Character Tables: Procedure for Derivation

- delineate symmetry elements, classes
- \# of I.R.’s = \# of Classes
- dimensions of I.R.’s:
 \[
 \sum_i [\chi_i(E)]^2 = h
 \]
- orthogonality and normalization of I.R.’s
 \[
 \sum_R |\chi_i(R)|^2 = h ; \sum_R \chi_i(R)\chi_j(R) = 0 \text{ when } i \neq j
 \]
- Mulliken Symbols
- bases for I.R.’s, linear and bilinear forms

Derivation of Character Tables; Examples

- ★ C_{2v} - easy!
- ★ C_{4v} - an example with a 2-dim. I.R.
- ★ D_{3h} vs. D_{3d}
- ★ O_h - Divide and Conquer
 - ★ $O_h = O \times C_i$

A Crucial Practical Relationship

- ★ Any reducible rep. can be put in block-diagonal form by some similarity transformation (i.e., appropriate choice of basis)
- ★ Let a_j be the \# of times the j^{th} irred. rep. occurs. The character of the red. rep. is then:
 \[
 \chi(R) = \sum_j a_j \chi_j(R)
 \]
- ★ A formula for a_i is:
 \[
 a_i = \frac{1}{h} \sum_R \chi(R)\chi_i(R)
 \]

Examples

- ★ Find the characters of the reducible representation obtained using the four hydrogen 1s orbitals of methane as a basis — then find the irred. reps. spanned by this rep.
- ★ Follow the same procedure using the twelve CO π^* orbitals of Cr(CO)$_6$ as a basis.
- ★ Follow the same procedure using the six CO stretching vibrations of Cr(CO)$_6$ as a basis.