Character Tables:

Procedure for Derivation

- delineate symmetry elements, classes
- \# of I.R.'s = \# of Classes
- dimensions of I.R.'s:

$$
\sum_{i}\left[\chi_{i}(E)\right]^{2}=h
$$

- orthogonality and normalization of I.R.'s

$$
\sum_{R}\left[\chi_{i}(R)\right]^{2}=h \quad ; \quad \sum_{R} \chi_{i}(R) \chi_{j}(R)=0 \text { when } i \neq j
$$

- Mulliken Symbols
- bases for I.R.'s, linear and bilinear forms

$$
\begin{aligned}
& \quad \text { Derivation of Character } \\
& \text { Tables; Examples } \\
& \star \mathrm{C}_{2 \mathrm{v}} \text { - easy! } \\
& \star \mathrm{C}_{4 \mathrm{v}} \text { - an example with a 2-dim. I.R. } \\
& \star \mathrm{D}_{3 \mathrm{~h}} \text { vs. } \mathrm{D}_{3 \mathrm{~d}} \\
& \star \mathrm{O}_{\mathrm{h}}-\text { Divide and Conquer } \\
& \star \mathrm{O}_{\mathrm{h}}=\mathrm{O} \times \mathrm{C}_{\mathrm{i}}
\end{aligned}
$$

A Crucial Practical Relationship

\star Any reducible rep. can be put in blockdiagonal form by some similarity transformation (i.e., appropriate choice of basis)
\star Let a_{j} be the \# of times the $j^{\text {th }}$ irred. rep. occurs. The character of the red. rep. is then:

$$
\chi(R)=\sum_{j} a_{j} \chi_{j}(R)
$$

\star A formula for a_{i} is: $\quad a_{i}=\frac{1}{h} \sum_{R} \chi(R) \chi_{i}(R)$

Examples

\star Find the characters of the reducible representation obtained using the four hydrogen 1s orbitals of methane as a basis then find the irred. reps. spanned by this rep.
\star Follow the same procedure using the twelve $\mathrm{CO} \pi^{*}$ orbitals of $\mathrm{Cr}(\mathrm{CO})_{6}$ as a basis.
\star Follow the same procedure using the six CO stretching vibrations of $\mathrm{Cr}(\mathrm{CO})_{6}$ as a basis.

