
Transformation Matrices; 
Geometric and Otherwise 

• As examples, consider the transformation 
matrices of the C3v group.  The form of 
these matrices depends on the basis we 
choose.  Examples: 

• Cartesian vectors:

x̂ =
1
0
0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

     ŷ =
0
1
0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

     ẑ =
0
0
1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 

ˆ x ,  ˆ y ,  ˆ z 

• p orbitals on the N atom of NH3
• the three 1s orbitals on the hydrogen atoms of NH3

E =
1 0 0
0 1 0
0 0 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

      C3 =

− 1
2 − 3

2 0
3

2 − 1
2 0

0 0 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

       C3
2 =

− 1
2

3
2 0

− 3
2 − 1

2 0
0 0 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

σ v1 =
− 1

2 − 3
2 0

− 3
2

1
2 0

0 0 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

      σ v2 =
− 1

2
3

2 0
3

2
1
2 0

0 0 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

      σ v3 =
1 0 0
0 −1 0
0 0 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 

x̂ =
1
0
0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

   

ŷ =
0
1
0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

   

ẑ =
0
0
1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 

φ1 φ2

φ3
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y

Cartesian basis:



Example

φ1 φ2

φ3
σv2 σv1

σv3
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2

C3

N
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Three 1s orbitals on the hydrogen atoms of NH3

x

y z : upx

y

Example, 
Answers

E =
1 0 0
0 1 0
0 0 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

      C3 =
0 0 1
1 0 0
0 1 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

       C3
2 =

0 1 0
0 0 1
1 0 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

σ v1 =
1 0 0
0 0 1
0 1 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

      σ v2 =
0 0 1
0 1 0
1 0 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

       σ v3 =
0 1 0
1 0 0
0 0 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

φ1 φ2

φ3
σv2 σv1

σv3

C3
2

C3

N

H φ3

φ1

φ2



Transformation of d orbitals
d0  (l = 2,ml = 0) ∝     1

4
5
π
(3cos2θ −1)

d±1  (l = 2,ml = ±1) ∝ (∓) 12
15
2π
sinθ cosθe± iϕ

d±2  (l = 2,m = ±2) ∝     1
4

15
2π

sin2θ  e±2iϕ

⎫

⎬
⎪
⎪

⎭
⎪
⎪

 
see, e.g., Atkins & de Paula,

Physical Chemistry

dxz =
1
2 [−d1 + d−1]∝ 1

2
15
π

sinθ cosθ 1
2 [e

iϕ + e− iϕ ]= 1
2

15
π
sinθ cosθ cosϕ ∝ 1

4
15
π

× 2xz

dyz =
−1

i 2 [d1 + d−1]∝
1
2

15
π
sinθ cosθ 1

2i [e
iϕ − e− iϕ ]= 1

2
15
π
sinθ cosθ sinϕ ∝ 1

4
15
π

× 2yz

dx 2− y2 =
1
2 [d2 + d−2 ]∝

1
4

15
π
sin2θ 1

2 [e
2iϕ + e−2iϕ ]= 1

4
15
π
sin2θ cos2ϕ ∝ 1

4
15
π

× x2 − y2( )
dxy =

1
i 2 [d2 − d−2 ]∝

1
4

15
π
sin2θ 1

2i [e
2iϕ − e−2iϕ ]= 1

2
15
π
sin2θ sin2ϕ ∝ 1

4
15
π

× 2xy

dz 2 = d0 ∝Y20 ∝
1
4

5
π
3cos2θ −1( )∝ 1

4
15
π

×
1
3 3z2 − r2( )

d1 = − 1
2 [dxz + idyz ]      ;      d−1 =

1
2 [dxz − idyz ]

d2 =
1
2 [dx 2− y2 + idxy ]    ;    d−2 =

1
2 [dx 2− y2 − idxy ]

Group Representations
•Representation: A set of matrices that 

“represent” the group.  That is, they behave 
in the same way as group elements when 
products are taken. 

•A representation is in correspondence with 
the group multiplication table. 

•Many representations are in general possible. 
•The order (rank) of the matrices of a 

representation can vary.



Example - show that the matrices 
found earlier are a representation

   eg.,   C3C3
2 =

0 0 1
1 0 0
0 1 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0 1 0
0 0 1
1 0 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 =  
1 0 0
0 1 0
0 0 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= E

   (σ v1)−1C3σ v1 =
1 0 0
0 0 1
0 1 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0 0 1
1 0 0
0 1 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 0 0
0 0 1
0 1 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

0 1 0
0 0 1
1 0 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= C3

2

Reducible and Irreducible Reps.
• If we have a set of matrices, {A, B, C, ...}, that 

form a representation of a group and we can 
find a transformation matrix, say Q, that 
serves to “block factor” all the matrices of 
this representation in the same block form 
by similarity transformations, then {A, B, 
C, ...} is a reducible representation.  If no 
such similarity transformation is possible 
then {A, B, C, ...} is an irreducible 
representation.



Similarity Transformation 
maintains a Representation 

Suppose the group multiplication rules are 
such that AB = D, BC = F , etc ... 

• Now perform similarity transforms using 
the transformation matrix Q: 
A´ = Q-1AQ, B´ = Q–1BQ, C´ = Q–1CQ, etc. 

• Multiplication rules preserved: 
A´B´ = (Q–1AQ)(Q–1BQ) = (Q–1DQ) = D´ 
B´C´ = (Q–1BQ)(Q–1CQ) = (Q–1FQ) = F´, etc.

Reducing a Representation by 
Similarity Transformations

Q−1AQ =

A1

A2

A3

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

    

Q−1BQ =

B1

B2

B3

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

  

Q−1CQ =

C1

C2

C3

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

   



“Blocks” of a Reduced Rep. are 
also Representations

This must be true because any group 
multiplication property is obeyed by the 
subblocks.  If, for example, AB = C, then 
A1B1 = C1, A2B2 = C2  and A3B3 = C3.

Example: Show that the 
matrix at left, Q , can reduce 
the matrices we found for the 
representation given earlier.

Q =

1
2

−1
6

1
3

−1
2

−1
6

1
3

0 2
6

1
3

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

A Block Factoring Example

Q−1C3Q =

1
2

−1
2

0

−1
6

−1
6

2
6

1
3

1
3

1
3

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

0 0 1

1 0 0

0 1 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

1
2

−1
6

1
3

−1
2

−1
6

1
3

0 2
6

1
3

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

Q−1C3Q =

−1
2

3
2 0

− 3
2

−1
2 0

0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

                   Q−1σ v1Q =

1
2

− 3
2 0

− 3
2

−1
2 0

0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥



Significance of Transformations
★ Irreducible Representations are of pivotal 

importance 
★ Chosen properly, similarity transformations can 

reduce a reducible representation into its 
irreducible representations 

★ With the proper first choice of basis, the 
transformation would not be necessary 

★ Important Future goal: finding the basis functions 
for irreducible representations

Great Orthogonality Theorem

  

[Γ i (R)mn][Γ j (R) ′m ′n ]
R
∑ ∗ =

h
lil j

δ ijδm ′m δn ′n

  

Γ i (R) — matrix that represents the operation R in the ith  representation. 
                Its form can depend on the basis for the representation.
[Γ i (R)mn] — matrix element in mth  row and nth  column of Γ i (R)
li  — the dimension of the ith  representation
h — the order of the group (the number of operations)
δ ij  = 1 if i=j, 0 otherwise

2 Proofs: Eyring, H.; Walter, J.; Kimball, G.E.  Quantum Chemistry; Wiley, 1944.
http://www.cmth.ph.ic.ac.uk/people/d.vvedensky/groups/Chapter4.pdf



Great Orthogonality Theorem - again
• Vectors formed from matrix elements from the 

mth rows and nth columns of different irreducible 
representations are orthogonal: 

• Such vectors formed from different row-column 
sets of the same irreducible representation are 
orthogonal and have magnitude h/li :

  
[Γ i (R)mn][Γ j (R)mn]

R
∑ ∗ = 0 if i ≠ j

  
[Γ i (R)mn][Γ i (R) ′m ′n ]

R
∑ ∗ = (h li )δm ′m δn ′n

The First Sum Rule
The sum of the squares of the dimensions 

of the irreducible representations of a 
group is equal to the order of the group, 
that is, 

this is equivalent to:

li
2 = l1

2 + l2
2 + l3

2 + ⋅ ⋅⋅ = h
i
∑

χi (E)[ ]
i
∑ 2

= h



Second Sum Rule

  
[Γ i (R)mn][Γ i (R) ′m ′n ]

R
∑ ∗ = (h li )δm ′m δn ′n

“Proof”— From the GOT:

[Γi(R)mm ][Γi (R)mm ]
R
∑ ∗

= (h li )let m=m’=n=n’:

  

The sum of the squares of the characters in 
any irreducible representation equals h, the 
order of the group

  
[χi (R)]2 =  

R
∑ h

Characters of Different Irreducible 
Representations are Orthogonal

The vectors whose components are the 
characters of two different irreducible 
representations are orthogonal, that is,

χi
R
∑ (R)χ j (R) = 0 when i ≠ j



Proof
Setting m = n in first GOT statement:

Γ i
R
∑ (R)mmΓ j (R)mm = 0 if i ≠ j

compare this to the statement (i ≠ j):

χi
R
∑ (R)χ j (R) = Γ i

m
∑ (R)mm
⎡
⎣⎢

⎤
⎦⎥

Γ j
m
∑ (R)mm
⎡
⎣⎢

⎤
⎦⎥

⎧
⎨
⎩

⎫
⎬
⎭R

∑  

                       = Γ i (R)mmΓ j (R)mm
R
∑⎡
⎣⎢

⎤
⎦⎥m

∑ = 0

Matrices in the Same Class have 
Equal Characters

• This statement is true whether the 
representation is reducible or irreducible 

• This follows from the fact that all 
elements in the same class are conjugate 
and conjugate matrices have equal 
characters.



# of Classes = # of Irred. Reps.
The number of irreducible 

representations of a group is equal to 
the number of classes in the group. 

if the number of elements in the mth class 
is gm and there are k classes,

χi
R
∑ (R)χ j (R) = hδ ij

χi
p=1

k

∑ (Rp )χ j (Rp )gp = hδ ij


