2O

σv1

σv1φ(1b2) (+1)φ(1b2)
Eφ(1b2) (+1)φ(1b2)

b2 orbital of H2O, cont.

C2

C2φ(1b2) (-1)φ(1b2)
σv2φ(1b2) (-1)φ(1b2)

σv2



Group Theory & QM, cont.

✿ Degenerate case: more than one wavefunction 
has energy εi.  We still write 

Again, Rψi is a wavefunction with the same 

energy, but it is possible that Rψi = Σj cj ψj where 
the sum is over the all wavefunctions with the 
same energy (εi = εj) —for molecules the 

degeneracy is usually only 2- or 3-fold.

 

HRψ i = RHψ i

H (Rψ i ) = Rεiψ i = εi (Rψ i )

Higher Dimensional 
Representations and Degeneracy

✿ k-fold degenerate wavefunctions form a basis for 
a k-dimensional irreducible rep. 

✿ Example: For a molecule with octahedral (Oh) 
symmetry three p orbitals (px, py, pz) on the 
central atom must be degenerate, εx = εy = εz. 
Demonstrate that the p orbitals form a basis for 
the T1u representation in Oh symmetry. 

✿ The converse is true: If k wavefunctions are 
degenerate, they form a basis for a k-dimensional 
irreducible representation.



The Direct Product - What is it for?
✿ It is often important to know whether 

integrals involving bases of IRs are zero.  
i.e., if f and g are basis functions belonging 
to Γ1 and Γ2,  

If the integrand, fg ,belongs to the totally 
symmetric IR, then this is nonzero.  
Otherwise it is identically zero.

  

fg  
all 

space

∫ dτ  =
?

 0

Direct Products:  
Is there nothing else?

“The universe is an enormous direct 
product of representations of symmetry 

groups.” – Steven Weinberg1 

1Steven Weinberg, Sheldon Glashow, and Abdus Salam 
were awarded the 1979 Nobel Prize in Physics for their 
incorporation of the weak and electromagnetic ‘forces’ 
into a single theory.



States and Configurations

✿ Each of the electronic states of an atom or a 
molecule are usually described as being built up 
from one (or perhaps more than one) configuration. 

✿ Similarly, the total vibrational state of a molecule 
derives from a description of which individual 
modes are excited. 

✿ Atomic Example: What states arise from a 1s2 2s2 
2p2 (C atom ground) configuration?

Read: Harris & Bertolucci, Symmetry and Spectroscopy..., 
Chapter 4, pp. 225-45.

2px , 2py , 
2p±1



Carbon: Atomic Energy Levels 

 Experimental atomic 
energy levels are 
shown, with 
energies in cm–1. 

http://physics.nist.gov/
PhysRefData/ASD/
index.html 

Carbon: Atomic Energy Levels 

 Energy splittings 
displayed graphically; 
energies in cm–1 
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The Direct Product - What is it for?
✿ We often seek to know the symmetries of 

electronic states that arise from 
configuration with partially filled orbital 
subshells.  For example, what states arise 
from (t2g)1 (eg)1 configuration for a d2 
octahedral complex?

t2g

eg

The Direct Product - What is it?

✿Basis Functions:  If two sets of 
functions {Xj, j = 1, m} and {Yj, j = 1, n} 
form bases for two representations, 
then the representation spanned by 
the m × n  product functions, {XiYj} is 
called a direct product representation.



Direct Product Representations
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Γ(Ri ) in 1st

2-D basis
Γ(Ri ) in 2nd  

2-D basis

Γ(Ri ) in 4-D basis made up of 
product functions from 1st  and 2nd  basis

Illustration: S3 Operation in D3h

  

′E  represention; x and y basis.  S3  matrix :
−1 2 3 2

− 3 2 −1 2
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′′A2  represention; z  basis.  S3  "matrix" :  −1

Direct Product rep.; xz  and yz  basis.  

S3  matrix :
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Illustration: S3 Operation in D3h

  

′E  rep.; px  and py  basis.  S3  matrix :
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′′E  rep.; dxz  and dyz  basis.  S3  matrix :  
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Direct Product rep.; pxdxz , pxdyz , pydxz , pydyz , basis.  
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Properties and Uses of  
Direct Products

✿ The direct product representation ΓAB, 
obtained from ΓA and ΓB,will only 
contain the totally symmetric 
representation if ΓA and ΓB belong to 
the same IR.



Proof

The number of times the ith IR is contained in ΓAB is 

where the final equality arises from orthogonality.

ai = 1
h χAB(R)
R
∑ χi (R)

 χ1(R) =1 for all R    ⇒     a1 =
1
h χAB (R)
R
∑

but we know that χ AB(R) = χA (R)χB(R),  so

a1 =
1
h χA(R)χB (R)
R
∑ = δAB

SPECTRAL TRANSITION 
PROBABILITIES

When are electronic transitions allowed? 
For example, is the 2T2g → 2Eg transition 

illustrated below “symmetry allowed”?

t2g

eg

2Eg

t2g

eg

2T2g



TRANSITION ENERGIES

The energetic restriction on the 
allowedness of optical transitions like 
the 2T2g → 2Eg transition illustrated 
earlier is familiar: 

But this doesn’t deal with symmetry.

Ef − Ei = hν

Transition Probabilities, 
Symmetry Aspects

I ∝ transition moment: 

µ is the dipole 
moment operator

I ∝  ∫ψ iµψ j dτ

µ =  qixi
i
∑  +  qiyi

i
∑  +  qizi

i
∑

Ix  ∝  ∫ψ i xψ j dτ

Iy  ∝  ∫ψ i yψ j dτ

Iz ∝  ∫ψ i zψ j dτ
See Harris & Bertolucci, pp. 130-5.



Transition Probabilities, 
Symmetry Rules

An electric dipole transition will be 
allowed with x, y, or z polarization if the 
direct product of the representations of 
the two states concerned is or contains 
the irreducible representation to which x, 
y, or z, respectively, belongs.

Summary
• In the handout, “Transitions Between Stationary States 

(Adapted from Harris and Bertolucci, p. 130)”, an expression 
for the probability that a system in its ground state, ψ0 can be 
stimulated by radiation into an excited state, ψ1, is derived: 

• This expression applies to an integral over all wavelengths of 
incident light (in the dipole approximation) and was the form used 
to evaluate whether an electron transition was symmetry allowed.

 

Ψ(r,t) = c0 (t)Ψ0 (r,t) + c1(t)Ψ1(r,t)

d c1*c1( )
dt

∝ E0
2 µ01

x  2 + µ01
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z  2( )   assuming c0 (0) = 1 and c1(0) = 0. 

E0
2  is proportional to the light intensity and

µ01
x,y,z=e ψ1

*
x
y
z
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ψ 0dτ∫  are the transition moment integrals.



Allowedness

• In group theory, prescription for deciding whether a 
transition is dipole-allowed is straightforward: 
• If the ground and excited states respectively belong to the Γ0 and Γ1 

representations of the point group of the molecule in question, then 
a transition is dipole-allowed if and only if 

• Spin doesn’t change: ∆S = 0.  For states where large spin-orbit 
mixing is possible (large ζ and/or small ∆E between mixed states), 
the rule is weakened.

Γ0 ⊗Γ1  contains 
Γ x  for x-polarized light
Γ y  for y-polarized light
Γ z  for z-polarized light

⎧
⎨
⎪

⎩⎪

Examples

✿ Is the 2T2g → 2Eg transition illustrated 
earlier “symmetry allowed”? 

✿ What about a 2E → 2T2 transition for a 
tetrahedral complex?

2E

t2

e

t2

e

2T2



  

Oh E 8C3
3C2

(= C4
2 )

6C4 6C2 i 8S6 3σ h 6S4 6σ d

A1g 1 1 1 1 1 1 1 1 1 1 x2 + y2 + z2

A2g 1 1 1 −1 −1 1 1 1 −1 −1

Eg 2 −1 2 0 0 2 −1 2 0 0 (2z2 – x2 − y2 ,x2 − y2 )
T1g 3 0 −1 1 −1 3 0 −1 1 −1 (Rx , Ry , Rz )
T2g 3 0 −1 −1 1 3 0 −1 −1 1 (xy,xz, yz)
A1u 1 1 1 1 1 −1 −1 −1 −1 −1
A2u 1 1 1 −1 −1 −1 −1 −1 1 1
Eu 2 −1 2 0 0 −2 1 −2 0 0
T1u 3 0 −1 1 −1 −3 0 1 −1 1 (x,  y,  z)
T2u 3 0 −1 −1 1 −3 0 1 1 −1

  

Td E 8C3 3C2 6S4 6σ d

A1 1 1 1 1 1 x2 + y2 + z2

A2 1 1 1 –1 –1
E 2 –1 2 0 0 (2z2 – x2 − y2 ,x2 − y2 )
T1 3 0 –1 1 –1 (Rx , Ry , Rz )
T2 3 0 –1 –1 1 (x,  y,  z) (xy,xz, yz)



Types of Transitions: d-d

a) intramolecular e– transfer within the d-orbital manifold 
b) Values for ε vary: up to 1,000 M–1 cm–1 (moderately 

intense) for spin-allowed transitions in non-
centrosymmetric molecules; ~10 M–1cm–1 for spin-
allowed transitions in centrosymmetric molecules (weak); 
~10–1 M–1cm–1 for spin-forbidden transitions in 
centrosymmetric molecules (very weak). 

c) 1-e– transitions much more intense (2-e– transitions 
typically 10–2 times weaker) 

d) Shoulders and/or broad peaks expected where Jahn-Teller 
distortions apply.

Identifying Nonzero Matrix 
Elements

Molecular Orbitals, ψµ (µ = 1, 2, …), for molecules are 
usually expanded in terms of basis functions: (ψµ = 
c1µφ1 + c2µφ2 + …) 

These basis functions, {φ1, φ2 , … }, may be atomic 
orbitals, or as we shall see, they may be Symmetry 
Adapted Linear Combinations (SALCs) of atomic 
orbitals.  We shall see that it is important to be able 
to identify whether integrals (called matrix 
elements) of the form below are zero by symmetry.

   
Hij ≡ φiHφ j dτ∫  =

?
 0



Identifying Nonzero Matrix 
Elements

SALCs are constructed so that they form 
basis functions for the IRs of the system 
(molecule or crystal). 

Hamiltonian Matrix Elements, Hij, 
involving SALCs are nonzero only if φi 
and φj belong to the same IR.


