Transformation Matrices;

Geometric and Otherwise

- As examples, consider the transformation matrices of the $C_{3 v}$ group. The form of these matrices depends on the basis we choose. Examples:
- Cartesian vectors: $\hat{\mathbf{x}}, \hat{\mathbf{y}}, \hat{\mathbf{z}}$

$$
\hat{\mathbf{x}}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \quad \hat{\mathbf{y}}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \quad \hat{\mathbf{z}}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

- p orbitals on the N atom of NH_{3}
- the three 1 s orbitals on the hydrogen atoms of NH_{3}

Three 1s orbitals on the hydrogen atoms of NH_{3}

Transformation of d orbitals

$$
\left.\left.\begin{array}{ccc}
d_{0}\left(l=2, m_{l}=0\right) & \propto & \frac{1}{4} \sqrt{\sqrt{5}}\left(3 \cos ^{2} \theta-1\right) \\
d_{ \pm 1}\left(l=2, m_{l}= \pm 1\right) & \propto & (\mp) \frac{1}{2} \sqrt{\frac{15}{2 \pi}} \sin \theta \cos \theta e^{ \pm i \varphi} \\
d_{ \pm 2}(l=2, m= \pm 2) & \propto & \frac{1}{4} \sqrt{\frac{15}{2 \pi}} \sin ^{2} \theta e^{ \pm 2 i \varphi}
\end{array}\right\} \begin{array}{c}
\text { see, e.g., Atkins \& de Paula, } \\
\text { Physical Chemistry }
\end{array}\right] \begin{gathered}
d_{x z}=\frac{1}{\sqrt{2}}\left[-d_{1}+d_{-1}\right] \propto \frac{1}{2} \sqrt{\frac{15}{\pi}} \sin \theta \cos \theta \frac{1}{2}\left[e^{i \varphi}+e^{-i \varphi}\right]=\frac{1}{2} \sqrt{\frac{15}{\pi}} \sin \theta \cos \theta \cos \varphi \propto \frac{1}{4} \sqrt{\frac{15}{\pi}} \times 2 x z \\
d_{y z}=\frac{-1}{i \sqrt{2}}\left[d_{1}+d_{-1}\right] \propto \frac{1}{2} \sqrt{\frac{15}{\pi}} \sin \theta \cos \theta \frac{1}{2 i}\left[e^{i \varphi}-e^{-i \varphi}\right]=\frac{1}{2} \sqrt{\frac{15}{\pi}} \sin \theta \cos \theta \sin \varphi \propto \frac{1}{4} \sqrt{\frac{15}{\pi}} \times 2 y z \\
d_{x^{2}-y^{2}}=\frac{1}{\sqrt{2}}\left[d_{2}+d_{-2}\right] \propto \frac{1}{4} \sqrt{\frac{15}{\pi}} \sin ^{2} \theta \frac{1}{2}\left[e^{2 i \varphi}+e^{-2 i \varphi}\right]=\frac{1}{4} \sqrt{\frac{15}{\pi}} \sin ^{2} \theta \cos 2 \varphi \propto \frac{1}{4} \sqrt{\frac{15}{\pi}} \times\left(x^{2}-y^{2}\right) \\
d_{x y}=\frac{1}{i \sqrt{2}}\left[d_{2}-d_{-2}\right] \propto \frac{1}{4} \sqrt{\frac{15}{\pi}} \sin ^{2} \theta \frac{1}{2 i}\left[e^{2 i \varphi}-e^{-2 i \varphi}\right]=\frac{1}{2} \sqrt{\frac{15}{\pi}} \sin ^{2} \theta \sin 2 \varphi \propto \frac{1}{4} \sqrt{\frac{15}{\pi}} \times 2 x y \\
d_{z^{2}}=d_{0} \propto Y_{20} \propto \frac{1}{4} \sqrt{\frac{5}{\pi}}\left(3 \cos ^{2} \theta-1\right) \propto \frac{1}{4} \sqrt{\frac{15}{\pi}} \times \frac{1}{\sqrt{3}}\left(3 z^{2}-r^{2}\right) \\
d_{1}=-\frac{1}{\sqrt{2}}\left[d_{x z}+i d_{y z}\right] \quad ; \quad d_{-1}=\frac{1}{\sqrt{2}}\left[d_{x z}-i d_{y z}\right] \\
d_{2}=\frac{1}{\sqrt{2}}\left[d_{x^{2}-y^{2}}+i d_{x y}\right] \quad ; \quad d_{-2}=\frac{1}{\sqrt{2}}\left[d_{x^{2}-y^{2}}-i d_{x y}\right]
\end{gathered}
$$

Example - show that the matrices found earlier are a representation

$$
\begin{gathered}
\text { eg., } C_{3} C_{3}^{2}=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=E \\
\left(\sigma_{v 1}\right)^{-1} C_{3} \sigma_{v 1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]=C_{3}^{2}
\end{gathered}
$$

Group Representations

- Representation: A set of matrices that "represent" the group. That is, they behave in the same way as group elements when products are taken.
- A representation is in correspondence with the group multiplication table.
- Many representations are in general possible.
- The order (rank) of the matrices of a representation can vary.

Reducible and Irreducible Reps.

- If we have a set of matrices, $\{\mathbf{A}, \mathbf{B}, \mathbf{C}, \ldots$, $\}$, that form a representation of a group and we can find a transformation matrix, say \mathbf{Q}, that serves to "block factor" all the matrices of this representation in the same block form by similarity transformations, then $\{\mathbf{A}, \mathbf{B}$, $\mathbf{C}, \ldots\}$ is a reducible representation. If no such similarity transformation is possible then $\{\mathbf{A}, \mathbf{B}, \mathbf{C}, \ldots\}$ is an irreducible representation.

Similarity Transformation maintains a Representation
Suppose the group multiplication rules are such that $\mathbf{A B}=\mathbf{D}, \mathbf{B C}=\mathbf{F}$, etc \ldots

- Now perform similarity transforms using the transformation matrix \mathbf{Q} :

$$
\mathbf{A}^{\prime}=\mathbf{Q}^{-1} \mathbf{A Q}, \mathbf{B}^{\prime}=\mathbf{Q}^{-1} \mathbf{B} \mathbf{Q}, \mathbf{C}^{\prime}=\mathbf{Q}^{-1} \mathbf{C Q}, \text { etc. }
$$

- Multiplication rules preserved:
$\mathbf{A}^{\prime} \mathbf{B}^{\prime}=\left(\mathbf{Q}^{-1} \mathbf{A Q}\right)\left(\mathbf{Q}^{-1} \mathbf{B Q}\right)=\left(\mathbf{Q}^{-1} \mathbf{D Q}\right)=\mathbf{D}^{\prime}$
$\mathbf{B}^{\prime} \mathbf{C}^{\prime}=\left(\mathbf{Q}^{-1} \mathbf{B Q}\right)\left(\mathbf{Q}^{-1} \mathbf{C Q}\right)=\left(\mathbf{Q}^{-1} F Q\right)=\mathbf{F}^{\prime}$, etc.

Recall: Matrix Multiplication

 -$$
\mathbf{A B}=\mathbf{C}
$$

$\left[\begin{array}{lllll}a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\ a_{21} & a_{22} & a_{23} & a_{24} & a_{25} \\ a_{31} & a_{32} & a_{33} & a_{34} & a_{35} \\ a_{41} & a_{42} & a_{43} & a_{44} & a_{45} \\ a_{51} & a_{52} & a_{53} & a_{54} & a_{55}\end{array}\right]\left[\begin{array}{llllll}b_{11} & b_{12} & b_{13} & b_{14} & b_{15} \\ b_{21} & b_{22} & b_{23} & b_{24} & b_{25} \\ b_{31} & b_{32} & b_{33} & b_{34} & b_{35} \\ b_{41} & b_{42} & b_{43} & b_{44} & b_{45} \\ b_{51} & b_{52} & b_{53} & b_{54} & b_{55}\end{array}\right]=\left[\begin{array}{lllll}c_{11} & c_{12} & c_{13} & c_{14} & c_{15} \\ c_{21} & c_{22} & c_{23} & c_{24} & c_{25} \\ c_{31} & c_{32} & c_{33} & c_{34} & c_{35} \\ c_{41} & c_{42} & c_{43} & c_{44} & c_{45} \\ c_{51} & c_{52} & c_{53} & c_{54} & c_{55}\end{array}\right]$
$a_{41} \times b_{12}+a_{42} \times b_{22}^{+}+a_{43} \times b_{32}+a_{44} \times b_{42}+a_{45} \times b_{52}=c_{42}$
$\mathrm{a}_{41} \times \mathrm{b}_{12}+\mathrm{a}_{42} \times \mathrm{b}_{22}+\mathrm{a}_{43} \times \mathrm{b}_{32}+\mathrm{a}_{44} \times \mathrm{b}_{42}+\mathrm{a}_{45} \times \mathrm{b}_{52}=\mathrm{c}_{42}$

Reducing a Representation by Similarity Transformations

"Blocks" of a Reduced Rep. are also Representations

This must be true because any group multiplication property is obeyed by the subblocks. If, for example, $\mathbf{A B}=\mathbf{C}$, then $\mathbf{A}_{1} \mathbf{B}_{1}=\mathbf{C}_{1}, \mathbf{A}_{2} \mathbf{B}_{2}=\mathbf{C}_{2}$ and $\mathbf{A}_{3} \mathbf{B}_{3}=\mathbf{C}_{3}$.
Example: Show that the matrix at left, Q , can reduce the matrices we found for the representation given earlier.

$$
\mathbf{Q}=\left[\begin{array}{ccc}
1 / \sqrt{2} & -1 / \sqrt{6} & 1 / \sqrt{3} \\
-1 / \sqrt{2} & -1 / \sqrt{6} & 1 / \sqrt{3} \\
0 & 2 / \sqrt{6} & 1 / \sqrt{3}
\end{array}\right]
$$

A Block Factoring Example

$\mathbf{Q}^{-1} \mathbf{C}_{3} \mathbf{Q}=\left[\begin{array}{ccc}1 / \sqrt{2} & -1 / \sqrt{2} & 0 \\ -1 / \sqrt{6} & -1 / \sqrt{6} & 2 / \sqrt{\sqrt{6}} \\ 1 / \sqrt{3} & 1 / \sqrt{3} & 1 / \sqrt{3}\end{array}\right]\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]\left[\begin{array}{ccc}1 / \sqrt{2} & -1 / \sqrt{6} & 1 / \sqrt{3} \\ -1 / \sqrt{2} & -1 / \sqrt{6} & 1 / \sqrt{3} \\ 0 & 2 / \sqrt{6} & 1 / \sqrt{3}\end{array}\right]$
$\mathbf{Q}^{-1} \mathbf{C}_{\mathbf{3}} \mathbf{Q}=\left[\begin{array}{cc|c}-1 / 2 & \sqrt{3} / 2 & 0 \\ -\sqrt{3} / 2 & -1 / 2 & 0 \\ \hline 0 & 0 & 1\end{array}\right]$
$\mathbf{Q}^{-1} \sigma_{v i} \mathbf{Q}=\left[\begin{array}{cc|c}1 / 2 & -\sqrt{3} / 2 & 0 \\ -\sqrt{3} / 2 & -1 / 2 & 0 \\ \hline 0 & 0 & 1\end{array}\right]$

$$
\begin{aligned}
& \text { Great Orthogonality Theorem } \\
& \sum_{R}\left[\Gamma_{i}(R)_{m n}\right]\left[\Gamma_{j}(R)_{m^{\prime} n^{\prime}}\right]^{*}=\frac{h}{\sqrt{l_{i} l_{j}}} \delta_{i j} \delta_{m m^{\prime}} \delta_{n n^{\prime}}
\end{aligned}
$$

2 Proofs: Eyring, H.; Walter, J.; Kimball, G.E. Quantum Chemistry; Wiley, 1944. http://www.cmth.ph.ic.ac.uk/people/d.vvedensky/groups/Chapter4.pdf
$\Gamma_{i}(R)$ - matrix that represents the operation R in the $i^{\text {th }}$ representation. Its form can depend on the basis for the representation.
$\left[\Gamma_{i}(R)_{m n}\right]$ — matrix element in $m^{\text {th }}$ row and $n^{\text {th }}$ column of $\Gamma_{i}(R)$
l_{i} - the dimension of the $i^{\text {th }}$ representation
h - the order of the group (the number of operations)
$\delta_{i j}=1$ if $i=j, 0$ otherwise

Significance of Transformations

* Irreducible Representations are of pivotal importance
* Chosen properly, similarity transformations can reduce a reducible representation into its irreducible representations
* With the proper first choice of basis, the transformation would not be necessary
* Important Future goal: finding the basis functions for irreducible representations

Great Orthogonality Theorem - again

- Vectors formed from matrix elements from the $\mathrm{m}^{\text {th }}$ rows and $\mathrm{n}^{\text {th }}$ columns of different irreducible representations are orthogonal:

$$
\sum_{R}\left[\Gamma_{i}(R)_{m n}\right]\left[\Gamma_{j}(R)_{m n}\right]^{*}=0 \text { if } i \neq j
$$

- Such vectors formed from different row-column sets of the same irreducible representation are orthogonal and have magnitude h / l_{i} :

$$
\sum_{R}\left[\Gamma_{i}(R)_{m n}\right]\left[\Gamma_{i}(R)_{m^{\prime} n^{\prime}}\right]^{*}=\left(h / l_{i}\right) \delta_{m m^{\prime}} \delta_{n n^{\prime}}
$$

The First Sum Rule

The sum of the squares of the dimensions of the irreducible representations of a group is equal to the order of the group, that is,

$$
\sum_{i} l_{i}^{2}=l_{1}^{2}+l_{2}^{2}+l_{3}^{2}+\cdots=h
$$

this is equivalent to:

$$
\sum_{i}\left[\chi_{i}(E)\right]^{2}=h
$$

Characters of Different Irreducible

 Representations are OrthogonalThe vectors whose components are the characters of two different irreducible representations are orthogonal, that is,

$$
\sum_{R} \chi_{i}(R) \chi_{j}(R)=0 \text { when } i \neq j
$$

Second Sum Rule

The sum of the squares of the characters in any irreducible representation equals h, the order of the group $\quad \sum_{R}\left[\chi_{i}(R)\right]^{2}=h$
"Proof" - From the GOT:

$$
\sum_{R}\left[\Gamma_{i}(R)_{m n}\right]\left[\Gamma_{i}(R)_{m^{\prime} n^{\prime}}\right]^{*}=\left(h / l_{i}\right) \delta_{m m^{\prime}} \delta_{n n^{\prime}}
$$

let $m=m^{\prime}=n=n^{\prime}: \sum_{R}\left[\Gamma_{i}(R)_{m m}\right]\left[\Gamma_{i}(R)_{m m}\right]^{*}=\left(h / l_{i}\right)$

Proof
Setting $m=n$ in first GOT statement:
$\sum_{R} \Gamma_{i}(R)_{m m} \Gamma_{j}(R)_{m m}=0$ if $i \neq j$
compare this to the statement $(i \neq j)$:
$\sum_{R} \chi_{i}(R) \chi_{j}(R)=\sum_{R}\left\{\left[\sum_{m} \Gamma_{i}(R)_{m m}\right]\left[\sum_{m} \Gamma_{j}(R)_{m m}\right]\right\}$
$=\sum_{m}\left[\sum_{R} \Gamma_{i}(R)_{m m} \Gamma_{j}(R)_{m m}\right]=0$

Matrices in the Same Class have

 Equal Characters- This statement is true whether the representation is reducible or irreducible
- This follows from the fact that all elements in the same class are conjugate and conjugate matrices have equal characters.
\# of Classes = \# of Irred. Reps.

The number of irreducible
representations of a group is equal to the number of classes in the group.

$$
\sum_{R} \chi_{i}(R) \chi_{j}(R)=h \delta_{i j}
$$

if the number of elements in the $m^{\text {th }}$ class is g_{m} and there are k classes,

$$
\sum_{p=1}^{k} \chi_{i}\left(R_{p}\right) \chi_{j}\left(R_{p}\right) g_{p}=h \delta_{i j}
$$

